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RESUMO 

Patologias da marcha podem conduzir ao desenvolvimento de uma marcha anormal, afetando 

a mobilidade das pessoas. Dispositivos ativos de assistência (DAA) começam a complementar 

a reabilitação da marcha. Particularmente, exosqueletos ou ortóteses ativas para os membros 

inferiores, destacam-se na área da reabilitação da marcha. O sistema de controlo motor 

humano tem sido usado como inspiração para o design de arquiteturas de controlo para estes 

DAA, pois compreendem a definição de diferentes níveis de controladores (alto, médio e 

baixo) organizados hierarquicamente. Especificamente, os controladores de baixo nível têm 

um papel importante nesta arquitetura, devendo garantir uma assistência temporalmente 

eficaz adaptada às necessidades do utilizador do utilizador, como a velocidade e a trajetória 

da marcha. 

 O objetivo desta dissertação é o desenvolvimento do controlo de baixo nível Feedback-

Error Learning (FEL) em tempo real, inserido no sistema de controlo bioinspirado SmartOs. O 

controlo FEL foi realizado através de redes neuronais artificias (RNA) como um controlador de 

realimentação positiva para adquirir o modelo inverso da planta, e um controlador 

Proporcional-Integral-Derivativo (PID) como controlador de realimentação negativa, para 

garantir estabilidade e lidar com perturbações do sistema. Uma ortótese ativa do joelho e do 

tornozelo foram os DAA usados e foi aplicada uma estratégia de assistência por seguimento 

baseado em posição. Foram efetuadas validações sem carga e com dois sujeitos a caminhar 

numa passadeira a 0.8, 1.0 e 1.2 km/h, com os dois DAA, separadamente, controlados pelo 

controlo FEL.  

 A RNA demorou cerca de 90 s a aprender o modelo inverso do DAA, demostrando 

versatilidade e estabilidade quando foram aplicadas mudanças na magnitude e velocidade da 

trajetória de entrada. O controlador de realimentação negativa garantiu estabilidade e 

conseguiu corrigir o erro quando aplicadas perturbações externas. O controlo de FEL diminui 

o erro de posição em 15%, eliminando o desvio de fase, quando comparado com o controlador 

PID. Portanto, prova ser um controlo temporalmente eficaz e vantajoso para DAA. Trabalho 

futuro passa pela validação com mais sujeitos e diferentes estratégias de assistência.  

Keywords: Reabilitação da Marcha, Dispositivos Ativos de Assistência, Estratégias de Controlo, 

Controladores de baixo nível, controlo FEL, controlo PID 
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ABSTRACT 

Gait pathologies often produce abnormal gait patterns, affecting human mobility. Powered 

assistive devices, such as lower-limb exoskeletons and orthoses, are starting to complement 

gait rehabilitation, to actively aid or restore the abnormal gait pattern. The human motor 

control system starts to influence the design of bioinspired architectures for these devices, 

comprising the definition of distinct levels of controllers (high-, mid-, and low-level) 

distributed hierarchically. Low-level controllers play an important role in this architecture, 

ensuring time-effective assistance adaptive to user’s needs as gait speed and trajectory. 

The main goal with this dissertation is the development of a real-time Feedback-Error 

Learning (FEL) low-level control to be integrated into a bioinspired control architecture 

approached in a Stand-alone, Active Orthotic System - SmartOs. The FEL control was 

performed by means of an Artificial Neural Network (ANN) as a feedforward controller to 

acquire the inverse model of the assistive device, and a Proportional-Integral-Derivative (PID) 

feedback controller to guarantee stability and handle with disturbances. A Powered Knee 

Orthosis and Powered Ankle-Foot Orthosis were used as the assistive devices and a position-

based tracking assistive strategy was applied. A validation without human load and with two 

subjects walking in a treadmill at 0.8, 1.0 and 1.2 km/h with the two assistive devices, 

controlled by the Feedback-Error Learning control, was performed.  

The ANN took around 90 s to learn the inverse model of the assistive device, 

demonstrating versatility and steadiness when changes to the magnitude and speed of the 

input trajectory were applied. The feedback controller guaranteed stability and shown good 

reactions to the applied disturbances. The implemented FEL control was capable to decrease 

the angular position error by 15% and to eliminate 0.25 s of phase delay when compared to a 

solo PID controller. Thus, it proves to be a time-effective asset to control assistive powered 

devices. Future work addresses the validation with more subjects and different assistive 

strategies.  

 

Keywords: Gait Rehabilitation, Powered Assistive Devices, Control Strategies, Low-level 

control, Feedback-Error Learning, Proportional-Integral-Derivative Control 
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1 INTRODUCTION 

1.1 Thesis Scope 

 

This dissertation presents the developed work in the scope of the fifth year of the Integrated 

Master in Industrial Electronics and Computer Engineering at University of Minho, Portugal, 

during the academic year of 2017-2018, included in the fields of robotics and real-time control 

systems. 

 The project started with an abroad traineeship in Consejo Superior de Investigaciones 

Científicas (CSIC), Madrid, Spain, included in the ERASMUS placement program, entitled 

“Adaptive position control for the BioMot Exoskeleton / Power Knee 2”. With this aboard 

experience, it was possible to assimilate knowledge regarding Feedback-Error Learning  

control scheme, previously performed on a humanoid platform called “Binocchio” [1], with 

the goal to implement it in a powered ankle-foot orthosis, a constituent part of the BioMot 

exoskeleton [2]. The work ended with no satisfactory results, once it was not possible to apply 

the FEL control to the mentioned orthosis. Nevertheless, expertise was acquired regarding 

orthosis and FEL approach. 

 The project has been maintained at University of Minho, in the Biomedical Robotic Devices 

(BiRD) Laboratory, included in the Center of MicroElectroMechanical Systems (CMEMS)  

Research Center, now aimed to a powered knee and ankle-foot orthoses, which are modules 

joints of the H2 lower-limb exoskeleton [3]. This work is inserted in the Smart Control of a 

Stand-alone Active Orthotic System (SmartOs project), that proposes a bioinspired real-time 

architecture for human gait training and rehabilitation that has being been developed in our 

BiRD laboratory.  



 

 

 

2 

1.2 Motivation & Problem Statement 

 

Modern societies are privileged with a high quality of life and high average life expectancy, 

mainly due to the improvement of living conditions, proper and healthy eating habits, good 

physical exercising, development of medicine and reliable health care systems. When given 

circumstances threat people’s motion and function, such as aging, injuries, diseases or 

environmental factors, people turn to rehabilitation facilities so they can search for therapies 

that can reduce or recovery the motor disabilities [4]. Consequently, research for new, 

improved and faster rehabilitation therapies is a requirement for these populations and for 

researchers themselves. 

 A target of the rehabilitation therapies is mobility since it is one of the common and 

relevant human physical activities. Gait pathologies such as stroke, Parkinson’s disease, 

cerebral palsy, spinal cord injury, muscle dystrophy, degenerative joint disease, multiple 

scleroses, and rheumatoid arthritis can deeply affect human mobility [5]. Without it, daily life 

activities such as getting up from bed in the morning, walking to the bathroom, going for a 

walk or even working can be drastically affected. Furthermore, the lack of mobility can lead 

to a deprived social life and a decrease in communication and mental health. Our body health 

is also affected since our muscles can deteriorate without mobility. As mentioned in [6], 

human motor impairment can result in social and work (10% in working age) exclusion, early 

retirement, costly medical treatments, and social assistance. Therefore, rehabilitation 

therapies regarding the improvement of people’s mobility can be a goal to robotics 

rehabilitation, once it can reinforce and/or restore the human mobility. 

 Conventional therapeutic approaches, regarding gait rehabilitation, are progressively 

being complemented with powered robotic assistive devices to treat physical lower limb 

impairments [4], [7]. These devices can operate as rehabilitative tools that relive physical 

therapists from heavy work and enable constant and effective monitoring of patient’s outputs 

in terms of joint kinematics and kinetics [8]. They also allow more didactic and relaxed therapy 

sessions, as well as can foster user-oriented gait training. Particularly, powered lower-limb 

exoskeletons and orthoses have been highlighted, as they increase human motor function, 

build up joint strength and rehabilitate through task-oriented training, acting in parallel with 

the human lower limb [4], [8], [9], [10]. 
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 These wearable robotic devices targeted for gait use are multipart equipment containing 

mechanical structures, embedded electronics, actuation agents, sensor and monitoring 

systems, safety and control assistive strategies [9], [11], [12], [13], [14]. Hence, all these 

different systems should be able to interact in a dedicated software architecture, particularly, 

sensor and actuation system, to ensure user-oriented, reliable and effective real-time control 

strategies when assisting the user. 

 Furthermore, the human motor control system starts to influence the design of 

bioinspired architectures for lower-limb robotic devices [4], in order to reflect not only the 

physical interaction between the user and the robotic devices but also with the involving 

environment. These assistive devices should apply control assistive strategies that ensure 

repetitive movements of the user’s limbs, so an improvement in movement coordination 

occurs.   

 Feedback and feedforward controllers play an important role in bioinspired architectures, 

once they should provide accurate responses to the control assistive strategies, guaranteeing 

stability to the developed system. For this matter, it becomes imperative the development of 

robust, time-effective and real-time low-level controllers, capable of guaranteeing an 

effective actuation during motion. 

 Certain assistive devices have implemented such low-level controllers, once access to 

expertise and technology that enables overcoming difficulties in implementing challenges is a 

reality, such as deeper mathematical understanding about its system modelling [4]. Optimal 

and robust control are examples of used low-level controllers with these features, providing 

the assistive strategies with adaptiveness to different rehabilitative scenarios. However, 

straightforward control laws are much preferred to use in these assistive devices, due to 

simpler implementation and tuning methods [4]. The Proportional-Integral-Derivative (PID) 

and its variants are by far the most implemented low-level controller in the abovementioned 

assistive devices, having satisfactory results without an arduous implementation process. 

Nevertheless, adopting user-oriented assistance strategies merely based on PID control laws 

might present flaws, such as the steady-state errors and low range of operation, limiting its 

versatility. 

 Therefore, the development of low-level controllers capable of providing low steady-state 

errors, emphasizing adaptiveness to different rehabilitative situations without system 
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modeling, is a must to improve the control process and user-oriented assistance in powered 

assistive devices. 

1.3 Goals 

 

The main goal of this dissertation addresses the real-time development of the Feedback-Error 

Learning (FEL) control [15]. It has a PID feedback controller that protects the user and the 

assistive device against disturbances and a feedforward controller that uses an artificial neural 

network (ANN) to learn the inverse dynamic model (IDM) of the assistive device, allowing 

adaptability to the low-level controller for several gait speeds and changes in magnitude 

trajectory. The design of the ANN involved, an empirical exploring to find an effective 

configuration for correctly learning the IDM of the plant and posterior real-time 

implementation in a wearable processing board. 

This control is embedded in SmartOs, an existing modular, bioinspired, real-time, time-

effective, and ergonomic orthotic system, which acts and cooperates closely with the human 

being.  Currently, SmartOs includes two actuation devices:  Powered Knee Orthosis (PKO) and 

a Power Ankle-Foot Orthosis (PAFO), both modules from the H2 lower-limb exoskeleton [3]. 

The proposed control is validated with healthy subjects wearing these orthotic devices, 

separately, with trajectory tracking control assistive strategy.  

 To accomplish this main goal, the succeeding goals shall be addressed: 

• Goal 1: To investigate in the literature the FEL control in powered lower-limb 

devices in order to identify remarks in its implementation. Alongside, some 

analysis to similar control laws, also implemented in powered assistive devices, is 

performed to properly understand the advantages and drawbacks of each one. 

• Goal 2: To validate the time-effective use of SmartOs in gait rehabilitation. A time 

inspection of the multiple SmartOs modules is done, namely, the prompt execution 

of the wearable sensor systems, control strategies, and gait analysis algorithms. 

Additionally, adjustment in SmartOs modules’ priority levels are performed to 

fulfill the temporal requirements of SmartOs.  
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• Goal 3: To get the assistive device IDM by exploring time-effective function 

approximators, namely ANN. Exploring optimization methods to enable 

adaptiveness to different occasion, i.e., different gait speeds and changes in 

magnitude of trajectory. 

• Goal 4: To validate the above-mention ANN, establishing its initial set-up in offline 

mode. 

• Goal 5: To implement and validate the FEL control with hard-real-time constraints 

(i.e., 1kHz) in SmartOs. An existing trajectory tracking assistive strategy will be used 

in both the PKO and PAFO, independently, to evaluate the performance of the FEL 

controller in a real-time environment, including healthy subjects. 

 

 

 

1.4 Research Questions 

 

With this dissertation, certain Research Questions (RQs) were identified and answered, 

addressing the solutions to the main challenges covered in this project: 

• RQ1: Which are the FEL control advantages and limitations over other low-level 

controls applied to powered assistive devices? This research question is answered 

in Chapter 2. 

• RQ2: Is SmartOs a time-effective assistive and monitoring rehabilitation system? 

This research is answered in Chapter 4. 

• RQ3: Are ANN capable of effectively learn the IDM of a powered assistive lower-

limb device, for different users, trajectories and speeds? This research is answered 

in Chapter 5. 

• RQ4: Can FEL control provide good real-time performance to a powered assistive 

lower-limb device? This research question is answered in Chapter 5. 
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1.5 Contribution to Knowledge 

 

The main contributions identified in the current dissertation are the following: 

• An ANN with supervised learning, implemented with backpropagation, stochastic 

gradient descent (SGD) training algorithm and Adaptive Moment Estimation 

(ADAM) optimizer, for multiple platforms, with online training. The algorithm is 

capable of quickly learning the IDM of PKO and PAFO assistive devices. 

• A real-time, low-level FEL control for a PKO and PAFO assistive devices running at 

1 kHz, with low steady-state errors and adaptiveness to different rehabilitative 

situations without system modeling.  

• Contribution to the time-effective implementation of the bioinspired, modular and 

effective SmartOs. 

 

Furthermore, a scientific publication was accepted in the scope of this dissertation:  

• Pedro Nuno Fernandes, Joana Figueiredo, Juan C. Moreno, Cristina P. Santos, 

“Feedback-Error Learning for Gait Rehabilitation Using a Powered Knee Orthosis: 

First Advances”, 6th Portuguese Meeting on Bioengineering (ENBENG).  

1.6 Thesis Outline 

 

This master’s dissertation is organized in the following 5 chapters. 

 Chapter 2 presents a state of the art on lower limb’s assistive devices highlighting their 

need in the field of gait rehabilitation. A definition and inspection of high-level and middle-

level assistive strategies applied in these assistive devices are made. To finish, a description of 

low-level control and its applications on the above-mention devices are noted.  

 Chapter 3 addresses the theoretical concepts behind the FEL control. It analyzes its theory, 

some insights about ANN and its training algorithms are presented. 

 In chapter 4, an insight about the SmartOs architecture is made, presenting a system 

overview regarding its constituent software and hardware. It is pointed out the contribution 

made to its implementation, ending with the performed validation tests on the orthotic 

system. 
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 Chapter 5 presents a discussion on the performed design and offline implementation 

finishing with the real-time implementation in SmartOs. The obtained results for two 

validations are presented as discussed. 

 Lastly, in chapter 6 the conclusions are presented, and the research questions are 

answered. The future work is also addressed. 
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2 STATE OF THE ART 

The current chapter presents a review of the main concepts and technologies involved in this 

dissertation. It begins by underlining the benefits of lower-limb assistive devices for therapy 

and gait rehabilitation. An inspection about specific lower-limb exoskeletons is made and a 

more thorough approach is taken regarding orthoses, concluding with a bioinspired 

framework for its control. Afterwards, high-level assistive strategies are defined, analyzed and 

compared. Subsequently, low-level controllers applied in orthotic devices are described and 

inspected. Lastly, applications for the specified low-level controllers are listed. 

2.1 Lower-Limb Assistive Devices 

 

Research in the field of gait rehabilitation including new assistive and empowering lower-limb 

devices have been widely addressed, especially in powered lower-limb exoskeletons and 

orthoses [16]. These anthropomorphic and electromechanical devices, ultimately augment, 

reinforce or even restore an abnormal human gait, rehabilitating users affected by neurologic, 

motor diseases or injuries [17]. Figure 1 shows the H2 lower-limb exoskeleton and a PKO. 

 The examples observed in Figure 1, are lower-limb assistive devices with active/powered 

characteristics, i.e., it allows them to actively control the joints of the devices [18]. Powered 

Figure 1 - Example of Wearable Robotic Devices for the lower-limbs. 

A – H2 lower-limb exoskeleton [3]; B – active knee orthosis by Kavaras 

[91]. 
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devices are, normally, combined with actuators and sensors that work together, on account 

of control architectures in which power is added at appropriate phases of the gait cycle, 

allowing users to walk in a self-comfortable manner. The power feature makes these assistive 

devices adjustable and compliant to the user, rather than a passive/unpowered behavior that 

is a rigid and stiff device, that can only balance the limb for a certain range of motion [19].  

 

 In gait rehabilitation and assistance, there has been a great interest in the development of 

rehabilitative powered lower-limb devices to relieve or overcome the drawbacks associated 

with traditional rehabilitation therapies. Particularly, robot-aid therapies allow: 1) less lack of 

repeatability through high degree of training with repetitive tasks which they can provide; 2) 

longer training sections, since they relieve the repetitive and heavy work that relies on the 

physical therapists; and 3) a better analysis of the therapeutic progress, given the possibility 

of not only evaluate by visual observation but also based on objective data collected in real-

time from these devices [16], [17].  

 Powered lower-limb exoskeletons and orthoses have been highlighted as a preferred 

robotic assistive system, as they are applied in the real environment and not only in the clinical 

environment [2]. When the intention is to empower all the lower-limb joints, i.e., trunk (T), 

hip (H), knee (K), ankle (A) and feet (F), the used technology is a powered exoskeleton. If the 

purpose is to actively assist one of these lower-limb structures, an powered orthosis is applied 

[20], [21]. 

 

2.1.1 Powered Exoskeletons 

 

Commonly, powered lower-limb exoskeletons are addressed as robots with the capability to 

provide extra motion energy, improve load carrying ability, and aid lower-limb impaired 

subjects to regain independent gait [17]. According to the mechanical joints covered in these 

devices, they can be classified as: trunk-hip-ankle-foot (THKAF), hip-knee-ankle-foot (HKAF), 

trunk-hip-knee (THK), hip-knee (HK), and knee-ankle-foot (KAF) exoskeletons, as disclosed in 

Figure 2. 
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 Some examples of powered lower-limb exoskeletons can be found in Figure 3. 

 

 

 

 Table 1 presents some of the main lower-limb exoskeletons that have been evaluated for 

daily-life assistance, with focus on the main actuated joints and their applications. 

 

 

Figure 3 - Examples of lower-limb exoskeletons (A: ReWalk TM [22], B: ATLAS [23], C: eLEGs [24], D: HAL [25], and 

E: H2 [3]). 

Figure 2 - Possible types of lower-limbs 

exoskeletons [17]. 
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Table 1 - Examples of lower limb exoskeletons developed for daily-life activities. 

Devices 
Target Joints 

Active Passive 
 

Applications 

ReWalk TM [22] Hip, Knee Ankle 
 

- SCI Paraplegics 

ATLAS [23] Hip, Knee Ankle 
 

- Quadriplegic children 

eLEGs [24] Hip, Knee Ankle 
 

- SCI Paraplegics 

HAL [25] Hip, Knee, Ankle 

 

- Power augmentation 

- Impaired subjects 

H2 [26] 

 

Hip, Knee, 

Hip 
- - Stroke survivors 

 

 As suggested by Table 1, a great number of lower-limb exoskeletons apply powered 

movement actuation at distinct joints, being hip and knee the most addressed active joints. 

Moreover, the reviewed devices have been intended for gait assistance and rehabilitation, 

being designed for pathological patients with gait disorders (due to neurologic injuries and/or 

motor disabilities).  

2.1.2 Powered Orthoses 

 

Powered lower-limb orthoses are designed for a range of applications, focusing on restoring 

an abnormal gait pattern affected by specific leg injuries or impairments. They are divided into 

hip, knee, and ankle systems.  

Some of the main orthoses that have been evaluated are presented in Figure 4. These 

orthoses are detailed in Table 2 regarding the actuated target joints and the main application 

considering the scope of assistance and the target end-users. 
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Table 2 - Examples of orthosis evaluated for daily life activities and clinical training. 

Devices Actuated Joint Assistance Subjects 

ALEX II [27] Hip - Treadmill walking. - Stroke survivors. 

1-DOF exo by G. 

Aguirre-Ollinger [28] 
Hip - Swing motion. - Healthy. 

Knee by Gams [29] Knee 
- Squatting motion 

augmentation. 
- Healthy. 

SCKAFOs [30], Knee - Swing motion. - Affected by poliomyelitis. 

MIT knee [31] Knee - Running. - Healthy. 

AFO by Kao [32] Ankle -Treadmill walking. 
- Subjects with ankle 

impairments. 

PAFOs [33] Ankle - Treadmill walking. 
- Younger and older 

(sarcopenia). 

AFO by Malcolm [34] Ankle 
- Treadmill- walking to 

running transition; 
- Healthy 

Figure 4 -Examples of lower-limb orthoses: HIP  (A: LOPES [91], B: ALEX II [27], C: 1-DOF exo by 

G. Aguirre-Ollinger [28]), KNEE (D: Knee by Gams [29], E: SCKAFOs [30], F: MIT knee [31]) and 

ANKLE (AFO by Kao [32], H: PAFOs [33], and I: AFO by Malcolm [34]). 
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 Table 2 shows that active orthoses for hip, knee and ankle joints have been designed to 

assist and rehabilitate. It also suggests that these devices can be applied to many applications, 

particularly, patients with neurologic disorders (e.g. stroke survivors, and affected by the 

poliomyelitis virus), deficits at the human joints (e.g., genu recurvatum, and drop-foot), and 

muscle weakness, or healthy subjects when performing daily-life-activities (climbing stairs, 

squatting with or without heavy loads, stand-to-sit and sit-to-stance, and running).  

 

 In addition to the advancements of the mechanical design, sensors and actuators of these 

powered lower-limb devices, assistive strategies have to be thought as a key feature. 

Additionally, control approaches capable of providing adequate responses should be a 

concern, namely, reflecting the physical interaction between the user, the robotic devices, 

and the involving environment. When dealing with such devices, the human motor control 

should be considered in a continuous assessment. For this matter, a generalized control 

framework has been proposed by Tucker et. al [22] as a template for the next generation of 

multifunctional controllers for active lower-limb exoskeletons and orthoses. This model is 

illustrated in Figure 5. 

 

 

Figure 5 - General control framework for powered lower limb orthotic devices. Taken from [22]. 
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 This generalized framework includes four major subsystems: the hierarchical control 

structure, the user, the navigated environment, and the powered device itself. Safety 

mechanisms are included throughout the architecture, in order to emphasize the human-

robot interaction. The proposed hierarchical control architecture can be divided into three 

main layers: high-, mid-, and low-level controllers.  

 The high-level controller implements a perception layer. At this layer, the user’s state and 

intentions can be inferred to adjust the motion assistance. Typically, it comprises the 

implementation of motion intentions estimation, activity mode recognition and gait trajectory 

generation [22].  

 The mid-level controller implements the translation layer. The user’s locomotion 

intentions from the high-level controller are passed to this layer and are translated into device 

states. At this level, the gait pattern (gait phases and events) is disclosed, and the control law 

is applied [22].  

 Lastly, the low-level controller tracks the desired device states provided by the mid-level 

layer. Within feedback and/or feedforward control, the error with respect to the current state 

is computed, and commands are sent to the actuators [36]. This level is commonly 

implemented through position and torque control where a position or torque reference is 

provided to the controller, respectively [36]. 

2.2 High- and Mid-Level Assistive Strategies 

 

In the high layer of assistance, it is expected that the state and intentions of the user can be 

inferred to adjust the adequate motion assistance to provide.  

 With the intention of the user identified, it is up to the mid-level to convert this intention 

state to a desired device state output. This transition layer implements controllers that are 

capable of mapping the input state received from the upper layer to an output state that the 

lower layer can execute to a specific device. Moreover, it implements motion control 

strategies for assistive devices, that can be generally divided into tracking control and assisted-

as-needed (AAN) control [22], [23]. 

 The tracking control integrates mechanisms based on predefined trajectories, such as the 

position and torque control, where the patient receives constant assistance, while the legs 
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being guided on a fixed, rigid trajectory. The position control aims to predefine the target joint 

trajectory through the gait analysis of limbs movement and/or joints kinematics [37]. Recent 

studies suggest parameterizing the joints trajectories in accordance with the users’ body 

conditions and movement phases to improve the flexibility and comfort [38]. Similarly, the 

torque control assists the lower-limb according to a predefined torque.  

 Alternatively, the AAN control defines the actuator state in function of the user’s 

impairment and training progress, encouraging a voluntary participation by the user, being 

assisted only as needed and how much is needed and, consequently, they are encouraged to 

interact with the devices [23][39]. 

 For this purpose, (adaptive) impedance control, model-based control, fuzzy-control, 

myoelectric control, among other strategies, can be adopted in the attempt that the powered 

device supplies AAN [39], [8], [13]. Table 3 summarizes the concept, advantages, 

disadvantages, control strategies and used assistive device inserted in both categories: 

tracking and AAN control. 

 

 
Table 3 - Control strategies applied to powered robotic devices: concept, advantages, drawbacks, implementation, and some 

examples of powered devices. Information obtained from [35], [38], [8], [13], [40], [9], [10], [41], [42]. 

Strategy Concept Advantages Drawback Controllers Devices 

Position- 

and Torque-

based 

Tracking 

Control 

Impose 

repetitive joint 

trajectories 

based on pre-

recorded data. 

- Easy 

implementation; 

- May be used in 

patients with severe 

pathology or 

paraplegic. 

- Gait may be not natural; 

- May decrease the motor learning; 

- May reduce subject’s active 

participation and motivation. 

- PID position and 

torque controller. 

- PD position and 

torque controller. 

 

 

e.g., ATLAS, 

eLEGs, HAL, 

Mindwalker, 

SCKAFOS, 

PKO 

Impedance 

control / 

Adaptive 

impedance 

control 

Modify the 

impedance 

parameters of 

human limbs by 

setting the 

device’s 

parameters. 

- Impedance selected 

according to patient’s 

state (e.g., disability 

level); 

- Increase the leg’s 

natural frequency 

- Considers human-

robot interaction. 

- Inter/intra-subject difference 

affects the 

biomechanical modelling (masses 

and 

dimensions of subject’s body 

segments, and 

passive torque); 

- Controller requires real-time 

computation, 

since the total torque required is 

constantly 

changing. 

- FSM; 

- Radial 

basis function 

neural network; 

- Multi-Layer 

perceptron 

neural network; 

- PD position 

controller. 

e.g. Hussain, 

knee orthosis 

by Daachi 
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Table 3 - continued 

Strategy Concept Advantages Drawback Controllers Devices 

Model-based 

control 

Action is computed 

on the basis of 

human-robot 

model. Considers 

gravity 

compensation, zero 

moment point 

(ZMP) and balance 

criteria. 

- Assists according to 

modelled human-

robot interaction. 

- Efficacy depends on the 

accuracy of human-robot 

model. 

- Requires series of sensors 

to recognize kinematics 

and dynamics variable. 

- ZMPs combined 

with 2 neural 

network to 

decrease the 

time-consuming 

computation. 

- Human body 

model. 

e.g., ABLE, HAL, 

WPAL, Hip joint by 

Y. Yu 

Adaptive 

oscillators-

based control 

Recursively follow 

user’s intended 

movements, relying 

on 

the periodicity of 

the gait 

pattern. 

- Realizes a model-

free control able to 

synchronize with joint 

angle, and to provide 

continuous gait 

phase. 

- Limited to subjects who 

can deliver periodic and 

stable bio-signals (healthy 

or subjects with residual 

motion capability) 

- CPGs based on 

PD position 

control. 

e.g, Lower-limb exo 

by N. Tagliamonte, 

ALEXII, LOPES, 1-

DOF hip by G. 

Aguirre-Ollinger 

Fuzzy 

controllers 

Adaptive models 

that recursively 

follow user’s 

intended 

movements, relying 

on a fuzzy-logic 

layer. 

- Considers the user’s 

movement intention. 

- Requires many variables 

to be 

tuned manually according 

to the specific motion 

tasks and individuals. 

- Time consuming. 

- Fuzzy-logic. 

 

e.g, Exo by Sogang 

University 

Pre-defined 

action 

based on 

gait pattern 

Recurrent gait 

phase 

transitions are used 

to 

regulate the 

controller’s 

action, resulting in 

a 

flexible interaction. 

- Desired assistance 

are determined by 

referring to walking 

data. 

- Do not consider the 

user’s movement 

intention; 

- Needs to be tuned with 

different walking 

conditions. 

- FSM 

- KNN and SVM. 

e.g., MIT 

Exoskeleton, MIT 

AAFO, Soft Exosuit, 

Hip exo by C. Lewis 

Myoelectric 

control 

Actuator torque is 

based 

on EMG signals 

obtained from 

desired 

muscles. 

- Takes in 

consideration the 

user’s disabilities 

through muscle 

activity; 

- Tracks patient’s 

rehabilitation 

progress; 

- Muscular activity is 

very different between 

subjects and depending 

on the tasks; 

- Requires repeated 

calibration 

- Requires signal 

processing 

- PID controller 
e.g. AAFO by P. Kao, 

AAF by Ferris 
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2.3 Low-Level Controllers 

 

Low-level controllers are inserted in the execution layer, closer to the device. An error 

calculation is performed with the current state provided by the device sensors and the 

reference state received from the upper layer (high-/mid-level), feeding a feedback and/or 

feedforward controller. Subsequently, a command is sent to the device actuator to track the 

desired state [36]. This level is commonly implemented through position and torque control, 

where a position or torque reference is provided to the controller, respectively [36]. 

 Each of the low-level strategies analyzed in the current subchapter have been 

implemented in assistive robotic systems, in particular, exoskeletons and orthoses that are 

specified in Table 4. 

2.3.1 Proportional-Integral-Derivative 

 

The PID control law provides a generic and efficient solution to a wide range of real-world 

control problems being the most common form of feedback control [43], [44], [45]. In process 

control today, more than 95% of the control loops are of PID type, being the Proportional-

Integral (PI) control the most used [45]. 

 In Figure 6 it can be seen a generic control loop using a PID controller.  

 

 
Figure 6 - PID control scheme.  
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The transfer function of a PID controller can be written as indicated in Equation (1): 

where U(s) is the control signal acting on the error signal E(s), 𝐾1 is the proportional gain, 𝐾2 

is the integral gain, 𝐾3 is the derivative gain, and 𝑠 is the argument of the Laplace transform. 

The proportional term provides an overall control action proportional to the error signal 

through the all-pass gain factor. The integral term reduces steady-state errors through low-

frequency compensation, having a gradual action over the integral of the error. The derivative 

term improves transient response through high-frequency compensation, taking an 

anticipatory action over the derivative of the error.  

 A good proportional gain value leads the output variable (Y(s)) of the plant to a fast-

transient response, fast-tracking the reference value, and small overshoot without bringing 

the system to noticeable oscillations and/or instability. The integral term is well chosen when 

the offset value of Y(s) is removed and the rising time of the output variable is decreased, 

without increasing its overshoot, oscillation, and stability time. Lastly, the derivative gain is 

properly selected when the process was speed-up and stabilized, reducing overshoot, error, 

and oscillation values, avoiding instability [46]. Having these features in mind, it is possible to 

tune the PID controller considering the whole system as a black-box and choosing the best 

gain values by analyzing the response of the output variable, by trial-and-error. Table 4 

reviews the effects of independent changes of the PID gains, stating their effects on closed-

loop responses. 

 

Table 4 - Effects of PID gains on closed loop characteristics [46]. 

 Rise Time Overshoot Settling Time Steady-State Error Stability 

Increasing 𝑲𝒑 Decrease Increase Minor Increase Decrease Degrade 

Increasing 𝑲𝒊 Small Decrease Increase Increase Large Decrease Degrade 

Increasing 𝑲𝒅 Small Decrease Decrease Decrease Minor Change Improve 

 

 Some tuning techniques were tailored to the PID control, although iterative tuning can 

also be applied. The most well-known tuning methods are those developed by Ziegler and 

Nichols [43]. These methods are based on the characterization of process dynamics by a few 

𝐺123(𝑠) = 	
𝑈(𝑠)
𝐸(𝑠) = 	𝐾1 + 𝐾2

1
𝑠 + 𝐾3𝑠 (1) 



 

 

 

20 

parameters and simple equations for the controller parameters. These methods are widely 

referenced, because they give moderately good tuning only in restricted situations [45]. 

 The real challenge when implementing the PID controller is to balance the impact of all 

three gains to the whole system. If the system parameters cannot be precisely tuned, the 

systems response may not resist the uncertainties and disturbances, and thus present a 

control with low robustness. Although, when an ideal combination between them is achieved, 

this controller has a durable, steady and good responses. Nevertheless, if the evolving 

environment suffers changes, the controller could not be capable to adapt, being necessary 

to re-tune the PID parameters, making it a drawback comparing with another controllers. 

Table 5 lists the PID control advantages and disadvantages. 

 
Table 5 - PID control advantages and disadvantages [47]. 

Advantages  Disadvantages 

Feasibility and easy to implement. Balance all gains can be arduous. 

System model is not necessary. 
System may not resist to uncertainties and 

disturbances. 

Variety of tuning methods (black box). Changes in the environment affect control response. 

2.3.2 Optimal Control 

 

Optimal control theory consists on designing controllers that optimize some desirable 

characteristics in order to achieve an optimal state of the system when exposed to 

disturbances [48], [49]. Therefore, the optimal control law is based on the idea of minimizing 

a 𝐽 criterion on evolution variables of the system to be controlled. Two useful criteria are the 

minimum linear quadratic cost and the minimum time criterion of establishment [50]. 

 

2.3.2.1 Linear Quadratic Regulator (LQR)  

 

The LQR, is based on the idea of minimizing the integral of the heavy sum of squares of the 

state variables and command variables. The cost function to diminish is presented in Equation 

(2): 
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𝐽(𝑥(𝑡), 𝑢(𝑡)) = D[𝑥F(𝑡)𝑄𝑥(𝑡) + 𝑢F(𝑡)𝑅𝑢(𝑡)]𝑑𝑡						, 𝑄 ≥ 0, 𝑅 > 0		
N

O

 (2) 

where 𝑥(𝑡) are the state variables of the system to be controlled, and 𝑢(𝑡) is the command 

variable of the controller. 𝑄 is the matrix responsible to weight the size of the states. If 𝑄 has 

high values, then small deviations of the state significantly increase the cost function (tight 

control with high gain). The matrix 𝑅 weights the control values. Contrary to what happens 

with 𝑄, if 𝑅 has high values, then the control action will be small [51]. Varying the values of 

these matrices, may be interesting to differently adjust the weight of each state value and 

control values.  

 To perform the LQR as a linear feedback controller, it is necessary to find the value of the 

feedback vector 𝐾PQR of the complete feedback that causes a satisfying system response 

behavior. The optimal control law is state in Equation (3):  

 

𝑢PQR(𝑡) = 	−𝐾PQR𝑥(𝑡) (3) 

and considering the linear and time invariant state-space model representation in Equation 

(4) and (5): 

 

𝑥T(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)	, 𝑥(𝑡O) = 𝑥O (4) 

𝑦(𝑡) = 𝐶𝑥(𝑡) (5) 

where  𝑥T(𝑡) are the first order derivatives of the state variable, 𝐴 state-space matrix of the 

system, 𝐵 the input matrix, and 𝐶 the output matrix. In order to find the 𝐾PQR that minimizes 

the cost function 𝐽, the Riccati’s equation is often used [49] (Equation (6)): 

 

𝐴F𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅YZ𝐵F𝑃 + 𝑄 = 0 (6) 

where finding the value of	P allow us to discover the optimal values of 𝐾, as noted in Equation 

(7): 

𝐾PQR = 𝑅YZ𝐵F𝑃 (7) 

Therefore, the values of 𝑄	and 𝑅 must be tuned, in order to minimize the above-mention cost 

function. If 𝑄 contains values close to 0, the state variables have low or none contribution to 

the control, meaning that their excursions are not relevant, while the control tries to force the 

state variables to values near the reference. Regarding the matrix 𝑅, when it has low levels, 
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the energy spent to bring the state variables close to the reference will be close to infinite and 

very fast, spending a lot of control energy.  Consequently, minimizing the cost function 𝐽 

results in moving the state variables near the reference values with as little control energy 

and state deviations as possible, with the balance between control energy and state 

deviations specified via the 𝑄 and 𝑅 matrices, respectively [51]. When 𝐾PQR has been found, 

the control scheme represented in Figure 7 can be applied. 

 

 Hence, the advantages of the LQR controller can be summarized in the following Table 5. 

 
Table 6 - Advantages and disadvantages of LQR optimal control [51], [51]. 

Advantages  Disadvantages 

Stability is guaranteed if all state variables are 

available and if the system model is known 

System model must be available as well as the state 

variables; 

Simple control scheme 
Obtaining the solution for the Ricatti ‘s equation can 

be difficult. 

 

2.3.3 Robust Control 

 

The robust control methods aim to bound uncertainties, so their results meet the control 

system requirements in all cases, being prepared to operate in a worst-case scenario  [52].  

Figure 7 - LQR control scheme. 
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 There are a variety of techniques that have been developed for robust control, such as: 1) 

𝐻[ and 𝐻N that uses Hankel norms to measure control system properties; 2) parameter 

estimation, a method that establishes boundaries in the frequency domain that cannot be 

crossed to maintain stability [53]; 3) fuzzy control, that is based upon the construction of fuzzy 

sets to describe the uncertainty inherent in all variables and a method of combining these 

variables called fuzzy logic [54]. The 𝐻N control is going to be the chosen robust control 

technique to analyze once was the only one found in the literature that was applied to 

orthoses. 

 

2.3.3.1 𝐻N Robust Control 

 

𝐻N robust control considers the minimization of the ∞-norm of the sensitivity function of a 

single-input-single-output (SISO) linear feedback system [55]. Consider the following SISO 

feedback system in Figure 8 - SISO feedback loop.: 

 

where 𝑢 is the control signal acting on the error signal 𝑒, 𝑧 is the output variable and 𝑣 

represents the disturbance signal that affects the plant. The controller and the plant have 𝐶 

and 𝑃 as transfer function, respectively.  The sensitivity function of the feedback system in 

Figure 8 - SISO feedback loop. characterizes the sensitivity of the output variable 𝑧 to 

disturbances only (ref=0), and can be written as follow: 

 

𝑍 = 𝑉 − 𝑃𝐶𝑍	
	
⇔ 	𝑍 =

1
1 + 𝑃𝐶 𝑉 (8) 

	
⇔ 	𝑍 = 𝑆𝑉	

	bcdbeRefeRg
h⎯⎯⎯⎯⎯⎯⎯j 		𝑆 = 	

1
1 + 𝑃𝐶 (9) 

 

Figure 8 - SISO feedback loop. 



 

 

 

24 

 Therefore, 𝑆 represents the sensitivity function of the feedback loop – Figure 9 

 

 Preferably it is intended for 𝑆	 = 	0. The idea of the 𝐻N robust control is to optimize a 

controller that makes the closed-loop system stable and minimizes the peak value of the 

sensitivity function [52] described in Equation (10): 

 

∥ 𝑆 ∥N= max |𝑆(𝑗𝑤)| (10) 

 In order to achieve good results, an optimization considering the worst case should be 

done, once it purposes to minimize the effect of the worst disturbance value over the system. 

Therefore, the peak value of the sensitivity is defined by the square of the 2-norms on the 

input and output signals [55]. It follows that 𝐻N robust control is concerned with the 

minimization of system norms as shown in Equation (11): 

  

∥ 𝑆 ∥N=
∥ 𝑧 ∥[[

∥ 𝑣 ∥[[
			,			 ∥ 𝑣 ∥[	< ∞ (11) 

 The complementary sensitivity function is also needed, being stated in Equation (12): 

 

𝑇 = 	
𝑃𝐶

1 + 𝑃𝐶 (12) 

As above-mentioned, the 𝐻N robust control goal is to design a controller 𝐶, which 

minimizes the influence of disturbances signals on the output variable. Thus, minimizing the 

closed loop norm ∥ 𝑆 ∥. This objective is accomplished by bounding the values performance 

value σ(S), and robustness value σ(T). For that, the norm presented in Equation (13) must be 

minimized: 

 

𝐶wed = 𝑚𝑖𝑛 ∥ 𝑁 ∥	, 𝑁 = {
𝑊}𝑆
𝑊R𝑇

~ (13) 

Figure 9 - Simplified representation of the system of Fig.10.  
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where the values of 𝑊} are the performance weighting function and the values 𝑊R are the 

robustness weighting function to be inferred by the control designer. These values can be 

discovered by applying the relations shown in Equation (14) and (15): 

|𝑆(𝑗𝑤)| < 	
1

𝑊}(𝑗𝑤)
 (14) 

|𝑇(𝑗𝑤)| < 	
1

𝑊R(𝑗𝑤)
 (15) 

𝑊} and 𝑊R are to restrict the magnitude of the sensitivity and complementary sensitivity 

function, respectively. This technique to design the controller is denominated Loop Shaping. 

With this technique, the parameter 𝑊} and 𝑊R are altered in a way so that the frequency 

response of the system stays stable within the desired limits. There are several methods to 

tune the parameters of the Loop Shaping such as: Glover-McFarlane 𝐻N loop-shaping 

procedure [56], quantitative feedback theory [53], Automatic Weight Selection [57]. 

Table 7 lists 𝐻N robust control advantages and disadvantages over the classical ones. 

 

Table 7 - Advantages and disadvantages of 𝐻N robust control [59]. 

Advantages Disadvantages 

Applicable to problems involving multivariable 

systems with cross-coupling between channels. 
Deeper mathematical understanding. 

Minimizes disturbances impact over the system. Good information about the system model. 

 Tuning the controller. 

2.3.4 Feedback-Error Learning 

 

FEL control was proposed by Kawato [15], that was inspired in the “architecture” of the human 

motor control. FEL tries to describe how the human central nervous system acquires the 

internal models of the human body that are responsible to the motor function, for robots that 

had to perform random trajectories [15], [58]. FEL includes a feedforward controller that has 

the IDM of the target plant (acquired with learning methods resembling the human 

cerebellum) to learn motor commands to produce trajectories. Additionally, FEL has a 

feedback controller to provide stability during the  IDM learning, like the sensory systems that 

the human motor system has [15], [59], [60]. When the learning process is finished by means 
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of the feedback error, the learned IDM is capable to perform the desired trajectory, reducing 

the feedback from the sensory system. Kawato understood that this architecture can be used 

for inverse dynamics modeling for robotic systems [15]. 

 The inverse dynamics modeling architecture of FEL is shown in Figure 10. 

 As observed in Figure 10, the feedforward controller 𝑈𝐹𝐹 maps reference inputs into 

feedforward command signals, i.e., u�� = 𝑈𝐹𝐹(𝑦�c�., 𝑦̇�c�., 𝑦̈�c�.), compensating the insight 

of the systems dynamics, obtaining high tracking accuracy [61]. The singularity of the 

proposed FEL controller is the presence of a feedforward controller capable of learning the 

IDM of the controlled plant [15]. This feedforward controller can be implemented using 

regression techniques, establishing a function approximator. During control, the feedforward 

controller is adapted, such that it learns the IDM plant model. It was verified by [61] and [15] 

that when the output of the feedback controller is used as a learning signal, the input-output 

relation of the feedforward controller converges to the IDM of the plant. Kawato used as 

function approximator, the ANN with supervised learning [58]. 

 The feedback controller 𝑈𝐹𝐵, aside from providing the error signal to learn the IDM of the 

plant, it determines the tracking performance while the IDM is being learned. Eventually, the 

feedback controller is responsible to compensate for the existing disturbances, when the 

learning phase for the IDM is learned.  

 The FEL controller can be thought as a two-phase controller: (1) when is acquiring the 

plant’s IDM – training phase; (2) when has the plant IDM – recall phase. During the learning 

phase, the u�� signal has a small contribution to total control command u, compared to the 

Figure 10 – General FEL control loop, where: 𝑦wc�b. is the measured position,  𝑦�c�. is 

the reference position, 𝑦̇�c�. is the reference speed, 𝑦̈�c�. is the reference acceleration, 

𝑒 is the position error, 𝑢�� is the feedback command, 𝑢�� is the feedforward command; 

𝑢 Is the total control command and 𝑦 is the performed response. 
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one provided by the feedback controller (u��), once the feedforward controller is learning the 

plant’s IDM. However, as the training proceeds, the feedforward controller starts to learn the 

IDM and its control signal becomes more predominant to the total control output. The value 

of the feedback command u�� is an indication to the feedforward controller of the mismatch 

between the true plant’s dynamics and the learned IDM [62]. The controller shifts to the recall 

phase when the feedback controller has a small contribution to the total control command 

and the feedforward controller is the major grantor of the control, meaning that the 

feedforward has acquired the plant’s IDM. In the recall phase, the feedback controller 

becomes subjected to eliminate random disturbances. With the two controllers combined, 

the overall performance of the FEL control is increased [63], [64].  

 

 Table 8 summarizes the advantages and disadvantages of the FEL control scheme. 

 

 

 

 

Table 8 - Advantages and disadvantages of FEL control [15], [65]. 

Advantages Disadvantages 

It is not required an explicit model of the controlled 

system. 

Training phase can take long periods to learn the 

IDM or never learning the model at all. 

Allows the feedback controller to control the system 

while the IDM is learned in real-time. 

Adjusting the design parameters of the implemented 

regression technique can be an arduous assignment. 

Overall performance of the controller has adaptive 

characteristics. 
 

2.3.5 Applications in lower-limb assistive devices 

 

Table 9 refers examples to upper and lower-limb assistive devices found in the literature. It 

summarizes the joints to rehabilitate, the used low-level control, and the number and health 

condition of the subjects involved in the validation process. Figure 11 displays the devices 

referred in Table 9. 
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Table 9 - Assistive devices using low-level control. *Joints: S: Shoulder; E: Elbow; W: Wrist; H: Hip; K: Knee; A: Ankle. 

 

By analyzing Table 9, some conclusions can be pointed out. Firstly, it is possible to infer 

that position-based tracking control is preferred over the torque-based tracking control. 

Secondly, most of the shown systems used PID or PD low-level controls and the FEL control 

was never applied to a lower-limb orthotic device. Nevertheless, robust control such as H∞ 

and LQR optimal control are also approached in the literature. 

 

Device Joints* Controller 
Validation 

(subjects) 

Aguirre-Ollinger [28] K LQ torque 2 healthy 

HAL [25] H, K, A PD position 1 SCI 

Gomes et al [66] H, K, A Robust H∞ simulation 

Nakul Gopalan [67] (biped model) FEL position simulation 

H2 [3] H, K, A PID position/torque 3 stroke 

MINDWAL-KER [68] H, K, A PD position 4 SCI 

PKO [42] K PID torque 5 healthy 

L-Exos [69] S, E Slide-mode PD 9 stroke 

Rehab-Robot [70] S, E, W PID feedback 1 healthy 

Resquín, F. [71] S, E, W FEL position 
12 healthy: 

4 brain injured 

ARMIN III [72] S, E PD position 
1 healthy 

(5 undergoing stroke) 

MGA [73] S, E, W PD position 1 healthy 

Figure 11 - Example of robotic devices with low-level assistive strategy identified. 

Lower-Limb : A: [28]; B: [12]; C: [57]; D: [13]; E: [59]. Upper-Limb: F: [61]; G: [62]; H: 

[63]; I: [64]; J: [65]. 
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2.4 Conclusions 

 

In this chapter, it was inspected and analyzed high and mid-level assistive strategies. The 

position/torque-based tracking control aims to predefine the target joint trajectory through 

the gait analysis of limbs movement and/or joints kinematics. Regarding the AAN assistive 

strategies, these are designed to ensure that the robotic devices only supply as much effort 

as the patient needs to accomplish training tasks by assessing his/her performance in real-

time. These strategies may beneficiate from a bioinspired hierarchical framework that is based 

on the human motor control: high-level as an intention’s estimator; mid-level translates the 

intention into the desired state; and low-level tracks the reference state.  

 Subsequently, low-level assistive strategies that were applied in assistive robotic devices 

were described and reviewed. Firstly, the PID control was designated as being the most 

common form of feedback controller, due to its mathematical straightforwardness, simple 

implementation and tuning, and satisfactory results. Nevertheless, the PID control still has low 

robustness to disturbances that can affect the controller. Consequently, optimal control was 

considered as a control that minimizes its performance to an optimal state of the system, 

assuring resistance against disturbances. In this category, LQR controller diminishes the 

minimum linear quadratic cost function. However, despite its satisfactory results against 

disturbances that can affect the system, is a controller that requires deep mathematical 

knowledge to be implemented. Following, the robust control was stated as a strategy that 

aims to bound uncertainties, so their results meet the control system requirements in all 

cases, being prepared to operate in a worst-case scenario. The H∞ robust control method has 

the goal of designing a controller which minimizes the influence of disturbances over the 

considered output of the target system. Although it has a great response against disturbances, 

it involves considerable mathematical understanding. For last, FEL control was proposed as a 

strategy that is composed by a feedback controller and a feedforward controller capable of 

learning the IDM of the system to be controller. It employs regression techniques, preventing 

knowledge about the controlled model. Being a control that has a learning state, its main 

drawback is the possibility to take long time periods to settle. Nonetheless, the overall 

performance of FEL involves adaptive characteristics being suitable to operate under different 

conditions.  
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  Overall, the chosen low-level controller to implement in SmartOs was the Feedback-Error 

Learning control. The benefit of not requiring an explicit model of the controlled plant to the 

feedforward controller and to have a dedicated feedback controller to handle with 

disturbances are important to assets of FEL. Moreover, its adaptiveness and possible 

implementation in real-time conditions, withal a better performance than with a stand-alone 

feedback controller are attractive advantages to implement it in an assistive device.  
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3 THEORETICAL CONCEPTS 

The present chapter intends to clarify some theoretical concepts that are used in this 

dissertation. The FEL control strategy is detailed, as well as the ANN although not in detail. 

The preceptor and multilayer perceptron ANN structure and a possible training algorithm to 

learn the plant’s IDM are herein detailed. 

 

3.1 Feedback-Error Learning 

 

The FEL is a type of control suggested by Kawato [15]. It was thought as a controller that tries 

to simulate how the central nervous system acquires the internal models of the body (plant 

in a generic control system) [15]. A FEL controller comprises a feedforward controller that has 

the IDM of the plant and tracks the reference trajectory and a feedback controller responsible 

to handle disturbances. Figure 12 illustrates the dynamics of a feedback controller in charge 

of drawing a circle in this example. The brain represents the controller, the reference 

movement is a circle, and the plant is the hand with the pencil that receives motor command 

to draw the desired movement, measured by the eye. 

 

 

Figure 12 – Illustration of a feedback error controller.  
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 To perform the circle, the controller has to perceive the error between the reference 

movement and the performed movement (feedback error). Due to a feedback control law, a 

motor command is executed, trying to decrease the error between the reference and the 

achieved movement. This feedback loop is executed at each state until the error reaches a 

stabilized small value (state n). 

 The feedforward controller is added to the feedback control loop, receiving as input the 

reference movement to perform a feedforward command that makes the output of the 

system follow the desired trajectory (draw the circle). The total control command applied to 

the plant is the sum of the feedback command and the feedforward command, that decreases 

the feedback error and, consequently, the feedback command. The feedforward controller 

maps the reference movements into the right motor commands to perform the desired 

movement. This represents the IDM of the plant. So, the feedforward controller has to learn 

the IDM of the plant, to apply the right motor commands to the control problem. To 

accomplish that, the controller has two phases. A training phase to learn the IDM of the plant, 

receiving the feedback command and the reference movement has inputs and performing a 

predictive feedforward command that decreases the feedback error and the feedback 

contribution to the total control command, shown in Figure 13.A. The next phase is achieved 

when the feedback command has low contribution to the total control command and the 

feedforward command has the higher contribution. This is the recall phase, that is when the 

feedforward controller has successfully learned the plant’s IDM and only receives as input the 

reference movement and output the right feedforward command, illustrated in Figure 13.B. 

 If we disconnect the feedback controller from the control scheme, the feedforward 

controller is capable to perform the control by itself, in consideration that the IDM has a low 

error – Figure 13.C. However, if disturbances appear, the feedforward controller alone is not 

capable of correcting them, or even if the reference movement changes (like drawing a 

smaller circle), since the IDM is not able to provide the correct set of motor commands, and 

another IDM has to be found. Therefore, the feedforward controller enters again in training 

phase. 

 This described behavior represents the FEL controller. A feedforward controller that has 

the IDM of the plant and performs the right control command to perform the reference 
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movement, and a feedback controller responsible to provide stability during the learning 

phase of the feedforward controller and handle with disturbances. 

 

 To learn the plant’s IDM, the FEL controller uses regression techniques.  Kawato [15], 

[58] proposed ANN. Although, Radial Basis Functions (RBF), Multilayer Perceptron (MLP) and 

Cerebellar Model Articulation Controller (CMAC)  are other possible structures that ANN can 

adopt to perform FEL control, since are the most used and indicated to perform function 

Figure 13 - Illustration of FEL control. A: Training Phase; B: Recall Phase; C: Feedforward in stand-alone. 
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approximations [74]. Table 10 specifies applications in real scenarios approaching the FEL 

control in robotic devices, detailing some features of the used ANN.  

Table 10 - Applications with FEL control schemes. *Neural Network structure: RBF: Radial Base Functions; MLP: Multi-layer 

Preceptor. 

Name ANN* Learning Method Application 

Passold, F et all [75] RBF Gradient descent Scara Robot 

Zhao-Hui Jiang [76] MLP Gradient descent AdeptOne XL manipulator 

Andon V. Topalov [77] MLP Gradient descent CRS CataLyst-5 industrial manipulator 

Francisco Resquín [71] MLP Gradient descent Right Upper-Limb Exoskeleton 

3.2 Artificial Neural Network 

 

 ANN are computed architectures inspired by biological brains [78], [79]. They are 

comprised of interconnected neurons/nodes, normally connected on one direction, 

establishing feedforward links, proceeding from input to output nodes. Every ANN has an 

input layer and an output layer and in between it can exist hidden layer(s) [80].  

 Each node has an activation function that is performed on the input data, producing an 

activation which is passed to the adjacent node(s). Associated to these nodes’ connections, 

are weights that constraint how input data are linked with the activation. These set of weights 

on an ANN determines its performance through a set of input data and are established during 

a training phase, where the ANN learns how to tune these weights into a target (received) 

learning value. This type of training is called supervised learning, as it receives inputs to map 

to a specific learning signal [80]. Figure 14 illustrates a possible ANN. 

 When the training phase ends, the ANN is used to classify/predict on new input data. It 

passes through the input nodes activation functions and weights, forwarding through the 

ANN, and the ultimate activation of the output nodes until a classification/prediction is made. 

 Based on their functional characteristic, ANN can have multiple types of structures. As the 

developed dissertation has its focus on function approximators, the most popular types of 

adopted structures for this application are: Radial Basis Function (RBF), Cerebellar Model 

Articulation Controller (CMAC) and Multilayer Perceptron (MLP) [74]. Since the MLP has been 

reported in several applications of FEL control (Error! Reference source not found.) and w
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idely applied, is going to be here described. To do so, first, a review of The Perceptron is 

needed, which is the basic structure of the MLP. 

 

3.2.1 The Perceptron (Single-layer Neural Network) 

 

The perceptron is a type of ANN created by Rosenblatt [81], [79]. This type of ANN only has 

two layers: 1) the input layer where all inputs are weighed and summed and 2) the output 

layer that has a binary activation function for its output with a pre-defined threshold that if it 

Figure 14 – Usual neural network.  

Figure 15 - The perceptron network. It has input nodes, preceded by a 

weighted sum and binary activation function. 
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is reached or passed, the output is 1, otherwise it is 0, classifying its output value. Figure 15 

illustrates this behavior.  

 The perceptron training process is iterative and involves the repeated submission of the 

inputs and related outputs to the ANN (training set). The random assignment of small values 

to the pre-defined threshold of the output layer as well as for weights of the input layer that 

composes the ANN should be done first. Then, the following training algorithm is performed: 

 

1. An input is fed forward through the ANN; 

2. If the output is correct, then no changes are performed to the thresholds of the binary 

activation (𝜃) and the input weights (𝑤�), and we are back to the 1st step. 

3. Otherwise: 

a. If output was 1 but should be 0, then the following correction is done: 

�
𝜃 = 	𝜃 + 1

	
𝑤� = 𝑤� − 1	, 𝑖𝑓	𝑖𝑛𝑝𝑢𝑡� = 1		

 (18) 

 

b. If output was 0 but should be 1, the correction is done the following way: 

�
𝜃 = 	𝜃 − 1

	
𝑤� = 𝑤� + 1	, 𝑖𝑓	𝑖𝑛𝑝𝑢𝑡� = 1		

 (19) 

 

 All of the training set needs to be presented to the ANN several times to improve its tune 

to the best possible outcome. In the first iterations through the training set, the ANN might 

correctly adjust and improve its performance. The next time its efficiency might not increase 

and eventually it will stop improving. So, it is important to establish a maximum number of 

iterations whereupon the ANN can train. If it achieves a training state where all the inputs are 

correct, then it is also time to stop. 

  

 The recall phase happens when the ANN has all its weights tuned and it is ready to classify. 

The perceptron recall ANN algorithm works as follows: 

 

1. Input nodes receive values; 

2. The weighted sum is performed, producing the activation ℎ: 
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ℎ = 	�𝑤e𝑥e

d

e�Z

 (16) 

3. Classification is performed, based on the unit step activation function 𝑔(ℎ): 

 

𝑜 = 𝑔(ℎ) = 	 �
	1, 𝑖𝑓	ℎ > 𝜃

	
	0, 𝑖𝑓	ℎ ≤ 𝜃

 (17) 

where 𝜃 is the tuned threshold value. 

 

 The perceptron is simply separating the input into 2 categories, those that cause a fire (1), 

and those that do not (0). This is a very limitative behavior in terms of regression, once it can 

only solve linear problems and estimate linear models [80]. To solve non-linear problems the 

multilayer preceptor appears. 

3.2.2 Multilayer Preceptor 

 

An ANN that is multilayered, and feedforward includes: 1) an input layer of nodes, 2) one or 

more intermediate (hidden) layers of nodes, and 3) an output layer of nodes. Depending on 

the problem, the output layer can involve one or more nodes. In case of regression, it is 

common to be a single output node that predicts a value, but in case of classification it is 

normal to have as much output nodes as classes (the predicted class with the highest 

activation it is probably the correct one). Figure 16 demonstrates an example of a multi-layer 

preceptor. 

Figure 16 - The Multilayer Perceptron network, consisting of multiple layers of 

connected neurons. 
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 Figure 16, also present the bias nodes that are added to increase the flexibility of the 

model to fit the input data. Specifically, it allows the ANN to fire neurons when all input 

features are equal to 0. They are added to the hidden and output layer [80]. 

 Training the MLP is done in two parts, the forward and backward. The first part aims to 

predict an output for a given input, based on the current weights’ configuration – going 

forwards through the ANN, as illustrated in Figure 17 – Possible training directions in a 

Multilayer Perceptron. A. Fed forwarding the ANN with an input is a similar process as the one 

done in the preceptor. An input neuron receives a value, forwarding it to the adjacent nodes. 

Each neuron at the hidden layers does a weighted sum with the received values, in accordance 

with the respective weight value, applies its activation function, and outputs the result to the 

adjacent nodes. This process is repeated until it reached the output layer.	It should be noted 

that there are an enormous variety of activation functions that could be used on the output 

of the ANN nodes. Table 11 summarizes some activation functions that could be employed. 

 
Table 11 - Some examples of activation functions. 

Function Equation Range Plot 

Identity 𝑓(𝑥) = 𝑥 ]-¥,+¥[  

Binary Step 𝑓(𝑥) = �0, 𝑥 < 0
1, 𝑥 ≥ 1 {0,1}  

Logistic 𝑓(𝑥) =
1

1 + 𝑒Y� [0,1]  

Hyperbolic tangent 𝑓(𝑥) = tanh(𝑥) [-1,1]  

Sinusoid 𝑓(𝑥) = sin(𝑥) [-1,1]  

Figure 17 – Possible training directions in a Multilayer Perceptron. A: forwards; B: backwards 
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 Now that we have the outputs of the ANN, we can compare them to the learning signal 

(targets) and compute the error. This is done in the second part of the training process, where 

the weights are updated according to the error difference between the predicted output and 

the learning signal (target output) – going backwards through the ANN as Figure 17.B shows. 

 The common method to train a MLP ANN is the Backpropagation algorithm. Hereby, the 

error is sent backwards through the ANN, applying gradient descend techniques [80], in order 

to find the set of ANN’s weights that minimize the error between the predicted and the target 

output. In other words, the weights have to be adjusted so the neurons fire only when the 

targets allows them and working out which weights caused the error. The used error function 

in backpropagation can be the sum of squares, which finds the difference between the 

predicted output 𝑦, and the target output 𝑡, for every output neuron 𝑁, as Equation (18) states 

(mean square). 

𝐸(𝑡, 𝑦) =
1
2�(𝑦� − 𝑡�)[

�

��Z

 (18) 

 Differentiating Equation (18), the error’s gradient and the increasing/decreasing direction 

is found. Since the purpose is to minimize the error, the direction along which the error 

decreases is followed, i.e., where its gradient is descendent. Figure 18 illustrates this behavior.  

 Thus, the ANN’s weights are updated in accordance with the error gradient descent with 

respect to the weights, as described in Equation (19). 

𝑤e�R = 𝑤e�RYZ −
𝛿𝐸
𝛿𝑤e�

 (19) 

where 𝐸 is the error value, 𝑤, the weights, 𝑡 indicates the current update, 𝑡 − 1 the previous 

one and 𝑖𝑗 is the performed connection that identifies the neurons. 

Figure 18 - Gradient descent error such that the weights change. Adapted from [80]. 
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Observing Figure 18, we realize that the gradient descent algorithm could be stuck in a local 

minimum, because the error gradient leads us there, misleading us from finding a lower error. 

Thus, it is important to introduce some parameters to Equation (19) that change how the 

weights are updated, as presented in Equation (20). 

𝑤e�R = 𝑤e�RYZ − 𝜼
𝛿𝐸
𝛿𝑤e�

− 𝜶∆𝒘𝒊𝒋
𝒕Y𝟏 (20) 

 First, it is introduced the learning rate 𝜂, that controls how much influence the error 

gradient has in the weights update. Figure 19.A clarifies the learning rate importance. 

 

 If the learning rate has large values, then the weights update is also high, and the ANN 

converges faster to the minimum. However, it could lead the ANN to overshoot, missing the 

minimum error. On the other hand, small values of learning rate can cause small but precise 

weight updates, causing the ANN to spend many iterations until reaching converge and risking 

being trapped in a local minimum. So, the learning rate parameter should be carefully tuned 

to avoid these situations. 

Figure 19 – Visual influence of different ANN parameters. A: learning rate parameter; B: 

momentum and learning rate parameter. 
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 The momentum parameter 𝛼, appears alongside with the previous weight update 

𝛼∆𝑤e�RYZ, adding a percentage of the last update to the current one. In Figure 19.B an 

illustration of its behavior is shown. 

 Essentially, the momentum parameter improves the gradient descent to escape local 

minima, adding some contribution from the previous weight update. We can also use small 

learning rate values, making possible a more stable convergence of the error. 

 Concluding, the backpropagation algorithm calculates the errors’ gradient with respect to 

the weights, so the weights can be changed according to the decrease of the error (gradient 

descent). To do so, a differentiation of the error function with respect to the weights is done. 

This is applied backwards through the ANN, starting at the outputs and ending up back at the 

inputs. In order to the MLP ANN successfully converges during the training phase, it is 

important to find the right balance of values for the learning rate and momentum parameters. 

3.2.3 The Multi-Layer Perceptron Algorithm 

 

Before presenting the proposed an algorithm for the MLP ANN, some considerations must be 

done first. First, it is assumed that the ANN has 3 layers with 𝐿 input nodes (plus the bias), 𝑀 

hidden nodes (plus the bias) and 𝑁 output nodes, respectively. To index the nodes in each 

layer, it is used 𝑖, 𝑗, 𝑘 for the input, hidden and output, respectively. The input-hidden weights 

are labeled with 𝑣 and have the hyperbolic tangent as activation function, labeled as 𝑔�. The 

hidden-output weights are labeled with 𝑤 and use the identity as the activation function, 

labeled as  𝑔�. The gradient descent algorithm is stochastic, i.e., for each learning value 𝑡�, an 

update to the weight’s parameter is performed and inputs are presented in random order. 

This deviates the algorithm from redundancy over the dataset, converging faster to a local 

minimum and enabling an online implementation [82]. 

 Figure 20 shows proposed algorithm for the gradient descent. It starts with the 

initialization of the ANN’s weights. During training, it receives data and forwards it through 

the ANN to make a prediction (𝑦�) – Forward Phase. This is compared with the target value to 

generate an error value (𝛿�). This error is backward it through the ANN, by applying the 

backpropagation algorithm so the weights are updated in the gradient descent – Backwards 

Phase. At specific iterations the performance of the ANN is evaluated to decide if it can stop 
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the training and enter in the recall mode, where only predictions are performed according the 

received input. 

 

 

Initialization: 

• All weights must be initialized to small random values; 

Training is repeated for each input 𝑥e, and learning value 𝑡�: 

Forward Phase 

• Compute the activation 𝑎� of each neuron j in the hidden layer(s): 

ℎ(𝑗) =�𝑣�𝑥e

§

e�O

 (21) 

𝑎� = 𝑔(ℎ(𝑗)) = tanh(ℎ(𝑗)) (22) 

• Compute the activation 𝑎� of each ANN k in the hidden layer(s) producing an output 

𝑦�  (predicted output): 

ℎ(𝑘) = �𝑤�𝑎�

¨

��O

 (23) 

𝑦�(𝑘) = 𝑎� = 𝑔(ℎ(𝑘)) = 	ℎ(𝑘) (24) 

Backwards Phase 

• Compute the error at the output using: 

𝛿�(𝑘) = 𝑦�(𝑘) − 𝑡� (25) 

• Compute the error in the hidden layer using: 

𝛿�(𝑗) = (1 − 𝑦�(𝑗))[�𝑤�𝛿�(𝑘)
�

��O

 (26) 

• Update the output layer weights using: 

𝑤� = 	𝑤� + 𝜂𝛿�(𝑘)𝑎� + 𝛼∆𝑤�RYZ (27) 

• Update the hidden layer weights using:  

𝑤� = 	𝑤� + 𝜂𝛿�(𝑗)𝑥e + 𝛼∆𝑤�RYZ (28) 

Recall: 

•
Figure 20 - Proposed algorithm for the gradient descent. 
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3.2.4 Gradient Descent Optimizer 

 

The gradient descent algorithm can offer some challenges to a good ANN convergence, such 

as: 1) with frequent weight updates, error can overshoot, complicating convergence to an 

exact minimum; 2) Setting the learning rate parameter to a good value can be an arduous 

task; 3) Only one learning rate and momentum is applied to all weights, restricting the same 

weight change to all ANN making convergence less efficient; To overcome these limitations, 

some gradient descent optimization algorithms have been developed, that can enhance the 

algorithm convergence performance. In [82] a good overview of many optimizers is 

performed. The Adaptive Moment Estimation (ADAM) [83] optimizer was chosen to be herein 

described. The ADAM optimizer adds the following equations to the algorithm: 

𝑚R = 	𝛽Z𝑚RYZ + (1 − 𝛽Z)𝑔R 

𝑣R = 	𝛽[𝑣RYZ + (1 − 𝛽[)𝑔R[ 
(29) 

where 𝑡 is the current update, 𝑣R is an average of exponential decay of past squared gradients 

𝑔R[ and 𝑚R	is an average of exponential decay of past gradients 𝑔R, identical to momentum. 

𝑚R parameter makes the algorithm to search for flat minima in the error surface and 𝑣R 

enables to reduce the initial learning rate in order to update the weights in a more precise 

way. 𝛽Z and 𝛽[ are constants decay rates. To avoid 𝑚R and 𝑣R from bias towards zero value, 

Equation (30) is also added. 

𝑚R
^ = 	

𝑚R

1 − 𝛽ZR
 

𝑣R^ = 	
𝑣R

1 − 𝛽[R
 

(30) 

With this, ADAM updates the ANN weights (here generic represented as 𝑤) in accordance 

with Equation (32): 

𝑤R = 𝑤RYZ −
𝜂

ª𝑣R^ + 𝜀
𝑚R
^ (32) 

where the constant 𝜀 is added to avoid zero division. 

 

 Wrapping up, the ADAM algorithm has adaptive learning rates per weights parameters, 

that separately adapts as learning unfolds, instead of having a global learning rate [83]. With 
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this, versatility is given to the ANN, increasing the speed of convergence and decreasing the 

learning error.
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4 SMARTOS: SMART CONTROL OF A STAND-ALONE ACTIVE ORTHOTIC 

SYSTEM 

The current chapter addresses the SmartOs, a system that is in progress and being develop by 

several students. First, a general overview about the system is presented, stating its operating 

mechanism. Second, a general system description is made, describing the SmartOs modules 

and their time constraints. Finally, the contribution of this dissertation to SmartOs is 

presented, which focused on the validation of the temporal requirements of SmartOs’ 

modules. A validation protocol was developed and implemented to ensure SmartOs time-

effectiveness. 

4.1 General Overview 

 

SmartOs is a modular wearable robotic gait technology, that acts and cooperates closely with 

the human being, by means of a powered lower-limb orthosis, synergistically linked to a 

wearable laboratory for motion analysis. It intends to provide not only customized 

rehabilitative tasks tailored to the patient needs, but also to foster objective diagnosis of the 

patient’s motor conditions. SmartOs was thought as a safe and reliable system with 

contributions not only from engineers but with all significance parts, from physical medicine 

and rehabilitation physicians to the patients, being currently in first-phase of validation, in 

Hospital de Braga with stroke survivors. Its applications can go from motor rehabilitation in 

hospitals, to rehabilitation centers, nursing homes or other clinical units.  

To accomplish these goals, SmartOs comprises a/an: 

 

• Wearable Motion Lab, aiming to monitor in real-time the patient’s motor status 

(i.e., the user’s motor ability, and spasticity level) and the human-orthosis 

interaction. This wearable motion lab includes ergonomic, stand-alone, wearable 

sensory devices. Wearable biofeedback mechanisms (e.g., time-discrete feedback 

provided through a vibrotactile system - Waistband) to encourage the user’s active 
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participation and to seamless the bidirectional interaction between the user and 

the orthotic system.  

• Smart hierarchical control architecture, bioinspired on the principles and 

organization of the human motion-control system [22]. Assistive commands 

according to the user’s motion capacity and disability level (monitored by the 

wearable motion lab) are generated by this architecture, which then are 

interpreted by adaptive learning technologies. Thus, it is possible to: i) timely 

recognize and predict the intended motion; ii) to detect incipient falls and the 

user’s impaired level; iii) to segment gait cycle; iv) to automatically tailor the 

dynamic behavior of the human-orthosis interface. 

• Assist-as-need personalized technological solution for the robotic-based gait 

training. The orthotic system delivers a task-oriented and repetitive gait training 

according to the user’s needs, fostering a recovery of the functional lower-limb 

motor abilities, thus improving an abnormal gait. 

  

Therefore, SmartOs experiences the same requirements established for ambulatory 

rehabilitative orthotic systems: wearable, adjustable, modular, flexible, effective actuation, 

and time-power effectiveness technology. Figure 21 illustrates the SmartOs operating 

mechanism.  

Figure 21 - Operating mechanism of SmartOs system. 
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 SmartOs integrates work developed by several Masters students, namely: design and 

architecture implementation; graphical user interfaces for the systems set-up and display/log 

of the recorded data; technologies to monitor and analyze the gait behavior; development of 

assistive motion strategies. As referred in Chapter 1, one goal of this thesis is to incorporate a 

low-level assistive strategy in SmartOs. To accomplish this purpose, it was necessary to 

properly validate the system as a whole, i.e., to guarantee that real-time operation 

requirements are fulfilled. 

4.2 SmartOs Description 

 

The current sub-chapter is focused on the design and technical description of SmartOs. With 

respect to this, an overview is presented in Figure 22.  

Figure 22 - SmartOs: System Architecture. 
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 In Figure 22, it is disclosed the system main components, used communication interfaces 

and the system architecture. Considering effectiveness in the actuation, real-time constraints, 

performance, modularity, portability, and safety, a decentralized architecture was used, being 

composed by central control unit, for high-level reasoning methods, and several control units, 

to handle mid/low-level control of the actuation devices and sensory systems. As depicted in 

Figure 22, the architecture of SmartOs is mainly composed by 6 modules: 

1. Desktop graphical user application for real-time monitoring of therapies and backup 

of collected data in database; 

2. Android OS mobile application, for management and set-up of all modules defined in 

SmartOs. This application allows configurability to the system for different subjects and 

therapies; 

3. Central Control Unit (CCU) of SmartOs, which interfaces all SmartOs with the 

applications (external devices). This unit is composed by a Raspberry Pi 3 [84], running 

the Ubuntu Mate OS [85], and implements the high-level reasoning methods (smart 

control strategies based on hierarchical control framework), as well as the 

communication with external devices, such as, Wearable Multi-Modular Sensor 

System and Low-Level Orthoses System, and two graphical interfaces, i.e., a desktop 

and mobile application; 

4. Wearable Multi-Modular Sensor System (WMSS), which interfaces: i) an InertialLAB 

with  Inertial Measurement Units (IMU) at each lower-limb segment, responsible to 

estimate the lower-limb joint angles, using Inter-Integrated Circuit (I2C) protocol to 

transfer data; ii) wired multi-channel Electromyography (EMG) acquisition system 

through Analog to Digital Converters (ADC) to get the muscle activation; iii) two 

wireless Gait Shoes through radio frequency (RF) to acquire gait events and speed; iv) 

four Force Sensor Resistors (FSR) for gait validation, through ADCs; v) MuscLAB to 

estimate muscle activity through FSRs. This unit is centered in a STM32F4-Discovery 

board [86], running FreeRTOS OS [87], and it is capable of providing an accurate and 

time-effective acquisition of the sensors, running the necessary algorithms and an 

efficiently external communicate; 

5. Low-Level Orthoses System (LLOS), designed to interface two wearable H2 joints 

(ankle-foot and knee) through Connection Area Network (CAN) protocol, as well as 



 

 

 

49 

wearable inertial sensors, in particular, three IMUs through I2C. This unit is centered 

in a STM32F4-Discovery board as well, running FreeRTOS OS, and it will be responsible 

for: i) collecting the information from the orthotic devices and sensors (and redirect it 

to the CCU); ii) run dedicated mid/low-level controllers of motion assistance strategies 

based on the sensory feedback provided and reference set-points received externally; 

iii) run mechanisms to lighten the weight of the powered devices (using the hip angle 

estimated through one IMU attached to the thigh). Moreover, LLOS implements an 

efficient external communication system; 

6. Power supply system, based on a LifePO4baterry and additional electronic, able to 

power up all components of SmartOs. 

 Moreover, Figure 22 also highlights the main communication structures of SmartOs. 

Regarding the communication between the CCU with LLOS and WMSS, a serial interface is 

implemented. In fact, Future Technology Devices International converters are used, as a 

‘bridge’ between the Universal Asynchronous Receiver-Transmitter (UART) and Universal 

Serial Bus (USB) protocols. Furthermore, the communication between CCU and the mobile 

and desktop application are wirelessly performed, by means of Bluetooth and WiFi protocols, 

respectively. Both protocols are built-in the Raspberry Pi 3, reducing the hardware resources 

for the CCU.  

 The communication with/from CCU is only possible through specific SmartOs packages. 

These packages were defined to exchange data between the modules, with efficiency and in 

a simple way. Were defined three types of SmartOs packages: i) control packages to set-up 

the different SmartOs modules; ii) data packages containing values from the 

sensors/controls/algorithms of the different modules; iii) status packages briefing about the 

executed commands.   

 Lastly, to ensure that all of SmartOs time requirements were met, multiple resources of 

the selected development boards were used, for instance, timers, threads, I2C, UART, CAN, 

ADC, etc.  

 

 

Table 12 reviews the time demands for WMSS, LLOS, and CCU. 
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Table 12 - SmartOs time constraints. *position data communication: data packages with reference positions for the orthosis 

to  

SmartOs 

Modules 
Routines of the SmartOs modules Used Resource 

Required 

Frequency 

WMSS 

WMSS ® CCU (Data Packages) FreeRTOS thread 100 Hz 

InertialLAB IMUs acquisition and joint angle estimation Timer ISR 100 Hz 

EMGs acquisition  Timer ISR 500 Hz 

FSRs acquisition Timer ISR 100 Hz 

MuscLAB. Acquisition and muscle activation Timer ISR 100 Hz 

LLOS 

LLOS ® CCU (Data Packages) FreeRTOS thread 100 Hz 

Low-level control loop Timer ISR 1 kHz 

Mid-level control loop Timer ISR 100 Hz 

Gait Event Prediction (GEP) Timer ISR 100 HZ 

IMUs Acquisition and knee/ankle joint angle estimation Timer ISR 100 Hz 

CCU 

CCU ® LLOS (Data Packages) * Linux timer 
{0.29, 0.32, 0.36, 

0.41} Hz 

CCU « Mobile App (Control/Status Packages) Bluetooth Socket Asynchronous 

CCU « Desktop App (Data Packages)  WiFi Socket 100 Hz 

4.3 SmartOs Validation 

4.3.1 Initial Considerations 

 

The main contribution of the developed work in this dissertation regarding SmartOs was the 

integration of a low-level control. In order to add this control to the LLOS, a time requirement 

check of the whole system was imperative, once each individual module was already validated 

as stand-alone, both in terms of expected results and execution times. This validation is crucial 

to ensure a real-time and effective operation of SmartOs as a gait rehabilitation and 

monitorization system. The time-effectiveness was validated considering the signal sampling 

requirements, control loop frequencies, actuation response of orthoses, and the efficiency of 

development boards to deal with implemented algorithms. 
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4.3.2 Validation Protocol 

 

A validation protocol was implemented, in order to guarantee the time effectiveness of 

SmartOs. Hereafter, a thorough validation respecting the time requirements of SmartOs were 

accomplished given the relevance of the real-time of the SmartOs application. For each 

SmartOs module. Figure 23 shown the taken approach to validate the time requirements of 

WMSS and LLOS modules. 

 First, the WMSS was validated enabling all available routines depicted in Table 12, for this 

module. To inspect if the required frequency was met, an available port of the module’s 

development board was set to every routine. That port was toggled between high (1) and low 

(0) every time the routine was run, generating a square wave that was displayed in a digital 

oscilloscope. The high and low time of the displayed square wave must match with the 

required frequency assigned in Table 12. Otherwise, the priority of the inspected routine 

timer/task should be adjusted. Next the LLOS was validated, following the same protocol, 

finishing the validation with the two modules running all its routines, i.e., the WMSS and LLOS. 

Each SmartOs module, has its own timer responsible to handle with its routines. For instance, 

LLOS’ control has a timer responsible to decide if it is time to run low-level control, or mid-

level control or to build a SmartOs data package (monitoring the numbers of times that the 

timer has overflowed).  

 All SmartOs modules follow the explained logic, so to validate if each routine was in 

accordance with the stipulated time constraint, the algorithm in Figure 23 was followed. 
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Figure 23 - Flowchart illustration of used validation protocol to ensure a real-time behavior.  
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4.3.3 Validation Results 

 

Concerning the validation of the timer Interrupt Service Routine (ISR) of WMSS, Figure 24 

shows the obtained results. The following frequency results were obtained: a) InertialLAB = 

100 Hz (expected 100Hz); b) EMG = 500 Hz (expected 500 Hz); c) FSRs = 100 Hz (expected 100 

Hz); d) MuscLAB = 100 Hz (expected 100 Hz). 

 Regarding the SmartOs data packages exchange between WMSS and CCU data packages 

the temporal results are observed in Figure 25.  

Figure 24 – Time behavior of WMSS acquisition functions: a) InertialLAB, time division 

= 10 ms; b) EMG, time division = 2 ms; FSRs, time division = 10 ms; MuscLAB, time 

division = 10 ms. 

Figure 25 - Time behavior of WMSS data packages procedure: a) InertialLAB, time 

division = 10 ms; b) EMG, time division = 10 ms; FSRs, time division = 10 ms; 

MuscLAB, time division = 10 ms. 
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The following frequency results were obtained: a) InertialLab = 100 Hz (expected 100Hz); 

b) EMG = 100 Hz (expected 100 Hz); c) FSRs = 100 Hz (expected 100 Hz); d) MuscLab = 100 Hz 

(expected 100 Hz). 

 

Figure 26 shows the results for the timer ISR of LLOS. The following frequency results were 

obtained: a) Low-level control = 1 kHz (expected 1 kHz); b) Mid-level control = 100 Hz 

(expected 100 Hz); c) Gait Event Prediction (GEP) = 100 Hz (expected 100 Hz); d) IMUs 

Acquisition = 100 Hz (expected 100 Hz). 

 

 Figure 27 shows the obtained results for the SmartOs data packages exchange between 

LLOS and CCU.  

Figure 26 - Time behavior of LLOS functions: a) Low-level control, time division = 1 ms; b) 

Middle-level control, time division = 10 ms; c) Gait Event Prediction, time division = 10 ms; d) 

IMUs Acquisition, time division = 10 ms. 

Figure 27 - Time behavior of LLOS data packages procedure: a) Control strategies, time division = 10 ms; b) IMUs, time 

division = 10 ms; Orthotic Sensors, time division = 10 ms. 
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 The following frequency results were obtained: a) Control Strategies = 100 Hz (expected 

100Hz); b) IMUs = 100 Hz (expected 100 Hz); c) Orthotic sensors = 100 Hz (expected 100 Hz). 

 

 After several adjustments of timers and threads priorities, all obtained results met the 

temporal requirements, ensuring a real-time feature for SmartOs. Thus, the integration of new 

methods in SmartOs, both for WMSS and LLOS, must not jeopardize the implemented 

architecture. A time requirement identification for the additional modules should be 

performed in order to run the above validation protocol, so the effectiveness of SmartOs could 

be maintained. 

4.4 Conclusions 

 

Within this chapter, SmartOs was stated as a modular wearable robotic gait system, capable 

of providing personalized rehabilitative tasks to the user necessity and an objective diagnosis 

of the user’s motor conditions. Its applications can go from motor rehabilitation in hospitals, 

to rehabilitation centers, nursing homes or other clinical units. 

 A technical description of the SmartOs system was covered. The system was presented, in 

terms of its modules (LLOS, MWSS, CCU) and external devices, such as mobile application, and 

desktop application. The presented description intents to provide a general overview of the 

developed system, highlining its time requirements for a real-time behavior. 

Lastly, a validation of the temporal requirements of SmartOs was presented, considering 

the system as a whole. It has been considered: signal sampling requirements; control loop 

frequencies and efficiency of development boards to deal with implemented algorithms. This 

validation was crucial to ensure a real-time and effective operation of SmartOs as a gait 

rehabilitation and monitorization system. With the obtained results, it was validated the real-

time performance of SmartOs.  
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5 FEEDBACK-ERROR-LEARNING: LOW-LEVEL CONTROL  

This chapter presents the methods, validation and results of the real-time implementation of 

the FEL controller in SmartOs. The used assistive strategy is explained, with detail to the used 

high- and mid-level controls. The methods to implement in real-time the FEL controller and 

validation procedures are specified. Results of the FEL controller implementation are shown 

and discussed. 

5.1 Methods 

 

The real-time FEL controller was implemented in SmartOs, more specifically, in the LLOS 

module. Therefore, all the developed algorithms for the real-time implementation were done 

in C language in the STM32F4 discovery development board, using its hardware abstraction 

Figure 28 - FEL real-time control loop. I: plant as PAFO. II: plant as PKO. 𝜃�c�. is the reference angular 

position; 𝜃̇�c�.	is the reference angular speed; 𝜃̈�c�.	 is the reference angular acceleration 𝜃wc�b. is 

the measured angular position; 𝑒 is the position error; 𝑢�� is the feedback command; 𝑢�� is the 

feedforward command; 𝑢	is the total control command; A is the potentiometer and B is the actuator. 
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layer (HAL) libraries and following the modular and time-effectiveness architecture of 

SmartOs. Figure 28 shows the implemented control loop. 

 The PKO and PAFO were the assistive devices to be controlled. For the high-level and mid-

level, a position-based tracking control assistive strategy was selected to set the user-oriented 

trajectory and the orthosis reference trajectory, respectively. 

5.1.1 High-/Mid-level Control: Position-based Tracking Control 

 

The position-based tracking control presented in Figure 29 generates reference joint angular 

trajectories and it is designed for therapies that ensure repetitive movements of the user’s 

limbs, being suitable to improve movement coordination. 

 The high-level of the position-based tracking control uses a regression model with splines 

to produce user-oriented trajectories (𝜃¬bc�) with 48 points, parameterized in accordance 

with the user’s gait speed and height. 

 The mid-level applies Equation (33) to output the orthosis reference trajectory (θ®¯°.), 

specified by the user-oriented reference trajectory and the Number of Control loops (NOC). 

Equation (34) describes the NOC that ensures a speed-dependent gait trajectory, found 

empirically to set the necessary number of control loops that a single reference trajectory has 

to be available for the low-level control, so the selected gait speed is assured. 

θ®¯°. = F(θ²³¯®, NOC) (33) 

NOC = −0.026 ∗ 𝐺𝑎𝑖𝑡𝑆𝑝𝑒𝑒𝑑 + 3.1 (34) 

Figure 29 - Interaction between high-level, mid-level and low-level control hierarchy. 
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 In accordance with the selected gait speed, user’s height, and lower limb joint (i.e., knee 

or ankle), the high-level and mid-level supply the low-level FEL control with the correct 

trajectory to follow. Depending on the selected gait speed, the orthosis reference trajectories 

are generated at a frequency that varies from 10.5 Hz to 19.6 Hz, which corresponds to a 

selected gait speed of 0.5 km/h to 1.6 km/h, respectively. Figure 30 illustrates 1 period of the 

supplied trajectory for the PKO and PAFO, respectively, for a gait speed of 1 km/h. 

5.1.2 Low-Level Control: Feedback-Error Learning Control 

 

 The FEL controller was implemented at the low-level of the hierarchical control 

architecture for controlling the PKO and PAFO, independently. As can be seen in Figure 28, 

the FEL control scheme implies a feedback and a feedforward controller. Thus, both the 

feedback controller and the feedforward controller had to be tuned, so the orthosis could 

properly be commanded, at a chosen frequency of 1 kHz. 

 

5.1.2.1 Feedback Controller 

 

The interaction between the orthosis and the user's limb should be as smooth as possible, 

avoiding abrupt movements that can cause discomfort and/or instability to the user. For this 

reason, the applied control should avoid oscillations and overshoots in the actuator's 

response. This behavior was achieved through the correct tuning of a PID controller by means 

of the Ziegler-Nichols method, detailed in [88]. Equation (35) implements a PID controller:  

 

Figure 30 - Generated knee and ankle trajectory by the high-level. 
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𝑢�� = 𝐾Q𝑒� + 𝐾e� 𝑒d∆𝑡 + 𝐾º
�

d�Z

𝑒� − 𝑒�YZ
∆𝑡  (35) 

where, 𝑒� and 𝑒�YZ correspond to the current and previous error between the reference and 

measured angular position, respectively. Concerning the practical application in a 

rehabilitation scenario, we used 𝐾1=90 and 𝐾2=𝐾3=1.5 as PID gains. Figure 31 illustrates the 

PID controller for the PAFO and PKO, when controlled with position-based tracking control 

strategy. 

5.1.2.2 Feedforward controller 

 

The feedforward controller aims to learn the IDM of the plant, namely, the PKO or PAFO. A 

supervised training with ANN was used per orthosis due to its proper estimation performance, 

good generalization, and capabilities to map non-linearities [74]. The ANN has 3 neurons in 

the input layer since the ANN receives the reference position, speed and acceleration as 

inputs; 4 and 5 neurons in the hidden layer for the ANN of the PKO and the PAFO, and the 

output layer has 1 neuron since only a feedforward command is needed as output. In the 

hidden layer, the hyperbolic tangent activation function is used, due to its output’s values in 

[-1;1] range and for the output layer the identity function is applied since it generates values 

in [−∞;+∞] range. 

 The MLP was the adopted structure for the ANN since it has been reported in several 

applications of FEL control and widely applied. The approach taken for the weights update 

was the backpropagation algorithm [89], that is based on the minimization of the feedback 

command, which serves as the cost function for the algorithm. To implement it, the ADAM 

method was used, which is an SGD approach for an efficient stochastic optimization that only 

Figure 31 - PID as feedback controller. 
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requires first-order gradients with little memory requirement [83]. This stochastic method 

uses adaptive learning rates per weight connection, provides adaptability to the ANN training, 

and decreases the learning time.  

 The weights values are updated on each training iteration and the ANN stops training 

when the feedback controller has a contribution to the total control of 5% or below. 

All the ANN software was implemented from scratch, with the help of books [80], that 

theorized the ANN behavior, the SGD and backpropagation algorithm on a MLP structure, and 

with the help of literature that developed several optimization algorithms that accelerated 

the SGD training method, like ADAM [83]. Figure 32 shows the used architecture for the 

feedforward controller.  

 

 The input values for the ANN were the reference angular position, which were derived to 

obtain a reference speed and reference acceleration. A normalization method was used to 

scale the input data between [-1;1], given by in Equation (36).  

 

𝑦dP�w�¼e½cº = 2
𝑦edQ¬R − 𝑦wed
𝑦w�� − 𝑦wed

− 1 (36) 

 This method provides versatility to the training and testing, once it assures a trajectory 

magnitude limits and speed independent control [90]. With this, the inputs are always scaled 

between [-1;1] and the ANN is indifferent to modifications applied to the input trajectory. This 

feature is an important advantage once it decreases training time and enables an adaptive 

feature to the controller. Although this method enables slight variations in the magnitude of 

the input trajectory, it was needed to have an ANN per orthosis given the angular differences 

Figure 32 - ANN as feedforward controller. 
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between knee and ankle joints along the gait cycle. With this normalization method, the 

predicted output needs to be denormalized to the correct magnitude of control values, which 

were previously established to a minimum and maximum of -2500 and 2500, respectively. 

 

5.1.2.3 Real-time Algorithm 

 

 Figure 33 displays a flowchart with the developed algorithm of the real-time FEL controller 

in SmartOs.  

 As is possible to see in Figure 33, at each control iteration, the PID controller performs a 

feedback command (𝑢��) based on the error between the reference angular position (𝜃�c�.) 

and the measured angular position given by a potentiometer embedded on the orthosis 

(𝜃wc�b.). The ANN receives the computed feedback command and forwards the normalized 

input references signals (𝜃�c�., 𝜃̇�c�., 𝜃̈�c�.	) through its layers, getting a feedforward 

command prediction (𝑢��). 

 Now, if the ANN is in the training phase, it is trying to learn the plant’s IDM. It receives as 

error value the feedback command (𝑢��), runs a stochastic function that outputs a value 

between [-1; 1] and if it is positive it computes its gradient and backpropagates it through the 

ANN, in order to update its parameters, otherwise it ignores the sample in order to randomize 

Figure 33 - Flowchart with the implemented algorithm of the FEL real-time control. 
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the received inputs. On the other hand, if the controller is in the recall phase, it has already 

learned the plant’s IDM and only performs the feedforward prediction. 

 Next, the two control signals (𝑢�� and 𝑢��) are summed, to generate a total command 

signal (𝑢) that is applied to the orthosis. A saturator limits this command to a minimum value 

of -2500 and a maximum value of 2500, to protect the operability of the orthosis. 

 When three gait cycles are performed by the orthosis, the controller estimates the 

contribution executed by each controller to the total control command, computing the 

following equation: 

𝑢��(%) = 100
𝑢��[

𝑢  (37) 

where 𝑢��(%) is the feedback command contribution, 𝑢��[  is the mean squared feedforward 

contribution, and 𝑢 is the total control command. If the feedback controller has only 5% (or 

lower) of contribution to the total control command, the ANN has learned the IDM of the 

plant and the controller is in recall phase. Otherwise, the ANN is acquiring the plant’s IDM, 

being in training phase.  

 

 It is important to notice that the FEL controller could not be implemented in offline 

because we do not have the PKO and PAFO model. So, the taken approach to find the initial 

conditions for the ANN of the PKO and the PAFO was to tune, using MATLAB, an ANN to learn 

the dynamic of the PID feedback controller since we believe that the feedforward controller 

will have a similar range of operation, either in amplitude and frequency. Posteriorly, the 

found values for the initial conditions were used to setup the ANN to be trained in real-time 

training. 

 Thus, the taken approach to find the best number of hidden nodes, initial weights values 

and initial learning rate, in the lowest time possible and with an empirically established target 

validation error of 5% is presented in Figure 34. The used position, speed, and acceleration 

reference signals and PID commands to perform the offline tuning were previously acquired 

from 2 subjects, for the gait speeds of 0.8 km/h, 1.0 km/h, 1.2 km/h, as they are the target 

speeds to be used with end-users. Each training set has one gait cycle per speed for each 

subject, adding up to 6 gait cycles. 
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 Hereby, Table 13 summarizes the tuned initial conditions for the ANN of the PAFO and for 

the ANN for the PKO. 

Table 13 – Values to tune and achieved results of the offline implemented ANN. α and β are configurable scales of the weights 

initialization and initial learning rate, respectively, L are the Input nodes length and M the hidden nodes length. 

 
Assistive 

Device 

Hidden 

Nodes 
𝜶 and 𝜷 Values Weights Initialization 

Learning 

Rate 

Training 
PKO and 

PAFO 
3-20 {1, 10, 100} 

−
1
𝛼√𝐿

≤ 𝑤Áeº ≤
1
𝛼√𝐿

 

−
1

𝛼√𝑀
≤ 𝑤P¬R ≤

1
𝛼√𝑀

 
0.001∗ 𝛽 

Results 

PKO 4 10 and 10 
−

1
10√3

≤ 𝑤Áeº ≤
1

10√3
 

−
1

10√4
≤ 𝑤P¬R ≤

1
10√4

 
0.0001 

PAFO 5 10 and 100 
−

1
10√3

≤ 𝑤Áeº ≤
1

10√3
 

−
1

10√5
≤ 𝑤P¬R ≤

1
10√5

 
0.00001 

Figure 34 - Flowchart with neural network offline training algorithm. α and 𝛽 are configurable scales of the 

weights initialization and initial learning rate, respectively. 
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5.2 Validation Procedure 

 

To validate the real-time FEL controller three procedures were considered. The first one 

covers a validation of the PKO without load and then the validation of the PAFO without load, 

to investigate the behavior of the FEL controller for each device, separately. Figure 35 shows 

the used setup for this validation procedure. The measured and reference angular position 

was inspected, as the performed feedback command 𝑢��	and feedforward command 𝑢�� and 

the angular position error was inspected. The used gait speeds to move the PAFO and PKO for 

this validation were 0.8, 1.0, and 1.2 km/h. 

 

 Some cautions with the execution of the FEL validation without load were taken. During 

the online training phase of the feedforward controller, the ANN is still trying to learn the IDM 

of the PKO or PAFO. Thus, the feedforward command predictions that are being summed with 

the feedback command and applied to the orthosis could lead the system to produce 

undesirable movements, damaging the device. Therefore, it was decided to first perform the 

validations using a modified input knee/ankle reference position, without significantly 

changing its shape. 

 For the PKO validation without load, it was decided to add an offset of 15o to the normal 

knee reference position, so the joint does not perform movements closer to its mechanical 

limits, which are 0o for the lower and 90o for the higher limit. Figure 37.A/B/C shows the used 

reference trajectory, speed and acceleration for the PKO and Figure 37.D/E/F shows the used 

Figure 35 - Used set-up to validate FEL control without load. 1: Power Supply; 2: Power circuit; 3: CCU; 

4: LLOS; 5: Actuation device (A: PKO; B: PAFO). 
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normalized input trajectory, speed and acceleration for the ANN of the PKO. A trained ANN 

with the modified knee reference was achieved for a gait speed of 1.0 km/h. Subsequently, 

the ANN was tested with the normal knee trajectory with 3o of offset for gait speeds of 0.8, 

1.0 and 1.2 km/h. This procedure is possible due to the normalization method of the input 

references and the denormalization of the predicted feedforward command value of the ANN. 

With this, the inputs are always scaled between [-1;1] and the outputs are comprised between 

the established minimum and maximum command values (-2500 and 2500), and the ANN is 

indifferent to the trajectory offset value as Figure 37 shows. This feature is an important 

advantage to clinical environments once it decreases the error risk, training time, and enabling 

an adaptive feature to the controller. 

 The validation without load of the PAFO employed a different procedure since the range 

of motion of the PAFO is more limited, being -20o for the lower limit and 20o for the higher 

limit. So, to work far from these limits, the normal ankle reference trajectory was modified 

with an attenuation gain of 40% and 4o of offset. With this modified trajectory, an IDM for the 

PAFO was learned for a gait speed of 0.8 km/h. The learned IDM was re-tuned to the normal 

ankle trajectory for the gait speeds of 0.8, 1.0 and 1.2 km/h. Figure 37.G/H/I shows the used 

reference trajectory, speed and acceleration for the PAFO and Figure 37.J/K/L shows the used 

normalized input trajectory, speed and acceleration for the ANN of the PAFO. With Figure 37 

it is possible to observe that the ANN is indifferent to modifications applied to the input 

trajectory, both in magnitude and attenuation. 

 The second validation procedure was performed to inspect about the user-orthosis 

interaction and includes two healthy users (a male and a female) with demographic 

characteristics of 25.5 ± 0.7071 years old, height of 1.69 ± 0.0919 m, and weight of 64.50 ± 

14.84 kg. They were asked to walk at {0.8; 1.0; 1.2} (km/h) in a level-ground on a treadmill, 

first with the PKO and then with the PAFO configured with the trajectory tracking assistive 

strategy, each performing 3 trials with duration of 1 minute each. Figure 37 shows the users 

performing the described validation. 
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It was used the trained ANN with the plant’s IDM learned in the validation without load. For 

the PKO the used reference trajectory was a normal knee trajectory with 3o of offset, and for 

the PAFO was the normal ankle trajectory, as Figure 37.A/G shows.  

  

Figure 37 - Used reference signals for the validation procedures without load and with the user. A, B, C: PKO reference non-

normalized trajectory, speed and acceleration, respectively; D, E, F: normalized input trajectory, speed and acceleration, 

respectively, for the PKO’s ANN; G, H, I: PAFO reference non-normalized trajectory, speed and acceleration, respectively; J, 

K, L: normalized input trajectory, speed and acceleration, respectively, for the PAFO’s ANN. 

Figure 36 - Used set-up for the validation with a user on a 

treadmill. A: PKO; B: PAFO. 
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 For the third validation procedure, it was analyzed the effect of external perturbations to 

the user-orthosis interaction. Under the same conditions as the ones taken for the validation 

of the user-orthosis interaction, the users were asked to counteract the PKO/PAFO, in order 

to evaluate how the controller would react to such disturbance, which may occur during a gait 

therapy.  

5.3 Results & Discussion 

5.3.1 Real-Time Implementation 

 

In order to validate the FEL controller, the following signals were analyzed: (1) PKO/PAFO 

trajectory measured by a potentiometer and reference trajectory; (2) PID and ANN command 

and (3) Evaluation of PKO/PAFO position error. All signals were sampled with 100 Hz of 

frequency. 

 

5.3.1.1 Powered Knee Orthosis 

 

In SmartOs, the existing low-level control was the PID feedback controller, so the following 

FEL controller results are compared with this strategy. 

 Figure 38 presents the obtained results for the validation without load of the real-time FEL 

control with the PKO as plant, a selected speed of 1 km/h during three distinct gait cycle 

periods: Initial Phase; Middle Phase and Final Phase. 



 

 

 

69 

 

 The first row of Figure 38 presents the PID controller while the remaining signals illustrate 

the results of the FEL controller. Both controllers used as reference position trajectory a 

normal knee trajectory with an offset of 15 o. 

 Concerning the PID controller, a delay phase of 210 ms is observed (Figure 38.A) between 

the reference and measured trajectory, which causes a position error that varies from -20o to 

20o (Figure 38C). Figure 38.B displays the produced feedback command by the PID controller. 

 Figure 38.D/E/F shows the e FEL controller in its Initial Phase (first 11 seconds). During this 

phase, the feedforward controller is starting to tune its ANN and its contribution to the total 

control signal is not significant, being the feedback PID controller the one that tracks the 

reference trajectory. It is possible to see in Figure 38.D that the measured trajectory has 

approximately 210 ms of phase delay from the generated reference signal. This outcome is 

very similar to the one seen in Figure 38.A since commands come mainly from the PID 

controller because the feedforward controller is in its initial learning phase, having a much 

lower influence in the total control signal (Figure 38.D). Hence, the error signal in Figure 38.E 

has, again, a variance between -20o and 20o. 

Figure 38 - Results of PID and FEL controller in validation without load. A, D, G, J: PKO Measured trajectory and Reference 

trajectory signals in the solo PID and Initial, Middle, and Final Phase of FEL, respectively; B, E, H, K: ANN and PID command 

signals in the solo PID and Initial, Middle, and Final Phase of FEL, respectively; C, F, I, L: PKO Position Error in the solo PID and  

Initial, Middle, and Final Phase of FEL. 
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 In the Middle Phase (after 40 s), the FEL controller initiates to learn the IDM of the PKO 

and the measured position starts to decrease the phase difference with the generated 

reference signal, achieving 6 ms of phase delay, as can be seen in Figure 38.G. However, in 

order to correct its phase delay, the controller produces signals that causes the PKO to 

perform a trajectory which is 10o higher than what it should be, as shown in Figure 38.G. This 

is due to the fact that the ANN has not leaned the IDM with the best performance yet. In 

Figure 38.H, it is possible to realize the increase in the ANN command signal and that the PID 

command signal has decreased comparatively to the initial phase. The error signal given in 

Figure 38.I has improved varying from 10 to -20 degrees of angular position. 

 For the Final Phase (past 90 s), it is verified that the FEL controller has successfully aligned 

the PKO trajectory with the reference trajectory and corrected the amplitude divergence, by 

observing Figure 38.J. In this phase, the IDM of the plant has been adequately obtained by the 

ANN and the FEL controller entered in the recall phase. The feedback controller only 

contributes with 4.4% to the total control command – Figure 38.K. Concerning the error value, 

it decreased about 75%, comparing Figure 38.F and Figure 38.L. 

 

 From these findings, it was verified that the ANN is capable of achieving the IDM of the 

PKO, taking on the control and discharging the feedback controller from tracking the position 

references. A time-effective response with lower position error and phase delay was 

accomplished, comparatively to a solo PID feedback controller implementation. It is important 

to mention that with the offset used in the reference position signal, the device was not 

damaged, if the normal knee reference trajectory had been used, during the middle phase, 

the PKO could have exceed its normal range of motion, because the increase of 10o of 

amplitude would put the device out of its lower operating range. 

 

 Hereafter, with the current setup found for the IDM of the PKO, the FEL controller was 

tested for speeds of 0.8 and 1.2 km/h and as reference position a normal knee trajectory with 

an offset of 3 o. Figure 39 displays the obtained results. 
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 With the learned IDM of the PKO for a gait speed of 1.0 km/h and a knee reference position 

with 15o of offset, it is possible so see in Figure 39 that the IDM is still valid for speeds of 0.8 

km/h and 1.2 km/h and a reference position with only 3 o of offset concerning the normal knee 

trajectory. Both tests achieved good trajectory responses and low position errors. Thus, this 

strategy proves to be independent of changes in speed and in the offset value of the reference 

position. 

 

 Next, the results of the validation of the orthosis-user interaction was performed. One 

subject walked on a treadmill with 0.8, 1.0 and 1.2 km/h of gait speed and a normal knee 

trajectory with an offset of 3 o was used, as shown in Figure 40. 

Figure 39 - Results of the FEL controller with a learned PKO IDM for the validation with load. A, D: PKO Measured trajectory 

and Reference trajectory signals for 0.8 km/h and 1.2 km/h, respectively; B, E: ANN and PID command signals for 0.8 km/h 

and 1.2 km/h, respectively; C, F: PKO Position Error for 0.8 km/h and 1.2 km/h, respectively. 
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 The obtained results are similar with the results obtained in the validation without load, 

either in the performed trajectory and the position error. Due to the ANN trained in the 

validation without load and only by changing the normalization limits, it was possible to use 

the trained ANN with a learned PKO IDM to the different validation speeds. 

 

 With the two validations performed it is now possible to compare the obtained results 

with a solo PID control.  

 Both in the validation without load and the validation of the user-orthosis interaction and 

for all tested speeds, the solo PID achieved a Normalized Root Mean Squared Error (NRMSE) 

around 22% and a phase delay of 230 ms. 

 Concerning the FEL controller in the validation without load, it accomplished a mean 

NRMSE of 5.13% and a mean phase delay of 13 ms. The feedback controller only contributed 

to the total control with 5.9% (mean), for all tested speeds. Regarding the validation of the 

user-orthosis interaction, a mean NRMSE of 5.87%, a mean phase delay of 12.5 ms and a mean 

Figure 40 - Results of the FEL controller with a learned PKO IDM for the user-orthosis interaction validation. A, D, G: PKO 

Measured trajectory and Reference trajectory signals for 0.8 km/h, 1.0 km/h and 1.2 km/h, respectively; B, E, H: ANN and PID 

command signals for 0.8 km/h, 1.0 km/h and 1.2 km/h respectively; C, F, I: PKO Position Error for 0.8 km/h, 1.0 km/h and 1.2 

km/h, respectively. 
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contribution of 6.52% of the feedback controller to the total control was accomplished. The 

results for both validations were very similar. Comparing the validation without load and the 

validation of the user-orthosis interaction: (1) the mean NRMSE increased by 0.74%; (2) the 

phase delay decreased by 0.5 ms; (3) the mean feedback contribution increased 1% to the 

total control command. This could be due to the load added in the system (the user), that may 

difficult the controller to follow the reference trajectory. The knee trajectory has a big and 

fast range of motion during the swing phase and the required acceleration is bigger. 

Nevertheless, it is worth mentioning that the feedback command contribution to the total 

control signal never reached values equal or below 5%, except during the speed of 1.0 km//h. 

 When comparing both control approaches, the FEL controller achieved better results in all 

metrics. Analyzing both validations, the FEL controller decreased the NRMSE 16.5% and 93% 

for the phase delay (approximately).  

 Table 14, summarizes the obtained results achieved with the PKO as assistive device, using 

PID and FEL as controllers for the speeds of 0.8, 1.0 and 1,2 km/h. The NRMSE, Phase Delay 

and the contributions to the total control signal of the feedback command (𝑢��) and 

feedforward command (𝑢��) are displayed for the preliminary validation and treadmill 

validation (mean of all trials of the two subjects). 

 

Table 14 - Achieved results for both validations with the PKO. 

Validation 
Speed 

km/h 

Low-Level 

Control 

NRMSE 

% 

Phase 

Shift 

ms 

uff 

Contribution 

% 

ufb 

Contribution 

% 

Without 

load 

1.0 

PID 22.33 210 - - 

FEL 

Initial 22.33 210 0 10 

Middle 9.89 60 60.7 39.3 

End 5.54 0 96.5 4.5 

0.8 
PID 21.58 260 - - 

FEL 5.17 20 94 6.9 

1.2 
PID 22 2 30 - - 

FEL 4.68 20 93.7 6.3 
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Table 15 - continued. 

Validation 
Speed 

km/h 

Low-Level 

Control 

NRMSE 

% 

Phase 

Shift 

ms 

uff 

Contribution 

% 

ufb 

Contribution 

% 

User-

Orthosis 

Interaction 

1.0 
PID 22.33 210 - - 

FEL 5.69 0 93.89 6.11 

0.8 
PID 21.58 260 - - 

FEL 5.55 15 93.06 6.94 

1.2 
PID 22 230 - - 

FEL 6.37 22.5 93.48 6.52 

 

 

 Finally, Figure 41 shows the validation of the FEL controller to external perturbations 

during the user-orthosis interaction, with a disturbance applied during walking in the terminal 

stance phase (before toe-off event). The selected speed was 1 km/h and as reference position 

a normal knee trajectory with an offset of 3 o. 

 

 

 With the learned IDM, it was possible to analyze the behavior of the FEL controller to 

external disturbances that could affect the normal user-orthosis interaction. Hereby, in Figure 

41.A, it is possible to inspect the moments when the user counteracted the orthosis 

Figure 41 - Results of FEL controller to external disturbances during the user-orthosis interaction. A: PKO Measured and 

Reference position signals; B: ANN and PID command signals; C: PKO Position Error. 
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movement, preventing it from increasing its angular position, in one occasion (at 58 s 

signalized with a dashed grey rectangle). Looking to Figure 41.B, in that same moment, the 

PID command signal increases, since the error signal grows (see Figure 41.D) due to the 

displacement between the reference and measured position signals. The feedforward 

command signal stayed periodic, as the reference signals and the learned IDM did not change. 

Therefore, as expected, the feedback controller acts in an attempt to cancel the increased 

error signal to correct the PKO angular position, preventing any damage of the user and of the 

device. 

 

5.3.1.2 Powered Ankle-Foot Orthosis 

 

The following results show only the signals with the ANN tuned to the normal ankle trajectory, 

once several scale factors were used until the normal trajectory was reached.  

 Figure 42 shows the obtained results for the validation without load of the real-time FEL 

controller with the selected gait speed of 0.8 km/h, focusing only on the final phase of the FEL 

controller and comparing it to the PID feedback controller, the existing low-level controller in 

SmartOs. 

Figure 42 - Results of PID and FEL controllers in validation without load. A, D: PAFO Measured trajectory and Reference 

trajectory signals in the solo PID and Final Phase of FEL, respectively; B, E: ANN and PID command signals in in the solo PID 

and Final Phase of FEL, respectively; C, F: PAFO Position Error in the solo PID and Final Phase of FEL, respectively. 
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 Concerning the PID controller, a phase delay of 250 ms is observed in Figure 42.A, which 

causes the position error to vary from -16o to 7o (Figure 42.C). Figure 42.B shows the 

corresponding feedback command. 

 For the Final Phase of the FEL controller, it is verified a phase delay of 20 ms (Figure 42.D) 

decreasing the position error, which varies now from -5o to 5o (Figure 42.F). Figure 46.E shows 

the predominance of the feedforward controller over the feedback controller. Nevertheless, 

it is observed that the measured position sometimes exceeds the reference position, due to 

an existing error in the learned IDM. 

 These findings suggest that the tuned ANN is capable of learning the IDM of the PAFO, 

taking on the control and dismissing the feedback controller from tracking the position 

references. Again, a time-effective response with lower position error and phase delay was 

accomplished, in contrasting to solo PID feedback control implementation. 

 

 Hereafter, with the current set-up found for the IDM of the PAFO, the FEL controller was 

tested for the gait speeds of 1.0 and 1.2 km/h. Figure 43 displays the obtained results. 

 

  

Figure 43 - Results of the FEL controller with the learned IDM of the PAFO in the validation without load. A, D: PAFO Measured 

trajectory and Reference trajectory signals for 1.0 km/h and 1.2 km/h, respectively; B, E: ANN and PID command signals for 

1.0 km/h and 1.2 km/h, respectively; C, F: PKO Position Error for 1.0 km/h and 1.2 km/h, respectively. 
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 Contrary to what happened with the PKO validation without load, the learned IDM of the 

PAFO had to be tuned for the gait speeds of 1.0 km/h and 1.2 km/h. Figure 43 shows low 

position error for both speeds, varying in form -5o to 5o for 1.0 km/h and -7o to 4o for 1.2 km/h. 

 

 Next, the results for the validation of the user-orthosis interaction with one subject 

walking on a treadmill for 0.8, 1.0 and 1.2 km/h, are presented in Figure 44. 

 

 

 The results show low position errors and feedback contribution. In this validation, it is also 

possible to see that the measured position does not exceed the reference position overly, 

contrarily to the validation without load. 

 

 It is now possible to compare the obtained results, both for FEL controller and the solo PID 

controller.  

 In the both validations, the solo PID controller achieved a mean NRMSE of 24% and a phase 

delay of 250 ms for all speeds. 

Figure 44 - Results of the FEL controller with a learned IDM of the PAFO for the user-orthosis validation. A, D, G: PKO Measured 

trajectory and Reference trajectory signals for 0.8 km/h, 1.0 km/h and 1.2 km/h, respectively; B, E, H: ANN and PID command 

signals for 0.8 km/h, 1.0 km/h and 1.2 km/h respectively; C, F, I: PKO Position Error for 0.8 km/h, 1.0 km/h and 1.2 km/h, 

respectively. 
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 Concerning the FEL controller in the validation without load, it yielded a mean NRMSE of 

6.6% and a mean phase delay of 23.3 ms for all tested speeds. The feedback controller only 

contributing to the total control with 8.3% (mean), for the three analyzed speeds. When the 

validation of the user-orthosis interaction was performed, a mean NRMSE of 6.51%, a mean 

phase delay of 25 ms and a contribution of 5.8% (mean) of the feedback controller to the total 

control was accomplished. Again, the results for both validations were very similar. It was 

observed that: (1) mean NRMSE decreased 0.09% ; (2) the phase delay increased 1.7 ms (3) 

and the feedback contribution decreased 2.5%. The decrease in the NRMSE might be due to 

the load added to the PAFO (the user) that stopped it to exceed the reference signal. 

 

 When comparing both controllers, the FEL controller achieved better results in all metrics. 

Analyzing both validations, the FEL controller decreased the NRMSE 17.5% (approximately) 

and 90.7% for the phase delay. 

 

Table 16, summarizes the obtained results achieved with the PAFO as an assistive device, 

the PID and FEL as controllers for the speeds of 0.8, 1.0 and 1,2 km/h. The NRMSE, Phase Delay 

and the contributions to the total control signal of the feedback command (𝑢��) and 

feedforward command (𝑢��) are displayed for the validation without load and validation of 

user-orthosis interaction (mean of all trials of the two subjects). 

 

Table 16 - Achieved results for both validations with the PAFO. 

Validation 
Speed 

km/h 

Low-Level 

Control 

NRMSE 

% 

Phase 

Delay 

ms 

uff 

Contribution 

% 

ufb 

Contribution 

% 

Without 

load 

0.8 
PID 22.28 250 - - 

FEL 5.63 20 91.5 8.5 

1.0 
PID 24.53 260 - - 

FEL 6.54 20 92.1 7.9 

1.2 
PID 26.99 250 - - 

FEL 7.68 30 91.4 8.6 
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Table 16 – continued. 

User-

Orthosis 

Interaction 

0.8 

1.0 

FEL 6.95 30 93.8 6.2 

PID 24.28 250 - - 

1.0 

1.2 

FEL 5.99 20 93.1 6.9 

PID 26.99 250 - - 

1.2 
FEL 6.58 25 95.16 4.84 

     

 

 For the validation of external disturbances to the user-orthosis interaction with the FEL 

controller using the PAFO, Figure 45 shows the controller behavior. The external disturbances 

were applied in the initial stance phase (before foot flat event). The selected speed was 1 

km/h. 

 

 

 In Figure 45.A, it is possible to see the moment in which the user counteracted the orthosis 

movement, preventing it from increasing its angular position, at 117 s (signalized with a 

dashed grey square). Figure 45.B shows an increase of the PID command signal, once the error 

signal grows (see Figure 45.C) due to the displacement between the reference and measured 

position signals, in that same moment. Respecting the command signal performed by the 

feedforward controller, it stayed periodic, since the reference signals did not change.  

Figure 45 - Results of the FEL controller to external disturbances during user-orthosis interaction. A: PAFO Measured and 

Reference position signals; B: ANN and PID command signals; C: PAFO Position Error. 
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 Therefore, the feedback controller increases its contribution in attempt to cancel the 

increased error signal and correct the PAFO angular position, preventing any damage of the 

user and of the device. 

 

 At the end of both validation procedures with the PKO and PAFO, the two users were asked 

if they felt any difference, in terms of assistance, when changing from the PID controller to 

the FEL controller. Both said that the generated assistance during FEL controller supplies more 

power, forcing the limb to follow the established path. Specifically, with the PAFO this was 

more obvious during the toe-off and heel-strike events and with the PKO it was during the 

swing phase. Users felt comfortable when wearing the device with the FEL controller, since it 

assists the moments that involve greater energy consumption. 

5.4 Conclusions 

 

This chapter presents the design and implementation in SmartOs of the FEL controller. 

 In order to set-up the parameters of the ANN, an offline ANN tuning was performed, both 

with data concerning the PKO and the PAFO. With this, it was possible to proceed to the real-

time implementation and validation, with important safety measures to the system and the 

user. 

 A validation without load demonstrated good results, decreasing the position error and 

nearly eliminating the phase delay between the reference and measured positions of both 

assistive devices. With the validation of the user-orthosis interaction, the FEL controller 

effectively performed the position tracking with position errors between 5% to 7%, and with 

a maximum phase delay of 3%. When comparing to the PID feedback controller, a decrease 

around 15% to the position error and 200 ms to the phase delay was achieved with the FEL 

control. 

 Hereby, the FEL controller demonstrated efficiency to perform the position tracking 

control, achieving good time effectiveness as precision in positioning. The ANN demonstrated 

to be speed and scale/offset in reference independent since a pre-trained ANN to a different 

speed and scaled/offset reference position achieved good results. Robustness was also 
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accomplished, by successfully correct both the PKO and PAFO positioning, when external 

disturbances were faced to the user-orthosis interaction. 
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6 CONCLUSIONS 

 

Neurological diseases or motor injuries can origin certain gait pathologies, which often 

produce abnormal gait patterns, affecting deeply human mobility. Powered assistive devices, 

like powered lower-limb exoskeletons and orthoses are starting to complement conventional 

therapeutic regarding gait rehabilitation, to actively aid or restore the gait patterned affected 

by gait pathologies. With such devices, certain difficulties associated with conventional 

therapeutic can be overcome, by relieving the repetitive and heavy work of physical therapies, 

while improving the orthopedic and neurologic recovery effectiveness.  

 The human motor control system starts to influence the design of bioinspired 

architectures for these lower-limb robotic devices, comprising the definition of distinct levels 

of controllers (high-, mid-, and low-level) distributed hierarchically. At the low-level, the 

controller has to track the reference state with low error. Several low-level controllers exist, 

however to achieve good adaptive results deep modeling and mathematical knowledge about 

the controlled plant is needed. So, it is desired a controller that has adaptive features without 

arduous implementation process. 

 In this master dissertation, it was developed and validated a real-time Feedback-Error 

Learning low-level control. It was embedded in SmartOs, an existing modular, bioinspired, 

real-time, time-effective, and ergonomic gait system and tested in two lower-limb orthotic 

actuation devices, the PKO and PAFO.  

 First, a literature analysis of the FEL controller was performed, to inspect its features, 

advantages and disadvantages. It was concluded that the FEL controller has an adaptive 

behavior without demanding high mathematical details about the target plant. This is a great 

advantage over other lower-level controls used in orthotic devices, such as: PID (and its 

variants), LQR and H∞. The FEL controller includes a feedforward controller that uses an ANN 

to online learn the IDM of the plant, together with a feedback controller that grants stability 

during the ANN training process and, handles disturbances afterwards. 

 SmartOs is as a modular wearable robotic gait system, capable of providing personalized 

gait rehabilitative tasks. It is composed by several modules, including wearable sensor 
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systems, actuation systems, gait analysis tools, and control strategies. A validation of SmartOs 

temporal requirements was performed to ensure an effective actuation and gait monitoring. 

The results demonstrated that SmartOs can time-effectively perform the necessary gait 

control and gait monitoring. Since SmartOs only has a PID low-level control, the FEL control 

was implemented in this smart system. 

 This work aimed for real-time implementation in the SmartOs. Thus, a study of the ANN 

features to be used in a function approximator application was addressed. The MLP was 

defined as the appropriated ANN structure to acquire the assistive device IDM. Therefore, an 

SGD training method with a backpropagation algorithm that minimizes the feedback error 

command and ADAM optimizer that uses adaptive learning rates per weight connection was 

implemented, ensuring adaptability to the ANN training and decreasing the learning time. 

 An offline tuned of the developed ANN was performed, so the initial set-up of the ANN 

could be found for the feedforward controller of the PAFO and PKO, such as the initial weights, 

number of hidden nodes and initial learning rate. With the initial set-up found for the ANN it 

was possible to use the FEL controller in a real-time scenario, with the development of 

validation situations. 

 A validation without load of the FEL controller verified good performance, in terms of 

learning the plants’ IDM, position error and phase delay. With the confirmation of the 

feedforward controller ability in learning the plant’s IDM, a validation of the user-orthosis 

interaction with two subjects walking on a treadmill was performed. When the PKO and PAFO 

were worn by the users with the trajectory tracking assistive strategy, the proposed FEL 

controller was capable of following the reference trajectory for the speeds of 0.8, 1.0 and 1.2 

km/h. It demonstrated position errors between 5% to 7%, and with a maximum phase delay 

of 3%. When compared to the PID feedback controller, a decrease around 15% in the position 

error and 200 ms in the phase delay was achieved with the FEL controller. Good responses to 

external disturbances were also verified, where the FEL controller shown capabilities to 

correct the deviations that the devices suffered. Hereby, the FEL controller implemented in 

SmartOs suggested to be a time-effective with low tracking error and phase delay, low training 

time when compared to the PID feedback control. 
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Furthermore, with the developed work, all established goals were successfully achieved 

and the RQs defined in Chapter 1 can be answered: 

 

• RQ1: Which are the FEL controller advantages over other low-level controllers applied to 

powered assistive devices? 

This RQ was answered in Chapter 2. The FEL controller is composed by a feedforward 

controller that has the plant’s IDM to predict the right control commands to properly track 

the reference input and feedback controller to only handle external disturbances that can 

affect the plant and provide to the feedforward controller an error signal as miss-match to the 

learned IDM. 

• RQ2: Is SmartOs a time-effective assistive and monitoring rehabilitation system? 

This RQ was approached in Chapter 4. An empiric validation protocol was developed and 

applied in order to validate SmartOs as a time-effective architecture. It was verified that both 

the monitoring (WMSS) and assistive modules (LLOS), and respective sub-modules when 

operating alone and together, fulfill the demanded time constraints. Consequently, all 

technical requirements are fulfilled such that the SmartOs is able to provide time-effective 

gait assistance and monitoring. 

 

• RQ3: Are ANN capable of effectively acquire an IDM of a powered assistive lower-limb 

device? 

This RQ is answered in chapter 5. With the real-time implementation, it was possible to 

conclude that tuned ANN is capable of learning the IDM of a powered assistive lower-limb 

device. It was accomplished with small training time and low performance error. Moreover, 

the ANN demonstrated versatility to modifications in the reference trajectory and gait, due to 

normalizations methods. Also, training with a pre-trained ANN with different conditions 

enabled to successfully obtain the IDM of the target assistive device, giving an important 

advantage to clinical environments once it decreases the error risk, training time and enabling 

an adaptive feature to the controller. 

 

• RQ4: Can FEL control provide good real-time control performance to a powered assistive 

lower-limb device?  
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Chapter 5 also answers this RQ. With the performed validations, it was concluded that the FEL 

controller achieves good real-time results with a low position error and phase delay, both for 

the PKO and PAFO with a control frequency of 1kHz. These findings open opportunities for the 

real-time application of FEL controller in user-oriented, time-effective gait rehabilitation, 

approached by powered assistive lower-limb devices, in scenarios with end-users.   

 

 

6.1 Future Work 

 

Future work within this dissertation could be: (1) validation of the FEL control with more 

subjects to fully inspect about its control performance; (2) use a more thorough validation 

protocol to inspect about the behavior of the FEL controller to external disturbances to the 

user-orthosis interaction; (3) include a validation with pathologic patients using the PKO and 

PAFO assistive devices with FEL control; (4) analyze the controller with different disturbance 

scenarios; (5) develop and apply inquiries to have a qualitative and subjective analyzes of the 

FEL control in comparison to different low-level controllers; and (6) use different trajectory 

tracking assistive strategies like torque control or ANN assistive strategies such as myoelectric 

control or impedance  to investigate how the FEL control would behave with these different 

high-level controllers and inspect about its performance. 
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