
Soares, S.; Freitas, N.; Nepomuceno, E.; Pereira, E.; Sena-Cruz, J. (2020) “Assessment of GFRP bond behaviour 

for the design of sustainable reinforced seawater concrete structures” Construction & Building Materials, 231, 

117277 1–17. 

DOI: 10.1016/j.conbuildmat.2019.117277 

 

1 

 

ASSESSMENT OF GFRP BOND BEHAVIOUR FOR THE DESIGN OF SUSTAINABLE 

REINFORCED SEAWATER CONCRETE STRUCTURES 

 

Sérgio Soares1, Nelson Freitas1, Emanuel Pereira1, Eduarda Nepomuceno1, Eduardo Pereira1, José Sena-Cruz1* 

1 ISISE, IB-S, University of Minho, Department of Civil Engineering,  

Campus de Azurém, 4810-058 Guimarães, Portugal 

* E-mail: jsena@civil.uminho.pt; Corresponding author 

 

Abstract: Freshwater is an increasingly scarce resource. Its use in the production of concrete is one important 

contributor to its fast depletion. Alternatively, the use of seawater for reinforced concrete production, combined 

with the use of glass fibre reinforced polymers (GFRP) as reinforcement, may represent an interesting solution to 

increase concrete sustainability. The objective of this paper is to explore this promising solution through the 

development of concrete compositions with seawater. Additionally, it is also an objective to assess the bond 

behaviour between GFRP rods and concrete, in a design perspective. The influence of concrete age, rod diameter 

and anchorage length were also investigated. An analytical model capable of determining the local bond stress-

slip laws was used. Results demonstrated that the use of seawater had no relevant effects on neither concrete 

mechanical properties nor bond behaviour. 
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1. INTRODUCTION 

Water is an indispensable natural resource for the existence of life on planet, holding enormous environmental, 

economic and social value. Preserving water and promoting its conscious use are essential to guarantee the life 

quality and protecting future generations [1]. About 80% of the Earth's surface is occupied by the oceans, which 

means that almost 98% of the water on the planet is salty. From the remaining 2% freshwater available in the 

planet, only about 1% is at the surface [2]. Nowadays, with the increase of the population and the consequent 

increase of pollution, changes in consumption patterns, as well as climate changes, freshwater is an increasingly 

sought-after resource [3]. According to some studies, about 4.3 billion people face severe water shortage situations 

[4]. Construction industry, particularly the concrete production, consumes large quantities of freshwater and it 

becomes crucial to explore new strategies for the water resources preservation namely the possibility to use 

seawater directly in the design of reinforced concrete (RC) structures that is of great potential and has been proving 

to be very promising [5, 6]. On the other hand, there are several RC structures of important economic and social 

impact located in the maritime environment (ports, bridges, coastal defence structures and offshore structures) 

which are subjected to the simultaneous action of several physical and chemical deterioration processes that 

accelerate its degradation, reduce its service life, apart from increasing its maintenance costs [7]. Among others, 

corrosion of the steel reinforcement and degradation of the concrete cover layer are the most catastrophic effects 

that result from the exposure to the typically high chlorides and sulphates concentrations [8-10]. Nevertheless, the 

emergence of fibre reinforced polymers (FRP) and the replacement of conventional steel by these new materials 

may be the key to prevent the main damages that aggressive agents would cause in steel reinforcement, since these 

are not susceptible to corrosion and may allow seawater to be directly used in the concrete composition. Besides 

that, FRP materials have other advantages such as the high tensile strength, low weight, low thermal conductivity 

and good fatigue behaviour [11, 12]. The market offers several options in terms of FRP rods for reinforced concrete 

structures, depending on the fibre type: Glass FRP (GFRP), Basalt FRP (BFRP) and Carbon (CFRP) [13-15]. In 

this research the use of Glass FRP (GFRP) rods as reinforcement of concrete produced with seawater is be 

analysed, due to their cost-effectiveness when compared with CFRP and BFRP. This topic requires dedicated 

studies to understand the consequences of using seawater in concrete elements reinforced with GFRP since 

scientific knowledge in this area is still limited. 

In a study recently carried out [16], the authors evaluated the effect of chloride ions exposure on the structural 

behaviour of GFRP RC columns, aiming at simplifying their practical application to maritime environment. In this 
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experimental work, the effect of the use of seawater in concrete composition was also studied. The authors 

concluded that the use of seawater in the concrete composition does not significantly reduce the compressive 

strength of the test specimens. Furthermore, when subjected to a saline environment, slight reductions in the 

compressive strength and ductility were recorded, indicating that GFRP rods guaranteed effective confinement of 

the concrete core even in a high chloride concentration level environment for a prolonged period.  

Some research work has been dedicated to the study of the durability of GFRP rods when exposed to aggressive 

environments. The results have demonstrated that the GFRP rods exhibit good durability and corrosion resistance 

and it has been recognized that the maritime environment has no significant influence on its mechanical properties 

[17, 18]. In its turn, some authors have studied concrete produced with seawater and compared its behaviour with 

the conventional concrete produced with freshwater [5, 6, 19-23]. The existing studies have shown that the use of 

seawater has a negligible effect on the concrete carbonation process. Furthermore, the results have revealed that 

the use of seawater may lead to the increase of concrete’s compressive strength at early age, reducing setting time 

and improving mechanical properties, besides providing similar strength at 28 days of age and in the long-term [5, 

20, 21].  

On the other hand, the structural behaviour of conventional concrete elements (freshwater in the composition) 

reinforced with GFRP rods has been extensively studied, mainly focusing the (i) bond characterization between 

GFRP and concrete, as well as (ii) the flexural and shear behaviour in full-scale RC elements. In terms of bond 

characterization, a literature review on the topic can be found in [24]. Several studies have been focused on the 

long-term bond behaviour through accelerated ageing tests in concrete specimens reinforced with GFRP rods. 

Typically, in these studies, direct pullout tests were carried out after exposing the specimens to distinct 

environmental condition [25-27], in order to understand the effect of (i) high temperatures, (ii) tap water 

immersion, (iii) alkaline and saline solutions and (iv) freeze-thaw cycles. In general, a good bond behaviour was 

observed when the specimens were exposed to a saline solution over time. In its turn, some authors have focused 

their scientific research on the structural behaviour of full-scale RC beams. Some of these investigations were 

focused on short-term behaviour in order to study the instantaneous behaviour of RC beams with GFRP, as 

opposed to conventional steel reinforcement, in order to understand which parameters most influence its structural 

response, namely the rod type, the adopted reinforcement rate, the concrete compressive strength and the concrete 

cover [28-31]. In contrast, recognizing the good structural instantaneous behaviour of the RC beams, some research 
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has also been carried out on the study of its long-term behaviour, allowing to understand which parameters most 

influence creep, namely the amount of longitudinal reinforcement and the applied sustain load level [32]. 

According to the studies carried out, the use of GFRP rods in RC structures exposed to maritime environments 

shows to be a very promising solution, not only due to the resulting structural performance but also for promoting 

environmental sustainability. This paper is part of an ongoing research project developed by the authors that aims 

to explore the use of seawater in RC production when the conventional steel reinforcement is replaced by GFRP 

rods. This project includes the study of the bond behaviour between GFRP and seawater concrete at both short- 

and long-term. In fact, the key to the good performance of the concrete/GFRP composite system lies on its adhesion 

mechanisms that have the main objective to ensure the stress transfer between these two different materials. This 

aspect is even more important to be carefully investigated when seawater is used in the concrete composition, 

since this type of water has an important mineralogical component, salts and organic matter that can alter the bond 

behaviour. Apart from the long-term study, the analysis of the bond behaviour at early ages, when the development 

of adhesion mechanisms occurs, becomes very important since structures need to be operational at that moment. 

It is precisely in the short-term bond behaviour that this paper focuses. The research presented includes two main 

phases: (i) development of concrete compositions through an optimization algorithm to obtain specific properties 

at fresh and hardened states and (ii) assessment of the bond behaviour between GFRP rods and the developed 

concrete using direct pullout tests. In this second phase, the influence of concrete age, GFRP rod diameter and 

anchorage length were also investigated. Besides the experimental investigation, an analytical model capable of 

determining the local bond stress-slip law which governs the bond behaviour was used for determining the 

maximum pullout forces as function of the anchorage length. 

2. EXPERIMENTAL PROGRAM 

2.1 Concrete composition development 

The procedure used to determine the concrete composition is described in this section. This final composition was 

then used in the production of the specimens to bond characterization. The objective of this development was to 

find out the best dosages to produce a concrete with mechanical properties required in special projects, particularly 

in maritime environments. Additionally, considering the overall goal of developing sustainable pathways to 

improve sustainability of reinforced concrete solutions for maritime environment, the optimization procedure was 

applied in order to allow maximizing strength without significant amounts of cement. The requirements included: 
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(i) good workability at fresh state, (ii) high mechanical strength at hardened state and (iii) lower cement contents. 

The concrete characterization was carried out in two stages: (i) fresh state by slump-flow test and (ii) hardened 

state by compressive strength determination.  

The concrete composition is mainly influenced by two parameters: (i) particle size distribution of the aggregates 

and (ii) water/cement (w/c) ratio. The solid skeleton plays a preponderant role in the concrete properties, not only 

on the mechanical properties but also on the concrete workability in the fresh state. The concrete composition was 

defined based on the work carried out in [33], using the modified expressions method proposed by Andreasen and 

Andersen. This method considers the granulometric classification of all solid components according to the Eq. (1), 

where D represents the sieve size used in the grading size analysis, Dmin and Dmax are the minimum and maximum 

particle size, respectively, and q represents the distribution modulus (ratio between fine and coarse particles). The 

utilization of these expressions has already been demonstrated in some research works [34]. 

𝑃(𝐷) =
𝐷𝑞 − 𝐷min

𝑞

𝐷max
𝑞

− 𝐷min
𝑞  (1) 

Based on some preliminary studies, q value was assumed to equal to 0.3 and the binder content 480 kg/m3, since 

the objective was to obtain a concrete with high mechanical strength. The materials used in concrete composition 

were: (i) water, (ii) binder (Portland cement CEM I 42.5R conforming to European standard NP EN 197-1:2001 

[35]), (iii) aggregates (sand, gravel 4-8 and gravel 8-16), (iv) type II addition (fly ashes) and (v) admixtures 

(superplasticizer - Sika® ViscoCrete® 3002 HE and viscosity controlling agent - Sika® VP1). The aggregates 

were carefully selected and previously washed (see Figure 1). According to the standard NP EN 933-1:2000 [36], 

the sieve analysis was performed, and the respective curves are presented in the Figure 2 (a). Up to final solution, 

an iterative process was carried out considering the constituent materials of the concrete matrix solid component. 

This iterative adjustment process was based on the least squares’ method. The optimum adjustment found to the 

reference curve is depicted in Figure 2 (b). The amount of fly ashes used was also determined in the same iterative 

process. In the case of the admixtures, the amount of superplasticizer and viscosity controlling agent introduced in 

the mixture was 1% of the cement mass, as recommended by the manufactures.  

Once the solid skeleton was defined, the next step was the analysis of the water/cement (w/c) ratio influence. In 

order to do so, four different mixtures (M1, M2, M3 and M4) were produced with different w/c ratios (0.30, 0.27, 

0.26 and 0.25, respectively).  
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In order to characterize the properties of the concrete in the fresh state, slump-flow tests were carried out and the 

T500 parameter was measured, according to the standard BS EN 12350-8:2010 [37]. This test allows the evaluation 

of the fresh deformability of the concrete through the deformation velocity and slump flow diameter imposed by 

the action of self-weight. The T500 parameter allows to indirectly assess the concrete viscosity. The results are 

presented in Table 1. According to the observed results, the following conclusions can be drawn: (i) some free 

water was observed on M1 surface which did not adhere to the particles surface of the concrete matrix (too high 

w/c ratio), (ii) M4 showed to be excessively compact, viscous and with low workability due to the need of more 

water to not only moisturize cement but also to connect the concrete matrix and (iii) M2 and M3 demonstrated to 

be more fluid with suitable workability and without segregation signs. 

To evaluate the concrete properties in hardened state, compression tests were performed according to the standard 

NP EN 12390-3:2011 [38]. The purpose was to access the average compressive strength (fcm,7) of the different 

concrete compositions. For each mixture, four cylinders of 150 mm of diameter and 300 mm of height were tested. 

The tests were performed at 7 days of concrete age. All concrete specimens were cured in a wet environment, fully 

immersed in a water tank at a temperature of 22±2 °C until the testing day.  According to NP EN 1992-1-1:2010 

[39] and based on the results obtained at 7 days of age, the compressive strength at 28 days of age (fcm,28) was 

estimated. The obtained results are presented in Table 2. Based on these results, M4 composition (lower w/c) 

presented the highest compressive strength. 

Considering all the results, M3 composition (w/c = 0.26) was selected as the final mix, with the following 

constituents: (i) cement CEM I 42.5R according to European standard NP EN 197-1:2001 (480 kg/m3), (ii) class-

f fly ash (124.5 kg/m3), (iii) sand (1271 kg/m3), (iv) gravel 4-8 (192 kg/m3), (v) gravel 8-16 (76.7 kg/m3), 

(vi) superplasticizer Sika® ViscoCrete® 3002 HE (5.1 kg/m3) and (vii) viscosity modifying agent Sika® VP1 

(4.8 kg/m3). This composition was adopted to produce the specimens to be used in the direct pullout tests. 

2.2 Direct pullout tests: test program, experimental set-up and instrumentation 

The main objective of the second phase of this exploratory research was to experimentally characterize the bond 

behaviour between GFRP rods and concrete, as well as to compare these results when either seawater (SW) or tap 

water (TW) were used in the production of the concrete specimens. For this purpose, the concrete composition 

described in the previous section were employed. The experimental program, as presented in Table 3, was 

composed of 48 direct pullout tests divided into 16 series. The studied parameters were the following: (i) water 
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type used in the concrete composition (SW or TW), (ii) curing time of the concrete at the testing date (7 or 28 

days), (iii) GFRP diameter (Ø8 or Ø12) and (iv) anchorage length (5Ø or 10Ø). It is well known that the GFRP 

bar size greatly affects the bond behavior and bond strength. In this work only two diameters (8 and 12 mm) were 

adopted, which are not representative of all the range of bar sizes available in the market. This option was followed 

(i) take advantage of the existing knowledge with a previously existing test setup and focus on the seawater 

influence as the main study variable; (ii) emphasis was more on the study of the complete protocol for assessing 

the bond behavior of GFRP bars in concrete made with seawater, which can now be extended to other bar 

diameters; (iii) keep the number of studied variables reasonable. The SW used in the concrete production was 

extracted directly from the sea, more specifically from Esposende (north coast of Portugal). According to 

laboratory analyses carried out by APA-ARH Norte (Portuguese Environment Agency), the water quality was rated 

as excellent, without chemical pollutants. The salinity of SW, i.e. salt concentration per unit mass of water was 

about 3.5% [40].  

The anchorage length was materialized by introducing a plastic tube in the desired non-adhered zone of each GFRP 

rod, unlike to the remaining rod length that was in direct contact with the concrete. The function of the plastic tube 

was to ensure absence of contact between the GFRP rod and the fresh concrete at the zones out of the anchorage 

length zones (see Figure 3) during casting. The correct positioning of the plastic tubes in the GFRP rods was 

guaranteed using a soft silicone glue. 

The designation of each series was defined as follows: (i) “TW” or “SW” states the type of water used in concrete 

composition, (ii) “D” is the curing time of the concrete at the testing date (7 or 28 days), (iii) “Ø” is the GFRP rod 

nominal diameter in millimetres (Ø8 or Ø12), (iv) “LbXØ” is the anchorage length where X is the multiple of the 

GFRP rod nominal diameter (5 or 10), and (v) “i” is the specimen order number tested under the same conditions 

(1, 2, 3). Figure 4 shows the schematics of the test set-up adopted for the present experimental program. Concrete 

cubic blocks with 200 mm of edge were used. During the direct pullout test, the applied force was measured with 

a load cell of 200 kN (0.05% F.S.) maximum capacity. The relative displacement between the GFRP and the 

concrete (slip) at the loaded end section was assessed by the average of displacements measured by LVDTs 1, 2 

and 3, positioned at 120º around the GFRP rod and considering the elastic deformation of the GFRP between the 

loaded end section and the section where the support of the LVDTs was installed (50 mm apart to the concrete 

block surface – see Figure 4). Free end slip was assessed using LVDT 4. LVDTs 1 and 2 had a stroke of 10 mm 
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(0.25% F.S.). LVDT 3 and 4 had a stroke of 5 mm (0.25% F.S.). The direct pullout tests were performed under 

displacement control at the testing machine head, with an imposed displacement rate of 0.021 mm/s. 

3. MATERIAL CHARACTERIZATION  

The material characterization included the assessment of the mechanical properties of the materials involved in 

bond characterization test program, namely: (i) GFRP rods and (ii) concrete in the fresh and hardened state (TW 

and SW concrete). It should be highlighted that the concrete composition used in the casting of test specimens was 

the concrete composition obtained in the research phase of the concrete composition development presented in 

Section 2.1. 

3.1 GFRP rods 

To reinforce the concrete specimens, ComBAR® GFRP ribbed round rods produced by the company Schöck were 

used. These are manufactured through the pultrusion process where the impregnation and saturation of the glass 

fibres with vinyl-ester resin is carried out under pressure, allowing a volume fraction of fibres higher than 85%. 

This type of rod presents a deformed external surface with ribs of a constant height of 6% of bar diameter and a 

spacing of about 8.5 mm. As stated previously, two different diameters of this specific type of GFRP rod were 

studied (8 and 12 mm). The tensile mechanical properties of these rods were assessed according to the ASTM 

D7205/D7205M:2006 [41] by conducting uniaxial tensile tests under displacement control at a rate of 4 mm/s. 

From six GFRP rods of each diameter, the average modulus of elasticity (Ef), the average tensile strength (fult) and 

the average ultimate strain (εf) were obtained. The test specimen’s instrumentation included the measurement of 

the applied tensile load and the strain in the rod longitudinal axis at middle height. Figure 5 (a) and (b) show the 

uniaxial test set-up used as well as a typical failure mode observed, respectively. During the uniaxial tests, it was 

possible to observe that with the increase of the applied tensile force the ribs began to separate from the rod core 

followed by the total and abrupt tensile failure. Table 4 shows the obtained average results. 

3.2 Concrete 

To produce the concrete for the direct pullout test specimens, eight concrete batches were produced: four with 

seawater (SW) and the others with tap water (TW). The concrete was characterized in two different phases: (i) fresh 

state and (ii) hardened state (at 7 and 28 days of age). In both of characterization phases, the influence of the water 

used in the concrete composition was analysed. 
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3.2.1 Fresh state concrete 

To characterize the concrete properties in the fresh state, slump-flow test was done and the T500 parameter was 

measured, according to the standard BS EN 12350-8:2010 [37]. Table 5 presents the obtained results. These results 

show that when SW was used in the mixture, the concrete exhibited a more cohesive, viscous and compact 

behaviour compared to the mixture where TW was incorporated. Consequently, the SW concrete presented less 

workability than the TW concrete, and for that reason it was not possible to obtain the T500 parameter (concrete 

casting 2 and 3) because the fluid concrete did not reach a flow diameter of 500 mm. However, all concrete 

mixtures did not show any sign of segregation and maintained an adequate homogeneity. Additionally, the results 

seem to suggest that the use of SW in the mixture may have reduced concrete setting time and led to the faster 

development of its mechanical properties. Similar observations were made in other research studies [5, 20, 21, 23] 

and the possible explanation is the acceleration of hydration process due to the presence of chloride. 

3.2.2 Hardened state concrete 

To characterize the concrete properties in the hardened state, compression tests were carried out with concrete 

cylindrical specimens with 150 mm of diameter and 300 mm of height. The compression tests were performed at 

7 and 28 days after casting to obtain the average compressive strength (fcm) and modulus of elasticity (Ecm), 

according NP EN 12390-3:2011 [38] and LNEC E397:1993 [42], respectively. All concrete specimens (cylinders 

for concrete characterization tests and cubes for direct pullout tests) were cured in a wet environment, fully 

immersed in a water tank at a temperature of 22±2°C until the testing day. The water type used to immerse the test 

specimens match the water type used in the corresponding concrete composition. In total, 16 cylindrical specimens 

were tested among which 4 specimens under the same conditions: same water type (TW or SW) and same age (7 

or 28 days). Table 6 summarizes the obtained results whereas in Figure 6 the mechanical properties of the concretes 

produced with different water types are compared. 

The concrete produced with SW at 7 days of age presents a slightly higher compressive strength (54.5 MPa) when 

compared to the concrete produced with TW (50.5 MPa). As the concrete characterization results in fresh state 

seemed to suggest, the mechanical properties evolution is slightly faster in the case of SW concrete which means 

that this type of water may have reduced the concrete setting time. Similar observations were made in other 

research studies [5]. 
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Nevertheless, after 7 days, the mechanical properties evolution of the SW concrete tends to be slower, thus 

exhibiting values of compressive strength of smaller magnitude over time. So, at 28 days of age, the concrete 

produced with TW presented higher mechanical properties than the concrete with SW. This may be justified by 

the fact that SW contains several mineral and biological elements that can interact with concrete components and 

consequently influence their properties. The results show that when SW was used, a lower average compressive 

strength (fcm) was obtained (58.0 MPa) comparatively to the use of TW (66.5 MPa). A similar trend was observed 

in terms of modulus of elasticity: when SW was used, an average modulus of elasticity (Ecm) of 33.4 GPa was 

obtained whereas the use of TW has resulted in an average modulus of elasticity of 36.3 GPa. According to EN 

1992-1-1:2010 [39], the concrete with SW complies with the strength class C50/60 while the concrete with TW in 

its composition complies with the strength class C55/67. 

4. BOND BEHAVIOUR - RESULTS AND DISCUSSION 

4.1 Main results 

In this section the main results obtained in the direct pullout tests are presented. Table 7 summarizes the average 

results for each series through several parameters that characterize the bond behaviour between the GFRP rods 

and the concrete, namely: 𝐹max is the maximum pullout force; slmax and sfmax are the loaded and free end slips 

obtained at the 𝐹max, respectively; 𝜏max represents the average shear strength assuming a constant shear stress along 

the anchorage length (ratio between 𝐹max and contact area between the GFRP and concrete); 𝐹r is the residual 

pullout force corresponding to a sl of 10 mm; 𝐺f is the fracture energy during the debonding process up to 10 mm 

of sl; 𝐹r/𝐹max represents the ratio between residual pullout force (𝐹r) and the maximum pullout force (𝐹max); FM 

represents the failure mode observed in the test. The average value of the test specimen’s concrete compressive 

strength (fcm) of each series is also included in Table 7. For each reading, the loaded end slip, 𝑠l (in [mm]),was 

calculated by the subtraction of the elastic deformation of the GFRP bar to the LVDT readings, according to Eq. 

(2), where 𝛿LVDT 1,2,3 (in [mm]) is the average value of readings given by LVTDs 1, 2 and 3, 𝐹𝑙 (in [N]) is the 

pullout force and Ef  (in [MPa])and Af (in [mm2]) are the Young modulus and the cross-section area of the GFRP 

bar, respectively. Additionally, to account for the different values of the concrete compressive (fcm) and tensile 

(fctm) strengths, normalized values of maximum pullout force (𝐹̅max), shear strength (𝜏̅max) and fracture energy (𝐺̅f) 

were also calculated according to Eq. (3), Eq. (4) and Eq. (5), respectively. In these equations, Pf and Lb represent 

the GFRP rod perimeter and the anchorage length adopted in the corresponding test series, respectively. These 
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entities are also included in Table 7. For each test series, the fctm value was estimated according to the 

recommendations given in NP EN 1992-1-1:2010  [39].  

𝑠l = 𝛿LVDT 1,2,3 −
𝐹𝑙 ∙ (250 − 𝐿b)

𝐸f ∙ 𝐴f
 

(2) 

𝐹̅max = 𝐹max/(𝑓ctm ∙ 𝑃f ∙ 𝐿b) (3) 

𝜏m̅ax = 𝜏max/𝑓ctm (4) 

𝐺̅f = 𝐺f/(𝑓ctm ∙ 𝑃f ∙ 𝐿b ∙ 10) (5) 

 

From a general analysis, it is possible to verify that when tap water (TW) was used in the concrete composition 

instead of seawater (SW), higher values of 𝐹̅max, slmax, 𝜏̅max and 𝐺̅f were obtained at 28 days of age. Moreover, the 

influence of the GFRP rod diameter used can also be verified from: when a higher rod diameter was used, higher 

values of 𝐹max, slmax, 𝜏max and 𝐺f were obtained. In its turn, the Lb adopted also showed to have influence on the 

bond behaviour. With the increase of Lb, an increase of 𝐹max, slmax, and 𝐺f was observed. However, when the highest 

Lb was used lower values of 𝜏max were obtained. In terms of failure modes, in all the tests debonding failure at the 

GFRP/concrete interface was observed. In some test series this failure mode was accompanied by partial or 

complete rupture of the GFRP ribs, particularly in the series whose concrete had higher mechanical strength (TW 

series at 28 days of concrete age). A detailed analysis of these results will be presented subsequently.  

Figure 7 shows the relation between the pullout force (𝐹) and loaded end slip (sl) obtained in all the direct pullout 

tests. In general, regardless of the concrete age, two distinct phases can be identified in the 𝐹-sl curves. The first 

phase (pre-peak) is characterized by an approximately linear relationship between the applied force and the slip 

due to the perfect bond. At this phase, the bond adherence provided by the chemical adhesion between the 

involving materials is responsible for the bond strength. Debonding process starts soon after the linear branch 

where a loss of adhesion and stiffness is observed close to 𝐹max. This process starts when the ultimate shear strength 

is attained at the beginning of the bonded length, i.e. at the loaded end. The second phase (post-peak) is 

characterized by a markedly non-linear bond behaviour. Immediately after the 𝐹max has been reached, a downward 

curve branch with a significant slope is observed, followed by a softer slope in more advanced stages. This last 
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stage is mainly governed by friction between the involved materials. However, in some cases (e.g. 

TW_28D_Ø8_Lb5Ø_3, TW_28D_Ø8_Lb10Ø_1,2,3, TW_28D_Ø12_Lb5Ø_2,3) the post-peak branch is 

characterized by an increase in the residual bond strength with the progressive increase of the GFRP bar slip. In 

these cases, it is believed that the recorded residual bond load does not necessarily represent the real value of 

frictional stress developed at the failure interface (frictional bond mechanism) since there is an additional resistance 

produced by the wedging action of the undamaged bar (mechanical bond mechanism). This phenomenon is usually 

named as “wedging effect” and is related to the fact that when the damaged part of the FRP bar is pulling out from 

the concrete, the undamaged part enters in the anchorage length zone (narrower zone) and adds additional 

mechanical residual bond strength to the pullout load, mainly provided by the ribs of the undamaged GFRP bar. 

This phenomenon has already been observed in other studies, e.g. [43, 44] and the authors indicated that the 

wedging effect insignificantly influences the first peak pull-out stress (bond strength) due to the small 

corresponding free end slip. 

It is important to mention that the specimens TW_7D_Ø12_Lb5Ø_2 and TW_7D_Ø12_Lb10Ø_2 were not 

included in the analysis due to technical problems in data acquisition (except in the identification of the failure 

mode). In addition, analysing the 𝐹-sl curves, two abnormal situations must also be mentioned. The first is that in 

the specimen SW_7D_Ø12_Lb5Ø_2 there was a disturbance in the test due to slippage of the lashing which 

induced a loss and a sudden recovery of the pullout force. However, as the slippage occurred in the softening 

phase, this did not disturb the results analysis since for sl values higher than 7 mm, the pullout test stabilized again. 

In the second situation (specimens SW_7D_Ø12_Lb10Ø_3, TW_28D_Ø12_Lb10Ø_2, TW_28D_Ø12_Lb5Ø_3 

and SW_28D_Ø12_Lb10Ø_2) there was an abrupt drop in the pullout force for an increase in sl. This situation 

may be justified by the high internal damage faced by the concrete compromising an effective response of the 

adhesion mechanisms. Possibly, the bond mechanism abruptly collapsed immediately after 𝐹max has been reached, 

and the solid concrete part were not be able to control such sharp slip due to the high pullout force. 

4.2 Failure modes 

The bond response observed in the 𝐹-sl curves (Figure 7) is directly related to the bond mechanisms and consequent 

failure modes. Three different failure modes were observed in the direct pullout test experimental program: 

(i) debonding failure at the GFRP/concrete interface with complete rupture of GFRP ribs (CR) (see Figure 8 (a) 

and (b)), (ii) debonding failure at the GFRP/concrete interface with partial rupture of GFRP ribs (PR) (see Figure 
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8 (c)) and (iii) debonding failure at the GFRP/concrete interface (D) (see Figure 8 (d)). The latter failure mode was 

the most frequently observed. However, in some tests the typical debonding failure was accompanied by partial or 

complete rupture of GFRP ribs, where the "wedging effect" may occurred. This phenomenon was explained in the 

previous section and probably occurred due to the better mechanical properties of the concrete which explains the 

fact that the PR and CR failure modes had been verified in the specimens tested at 28 days of age for the concrete 

with the highest compressive strength (TW concrete). In these cases, the resisting mechanisms involved the 

frictional component and an additional mechanical resistance produced by the wedging action of the undamaged 

bar. 

4.3 Influence of the studied parameters on the bond behaviour 

In this section, a more detailed analysis of the influence of the study variables on the bond behaviour between the 

GFRP rod and concrete is carried out. Thus, the influence of the GFRP rods diameter used (Ø8 or Ø12) and the 

anchorage length adopted (5Ø or 10Ø) on the following parameters is discussed, for both 7 and 28 days of the 

concrete age (Figure 9 (a)-(c)): (i) maximum pullout force (𝐹max), (ii) average shear strength (𝜏max) and (iii) fracture 

energy (𝐺f). In turn, the influence of the water type used in the concrete composition (SW - seawater or TW - tap 

water) is analysed both at 7 and 28 days of the concrete age through the following key parameters (Figure 9 (e) 

and (f)): normalized values of (i) maximum pullout force (𝐹̅max) or shear strength (𝜏̅max) and (ii) fracture energy 

(𝐺̅f). Before proceeding to the discussion of these results, it is important to highlight that the 𝐹r/𝐹max ratio (see 

Table 7), was strongly influenced by the failure mode observed. On average, when complete rupture of GFRP ribs 

was observed at 28 days of concrete age, 𝐹r/𝐹max ratio increased from 30% to 100% (Figure 9 (d)).  

4.3.1 Influence of the GFRP diameter 

Regarding the GFRP diameter, in spite of the GFRP cross section area (or the external surface in contact with 

concrete) of the rod Ø12 being 125% larger than the one of rod Ø8, it was found that 𝐹max and 𝜏max has respectively 

increased about 208% and 37% at 7 days and about 173% and 21% at 28 days, when Ø12 was used instead of Ø8 

(Figure 9 (a) and Figure 9 (b)). Thus, this showed that the bond strength tends to increase with the increase of the 

rod diameter (at least from Ø8 to Ø12). Similar trend was also observed in [45] and can be justified by the fact 

that Ø12 rods show larger ribs, thus promoting better bond conditions than Ø8 rods. Consequently, higher values 

were obtained for the slmax. In terms of 𝐺f, a considerable increment was observed (on average about 227% and 

144% at 7 and 28 days of concrete age, respectively) when Ø12 was used instead of Ø8 (Figure 9 (c)). 
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4.3.2 Influence of the anchorage length 

As expected, results demonstrated that by increasing Lb the bond strength has increased, since the adopted lengths 

are relatively small (lower than effective anchorage length). On average, it was found that 𝐹max has increased about 

72% and 69% at 7 and 28 days of age respectively, when Lb=10Ø was used instead of Lb=5Ø (Figure 9 (a)). On 

the other hand, by increasing Lb, a larger contact surface between reinforcing material and concrete was mobilized 

and consequently lower 𝜏max values were obtained, due to the non-linear distribution of bond stresses along the 

anchorage length. According to the results, it was found that the 𝜏max has decreased about 14% and 16% at 7 and 

28 days of age respectively, when a Lb=10Ø was adopted instead of Lb=5Ø (Figure 9 (b)). Furthermore, slmax also 

increased with Lb. In terms of 𝐺f at 7 days, increases of about 67% and 135% were obtained in the TW and SW 

series respectively, when a Lb=10Ø was adopted instead of Lb=5Ø. At 28 days, 𝐺f increases of about 151% and 

62% were verified in the Ø8 and Ø12 series respectively, when a Lb=10Ø was adopted instead of Lb=5Ø (Figure 

9 (c)). 

4.3.3 Influence of the water type 

In general, the analysis of the results suggested that the use of TW provided a slightly higher bond strength, 

compared with the use of SW in concrete mixture. In general, the use of TW instead of SW provided an increase 

of 12% and 15% on the 𝐹̅max and 𝜏̅max respectively, at 7 and 28 days of concrete age (Figure 9 (e)). It is relevant to 

note that the higher increments on the 𝐹̅max and 𝜏̅max were verified in the series in which a smaller GFRP rod 

diameter and a shorter Lb were adopted. When Ø12 rod was used and a Lb=10Ø was adopted, increases of only 5% 

and 8% were verified respectively at 7 and 28 days of concrete age, when TW was used instead of SW. This slight 

difference may be explained by the presence of mineral, biological and chemical components on the SW, which 

may have some effects on the bond behaviour. In terms of 𝐺̅f at 7 days, increases of about 35% were obtained in 

the series in which a Lb=5Ø was adopted, when TW was used instead of SW, while in the Lb=10Ø series no increase 

was verified. At 28 days, 𝐺̅f increases of about 95% and 36% were verified respectively in the Ø8 and Ø12 series, 

when TW was used instead of SW (Figure 9 (f)). However, in general it can be considered that the use of SW in 

the concrete mixture had a minimal impact on the mechanical properties assessed and no relevant effects on the 

bond behaviour between GFRP and concrete. 
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5. ANALYTICAL MODELLING 

The analytical representation of the pullout phenomenon is often expressed by a second order differential equation, 

which can be established in terms of forces [46, 47] or derived in terms of slip [48-50]. In the present work the 

local bond law was established in terms of slip and obtained by an inverse analysis procedure. A brief overview 

of the analytical formulation is presented in the current section. A detailed description of the model, as well as the 

inverse analysis strategy can be found in [49-52]. This strategy has shown a good predictive performance on 

modelling a diversity of pullout test results, namely near-surface mounted CFRP laminate strips [51, 52], 

galvanized steel rod [53] and discrete steel fibres embedded in concrete [49].  

The main objective in this section is (i) to describe the work developed to determine the local bond stress-slip laws 

(𝜏-s) of the experimental direct pullout tests to better understand the bond behaviour between the GFRP rods and 

the concrete with different water types (TW and SW) on its composition, and then, (ii) to propose design curves 

in terms of maximum pullout force (𝐹max) versus anchorage length (Lb) in order to calculate the anchorage length 

required to reach the maximum capacity of the GFRP rod (Lb,eff). For this purpose, all the results obtained at 

28 days of age of the concrete were numerically simulated. 

5.1 Local bond-slip 

From the equilibrium of the free body of an infinitesimal length dx of a GFRP rod bonded to a concrete matrix 

(see Figure 10) the second order differential equation that governs the local bond phenomena can be established 

by Eq. (6), where 𝜏 = 𝜏 [s(x)] is the local bond shear stress acting on the contact surface between the GFRP rod 

and the concrete. s is the slip, i.e., the relative displacement between the GFRP and the surrounding concrete. 

Additionally, Ef, Af and Pf are the Young modulus, the cross-sectional area and the perimeter of the GFRP rod, 

respectively. Assuming that the GFRP rod has a linear elastic behaviour [d𝜎f = Ef × dεf] and neglecting the 

concrete deformability in the slip assessment, after simplification of Eq. (6), the second order differential equation 

that governs the local bond phenomena is given by Eq. (7). Based on this second order differential equation, it is 

possible to obtain 𝜏-s relationship using an inverse analysis procedure, consisting of a series of iterations in order 

to find the value of the parameters of this relation which can satisfy the second order differential equation. In this 

way, the numerical pullout force (𝑁) is determined and then the computed response in terms of pullout force and 

slip (𝑁-s) achieved based on the parameters selected for the 𝜏-s law is compared with the corresponding 
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experimental response 𝐹-s. Until the 𝑁-s response is not sufficiently close to the 𝐹-s, the process must be repeated 

until a good approximation between the numerical and experimental responses is obtained. 

𝜎f ∙ 𝐴f +  𝜏 ∙ 𝑃f ∙ 𝑑𝑥 = (𝜎f  +  𝑑𝜎f) ∙ 𝐴f (6) 

𝑑2𝑠

𝑑𝑥2
=

𝑃f
𝐸f . 𝐴f

 ∙  𝜏(𝑥) (7) 

 

5.2 Pullout force-slip relationship 

Figure 11 illustrates a GFRP rod inserted in concrete over an anchorage length Lb, where 𝑁 is the generic applied 

pullout force, and sf and sl are the free and loaded end slips, respectively. When the pullout force (𝑁) is applied 

and the GFRP rod is slipping, the following functions and parameters can be evaluated along the anchorage length: 

(i) the slip along the GFRP rod [s(x)], (ii) the bond shear stress along the embedded length [𝜏(x)], (iii) the GFRP 

rod strain (εf) and (iv) the axial force 𝑁(x) where the origin of the x axis coincides with the free extremity of the 

anchorage length. In Figure 11 the slip diagram along the GFRP rod [s(x)] can be regarded as the sum of two 

components: a constant component (sf) which produces a rigid body displacement of the GFRP rod whereas the 

sd(x) component results from the GFRP rod deformation. So, for any point in the anchorage length, just the sd(x) 

component will result in a GFRP rod length change, thus the GFRP rod deformation at a point x is obtained by: 

εf(x) = 𝑁(x)/(Ef×Af). The pullout force (𝑁) is given by Eq. (8) which is obtained by equalling the internal and the 

external work produced by the GFRP rod elastic deformation and the bond stress profile at the GFRP interface, 

respectively [53]. To solve the Eq. (8), the analytical bond 𝜏-s relationship defined by the Eq. (9) was used in the 

present work. In this equation, 𝜏m and sm are the bond strength and its corresponding slip, respectively. In turn, α 

and α’ are parameters that define the curve shape in the pre-peak and post-peak branch, respectively.  

𝑁 = √2𝐸f ∙ 𝐴f ∙ 𝑃f ∙ ∫ 𝜏(𝑠) ∙ 𝑑𝑠
𝑠(𝑥=𝐿b)̃

𝑠f

                          (8) 

𝜏(𝑠) =

{
 
 

 
 𝜏m ∙ (

𝑠

𝑠m
)
𝛼

    𝑖𝑓 𝑠 ≤ 𝑠m

𝜏m ∙ (
𝑠

𝑠m
)
−𝛼′

    𝑖𝑓 𝑠 > 𝑠m

 (9) 
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5.3 Analytical results 

As referred before, the bond laws (𝜏-s) of each series were calibrated with the average experimental pullout force 

versus loaded end slip curves. During the inverse analysis, the search for α and α’ was conducted within the interval 

]0, 1], whereas for 𝜏m and sm no boundaries were fixed. For the longitudinal elasticity modulus of the GFRP rods, 

the average values obtained in the mechanical characterization were used (see Section 3, Table 4). For the 

geometrical properties, a cross-sectional area (Af) of 50.27 mm2 and 113.10 mm2 were assumed for Ø8 and Ø12, 

respectively, whereas in terms of cross-sectional perimeter (Pf), values of 25.13 mm and 37.70 mm were assumed 

for Ø8 and Ø12, respectively.  

Figure 12 presents the pullout force versus loaded end slip (𝐹-sl) curves obtained by numerical inverse analysis 

procedure and the envelope of the experimental results. While observing Figure 12 it is possible to conclude that 

the developed numerical strategy was able to predict with good accuracy the 𝐹-sl curves of all the experimental 

test series in the different phases that characterize the bond behaviour (pre-peak phase up to maximum pullout 

force and post-peak phase), regardless of the GFRP rod diameter used, the anchorage length adopted and the water 

type used in the concrete composition. Table 8 shows the values of the parameters defining the local bond law (see 

also Eq. (9)) which lead to the curves presented in Figure 12. Moreover, this table also includes the normalized 

errors of the numerical fitting procedure in terms of (i) ratio between the area between the experimental and 

numerical curves and the area under the experimental curve (earea), (ii) ratio between the maximum experimental 

pullout force and the corresponding numerical value (eFmax) and (iii) ratio between the experimental loaded end 

slip at maximum pullout force and the corresponding numerical value (eslmax). In general, the obtained earea was 

very small. In terms of eFmax and eslmax, the strategy adopted yielded to very good predictions (error values equal 

to zero).  

To better understand the results obtained from the inverse analysis, particularly the influence of the studied 

variables (GFRP rod diameter, anchorage length and water type in the concrete composition) on the results, the 

bond laws obtained from the parameters presented in Table 8 were plotted and compared in Figure 13. Analysing 

the parameters of the local bond laws obtained, the following main conclusions can be pointed out:  
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 The sm value was mainly influenced by the Lb adopted and the water type used in the concrete 

composition. In general, for the series to which a Lb=10Ø was adopted instead of Lb=5Ø, a 70% 

higher value of sm was obtained. On the other hand, when SW was used instead of TW, an average 

decrease of 21% in sm was verified; 

 The 𝜏m value was influenced by the GFRP rod diameter used, by the Lb adopted as well as the water 

type used in the concrete composition. In terms of GFRP rod diameter influence, when the Ø12 was 

used instead of Ø8, an average increase of 10% and 33% was obtained respectively for TW and SW 

series. In its turn, when a Lb=10Ø was used instead of Lb=5Ø, an average decrease of 14% in 𝜏m was 

obtained. In terms of water type used in the concrete composition, when SW was used instead of 

TW, an average decrease of 19% in 𝜏m was obtained; 

 The parameter that defines the curve shape in the pre-peak branch (α) obtained by the inverse analysis 

has varied very little for all test series, which means that the local bond stiffness in the pre-peak phase 

of the 𝜏-s relationship was practically coincident; 

 The parameter that define the curve shape in the post-peak branch (α’) obtained in the inverse 

analysis is very dependent on the failure mode experimentally observed. An example of this is the 

TW_28D_Ø8_Lb10Ø series in which the complete rupture of the GFRP ribs was observed (see Table 

7 and Figure 8 (a) and (b)) and, consequently, the obtained α’ was nil. However, when the same 

failure mode was observed, the influence of the GFRP rod diameter adopted as well as the water type 

used in the concrete composition became more evident. The α’ value increased with the increasing 

of the GFRP rod diameter and when SW was used instead of TW; 

 The local bond 𝜏-s law used showed to be flexible enough to accurately simulate both SW and TW 

series of the direct pullout tests. Based on the analysis carried out, TW yields to higher local shear 

strength and residual shear stress than SW. 

For a safe and economic design of concrete structures reinforced with GFRP rods, the anchorage length required 

to reach the maximum capacity of the composite material (Lb,eff) should be determined considering the 

requirements imposed by ultimate limit state conditions. The Lb,eff is understood to be the length beyond which 

further increments of the bonded length do not lead to bond strength increments due to the GFRP rod failure. Using 

the numerical model described in this section as well as the corresponding interface laws obtained by the numerical 
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procedure, the maximum pullout force (𝐹max) of the reinforced system was iteratively calculated by increasing the 

Lb value and for each test serie. In this analysis, the average values of the 𝜏-s law parameters obtained (see Table 

8) were considered regardless of the anchorage length adopted in the direct pullout tests. It should be noted that 

this approach yields to conservative values of the anchorage length only when other phenomena are not considered 

and properly prevented by design, such as concrete splitting. 

Figure 14 shows the relationship between 𝐹max and Lb for each GFRP rod diameter and water type. This information 

can be useful for design purposes in terms of the determination of the required anchorage length for a certain 

maximum pullout force imposed at ultimate limit state condition. Analysing Figure 14, the following main 

conclusions can be pointed out: 

 For Ø8 GFRP rods (Figure 14 (a)), a Lb,eff of 177 mm (Lb=22Ø) and 315 mm (Lb=39Ø) were obtained 

in the TW and SW series, respectively. According to the obtained results, it is not possible to increase 

de bond strength since the failure of the system occurred by tensile failure of the Ø8 GFRP rod (the 

mechanical properties of the GFRP rods were determined in this work and were presented in Section 

3 – see Table 4); 

 For Ø12 GFRP rods (Figure 14 (b)), a Lb,eff of 259 mm (Lb=22Ø) and 346 mm (Lb=29Ø) were 

obtained in the TW and SW series, respectively. Like in the previous case, tensile failure of the Ø12 

GFRP rod controlled the failure mode of the system; 

 According to the results and comparing the influence of the water type used in the concrete 

composition, is remarkable that for the SW case is necessary a higher Lb to allow the full use of the 

tensile strength of the GFRP rods, in comparison to the use of TW. 

6. CONCLUSIONS 

The study presented in this paper particularly focussed on the bond behaviour characterization, considering its 

importance in the structural design. The research included two distinct phases: (i) development of high strength 

concrete compositions (with TW and SW) including characterization at fresh and hardened state and 

(ii) assessment of the bond behaviour between ComBAR® GFRP ribbed round rods and the developed concrete 

through an experimental program composed by 48 direct pullout tests in concrete cubic blocks strengthened with 

this specific type of GFRP rods. In both phases the effect of the use of SW instead TW in the concrete mixture 
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was studied. In the second phase, the influence of concrete age (7 or 28 days), GFRP rod diameter used (Ø8 or 

Ø12) and anchorage length adopted (5Ø or 10Ø) were also investigated. Additionally, based on the experimental 

research results, an analytical model capable of determining the local bond stress-slip law which governs the bond 

behaviour was used. This paper presented and analysed the obtained experimental and analytical results. In the 

present section the main conclusions of the research work are highlighted. 

The procedure used to determine the concrete composition based on the modified expressions method proposed 

by Andreasen and Andersen proved to be adequate in the development and optimization of the solid component 

of the concrete matrix. The final concrete composition presented the good mechanical properties required in special 

projects, particularly in maritime environments such as adequate workability at fresh state and high mechanical 

strength at hardened state. 

From the concrete characterization tests carried out, the following main conclusions can be pointed out: 

 SW provided a higher cohesion, viscosity and compactness to the fresh concrete. Results have indicated 

also that SW reduced the concrete setting time and led to a faster development of its mechanical 

properties; 

 The compression tests performed at 7 days of age showed that the concrete which included SW presented 

a higher value of compressive strength (≈+8%) than the TW concrete; 

 The compression tests performed at 28 days of age showed that the concrete which included TW 

presented a higher value of compressive strength (≈+15%) and modulus of elasticity (≈+9%), than the 

SW concrete. 

From the direct pullout test results, the following main conclusions can be highlighted: 

 Three different failure modes were observed, mainly: (i) CR - debonding failure at the interface 

GFRP/concrete with complete rupture of GFRP ribs, (ii) PR - debonding failure at the interface 

GFRP/concrete with partial rupture of GFRP ribs and (iii) D - debonding failure (the most frequently 

observed). Thus, it was found that the bond mechanism between the GFRP rod and the concrete is not 

only frictional but also has a mechanical adhesion component conferred by the rod ribs; 
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 The larger GFRP rod diameter provided the higher values of maximum pullout force (𝐹max) and shear 

strength (𝜏max). Additionally, higher values of loaded end slip (sl) and fracture energy (𝐺f) were also 

obtained; 

 The longer anchorage length (Lb) provided an increase in 𝐹max. On the other hand, by increasing the Lb, a 

larger contact surface between GFRP and concrete was mobilized and consequently lower 𝜏max were 

obtained, due to the non-linear distribution of the bond stresses. Additionally, higher values of sl and 𝐺f 

were obtained with the increase of Lb; 

 The use of SW instead of TW on the concrete mixture had some influence on the interface behaviour 

between GFRP and concrete. In the specimens where SW was included, a slightly lower values of 

normalized maximum pullout force (𝐹̅max) and shear strength (𝜏̅max) were obtained. Nevertheless, it can 

be concluded that the use of SW had no severe effects on the bond behaviour between the GFRP and 

concrete. 

Using analytical modelling and inverse analysis, a local bond stress-slip (𝜏-s) relationship was obtained from the 

experimental test results. From the analysis carried out, the following considerations can be made: 

 The adopted analytical model to obtain the local bond 𝜏-s law has shown a good performance on 

modelling the direct pullout tests and provided a better understanding of the bond behaviour between the 

GFRP rods and the concrete with different water type; 

 The numerical strategy was able to predict with good accuracy the pullout force versus loaded end slip 

curves for all the experimental test series in the different phases that characterize the bond behaviour (pre-

peak phase up to maximum pullout force and post-peak phase), regardless of the GFRP rod diameter 

used, the anchorage length adopted, and the water type used in the concrete composition; 

 The local bond 𝜏-s law used demonstrated enough flexibility to simulate both SW and TW series of the 

direct pullout tests. Based on the analysis carried out, TW yields to higher local shear strength and residual 

shear stress than SW; 

 Based on the numerical procedure and for a safe and economic design of RC structures with GFRP rods, 

the anchorage length required to reach the maximum capacity of the GFRP rod (Lb,eff) was determined. 

According to the results, the Lb,eff is 22Ø for TW concrete and varies between 29Ø-39Ø for SW concrete. 
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Finally, the present study constitutes a first milestone for an extended research that aims to analyse the concrete 

made with seawater (SW) and the behaviour of RC structures with GFRP bars over time. Based on the obtained 

results, it can be said that the use of seawater does not yielded to short-term significant detrimental effects. Future 

studies should be done in order to assess the long-term effects and durability of the proposed system.  
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Table 1 - Fresh state concrete properties obtained during the composition development phase. 

Mixture M1 M2 M3 M4 

w/c 0.30 0.27 0.26 0.25 

Slump flow [mm] 615 600 665 n/a 

T500 [s] 5 15 14 n/a 

Visual aspect 

    

n/a: result not available since the 500 mm was not reached.  

Table 2 - Hardened state concrete properties obtained during the composition development phase. 

Mixture M1 M2 M3 M4 

w/c 0.30 0.27 0.26 0.25 

fcm,7 [MPa] 54.65 (1.9%) 54.60 (2.8%) 54.43 (2.1%) 57.87 (1.4 %) 

fcm,28 [MPa] 66.80* 66.70* 66.50* 70.70* 

Note: the values in brackets are the coefficients of variation (CoV); * Estimated values according to NP EN 1992-1-1:2010 

[39]. 

Table 3 - Direct pullout tests program (three specimens per series). 

Water type 
Age of concrete 

[days] 
GFRP rod diameter 

[mm] 
Anchorage length 

[mm] 
Designation 

TW 

7 

8 
40 TW_7D_Ø8_Lb5Ø_i 

80 TW_7D_Ø8_Lb10Ø_i 

12 
60 TW_7D_Ø12_Lb5Ø_i 

120 TW_7D_Ø12_Lb10Ø_i 

28 

8 
40 TW_28D_Ø8_Lb5Ø_i 

80 TW_28D_Ø8_Lb10Ø_i 

12 
60 TW_28D_Ø12_Lb5Ø_i 

120 TW_28D_Ø12_Lb10Ø_i 

SW 

7 

8 
40 SW_7D_Ø8_Lb5Ø_i 

80 SW_7D_Ø8_Lb10Ø_i 

12 
60 SW_7D_Ø12_Lb5Ø_i 

120 SW_7D_Ø12_Lb10Ø_i 

28 

8 
40 SW_28D_Ø8_Lb5Ø_i 

80 SW_28D_Ø8_Lb10Ø_i 

12 
60 SW_28D_Ø12_Lb5Ø_i 

120 SW_28D_Ø12_Lb10Ø_i 

Note: “i” represents the specimen 1, 2 or 3. 

615 mm 
600 mm 

665 mm 
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Table 4 - GFRP rods mechanical characterization (average values). 

GFRP rod 

diameter 

Ef 

[GPa] 

fult 

[MPa] 

εf 

[%] 
Failure Mode 

Ø8 69.0 (3.6%) 1527.9 (4.5%) 1.8 (0.1%) Tensile Failure 

Ø12 70.1 (3.1%) 1447.1 (6.5%) 1.8 (1.0%) Tensile Failure 

Note: the values in brackets are the coefficients of variation (CoV). 

Table 5 - Fresh state concrete properties. 

Concrete casting 
Concrete casting 1 Concrete casting 2 Concrete casting 3 Concrete casting 4 

1st batch 2nd batch 1st batch 2nd batch 1st batch 2nd batch 1st batch 2nd batch 

Water type TW TW SW SW SW SW TW TW 

Slump flow [mm] 625 613 421 448 330 400 400 485 

T500 [s] 13 15 n/a n/a n/a n/a 16 15 

Visual aspect 

  

- - 

n/a: result not available since the 500 mm was not reached.  

Table 6 - Hardened state concrete properties (average values). 

Compressive Strength (fcm) 

and Modulus of Elasticity (Ecm) 

Tap water 

(TW) 

Seawater 

(SW) 

fcm,7d [MPa] 50.5 (1.8%) 54.5 (4.0%) 

fcm,28d [MPa] 66.5 (0.9%) 58.0 (4.4%) 

Ecm,7d [GPa] 34.2 (6.9%) 27.3 (1.3%) 

Ecm,28d [GPa] 36.3 (2.6%) 33.4 (2.3%) 

Note: the values in brackets are the coefficients of variation (CoV). 

  

625 mm 421 mm 
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Table 7 - Main results obtained from the pullout tests (average values). 

Serie 
fcm 

[MPa] 
𝑭max  

[kN] 

slmax 

[mm] 

sfmax 

[mm] 

𝝉max  

[MPa] 

𝑭r  

[kN] 

𝑮f  

[kN.mm] 

𝑭r/𝑭max  

[%] 

𝑭̅max 

𝝉̅max 
𝑮̅f FM 

TW_7D_Ø8_Lb5Ø 50.5 
14.5 

(3.4%) 

0.59 

(4.2%) 

0.3 

(9.8%) 

14.4 

(3.4%) 

3.2 

(4.0%) 

66.0 

(4.0%) 

22.2 

(7.4%) 
4.0 1.8 D1,2,3 

TW_7D_Ø8_Lb10Ø 50.5 
22.4 

(1.6%) 

0.95 

(4.1%) 

0.27 

(16.8%) 

11.1 

(1.6%) 

6.1 

(4.1%) 

107.6 

(2.3%) 

27.3 

(2.6%) 
3.0 1.5 D1,2,3 

TW_7D_Ø12_Lb5Ø 50.5 
40.6 

(7.8%) 

0.88 

(5.0%) 

0.36 

(9.9%) 

18.0 

(7.8%) 

12.7 

(17.9%) 

209.6 

(12.3%) 

30.9 

(10.2%) 
4.9 2.5 D1,2,3 

TW_7D_Ø12_Lb10Ø 50.5 
69.3 

(2.6%) 

1.66 

(4.8%) 

0.37 

(10.8%) 

15.3 

(2.6%) 

21.9 

(10.4%) 

358.9 

(3.6%) 

31.6 

(7.8%) 
4.2 2.2 D1,2,3 

TW_28D_Ø8_Lb5Ø 66.5 
19.8 

(4.8%) 

0.81 

(9.3%) 

0.39 

(25.7%) 

19.7 

(4.8%) 

7.5 

(40.4%) 

134.5 

(22.5%) 

37.8 

(39.3%) 
4.4 3.0 

PR1,2 

CR3 

TW_28D_Ø8_Lb10Ø 66.5 
33.7 

(2.1%) 

1.54 

(4.0%) 

0.31 

(24.1%) 

16.8 

(2.1%) 

33.5 

(4.6%) 

329.2 

(4.3%) 

99.5 

(6.2%) 
3.7 3.6 CR1,2,3 

TW_28D_Ø12_Lb5Ø 66.5 
48.9 

(5.8%) 

0.89 

(11.0%) 

0.24 

(31.9%) 

21.6 

(5.8%) 

26.6 

(28.8%) 

327.0 

(12.3%) 

55.1 

(32.8%) 
4.8 3.2 

D1 

CR2,3 

TW_28D_Ø12_Lb10Ø 66.5 
81.8 

(2.5%) 

1.91 

(3.6%) 

0.32 

(10.2%) 

18.1 

(2.5%) 

38.7 

(18.7%) 

504.9 

(9.0%) 

47.2 

(16.9%) 
4.0 2.5 D1,2,3 

SW_7D_Ø8_Lb5Ø 54.5 
12.2 

(10.6%) 

0.58 

(5.7%) 

0.28 

(9.5%) 

12.2 

(10.6%) 

2.7 

(16.4%) 

51.2 

(6.0%) 

22.0 

(9.2%) 
3.1 1.3 D1,2,3 

SW_7D_Ø8_Lb10Ø 54.5 
22.6 

(5.9%) 

1.01 

(6.7%) 

0.30 

(10.2%) 

11.3 

(5.9%) 

7.3 

(13.8%) 

118.3 

(4.1%) 

32.2 

(8.7%) 
2.9 1.5 D1,2,3 

SW_7D_Ø12_Lb5Ø 54.5 
39.9 

(3.5%) 

0.91 

(4.9%) 

0.38 

(15.4%) 

17.6 

(3.5%) 

8.5 

(4.7%) 

165.2 

(4.0%) 

21.4 

(5.9%) 
4.5 1.9 D1,2,3 

SW_7D_Ø12_Lb10Ø 54.5 
71.0 

(5.6%) 

1.66 

(3.9%) 

0.53 

(40.1%) 

15.7 

(5.6%) 

24.7 

(15.0%) 

394.4 

(12.8%) 

34.7 

(10.8%) 
4.0 2.2 D1,2,3 

SW_28D_Ø8_Lb5Ø 58.0 
13.6 

(2.4%) 

0.54 

(3.9%) 

0.25 

(4.9%) 

13.6 

(2.4%) 

3.2 

(23.9%) 

60.3 

(14.6%) 

23.4 

(22.7%) 
3.3 1.5 D1,2,3 

SW_28D_Ø8_Lb10Ø 58.0 
25.6 

(3.3%) 

1.08 

(7.0%) 

0.29 

(8.2%) 

12.7 

(3.3%) 

10.6 

(10.8%) 

154.4 

(9.5%) 

41.2 

(10.1%) 
3.1 1.9 D1,2,3 

SW_28D_Ø12_Lb5Ø 58.0 
45.1 

(2.2%) 

0.81 

(6.5%) 

0.33 

(15.6%) 

19.9 

(2.2%) 

11.5 

(10.1%) 

209.9 

(3.9%) 

25.5 

(11.6%) 
4.9 2.3 D1,2,3 

SW_28D_Ø12_Lb10Ø 58.0 
68.7 

(6.9%) 

1.48 

(7.2%) 

0.32 

(5.8%) 

15.2 

(6.9%) 

22.9 

(8.0%) 

355.5 

(3.6%) 

33.3 

(6.0%) 
3.7 1.9 D1,2,3 

Notes: the values in brackets are the coefficients of variation (CoV); FM - Failure Modes: CR - debonding failure at the 

interface GFRP/concrete + complete rupture of GFRP ribs; PR - debonding failure at the interface GFRP/concrete + partial 

rupture of GFRP ribs; D - debonding failure at the interface GFRP/concrete; 1,2,3 is the specimen number. 
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Table 8 - Local bond stress-slip relationship parameters obtained from inverse analysis of the direct pullout tests. 

Series 
sm  

[mm] 
𝝉m  

[MPa] 
α α' 

earea  

[%] 
eslmax  

[%] 
eFmax  

[%] 

TW_28D_Ø8_Lb5Ø 0.64 19.57 0.46 0.22 12.1 0.0 0.0 

TW_28D_Ø8_Lb10Ø 1.18 16.88 0.46 0.00 2.0 0.0 0.0 

Average 0.91 18.23 0.46 0.11 - - - 

TW_28D_Ø12_Lb5Ø 0.74 21.02 0.64 0.24 4.7 0.0 0.0 

TW_28D_Ø12_Lb10Ø 1.29 19.00 0.54 0.44 3.9 0.0 0.0 

Average 1.02 20.01 0.59 0.34 - - - 

SW_28D_Ø8_Lb5Ø 0.49 13.77 0.46 0.44 13.5 0.0 0.0 

SW_28D_Ø8_Lb10Ø 0.84 13.10 0.49 0.36 10.2 0.0 0.0 

Average 0.67 13.44 0.48 0.40 - - - 

SW_28D_Ø12_Lb5Ø 0.68 20.47 0.43 0.52 9.2 0.0 0.0 

SW_28D_Ø12_Lb10Ø 1.01 15.32 0.44 0.52 6.3 0.0 0.0 

Average 0.85 17.90 0.44 0.52 - - - 
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(a) (b) (c) 

Figure 1 - Aggregates used in the concrete production: (a) sand; (b) gravel 4-8; (c) gravel 8-16. 

  
(a) (b) 

Figure 2 - Granulometric analysis: (a) sieve analysis of the used aggregates; (b) mixture curve versus reference 

curve. 

 

Figure 3 - Different anchorage lengths adopted: (1) 40, (2) 60, (3) 80 and (4) 120 mm. 
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Figure 4 - Experimental set-up and instrumentation: (a) scheme; (b) photo. Note: dimensions in [mm]. 

   
(a) (b) 

Figure 5 - GFRP rods mechanical characterization: (a) test set-up; (b) typical failure mode observed. 

  
(a) (b) 

Figure 6 - Concrete mechanical properties: (a) compressive strength; (b) modulus of elasticity. 
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Figure 7 - Pullout force versus loaded end slip curves obtained in all test series. 
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(a) (b) 

  
(c) (d) 

Figure 8 - Failure modes: (a) (b) CR - debonding failure + complete rupture of GFRP ribs 

(TW_28D_Ø8_Lb10Ø_1 and TW_28D_Ø8_Lb5Ø_3, respectively); (c) PR - debonding failure + partial rupture 

of GFRP ribs (TW_28D_Ø12_Lb10Ø_2); (d) D - debonding failure (TW_7D_Ø8_Lb10Ø_2). 
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(a) (b) 

  
(c) (d) 

  

(e) (f) 

Figure 9 - Influence of the studied parameters: (a) maximum experimental pullout force; (b) experimental average 

shear strength; (c) experimental fracture energy; (d)  𝐹r/𝐹max ratio; (e) normalized maximum pullout force or 

normalized average shear strength; (f) normalized fracture energy. Note: the values in brackets represent the 

percentage increase when Ø12 was used instead of Ø8 (a-d) and when TW was used instead of SW (e-f). 
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(a) (b) 

Figure 10 - (a) Equilibrium of the GFRP rod; (b) Stress and strains in the materials surrounding the bond region. 

 

 

Figure 11 - Entities in the analytical model [51]. 
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Figure 12 - Pullout force versus loaded end slip curves obtained by inverse analysis of all the test series. 
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Figure 13 - Comparison of the local bond laws obtained in the inverse analysis. 

 

  
(a) (b) 

Figure 14 - Maximum pullout force versus anchorage length for GFRP rods of (a) Ø8 and (b) Ø12. 
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