
Helping Programmers Improve the Energy Efficiency
of Source Code

Rui Pereira∗, Tiago Carção∗, Marco Couto∗, Jácome Cunha‡, João Paulo Fernandes§, and João Saraiva∗
∗ HASLab/INESC TEC, Universidade do Minho, Portugal

‡ NOVA LINCS, DI, FCT, Universidade NOVA de Lisboa, Portugal
§ Release/LISP, CISUC, Universidade de Coimbra

{ruipereira,saraiva}@di.uminho.pt, marco.l.couto@inesctec.pt, jacome@fct.unl.pt, jpf@dei.uc.pt

Abstract—This paper briefly proposes a technique to detect
energy inefficient fragments in the source code of a software
system. Test cases are executed to obtain energy consumption
measurements, and a statistical method, based on spectrum-based
fault localization, is introduced to relate energy consumption to
the system’s source code. The result of our technique is an energy
ranking of source code fragments pointing developers to possible
energy leaks in their code.

Keywords—Green Computing; Program Optimization; Fault
Localization

I. INTRODUCTION

In recent years, awareness within society of the significant
side-effects of energy demands has grown, acknowledging
the need for sustainable software development [1]. In fact,
software developments are keen on developing energy-efficient
software [2], and a long list of (mostly recent) efforts that
include [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15] has tried to provide developers with the libraries, tools,
techniques and data to support energy-aware development.
Even considering these efforts, the green computing research
area is still at an early stage where research issues, challenges
and opportunities abound [16], [17], [18].

This paper introduces an in development technique and
tool, named SPELL - SPectrum-based Energy Leak Localiza-
tion, to determine red (energy inefficient) areas in software.
In this context, a parallel is made between the detection
of anomalies in the energy consumption of software during
program execution, and the detection of faults in the execution
of a program. Having this parallelism established, we adapted
fault detection techniques, often used to investigate software
bugs or failures in program executions, to detect energetic
faults in programs.

Our proposed technique is language independent, allowing
the analysis of any programming language as long as we have
the needed input data (energy consumption, execution time,
etc.). Additionally, it is also context independent, allowing it
to be applied to detect red areas on various levels of code.

This work is financed by the ERDF – European Regional Development
Fund through the Operational Programme for Competitiveness and Interna-
tionalisation - COMPETE 2020 Programme and by National Funds through
the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia
within project POCI-01-0145-FEDER-016718 and UID/CEC/04516/2013; and
by FLAD/NSF under the project Software Repositories for Green Com-
puting, ref. 300/2015. The first author is also sponsored by FCT grant
SFRH/BD/112733/2015.

This means we could use it to detect the inefficiencies at
different granularity levels, be that packages, classes, methods,
functions, lines of code, etc. Even more so, the technique
allows the presence of different hardware component’s energy
values (CPU, DRAM, Fans, Hard Drive, and GPU), and may
return the analysis of one specific factor (energy, time, or
number), or a global analysis considering all three factors.

A software system is executed with a set of test cases, and
components of such system (for example, packages, functions,
loops, etc) are instrumented to estimate/measure their energy
consumption at runtime. Inefficient energy consumption, the
so-called energy leaks1, are interpreted in SPELL as program
faults, and adapting Spectrum-based Fault Localization (SFL)
techniques [19], [20] to relate energy consumption to the sys-
tem’s source code. Our analysis associates different percentage
of responsibility for the energy consumed to the different
components of the underlying system. Thus, the result of our
analysis is a ranking of components sorted by their likelihood
of being responsible for energy leaks, essentially pinpointing
and prioritizing the developer’s attention on the most critical
red spots in the analyzed system, and giving him more useful
information to better support him in making decisions of what
parts of the system he needs to optimize.

Supported by our developed tool, our technique was able to
identify potential energy leaks in the source code of concrete
Java projects in a preliminary study. Based on this identi-
fication, a set of expert Java programmers was then asked
to improve the efficiency of those projects with and without
knowledge of the identified energy leaks. The analysis of
their performance in doing so provided statistical evidence
that experts with access to located energy leaked were able to
better optimize the energy consumption of those projects, and
were much faster doing so. This initial study has shown that
using our technique helped developers identify and optimize
energy problems in 50% less time, while optimizing the energy
consumption on average by 18%. Data on one of the projects
can be seen in Table I, with the global energy consumption
(J) and execution time (ms) for both the original project, and
refactored versions (using and not using SPELL), respectively.
The table also details the GPS-UP Software Energy Efficient
metrics [21] for each version.

Another interesting observation that can be drawn by our
case study confirms that optimizing for energy consumption

1In this context, an energy leak is essentially a part of the program where it
is consuming energy more than it probably should. As if one were to imagine
a cup of water, with water leaking over when it should not.

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

DOI 10.1109/ICSE-C.2017.80

237

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.80

237

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.80

237

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.80

238

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.80

238

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.80

238

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.80

238

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.80

238

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.80

238

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.80

238

TABLE I: Study results from one of the Projects in the preliminary study

Project P1

Original SPELL – Time taken: 1h04 No SPELL – Time taken: 1h58
Gain (%) Energy Metrics Gain (%) Energy Metrics

Test J ms J ms J ms GU SU PU Cat J ms J ms GU SU PU Cat
1 13.6 1341 9.7 959 28.3 28 1.39 1.40 1.00 3 13.3 1324 1.7 1 1.02 1.01 0.99 1
2 4.6 314 4.3 317 4.9 -1 1.05 0.99 0.94 4 4.9 339 -8.3 -8 0.92 0.93 1.00 8
3 7.0 695 4.9 482 30.0 31 1.43 1.44 1.01 3 7.1 690 -2.2 1 0.98 1.01 1.03 5
4 7.1 691 6.5 583 8.4 16 1.09 1.19 1.09 3 7.1 683 0.1 1 1.00 1.01 1.01 3
5 25.8 2557 21.5 1603 16.5 37 1.20 1.59 1.33 3 25.6 2538 0.7 1 1.01 1.01 1.00 3
6 20.8 1469 18.2 1808 12.5 -23 1.14 0.81 0.71 4 19.4 1923 6.8 -31 1.07 0.76 0.71 4
7 3.5 315 3.3 283 7.2 10 1.08 1.11 1.03 3 3.1 304 11.0 3 1.12 1.04 0.92 1

Total 82.4 7381 68.5 6037 16.8 18 1.20 1.22 1.02 3 80.7 7801 2.1 -6 1.02 0.95 0.93 4

is not always equivalent to optimizing runtime execution [4],
[22], [13]. Indeed, with our technique, programmers were able
to improve the energy efficiency of projects whose runtime
performance of some actually degraded as a consequence of
this improvement.

II. SPECTRUM-BASED ENERGY LEAK LOCALIZATION

A. Spectrum-based Fault Localization

Our technique, SPELL, is based on spectrum-based fault
localization [20], [19], a state of the art technique which uses
statistical analysis [23] and execution trace to identify faults in
a program’s implementation (source code). SFL uses a simple
hit spectrum (flag which reflects if a certain component is
used or not in a particular execution) to build a matrix A of
dimension n×m, where m represents the different components
(e.g. methods, classes,etc.) of a program during n independent
test executions. Complementing the hit spectrum, SFL uses an
error vector to indicate whether each of the n tests succeeded
or not. Finally, it applies a coefficient of similarity to calculate
which component is the most probable to be faulty.

B. Spectrum-based Energy Leak Localization

In this context, a parallel is made between the detection
of faults in the execution of a program with the detection of
anomalies in the energy consumption of a program. Having
this parallelism established, these fault detection techniques,
were adapted to detect energy leaks.

In SPELL, while it too uses the concept of m components
(e.g. programs, packages, classes, methods, statements) and
n independent tests (which can be test cases or program
simulations), it differs in several ways. The hit spectrum
elements for our SPELL matrix is not a single flag, but
holds a triple of three categories: (Energy, T ime, Number).
These are expressed in Joules, milliseconds, and number of
executions respectively. Additionally, our Energy category is
too a tuple which may represent the consumption by each
different hardware component (CPU, DRAM, GPS, GPU,
screen, etc.) if the chosen energy measurement technique
allows this differentiation.

Another difference lies in how the oracle is calculated.
While in SFL there is an error vector to reason about the
validity of the output obtained during a test, the SPELL
analysis does not receive this as an input. This is attributed
to there being no clear signal as to what can be seen as
an excess of energy consumption. Therefore, an error vector
is calculated by this technique, a criterion to represent the
greenness of a component instead of a binary decision, and
two different perspectives to calculate the oracle and similarity.

These perspectives are called Component Category Similarity
and Global Similarity, an analysis on one specific category (for
example only considering energy consumption) or a global
analysis considering all three, respectively. These similarity
functions are inspired by the Jaccard similarity coefficient [24].

A software developer can now, for example, use
jRAPL [25] or the ODROID-XU32 to measure his/her pro-
gram’s energy consumption on a method level (here a com-
ponent m would be a method), with various simulations or
tests (n), and obtain a ranking of components sorted by
their likelihood of being responsible for the program’s energy
leak, pinpointing and prioritizing the developer’s attention on
the most probably hot spot. This gives him/her more useful
information to better support the decision making of what and
where to optimize.

This language independent technique only requires an
input matrix representing the tests, components, and category
values. SPELL is currently implemented in Java as a tool-kit
containing the implementation of the core technique along with
other helpful tools, such as a jRAPL method instrumentation
tool and can be found by following the link in the footnote3.

III. CONCLUSION

This paper briefly introduced SPELL - a spectrum-based
energy leak localization technique to identify inefficient energy
consumption in the source code of software systems. This tech-
nique is both language independent and context independent,
using a statistical method to associate different percentages of
responsibility for the energy consumed to the different source
code components of a software system, thus pinpointing the
developer’s attention on the most critical “red” spots. Such
software components may be program modules, packages,
functions, source code fragments, wherever the developer
wishes to detect energy leaks.

Preliminary empirical studies with Java programmers
showed that not only can this technique be used in various
contexts, but also that developers who used SPELL were
able to find and optimize a program’s energy consumption
and performance, spending 50% less time and improving the
consumption on average by 18% when compared to those who
did not use SPELL. These studies also showed that some of
the energy optimization that were achieved by programmers
actually produced more energy efficient while degrading the
runtime performance, helping developers find and optimize a
program’s energy consumption with good results and indica-
tors of where problems are occurring.

2https://www.hardkernel.com
3https://github.com/greensoftwarelab/SPELL

238238238239239239239239239239

REFERENCES

[1] C. Becker, R. Chitchyan, L. Duboc, S. Easterbrook, M. Mahaux,
B. Penzenstadler, G. Rodrı́guez-Navas, C. Salinesi, N. Seyff, C. C.
Venters, C. Calero, S. A. Koçak, and S. Betz, “The karlskrona manifesto
for sustainability design,” CoRR, vol. abs/1410.6968, 2014.

[2] G. Pinto, F. Castor, and Y. D. Liu, “Mining questions about software
energy consumption,” in Proceedings of the 11th Working Conference
on Mining Software Repositories. ACM, 2014, pp. 22–31.

[3] M. A. Ferreira, E. Hoekstra, B. Merkus, B. Visser, and J. Visser,
“Seflab: A lab for measuring software energy footprints,” in Green and
Sustainable Software (GREENS), 2013 2nd International Workshop on.
IEEE, 2013, pp. 30–37.

[4] G. Pinto, F. Castor, and Y. D. Liu, “Understanding energy behaviors
of thread management constructs,” in Proceedings of the 2014 ACM
International Conference on Object Oriented Programming Systems
Languages & Applications. ACM, 2014, pp. 345–360.

[5] T. Yuki and S. Rajopadhye, “Folklore confirmed: Compiling for speed=
compiling for energy,” in Languages and Compilers for Parallel Com-
puting. Springer, 2014, pp. 169–184.

[6] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto,
M. Di Penta, and D. Poshyvanyk, “Mining energy-greedy api usage
patterns in android apps: an empirical study,” in Proceedings of the
11th Working Conference on Mining Software Repositories. ACM,
2014, pp. 2–11.

[7] C. Sahin, L. Pollock, and J. Clause, “How do code refactorings affect
energy usage?” in Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement.
ACM, 2014, p. 36.

[8] C. Sahin, P. Tornquist, R. McKenna, Z. Pearson, and J. Clause, “How
does code obfuscation impact energy usage?” in Software Maintenance
(ICSM), 2013 29th IEEE International Conference on. IEEE, 2014.

[9] M. Couto, T. Carção, J. Cunha, J. P. Fernandes, and J. Saraiva,
Programming Languages: 18th Brazilian Symposium, SBLP 2014,
Maceio, Brazil, October 2-3, 2014. Proceedings. Cham: Springer
International Publishing, 2014, ch. Detecting Anomalous Energy
Consumption in Android Applications, pp. 77–91. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-11863-5 6

[10] I. Manotas, L. Pollock, and J. Clause, “Seeds: A software engineer’s
energy-optimization decision support framework,” in Proceedings of the
36th International Conference on Software Engineering. ACM, 2014.

[11] A. Hindle, “Green mining: a methodology of relating software
change and configuration to power consumption,” Empirical Software
Engineering, vol. 20, no. 2, pp. 374–409, 2015. [Online]. Available:
http://dx.doi.org/10.1007/s10664-013-9276-6

[12] S. Li and S. Mishra, “Optimizing power consumption in multicore
smartphones,” Journal of Parallel and Distributed Computing, pp. –,
2016. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0743731516000198

[13] L. G. Lima, F. Soares-Neto, P. Lieuthier, F. Castor, G. Melfe, and J. P.
Fernandes, “Haskell in green land: Analyzing the energy behavior of
a purely functional language,” in 2016 IEEE 23rd International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER),
vol. 1, March 2016, pp. 517–528.

[14] R. Pereira, M. Couto, J. a. Saraiva, J. Cunha, and J. a. P.
Fernandes, “The influence of the java collection framework on
overall energy consumption,” in Proceedings of the 5th International
Workshop on Green and Sustainable Software, ser. GREENS ’16.
New York, NY, USA: ACM, 2016, pp. 15–21. [Online]. Available:
http://doi.acm.org/10.1145/2896967.2896968

[15] X. Ma, P. Huang, X. Jin, P. Wang, S. Park, D. Shen, Y. Zhou,
L. K. Saul, and G. M. Voelker, “edoctor: Automatically diagnosing
abnormal battery drain issues on smartphones,” in Proceedings
of the 10th USENIX Conference on Networked Systems Design
and Implementation, ser. nsdi’13. Berkeley, CA, USA: USENIX
Association, 2013, pp. 57–70. [Online]. Available: http://dl.acm.org/
citation.cfm?id=2482626.2482634

[16] A. E. Trefethen and J. Thiyagalingam, “Energy-aware software: Chal-
lenges, opportunities and strategies,” Journal of Computational Science,
vol. 4, no. 6, pp. 444 – 449, 2013.

[17] P. Lago, “Challenges and opportunities for sustainable software,”
in Proceedings of the Fifth International Workshop on Product
LinE Approaches in Software Engineering, ser. PLEASE ’15.
Piscataway, NJ, USA: IEEE Press, 2015, pp. 1–2. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2820656.2820658

[18] A. Hindle, “Green software engineering: the curse of methodology,”
PeerJ PrePrints, vol. 3, p. e1832, 2015.

[19] R. Abreu, P. Zoeteweij, and A. J. C. v. Gemund, “Spectrum-based
multiple fault localization,” in Proc. of the 2009 IEEE/ACM Int. Conf.
on Automated Software Engineering, ser. ASE ’09. Washington, USA:
IEEE Computer Society, 2009, pp. 88–99.

[20] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “On the accuracy of
spectrum-based fault localization,” pp. 89–98, 2007.

[21] S. Abdulsalam, Z. Zong, Q. Gu, and M. Qiu, “Using the greenup,
powerup, and speedup metrics to evaluate software energy efficiency,” in
Green Computing Conference and Sustainable Computing Conference
(IGSC), 2015 Sixth International. IEEE, 2015, pp. 1–8.

[22] A. E. Trefethen and J. Thiyagalingam, “Energy-aware software: Chal-
lenges, opportunities and strategies,” Journal of Computational Science,
vol. 4, no. 6, pp. 444–449, 2013.

[23] A. X. Zheng, M. I. Jordan, B. Liblit, and A. Aiken, “Statistical
debugging of sampled programs,” in Advances in Neural Information
Processing Systems, 2003, p. None.

[24] R. Real and J. M. Vargas, “The probabilistic basis of jaccard’s index
of similarity,” Systematic biology, pp. 380–385, 1996.

[25] K. Liu, G. Pinto, and Y. D. Liu, “Data-oriented characterization of
application-level energy optimization,” in Fundamental Approaches to
Software Engineering. Springer, 2015, pp. 316–331.

239239239240240240240240240240

