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A B S T R A C T

The distribution patterns of trace elements are very useful for predicting mineral deposits occurrence. Machine
learning techniques were used for the computation of adequate models in trace elements' prediction.

The main subject of this research is the definition of an adequate model to predict the amounts of Sn and W in
the abandoned mine area of Lardosa (Central Portugal). Stream sediment samples (333) were collected within
the study area and their geochemical composition - As, B, Be, Cd, Co, Cr, Cu, Fe, Ni, P, Sn, U, V, W, Y, and Zn -
used as input attributes. Different machine learning techniques were tested: Decision Trees (CART), Multilayer
Perceptron (MLP) and Support Vector Machines (SVM).

For regression and clustering, CART, MLP approaches were tested and for the classification, problem SVM was
used. These algorithms used six different inputs – N1 to N6 – aiming to pick out the best-performing model.

The results show that CART is the optimized predictor for Sn and W. Concerning the regression approach,
correlation coefficients of 0.67 for Sn (with Input N1) and 0.70 for W (with Input N3) were obtained. Regarding
the classification problem, an error rate of 0.10 was reached for both Sn (Input N1) and W (Input N2).

The classification process is the best methodology to predict Sn and W, using as input the trace element
concentrations in the collected stream sediment samples, Lardosa area, Portugal.

1. Introduction

Distribution models are generally used to predict the presence or
absence of target deposits in a specific area that has not been surveyed
or censused (Bahn and McGill, 2013).

Stream sediments were collected and represent a non-random point
distribution. The occurrence of a set of deposits, represented as points,
can be characterized as dependent variables, which can be explained by
geological, geographical, and geospatial data (Boots and Getis, 1988;
Diggle, 1983, 1990; Rowlingston and Diggle, 1991).

The mineralogical content of stream sediments from mineralized
areas is primarily linked to the gangue constituent's mineralization or
minerals from host rocks. The wind as the predominant process may be
responsible for the verified anomalous high concentrations (Santos
Oliveira et al., 1998). The stream sediments correspond to hetero-
geneous materials resulting from the superficial weathering and trans-
ported by river flow from the source rock to a point of deposit (Porwal
et al., 2003).

The spatial distribution patterns of trace elements can aid in the
prediction of ore deposits and mineral occurrences. There has been
much research on modeling distribution patterns using environmental
and geospatial data to make predictions based on the projection of
predictive attributes of geologic and geographic data from models such
as global circulation models (Iverson and Prasad, 1998; Strebelle, 2002;
Skov and Svenning, 2004).

A mineral distribution model is important for identifying potential
mining areas for economic development and soil management (Scott
and Csuti, 1997; Ferrier, 2002). Finding new mineral deposits involves
the formation, transportation, and deposition of mineralized fluids
(Falconer, 1912; Bowden and Jones, 1978).

Spatial autocorrelation is a phenomenon where the presence of
some property in a sampling unit makes its presence in neighboring
sampling units likely (Harris et al., 2010; Ibrahim and Bennett, 2014).

Different researchers have used machine learning (ML) as a tool for
modeling geospatial data by building a model capable of identifying
patterns in geospatial data and making predictions from these patterns
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e.g. (Porwal et al., 2003; Oommen et al., 2008; Leite and de Souza
Filho, 2009; Oh and Lee, 2010; Carranza, 2011; Ballabio and
Sterlacchini, 2012; Ibrahim and Bennett, 2014; Daszykowski et al.,
2015; Rodriguez-Galiano et al., 2015; Chen et al., 2014; Chen and Wu,
2017; Zuo and Xiong, 2018; Zuo, 2017; Zhao et al., 2016). Also, dif-
ferent studies are in the bibliography related to ore: formation of ore
(Duan et al., 2018) and ore genesis (Zhang et al., 2018; Fan et al., 2016)
but not to predict its content.

The aim of this research work is to construct a model to predict the
amount of Sn and W in stream sediments associated with abandoned
mining activities at Lardosa (in Central Portugal).

Different machine learning techniques were tested: decision trees
(CART), multilayer perceptron (MLP) and support vector machines
(SVM) for regression and clustering, and CART, MLP, and SVM for su-
pervised classification.

Prediction algorithms were implemented, namely using regression
and classification approaches, for a comparison of results.

2. Materials and methods

2.1. Study area and dataset

The study mining area is approximately 130 km2 located in the
district of Castelo Branco in central Portugal (Fig. 1a). Geologically, the
area comprises the Iberian Massif in the Central Iberian Zone (CIZ). The
prevailing rocks are schists and greywackes from the Beiras Group
(Schist-greywacke Complex), which were intruded by the Castelo
Branco and Oledo granitic plutons (Antunes et al., 2009). NW-SE to
WNW-ESE quartz veins with cassiterite and wolframite veins fill late to
post-tectonic Variscan faults following the Sn-W mineralization from
Góis-Segura. The Sn-W quartz veins also contain frequently associated
Fe, Cu and As sulphides, related to the granitic intrusion. Younger
quartz veins rich in galena and sphalerite cut the schist-metagraywacke
complex, and a few of them intrude the granite. The Lardosa deposits
also characterize the region, resulting from the alteration of Lardosa
granite and consequent mobility and accumulation of cassiterite and
ilmenite (Instituto Geológico e Mineiro, 1998; Antunes et al., 2014).
The geological background makes this mining area interesting, as it
contains 11 abandoned mine concessions containing W, Sn-W, and Zn-
Pb (Antunes et al., 2014).

The geochemical composition of stream sediments comprised 333
samples (Fig. 1b), collected during the period 1980–1988 in a narrow
region, ranging from 50m upstream to 100m downstream from the
stream confluences (Instituto Geológico e Mineiro, 1998).

All the samples were prepared through reduction, drying and
grinding. Total concentrations of As, B, Be, Cd, Co, Cr, Cu, Fe, Ni, P, V,
U, Y, and Zn, in the fraction ˂74 μm, after digestion with Aqua-Regia
were determined by ICP-AES. Tin and W were analyzed by X-ray
fluorescence spectrometry (Instituto Geológico e Mineiro, 1998) and
were used for the prediction model fitting.

The main laboratory conditions of the analyzed elements included
in the dataset are presented in Table 1. The box plots obtained for the
sixteen trace elements analyzed and details of them are presented in
Figs. 2 to 4. All the box plots are displayed with the median of the data
represented by the central line of the box, the upper and lower edge
corresponding to 75th and 25th percentiles, respectively, and the
whiskers indicating the range outside which data points are considered
outliers.

The descriptive statistics obtained for the trace elements are shown
in Table 2. Tin and W present a similar variability according to their
average and median. However, stream sediments from the study area
contain higher concentrations of Sn (up to 138 ppm) than W (Table 2).

2.2. Machine learning techniques used

Machine learning techniques are used in a broad variety of

Fig. 1. Study area: a) geographical location on the map of Portugal; b) stream sediment samples.
Adapted from (Antunes et al., 2014).

Table 1
Analytical conditions used for trace elements determination (Instituto
Geológico e Mineiro, 1998).

Analytical method Element Detection limit Precision

ICP-AES As 20 ppm 20 ppm
B, Co, Cr, Cu, Ni, P,
V, Zn

10 ppm 10 ppm

Be, Cd 1 ppm 10 ppm
Fe 0.10% 10 ppm
U 0.5 ppm 10 ppm
Y 5 ppm 10 ppm

X-Ray fluorescence
spectrometry

Sn, W 10 ppm 10 ppm
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applications (Porwal et al., 2003; Leite and de Souza Filho, 2009; Oh
and Lee, 2010; Carranza, 2011; Ibrahim and Bennett, 2014; Rodriguez-
Galiano et al., 2015). The main goal of this research is the prediction of
Sn and W, in an abandoned mining area at Lardosa (Central Portugal)
and the following machine learning techniques will be applied.

Regardless of the technique used to analyze the data, a 10-fold
cross-validation was performed to optimize the results. The initial da-
taset was divided into ten subgroups; nine of them were used in the
training stage and the remaining one for testing. Finally, the process

was repeated through 10 iterations, incorporating the contributes of all
the subgroups considered.

2.2.1. Decision trees (CART)
Given a set of continuous or categorical independent variables,

classification and regression trees (CART) are non-parametric techni-
ques that can explain the response of a dependent variable (Breiman
et al., 1984; Moisen, 2008). The initial data are split into subgroups,
then the variance of these subgroups is minimized until they reach
homogeneity (Brown and Myles, 2009).

Variance minimization can be accomplished using different algo-
rithms such as mean-squared error (MSE); Gini's diversity index, de-
viance or towing rule. In this research paper, regression trees were
optimized using MSE, while classification trees were optimized using
Gini's diversity index. The Gini index at node t can be expressed as:

p p(j/t) (i/t)
j i (1)

where i and j represent the categories of the target variable (dependent
variable), and p i t(/) are the proportion of target categories j and i,
respectively, present in the node t

p j t1 ( / ).
j

2

(2)

Gini's index is usually used for categorical dependent variables and
its value ranges from 0 (maximum equality) to 1 (maximum inequality)
(Soman et al., 2006).

The main advantage of using CART is the model optimized fitting,
considering the original data. Moreover, it allows a quick, visual and
intuitive results' interpretation through the tree observation. The pre-
sence of outliers is minimized through pruning (Breiman et al., 1984).

2.2.2. Clustering
The basis of this unsupervised classification method is the ability to

differentiate the elements of a given group based on a specific char-
acteristic, usually a distance measure (Jain et al., 1999; Kotu and
Deshpande, 2015). This methodology is appropriate for data with
limited information since clustering explores the interrelationships
among the data points to assess their structure (Jain et al., 1999).

The methodology could be applied to classification problems, and
the main steps are the following (Jain et al., 1999): (i) the initial pattern
is represented (ii) define a pattern of the proximity of the data; then (iii)
an initial clustering is applied and (iv) the similarity of the elements of
each dataset is analyzed. This sequence is repeated until the elements of
a subgroup (or cluster) have the maximum similarity while elements of
different subgroups have the minimum similarity.

Fig. 2. Box plots of the sixteen trace elements.

Fig. 3. Detailed box plots for trace elements, except for Cr, P and Zn.

Fig. 4. Selected box plot for Sn and W.

Table 2
Descriptive statistics for trace element concentrations (ppm).

Element Minimum Maximum Average Median Variance Standard
deviation

As 10.0 105.0 19.7 10.0 217.2 14.7
B 5.0 33.0 11.4 12.0 28.6 5.4
Be 1.0 16.0 4.8 3.0 10.7 3.3
Cd 0.5 11.0 0.6 0.5 0.4 0.6
Co 5.0 16.0 5.5 5.0 3.4 1.8
Cr 61.0 431.0 190.4 181.0 5525.9 74.3
Cu 5.0 49.0 9.3 5.0 63.0 7.9
Fe 0.9 5.2 2.5 2.5 0.6 0.8
Ni 5.0 58.0 14.5 12.0 100.1 10.0
P 299.0 1865.0 928.5 885.0 101,359.2 318.4
Sn 5.0 138.0 8.7 5.0 146.5 12.1
U 0.5 21.0 3.5 2.9 5.1 2.3
V 12.0 176.0 46.9 38.0 733.9 27.1
W 5.0 80.0 7.2 5.0 42.0 6.5
Y 5.0 54.0 14.0 13.0 36.4 6.0
Zn 19.0 1465.0 82.4 73.0 6911.8 83.1
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Several algorithms can be used for measuring similarity and all of
them are based on the distance between the elements in N-dimensional
space. Likewise, different approaches to clustering data can be invoked
(Jain et al., 1999). In this research, the squared error criterion and k-
Means clustering algorithm were used.

Considering a clustering L of a pattern set X, that contains K clusters,
the squared error is expressed as

=
= =

e X L x c( , ) ,
j

K

i

n

i
j

j
2

1 1

2
j

(3)

being xij the ith pattern that belongs to the jth cluster, and cj the cen-
troid of the jth cluster. Using a random partition, the algorithm eval-
uates the similarity between the pattern (or element) and the cluster
center until these converge (Fig. 5).

Clustering was applied as a semi-supervised technique in this study,
setting the number of clusters to be tested by the model. Thus, the al-
gorithm determines the centroid of each cluster based on the distances
between it and the items of the dataset.

2.2.3. Multilayer perceptron (MLP)
Neural networks (McCulloch and Pitts, 1943; Bishop, 2008) are a

machine learning technique characterized by a layered structure and
each layer containing a certain number of nodes (or neurons). There are
three types of layers: input layer (containing the initial data), output
layer (containing the required response) and hidden layers (Fig. 6).

Each layer is composed of: (i) neurons with input connections and
weights that regulate the intensity of input signals, (ii) an activation
threshold, (iii) an activation function that depends on the input signals
and (iv) an output as a function of the input signal, also called “transfer
function”. The weights that connect the neurons of the different layers
are calibrated with a training algorithm based on the deviation of the

network outputs with respect to the real values.
In a d-dimensional input space with a c-dimensional output layer,

the neural network implements a function that can similarly be ex-
pressed equally can also be expressed equally

=f x x
X R T R
T R Y R

( ) ( ( ))
:
:

d p

p c (4)

where T is the hidden layer and contains p neurons; it is also known as
“characteristic space”.

Multilayer Perceptron (MLP) is a sensitive case of neural networks
where neurons are perceptrons and the learning process is character-
ized by backpropagation (Bishop, 2008; Lek and Park, 2008). The
backpropagation algorithm finds the optimum combination of squared
errors and weights and generates the best output from the trained
network. The implemented function is (Heaton, 2012)

= + +
=

f x c w x w c( ) ( ( ) )
j

p

j j j
T

1
0 0

(5)

being cj and c0 the weights of the hidden layer, and wj, w0 the weights of
the input layer.

2.2.4. Support vector machines (SVM)
The support vector machines (SVM) are a methodology initially

proposed by Cortes and Vapnik (1995) and applied to a binary classi-
fication process. Since then, support vector machines have been widely
used in pattern recognition due to their predictive ability, flexibility,
parsimony and global optimum capacity (Burges, 1998). SVM is usually
applied to classification problems, although good performances have
also been obtained in regression problems and time series applications
(Thissen et al., 2003), is commonly referred to as support vector

Fig. 5. Example for k-means clustering algorithm.

Fig. 6. Illustration of the structure of a neural network with d input neurons, t hidden neurons and c output neurons.
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regression (SVR) (Smola and Schölkopf, 2004).
Basically, given a training data, it being χ a d-dimensional input

space, the objective of SVR is to find a function f(x) with a maximum
deviation ε from the obtained targets yi for all the training data (Cortes
and Vapnik, 1995). If we considered a linear function f

= +f x w x b w b( ) , with , (6)

where 〈w,x〉 is the dot product in χ, the optimization problem can be
written as

+

w

y w x b
w x b y

minimize 1
2

subject to
,

, .
i i

i i

2

(7)

Bennett and Mangasarian (1992) proposed a soft margin loss func-
tion to allow a certain number of errors in the resulting output, thus
rewriting the previous equations as

+ +

+
+ +

=
w C

y w x b
w x b y

minimize 1
2

( )

subject to
,

,
, 0

i

l

i i

i i i

i i i

i i

2

1

(8)

where ξi, ξi∗ are slack variables and C > 0 represents the tolerated
deviations, larger than ε.

Considering nonlinear functions, the dualization method presented
in (Fletcher, 1989) uses Lagrange multipliers to rewrite the optimiza-
tion problem as the “Support Vector expansion”

= = +
= =

w x f x x x b( ) , thus ( ) ( ) , ,
i

l

i i i
i

l

i i i
1 1 (9)

where αi, αi∗ are the Lagrange multipliers. With the latter equation, w is
completely described as a linear combination of the training patterns xi.

Considering a classification problem, its resolution relies on the
concept of the optimal separating hyperplane introduced by Vapnik
(1982). Given a set zn where zi=(xi,yi) is a sample with xi∈ χ⊂ ℝd,
yi∈ Y={−1,1}, i=1 : n linearly separable by a decision function fw,
b(x)= sign (〈w,x〉+ b), w∈ ℝd, b∈ ℝ.

Then, the optimal separating hyperplane is the one whose distance
to the classes is maximum (the margin is maximum). The margin of a
hyperplane τw, b≡{x∈ χ/〈w,x〉+ b=0} with respect to the sample zn

is calculated as

= + = + =
w

w x b
w

w x b
w

( ) min 1 | , | 1 min | , | 1 ( ),w b
i n i n

w b,
{1: } {1: }

,

(10)

being χ(τw, b) the functional margin. So, the optimal hyperplane is
obtained by solving the problem

= +

=

w x b

w

max { ( ) min | , |}

under: 1.
w b

w b
i,

,
{1:n}d

(11)

Now, considering the normalized functional margin and the duali-
zation of the problem, the support vectors provide the solution (Vapnik,
1998; Cristianini and Shawe-Taylor, 2000)

= = +w x f x x x b( ) , .
i SV

i i w b
i SV

i i,
(12)

The concept of soft margin is introduced to admit several mis-
classified observations. The linear problem is usually insufficient since
the analyzed sample is frequently non-linearly separable. This issue is
tackled with the kernel trick, which transforms the input space based on
the following theorem: “if χ is a topological space and k is a continuous
positive definite function in χ× χ, then there is a Hilbert space ℋ and
a continuous application ϕ : χ→ ℋ such that ∀x, x′ verifying k
(x,x′) = 〈ϕ(x),ϕ(x′)〉” (Fig. 7).

The solution of the classification problem can be written as

= = +

= +

w x f x x x b

k x x b

( ) ( ) ( ), ( )

( , ) .
i SV

i i w b
i SV

i i

i SV
i i

,

(13)

2.3. Methodology

The prediction of Sn and W content in the abandoned mineralized
area of Lardosa (Central Portugal) was approached in two different
ways. Firstly, the regression problem was considered, while a second
phase was based on the result of a categorization problem.

The regression methodology considers the original Sn and W con-
centrations as the output variables while the classification approach
needs the definition of several classes of the target variables. These
categories were determined considering both the distribution of Sn and
W concentrations and their geochemical behavior. The adopted cri-
terion was the definition of different anomaly limits: the first limit re-
presenting the average distribution and the subsequent ones re-
presenting the low, medium, and high anomaly level, respectively.

Stream sediments have a large capacity to retain trace elements and
their chemical composition can be a good indicator of associated mi-
neralization. However, Sn and W have relatively low mobility and tend

Fig. 7. Illustration of the transformation of a 2D-input space (left) into a 3D-feature space (right) by means of the kernel function.
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to be retained in mine dumps and mine tailings as opposed to being
distributed through stream networks. The defined classes for Sn and W
initial concentrations and the number of observations for each one is
presented in Table 3.

The first dataset (Input N1), comprised all the analyzed trace ele-
ments (As, B, Be, Cd, Co, Cr, Cu, Fe, Ni, P, U, V, Y, and Zn) as input
variables.

Input N2, based on previous studies carried out in the same area
showed that As, Cd, Co, Cr, Cu, Fe, Ni, V and Zn stream sediments
concentrations are related to the Sn-W and Pb-Zn mineralization from
the area while P, B, Be, Y and U stream sediments concentrations. These
results led to the selection of As, Cd, Co, Cr, Cu, Fe, Ni, V, and Zn, as
input N2.

Principal Component Analysis (PCA) (Wold et al., 1987; Jackson,
1991) was undertaken as an exploratory study, aiming the definition of
association patterns within the dataset and the definition of the relative
strength of each element in the final computation. Input N3 corresponds
to the first Principal Plan (Factorial Axes 1 and 2), explaining 95% of
the total variance and are most heavily weighted by P and Zn. In a
second step, a new PCA was performed focused on the nine trace ele-
ments, mostly related to the Sn-W and Pb-Zn mineralization, in the
area. Chrome, V, and Zn explained>98% of the total variance and
both contributing to the first factorial component. Input N4 includes
these three trace elements.

The previous research work by Antunes et al. (2014) studied the
environmental risk associated with W-Sn and Pb-Zn mineralization in
this area applying geostatistical methodologies to create risk maps
using the Geoaccumulation Index (Igeo) of trace elements from stream
sediments. PCA was applied to Igeo values and two synthesis variables
were identified:

(i) F1: this factor showed the dependence of P and B and their inverse
correlation with a cluster formed by Cr, Ni, and V.

(ii) F2: this second factor showed the dependence of As, Fe, and Zn.

With respect to these findings, the remaining input datasets were
defined as follows: Input N5 included the elements derived from F1 (P,
B, Cr, Ni, and V), while Input N6 comprised the elements of both F1 and
F2 (P, B, Cr, Ni, V, As, Fe and Zn).

Summing up and to clarify the steps of our methodology, the dif-
ferent configurations of the predictive model included the elements of
the six inputs summarized in Fig. 8. These inputs were used for both the
regression and the classification experiments. In the case of regression,
Sn and W data are the original concentrations of stream sediments,
while in the case of classification, the classes included in Table 3 are the
desired output of the model.

Considering the machine learning techniques, CART, MLP, and SVM
were tested in the regression experiment, whereas the classification
experiment also included clustering. The network architecture for MLP
both for regression and classification was as follows: one input layer,
one hidden layer, and one output layer; the transfer function was the
Log-sigmoid and the maximum train epochs were 50,000 (although this
number was never reached since the method converged before that).

The performance of the models was assessed based on the coeffi-
cient of determination R2 in the case of regression, which represents the
proportion of total variation of the predicted variable explained by the
model. In other words, the coefficient of determination indicates the
proximity between real data points and a regression curve. Its values
range from 0 to 1, being R2= 1 if the approximation is perfect and
R2=0 in the opposite case. More details can be found in (Freedman
et al., 2007; Iglesias et al., 2014).

In the case of the classification approach, this assessment was based
on the obtained error rates (proportion of misclassified elements with
respect to the total number of elements of a certain subset). The re-
sulting values range from 0 to 1; 0 indicates that all the observations are
incorrectly classified whereas 1 indicates the perfect fit. Therefore, the
error rate is the inverse of the accuracy. Additionally, confusion ma-
trixes can be calculated and other evaluation parameters such as pre-
cision and recall can be used to assess the performance of the models.
They are defined as follows:

=

=

Precision Obs. correctly classified as A
Total obs. classified as A

,

Recall Obs. correctly classified as A
Total real obs. from A class

.
(14)

3. Results and discussion

As mentioned above, the resolution of the problem was tested using
both regression and classification approaches. The results obtained for
each block are shown in detail below.

3.1. Results of the regression problem

The regression problem includes the results for Sn and W prediction
by means of the CART, MLP, and SVM from the input data. These
techniques were evaluated for predicting Sn and W values individually
using the 6 different input datasets described. The determination
coefficients obtained for Sn and W predictions are summarized in
Tables 4 and 5, respectively. The CART methodology achieves the best
predictions for Sn and W.

In this study, it is important to determine the optimal parameters of
each model and determine those potential overfitting problems. In the
case of the MLP, the optimum number of neurons ranged from 5 to 18
in the different tests (both for the regression and classification ap-
proaches), noting that from those values overfitting problems appeared.

The best Sn prediction (R2=0.67; Table 4) was obtained with the
input N1, comprising all the analyzed trace elements (Input N1= {As,
B, Be, Cd, Co, Cr, Cu, Fe, Ni, P, U, V, Y, Zn}). Tungsten prediction gives
slightly better results (R2= 0.70; Table 5) with Input N3= {P, Zn}.

3.2. Results of the classification problem

This section presents the results of Sn and W prediction obtained
from a different approach: a classification problem. Firstly, the defini-
tion of four categories was performed for Sn, and three for W, according
to the previously defined intervals (Table 3). Hence, the model output
corresponds to a specific category (1, 2, 3 or 4) instead of a given value
for the selected elements.

The majority Sn and W observations belong to the first class, with a
low concentration of Sn (˂8 ppm) and W (˂9 ppm) (Table 3). Con-
sidering the distribution of classes, 4 for Sn (≥60 ppm) and 3 for W
(≥21 ppm), only a few observations belong to these intervals (Table 3).
The limited number of each class frequency influences the training of
the model, particularly the possible defined number of subsets. For Sn, a
maximum of 3 subsets could be defined, while a maximum of 7 subsets
is possible for W (Tables 6 and 7).

The best predictions are achieved with a CART as was obtained in
the regression problem. In the classification problem, error rates about

Table 3
Defined Sn and W intervals and relatively frequency for the classification pro-
blem.

Class Sn (ppm) W (ppm)

Interval Frequency Interval Frequency

1 x < 8 254 x < 9 264
2 8≤x < 31 69 9≤ x < 21 62
3 31≤ x < 60 7 21≤ x 7
4 60≤ x 3 – –
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10% for both Sn and W were obtained (Tables 6 and 7). The 6-input
data tested, perform similarly for Sn and W prediction, with error rates
ranging from 10% to 15% and an accuracy of 85% to 90%. As has been

obtained with the regression problem (Table 4), Sn was best predicted
with Input N1, considering all the trace elements (R2=0.10; Table 6).
For W, the best prediction (R2=0.09; Table 7) was obtained with
Input N2= {As, Cd, Co, Cr, Cu, Fe, Ni, V, Zn}. The results are consistent
with the a priori expectation since the optimized model fitting is ob-
served when using the N1input set, which has the largest number of
attributes, and, therefore, more information.

Given the obtained results and considering that this is a classifica-
tion problem, confusion matrixes were calculated for Sn and W pre-
diction (Tables 8 and 9). Precision and recall were also estimated to
complete the appraisal of the predictive models. In the case of Sn
classes, they are expressed as:

= =

= =

= =

= =

= =

= =

= =

= =

Precision Class 1 Sn 248
272

0.912,

Recall Class 1 Sn 248
254

0.976,

Precision Class 2 Sn 46
53

0.868,

Recall Class 2 Sn 46
69

0.667,

Precision Class 3 Sn 3
5

0.600,

Recall Class 3 Sn 3
7

0.429,

Precision Class 4 Sn 3
3

1.000,

Recall Class 4 Sn 3
3

1.000,
(15)

Fig. 8. Summary of the six different input sets and machine learning techniques tested.

Table 4
Determination coefficients obtained for Sn prediction.

Output data Input data Regression problem (R2)

CART CART CART

Sn Input N1 0.67 0.20 0.15
Input N2 0.58 0.03 0.09
Input N3 0.63 – 0.11
Input N4 0.54 0.05 0.09
Input N5 0.54 0.27 0.07
Input N6 0.64 0.26 0.06

The best result is shown in bold.

Table 5
Determination coefficients obtained for W prediction.

Output data Input data Regression problem (R2)

CART MLP SVM

W Input N1 0.58 0.05 0.10
Input N2 0.65 0.02 0.07
Input N3 0.70 0.03 0.05
Input N4 0.47 0.05 0.09
Input N5 0.53 0.02 0.05
Input N6 0.48 0.03 0.07

The best result is shown in bold.

Table 6
Error rates for Sn predicted with Cluster, CART, MLP and SVM methodologies.

Output data Input data Classification problem

Cluster CART MLP SVM

Training error rate Test error rate Error rate Training error rate Test error rate Training error rate Test error rate

Sn Input N1 0.72 0.85 0.10 0.10 0.30 0.00 0.23
Input N2 0.77 0.83 0.15 0.10 0.30 0.00 0.23
Input N3 0.24 0.24 0.13 0.20 0.25 0.23 0.23
Input N4 0.76 0.81 0.15 0.20 0.25 0.01 0.26
Input N5 0.77 0.78 0.12 0.20 0.25 0.00 0.23
Input N6 0.78 0.92 0.12 0.10 0.30 0.00 0.23

The best result is indicated in bold.
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and regarding the prediction of W classes as

= =

= =

= =

= =

= =

= =

Precision Class 1 W 254
271

0.937,

Recall Class 1 W 254
264

0.962,

Precision Class 2 W 46
59

0.780,

Recall Class 2 W 46
62

0.742,

Precision Class 3 W 1
3

0.333,

Recall Class 3 W 1
7

0.143.
(16)

Considering the obtained results, the overall performance of the
model is good, predicting more accurately than previously those classes
with a greater number of observations (Table 3).

Finally, Figs. 9 and 10 show the decision trees for Sn and W, re-
spectively, which outperformed in the herein research work. A decision
tree for Sn using Input N1 (error 0.10; Table 6), considers P, Be, As and
Cr concentrations in first place for Sn prediction (Fig. 9). In the W
decision tree using Input N2 (error 0.09; Table 7), the concentrations of
Cd, Fe, Cr and As are considered the best elements for W prediction
(Fig. 10).

In summary, the CART is selected as the best technique, considering:

1. Lower error rates: compared to the rest of the techniques, indicating
a problem where non-linearities have a low impact;

2. Simplicity: The model showed high performance in different
pruning rules scenarios;

3. The capacity for interpretation: CART provides the error rate output
and establishes the priorities related with each of the prediction
variables, thus assigning a hierarchy within the input dataset.

The couple distribution of estimated and predicted Sn and W stream
sediment contents (Fig. 11) show high degrees of association. Almost
higher Sn and W contents distribution are coincident with old Sn and W
mines (Fig. 1b). However, local areas located in the central zone are
enriched in these elements and could be suggested as future exploita-
tion zones.

4. Conclusions

Different classifiers were tested using a stream sediments dataset
where trace element concentrations were used for prediction of a se-
lected target element.

To build a more adequate and accurate predictive model for Sn and
W concentrations, the algorithms – CART, MLP, SVM, clustering - were
applied with six previously selected inputs (N1-N6) and compared as a
regression or as a classification application.

The solutions obtained from the regression and classification pro-
blem indicate that CART achieves the best predictions both for Sn and
W. In the example of the regression approach, coefficients of determi-
nation of 0.67 for Sn and 0.70 for W were obtained, while in the
classification approach, an error rate of 0.10 was received in the pre-
diction of both Sn and W.

In conclusion, the greatest accuracy of classification process using
CART methodology suggests that it is the best prediction for Sn and W
from stream sediments in Lardosa.

The proposed models to predict element concentrations are very
useful, particularly for the identification of enriched mineralized areas
and on the definition of future exploitation areas. However, the appli-
cation of this methodology to new areas or conditions needs a new
training stage so that the predictive models can adapt to the new data.

Moreover, such databases and expert systems can also be built for

Table 7
Error rates for W predicted with Cluster, CART, MLP and SVM methodologies.

Output data Input data Classification problem

Cluster CART MLP SVM

Training error rate Test error rate Error rate Training error rate Test error rate Training error rate Test error rate

W Input N1 0.72 0.83 0.11 0.10 0.25 0.00 0.20
Input N2 0.66 0.63 0.09 0.10 0.25 0.00 0.20
Input N3 0.51 0.50 0.12 0.20 0.20 0.20 0.20
Input N4 0.76 0.78 0.14 0.20 0.20 0.01 0.25
Input N5 0.48 0.73 0.11 0.20 0.20 0.00 0.20
Input N6 0.69 0.62 0.12 0.20 0.20 0.00 0.20

The best result is indicated in bold.

Table 8
Confusion matrix of the best CART model for Sn prediction.

Predicted Sn class

Class 1 Class 2 Class 3 Class 4

Real Sn class Class 1 248 5 1 0 Total real class 1= 254
Class 2 22 46 1 0 Total real class 2= 69
Class 3 2 2 3 0 Total real class 3= 7
Class 4 0 0 0 3 Total real class 4= 3

Total pred. class 1= 272 Total pred. class 2= 53 Total pred. class 3=5 Total pred. class 4=3

Table 9
Confusion matrix of the best CART model for W prediction.

Predicted W class

Class 1 Class 2 Class 3

Real W class Class 1 254 9 1 Total real
class 1=264

Class 2 15 46 1 Total real
class 2= 62

Class 3 2 4 1 Total real
class 3= 7

Total pred.
class 1= 271

Total pred.
class
2= 59

Total
pred. class
3=3
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the routine monitoring of different potential contaminant substances in
different media (Daszykowski et al., 2015).

In a future line of research, a stochastic spatial approach, through
geostatistical techniques, will allow for the definition of concentration
spatial patterns with spatial uncertainty incorporation and thus estab-
lishing coupled and empowered models for metal resources exploration.
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