
Ca
rlo

s F
ilip

e M
ac

ha
do

 d
a S

ilv
a C

os
ta

April, 2019UM
in

ho
 |

 2
01

9
Ad

va
nc

in
g

th
e

De
si

gn
 a

nd
 Im

pl
em

en
ta

tio
n

of
 B

ig
 D

at
a

W
ar

eh
ou

si
ng

 S
ys

te
m

s

Universidade do Minho
Escola de Engenharia

Carlos Filipe Machado da Silva Costa

Advancing the Design and Implementation
of Big Data Warehousing Systems

April, 2019

Doctoral Thesis
Information Systems and Technologies

Work done under the supervision of
Professor Maribel Yasmina Santos (PhD)

Carlos Filipe Machado da Silva Costa

Advancing the Design and Implementation
of Big Data Warehousing Systems

Universidade do Minho
Escola de Engenharia

ii | Advancing the Design and Implementation of Big Data Warehousing Systems

DIREITOS DE AUTOR E CONDIÇÕES DE UTILIZAÇÃO DO TRABALHO POR TERCEIROS

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas as regras
e boas práticas internacionalmente aceites, no que concerne aos direitos de autor e direitos conexos.

Assim, o presente trabalho pode ser utilizado nos termos previstos na licença abaixo indicada.

Caso o utilizador necessite de permissão para poder fazer um uso do trabalho em condições não
previstas no licenciamento indicado, deverá contactar o autor, através do RepositóriUM da
Universidade do Minho.

Licença concedida aos utilizadores deste trabalho

Atribuição-NãoComercial
CC BY-NC

https://creativecommons.org/licenses/by-nc/4.0/

Advancing the Design and Implementation of Big Data Warehousing Systems | iii

“Sometimes life hits you in the head with a brick. Don’t lose faith. I’m

convinced that the only thing that kept me going was that I loved what I did.

You’ve got to find what you love. And that is as true for your work as it is for

your lovers. Your work is going to fill a large part of your life, and the only way

to be truly satisfied is to do what you believe is great work. And the only way

to do great work is to love what you do. If you haven't found it yet, keep

looking. Don't settle. As with all matters of the heart, you'll know when you

find it. And, like any great relationship, it just gets better and better as the

years roll on. So, keep looking. Don’t settle.”

(Steve Jobs, 2005)

iv | Advancing the Design and Implementation of Big Data Warehousing Systems

This page was intentionally left blank

Advancing the Design and Implementation of Big Data Warehousing Systems | v

Acknowledgments

To my family…

“When everything goes to hell, the people who stand by you without flinching…

they are your family.”

(Jim Butcher)

To my friends…

“What greater thing is there for two human souls, than to feel that they are

joined for life… to be one with each other in silent unspeakable memories…”

(George Eliot)

To my girlfriend…

“Passion very often makes the wisest men fools, and very often too inspires

the greatest fools with wit.”

(François de La Rochefoucauld)

To my supervisor…

“If I have seen further it is by standing on the shoulders of Giants.”

(Isaac Newton)

This work has been supported by COMPETE: POCI-01-0145-FEDER-007043; FCT - Fundação para a

Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013; the SusCity project, MITP-

TB/CS/0026/2013; and CCG - Centro de Computação Gráfica, providing me the adequate

conditions to conclude this doctoral thesis while working as a Big Data Engineer. Moreover, some

figures in this document use icons made by Freepik from www.flaticon.com.

vi | Advancing the Design and Implementation of Big Data Warehousing Systems

This page was intentionally left blank

Advancing the Design and Implementation of Big Data Warehousing Systems | vii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading

to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

viii | Advancing the Design and Implementation of Big Data Warehousing Systems

This page was intentionally left blank

Advancing the Design and Implementation of Big Data Warehousing Systems | ix

Abstract

Current Information Technology advancements have led organizations to pursue high business value and

competitive advantages through the collection, storage, processing, and analysis of vast amounts of

heterogonous data, generated at ever-growing rates. Since a Data Warehouse (DW) is one of the most

remarkable and fundamental enterprise data assets, nowadays, a current research trend is the concept of Big

Data Warehouse (BDW), characterizing real-time, scalable, and high-performance systems with flexible storage

based on commodity hardware, which can overcome the limitations of traditional DWs to assure mixed and

complex Big Data analytics workloads. The state-of-the-art in Big Data Warehousing (BDWing) reflects the young

age of the concept, as well as the ambiguity and lack of integrated approaches for designing and implementing

these systems. Fulfilling this gap is of major relevance, reason why this work proposes an approach composed

of several models and methods for the design and implementation of BDWs, focusing on the logical

components, data flows, technological infrastructure, data modeling, and data Collection, Preparation, and

Enrichment (CPE). To demonstrate the usefulness, effectiveness, and efficiency of the proposed approach, this

work considers four demonstration cases: 1) the application of the proposed data modeling method in several

potential real-world applications, including retail, manufacturing, finance, software development, sensor-based

systems, and worldwide news and events; 2) the application of the CPE method to process batch and streaming

data arriving at the BDW from several source systems; 3) a custom-made extension of the Star Schema

Benchmark (SSB), named the SSB+, in which several workloads were developed to benchmark a BDW

implemented using the proposed approach, comparing its performance against a traditional dimensional DW;

4) a real-world instantiation based on the development of a BDWing system in the context of smart cities. The

results of this research work reveal that the approach can be applied and generalized to support several

application contexts, providing adequate and flexible data models that can reduce the implementation time

between data collection and data analysis. Moreover, the proposed approach frequently presents faster query

execution times and more efficient resource usage than a traditional dimensional modeling approach.

Consequently, the proposed approach is able to provide general models and methods that can be used to

design and implement BDWs, advancing the state-of-the-art based on a systematic approach rather than an

ad hoc and use case driven one, which is seen as a valuable contribution to the technical and scientific

community related to this research topic.

Keywords - Big Data, Big Data Warehouse, Data Engineering, Data Science.

x | Advancing the Design and Implementation of Big Data Warehousing Systems

This page was intentionally left blank

Advancing the Design and Implementation of Big Data Warehousing Systems | xi

Resumo

Os avanços atuais das Tecnologias da Informação têm levado as organizações a procurar um elevado valor

do negócio e vantagens competitivas através da recolha, armazenamento, processamento, e análise de vastas

quantidades de dados heterogéneos, gerados a velocidades cada vez maiores. Dado que um DW é um

artefacto de dados fundamental nas organizações, uma linha de investigação atual é o conceito de BDW,

caracterizando sistemas em tempo-real, escaláveis, de elevado desempenho, com armazenamento flexível, e

baseados em commodity hardware, sendo capazes de ultrapassar as limitações dos DWs tradicionais de forma

a assegurar uma variedade de tarefas complexas de Big Data analytics. O estado da arte em BDWing reflete

o facto de ser um conceito emergente, bem como a ambiguidade e falta de abordagens integradas para a

conceção e implementação destes sistemas. Preencher esta lacuna é significativamente relevante, razão pela

qual este trabalho propõe uma abordagem composta por modelos e métodos para conceber e implementar

BDWs, focando-se nos componentes lógicos, fluxos de dados, infraestrutura tecnológica, modelação de dados,

e na recolha, preparação, e enriquecimento dos dados. Para demonstrar a utilidade, eficácia, e eficiência da

solução proposta, este trabalho considera quatro casos de demonstração: 1) a aplicação do método proposto

para a modelação de dados em várias potenciais aplicações do mundo-real, incluindo retalho, produção,

finanças, desenvolvimento de software, sistemas baseados em sensores, e notícias e eventos a nível mundial;

2) a aplicação do método para recolher, preparar e enriquecer dados (batch e streaming) provenientes de

vários sistemas-fonte; 3) uma extensão do SSB desenvolvida à medida (SSB+), na qual várias workloads foram

executadas de modo a avaliar o desempenho de um BDW implementado usando a abordagem proposta,

comparando-o com um DW dimensional tradicional; 4) uma instância do mundo-real baseada no

desenvolvimento de um sistema de BDWing no contexto de smart cities. Os resultados deste trabalho revelam

que a abordagem pode ser aplicada e generalizada para suportar vários contextos de aplicação,

disponibilizando modelos de dados adequados e flexíveis que conseguem reduzir o tempo de implementação

entre a recolha de dados e a análise de dados. Além disso, a abordagem apresenta frequentemente tempos

mais rápidos na execução de queries e um uso de recursos mais eficiente do que uma abordagem dimensional

tradicional. Consequentemente, a abordagem proposta pode ser usada para a conceção e implementação de

BDWs seguindo uma abordagem sistémica, em vez de uma abordagem ad hoc e use case driven, o que é

visto como um contributo valioso para a comunidade técnico-científica relacionada com este tópico.

Palavras-chave - Big Data, Big Data Warehouse, Engenharia de Dados, Ciência de Dados.

xii | Advancing the Design and Implementation of Big Data Warehousing Systems

This page was intentionally left blank

Advancing the Design and Implementation of Big Data Warehousing Systems | xiii

Table of Contents

ACKNOWLEDGMENTS ... V

ABSTRACT...IX

RESUMO ...XI

TABLE OF CONTENTS ... XIII

LIST OF TABLES ... XVII

LIST OF FIGURES .. XIX

LIST OF ABBREVIATIONS AND ACRONYMS ... XXIII

CHAPTER 1. INTRODUCTION ... 1
1.1 Scope and Motivation .. 1
1.2 Research Problem, Opportunity, and Goal... 3
1.3 Research Objectives .. 5
1.4 Research Methodology .. 8
1.5 Document Structure .. 12

CHAPTER 2. BIG DATA ... 15
2.1 Big Data Relevance ... 15
2.2 Big Data Characteristics... 18
2.3 Big Data Challenges .. 23

2.3.1 Big Data General Dilemmas .. 23
2.3.2 Challenges in the Big Data Life Cycle ... 24
2.3.3 Big Data in Secure, Private, and Monitored Environments 27
2.3.4 Organizational Change .. 29

2.4 Techniques and Technologies for Big Data Solutions ... 30
2.4.1 Designing Big Data Solutions... 31
2.4.2 Big Data Technologies .. 40

CHAPTER 3. BIG DATA WAREHOUSING .. 49
3.1 Characteristics and Design Changes for Big Data Warehouses ... 50
3.2 Data Warehouses on NoSQL Databases ... 63
3.3 Storage Technologies, Optimizations, and Benchmarking for Big Data Warehouses 65
3.4 Advancements in OLAP, Query, and Integration Mechanisms for Big Data Warehouses 68
3.5 Implementations in Specific Contexts ... 70
3.6 Final Remarks ... 72

CHAPTER 4. AN APPROACH FOR THE DESIGN AND IMPLEMENTATION OF BIG DATA
WAREHOUSING SYSTEMS ... 77

4.1 Model of Logical Components and Data Flows .. 77
4.1.1 Data Provider and Data Consumer .. 79

xiv | Advancing the Design and Implementation of Big Data Warehousing Systems

4.1.2 Big Data Application Provider .. 79
4.1.3 Big Data Framework Provider .. 82
4.1.4 System Orchestrator and Security, Privacy, and Management 89

4.2 Model of Technological Infrastructure ... 90
4.3 Method for Data Modeling ... 97

4.3.1 Analytical Objects and their Related Concepts .. 97
4.3.2 Joining, Uniting, and Materializing Analytical Objects .. 101
4.3.3 Dimensional Big Data with Outsourced Descriptive Families 104
4.3.4 Data Modeling Best Practices .. 107
4.3.5 Data Modeling Advantages and Disadvantages ... 111

CHAPTER 5. BIG DATA WAREHOUSES MODELING: FROM THEORY TO PRACTICE 113
5.1 Multinational Bicycle Wholesale and Manufacturing ... 113

5.1.1 Fully Flat or Fully Dimensional Data Models ... 116
5.1.2 Nested Attributes .. 117
5.1.3 Streaming and Random Access on Mutable Analytical Objects 118

5.2 Brokerage Firm ... 120
5.2.1 Unnecessary Complementary Analytical Objects and Update Problems................ 120
5.2.2 Joining Complementary Analytical Objects ... 122
5.2.3 Data Science Models and Insights as a Core Value ... 123
5.2.4 Partition Keys for Streaming and Batch Analytical Objects 124

5.3 Retail .. 125
5.3.1 Simpler Data Models: Dynamic Partitioning Schemas ... 126
5.3.2 Considerations for Spatial Objects ... 126
5.3.3 Analyzing Non-Existing Events.. 127
5.3.4 Wide Descriptive Families .. 127
5.3.5 The Need for Joins in Data CPE Workloads .. 128

5.4 Code Version Control System ... 129
5.5 A Global Database of Society – The GDELT Project .. 131
5.6 Air Quality ... 132

CHAPTER 6. FUELING ANALYTICAL OBJECTS IN BIG DATA WAREHOUSES 135
6.1 From Traditional Data Warehouses ... 135
6.2 From OLTP NoSQL Databases ... 138
6.3 From Semi-Structured Data Sources ... 141
6.4 From Streaming Data Sources ... 143
6.5 Using Data Science Models ... 150

6.5.1 Data Mining/Machine Learning Models for Structured Data 151
6.5.2 Text Mining, Image Mining, and Video Mining Models ... 157

CHAPTER 7. EVALUATING THE PERFORMANCE OF BIG DATA WAREHOUSES 161
7.1 The SSB+ Benchmark ... 161

7.1.1 Data Model and Queries ... 161
7.1.2 System Architecture and Infrastructure .. 163

Advancing the Design and Implementation of Big Data Warehousing Systems | xv

7.2 Batch OLAP .. 165
7.2.1 Comparing Flat Analytical Objects with Star Schemas ... 165
7.2.2 Improving Performance with Adequate Data Partitioning 170
7.2.3 The Impact of Dimensions’ Size in Star Schemas ... 174
7.2.4 The Impact of Nested Structures in Analytical Objects... 177
7.2.5 Drill Across Queries and Window and Analytics Functions 179

7.3 Streaming OLAP .. 181
7.3.1 The Impact of Data Volume in the Streaming Storage Component 182
7.3.2 Considerations for Effective and Efficient Streaming OLAP 184

7.4 SQL-on-Hadoop Systems Under Multi-User Environments .. 188

CHAPTER 8. BIG DATA WAREHOUSING IN SMART CITIES ... 191
8.1 Logical Components, Data Flows, and Technological Infrastructure 191

8.1.1 SusCity Architecture ... 193
8.1.2 SusCity Infrastructure ... 197

8.2 SusCity Data Model ... 198
8.2.1 Buildings Characteristics as an Outsourced Descriptive Family 201
8.2.2 Nested Structures in Analytical Objects .. 202

8.3 The Inter-storage Pipeline ... 203
8.4 The SusCity Data Visualization Platform .. 204

8.4.1 City’s Energy Consumption ... 205
8.4.2 City’s Energy Grid Simulations ... 206
8.4.3 Buildings’ Performance Analysis and Simulation... 207
8.4.4 Mobility Patterns Analysis .. 209

CHAPTER 9. CONCLUSION .. 211
9.1 Undertaken Work and Achieved Results .. 213
9.2 Contributions to the State-of-the-art .. 219
9.3 Future Work .. 224

REFERENCES .. 227

xvi | Advancing the Design and Implementation of Big Data Warehousing Systems

This page was intentionally left blank

Advancing the Design and Implementation of Big Data Warehousing Systems | xvii

List of Tables

Table 1.1. Literature review process. ... 5

Table 2.1. Big Data applied in several business areas. ... 18

Table 2.2. Comparison between an extended RDBMS and Hadoop MapReduce. Adapted from

(Kimball & Ross, 2013). ... 36

Table 3.1. Research on storage technologies, optimization, and benchmarking for BDWs. 65

Table 3.2. Research on OLAP, query, and integration mechanisms for BDWs. 69

Table 7.1. Multi-user SSB+ workload SF=30. ... 189

Table 8.1. Performance comparison between analytical objects stored in Hive and Cassandra. Based

on (C. Costa & Santos, 2017c). .. 204

Table 9.1. Scientific publications. ... 221

xviii | Advancing the Design and Implementation of Big Data Warehousing Systems

This page was intentionally left blank

Advancing the Design and Implementation of Big Data Warehousing Systems | xix

List of Figures

Figure 1.1. Research methodology (DSRM for IS). Adapted from (Peffers et al., 2007). 9

Figure 2.1. Increased interest in Big Data. Reprinted from (Google Trends, 2018)........................ 16

Figure 2.2. The 3Vs model. Adapted from (Zikopoulos & Eaton, 2011). 20

Figure 2.3. Main Big Data characteristics identified in the literature. Adapted from (C. Costa & Santos,

2017a). .. 22

Figure 2.4. An overview of the Big Data Processing Flow. Adapted from (Krishnan, 2013; C. Costa &

Santos, 2017a). .. 32

Figure 2.5. A shared-nothing architecture. Adapted from (Krishnan, 2013). 35

Figure 2.6. The Lambda Architecture. Adapted from (Marz & Warren, 2015; C. Costa & Santos,

2017a). .. 37

Figure 2.7. The NIST Big Data Reference Architecture. Adapted from (NBD-PWG, 2015; C. Costa &

Santos, 2017a). .. 39

Figure 2.8. The Apache Hadoop ecosystem. Adapted from (C. Costa & Santos, 2017a). 42

Figure 3.1. Number of works related to research on BDW, grouped by the main topic. 72

Figure 3.2. A conceptual model of the BDW. ... 74

Figure 4.1. Model of logical components and data flows. ... 78

Figure 4.2. Method for CPE processes. ... 81

Figure 4.3. Model of the technological infrastructure. ... 91

Figure 4.4. General data model. ... 98

Figure 4.5. Process of joining analytical objects. .. 102

Figure 4.6. Example of immutable and mutable records... 110

Figure 5.1. Adventure Works BDW data model. .. 115

Figure 5.2. Brokerage firm BDW data model. ... 121

Figure 5.3. Retail BDW data model. .. 125

Figure 5.4. BDW data model for code version control systems. ... 130

Figure 5.5. BDW data model for the GDELT project.. 131

xx | Advancing the Design and Implementation of Big Data Warehousing Systems

Figure 5.6. BDW data model for air quality analysis. .. 132

Figure 6.1. CPE workload for traditional DW migration. .. 136

Figure 6.2. CPE workload for semi-structured data. .. 142

Figure 6.3. Streaming CPE workload using Kafka, Spark Streaming, and Cassandra. 144

Figure 6.4. Example of using data mining/machine learning algorithms in CPE workloads. 153

Figure 6.5. Including unstructured data science models in CPE workloads. 159

Figure 7.1. SSB+ data model. Adapted from (O’Neil et al., 2009; C. Costa & Santos, 2018) with

extended content. .. 162

Figure 7.2. SSB+ architecture. Adapted from (C. Costa & Santos, 2018). 164

Figure 7.3. Small to medium batch SSB+ workloads. ... 166

Figure 7.4. Storage size for the SF=300 using different modeling approaches. 167

Figure 7.5. Large-scale batch SSB+ workload. ... 169

Figure 7.6. Presto CPU time for the star schema and the flat analytical object........................... 170

Figure 7.7. Large-scale batch SSB+ SF=300 workload with data partitioning. 172

Figure 7.8. Large-scale batch SSB+ SF=300 workload with small dimensions. 175

Figure 7.9. Performance of a nested analytical object in the SSB+ context. 178

Figure 7.10. Performance of an analytical object (AO) and a star schema (SS) in a workload based

on drill across queries and window and analytics functions. ... 180

Figure 7.11. Cassandra and Hive SSB+ streaming results. ... 182

Figure 7.12. Spark Streaming monitoring GUI showing resource starvation when using Cassandra and

Presto simultaneously. Adapted from (C. Costa & Santos, 2018). ... 186

Figure 7.13. Thousands of small files created in HDFS (Hive’s storage backend) when using Spark

Streaming. .. 187

Figure 8.1. The SusCity BDWing architecture. Adapted from (C. Costa & Santos, 2017c). 192

Figure 8.2. The SusCity BDW data model. Adapted from (C. Costa & Santos, 2017c) with extended

content. .. 200

Figure 8.3. SusCity nested structures (example). ... 203

Advancing the Design and Implementation of Big Data Warehousing Systems | xxi

Figure 8.4. SusCity data visualization platform - energy consumption dashboard. Adapted from (C.

Costa & Santos, 2017c). .. 205

Figure 8.5. SusCity data visualization platform - energy grid simulation dashboard. Adapted from (C.

Costa & Santos, 2017c). .. 206

Figure 8.6. SusCity data visualization platform - buildings analysis dashboard. 208

Figure 8.7. SusCity data visualization platform - buildings simulation dashboard. Adapted from

(Monteiro et al., 2018). .. 208

Figure 8.8. SusCity data visualization platform - mobility grid dashboard. 209

Figure 8.9. SusCity data visualization platform - mobility dashboard at street level. 210

xxii | Advancing the Design and Implementation of Big Data Warehousing Systems

This page was intentionally left blank

Advancing the Design and Implementation of Big Data Warehousing Systems | xxiii

List of Abbreviations and Acronyms

In this document, several abbreviations and acronyms are used, which are presented as follows:

3NF - Third Normal Form

ACID - Atomicity, Consistency, Isolation, and Durability

API - Application Programming Interface

BDW - Big Data Warehouse

BDWing - Big Data Warehousing

BI - Business Intelligence

CAP - Consistency, Availability, and Partition tolerance

CPE - Collection, Preparation, and Enrichment

CPU - Central Processing Unit

DBMS - Database Management System

DDL - Data Definition Language

DSRM - Design Science Research Methodology

DW - Data Warehouse

DWing - Data Warehousing

ELT - Extraction, Loading, and Transformation

ETL - Extraction, Transformation, and Loading

GFS - Google File System

GUI - Graphical User Interface

HDFS - Hadoop Distributed File System

IaaS - Infrastructure-as-a-Service

I/O - Input/Output

IoT - Internet of Things

IS - Information Systems

IT - Information Technology

xxiv | Advancing the Design and Implementation of Big Data Warehousing Systems

JBOD - Just a Bunch of Disks

JSON - JavaScript Object Notation

MPP - Massively Parallel Processing

NBD-PWG - NIST Big Data Public Working Group

NBDRA - NIST Big Data Reference Architecture

NIST - National Institute of Standards and Technology

NoSQL - Not Only SQL

ORC - Optimized Row Columnar

OLAP - Online Analytical Processing

OLTP - Online Transaction Processing

RAID - Redundant Array of Independent Disks

RAM - Random Access Memory

RDBMS - Relational Database Management System

RDD - Resilient Distributed Dataset

SCD - Slowly Changing Dimension

SF - Scale Factor

SOA - Service-Oriented Architecture

SaaS - Software-as-a-Service

SQL - Structured Query Language

SSB - Star Schema Benchmark

TDWI - The Data Warehousing Institute

TPC - Transaction Processing Performance Council

TPC-DS - TPC Benchmark DS

TPC-E - TPC Benchmark E

TPC-H - TPC Benchmark H

UDF - User-Defined Function

XML - Extensible Markup Language

Introduction | 1

Chapter 1. Introduction

This chapter introduces the scope and motivation for this doctoral thesis, the research problem,

opportunity, and goal, as well as the expected results and the structure of this document. Moreover,

the methodology to carry out the research process is also presented in this chapter, including a

justification for its adoption, its several activities, and its relationship with the research work and

expected results.

1.1 Scope and Motivation

Our world is generating data at unprecedented rates, mainly due to the technological advancements

we face, namely in cloud computing, internet, mobile devices, and embedded sensors (Dumbill,

2013; Hashem et al., 2015; Villars, Olofson, & Eastwood, 2011). Collecting, storing, processing, and

analyzing all this data becomes increasingly challenging, but organizations who are able to surpass

these challenges and extract business value from it, will gain significant competitive advantages. They

will be able to better analyze and understand their products, stakeholders, and transactions. Big Data

is frequently seen as a buzzword for smarter and more insightful data analyses, but it can be argued

that it is more than that, it is about new challenging and more granular data sources, which require

the use of advanced analytics to create or improve products, processes, and services, as well as

adapting rapidly to business changes (Davenport, Barth, & Bean, 2012).

During the last years, there was an increased interest in Big Data (Google Trends, 2018), and it is

sometimes highlighted as fundamental for productivity growth, innovation, and customer relationship,

benefiting business areas like healthcare, public sector, retail, manufacturing, and modern cities, for

example (Manyika et al., 2011; M. Chen, Mao, & Liu, 2014). The definition of Big Data is ambiguous,

and it is difficult to quantify the level at which data becomes big (Ward & Barker, 2013). Therefore,

Big Data is frequently defined by its characteristics (e.g., volume, variety, and velocity) and the

consequent technological limitations it imposes in organizations, i.e., data that is “too big, too fast,

or too hard for existing tools to process” (Madden, 2012). It can be noticed that if Big Data is data

2 | Advancing the Design and Implementation of Big Data Warehousing Systems

that creates technological limitations, then it always existed and it always will. Currently, a paradigm

shift is happening in the way we collect, store, process, and analyze data. Organizations need to be

aware of these technological trends and strategies that may improve business value. Consequently,

Big Data as a research topic is of major relevance to assure that organizations have rigorously justified

proofs that emergent techniques and technologies can help them making progress in data-driven

business environments.

Moreover, Big Data faces innumerous research challenges mainly divided into four categories: general

dilemmas, such as the lack of consensus and rigor in the definition, models, and architectures, for

example; challenges related to the Big Data life cycle, from collection to analysis; challenges related

to security, privacy, and monitoring; and, finally, organizational change, such as new required skills

(e.g., data scientists) or changes in workflows to accommodate the data-driven mindset. Working with

Big Data implies knowledge from multiple disciplines and the term data science is frequently

highlighted to designate the area responsible for dealing with Big Data throughout the stages of its

life cycle, relying on the scientific method (defining hypothesis and validating conclusions) and on

knowledge related to areas like machine learning, programming, and databases, for example.

Therefore, in this document, data science is referred as the act of extracting patterns and trends from

data, using certain data-related techniques, regardless of its characteristics or challenges. These

insights can then be communicated or used to create data artifacts or to optimize existing ones,

improving business management and performance through data-driven decision-making (C. Costa &

Santos, 2017b). In this document, the term data science is used with the meaning afore presented,

and terms like data mining, for example, are seen as present in the knowledge of data scientists and,

therefore, referred as data science techniques (C. Costa & Santos, 2017b).

As the traditional DW is such a remarkable and fundamental enterprise asset, which leverages data

access, analysis, and presentation in appropriate forms to support fact-based decision-making in

organizations (Kimball & Ross, 2013), the community starts to question: what is its role in the current

era of Big Data? Which considerations for Big Data environments will lead to the redesign of traditional

DWs based on relational databases? Which are its main characteristics and how can a BDW be

Introduction | 3

designed and implemented? These questions are of major relevance to understand the role of such

recognized data asset in current data-driven environments mainly dominated by volume, variety,

velocity, and advanced data analytics, which impose several difficulties to traditional techniques and

technologies (Russom, 2014, 2016). Organizations of today’s world need to understand if their

current DW is limited by the amount, structure, or velocity of data it can process, as well as consider

leveraging data science capabilities throughout their daily activities. The BDW is defined by its

characteristics, including parallel/distributed storage and processing, real-time capabilities,

scalability, elasticity, high performance, flexible storage, commodity hardware, interoperability, and

support for mixed and complex analytics. Being a recent concept, related research is emerging, and

it becomes critical to study and propose an integrated and validated approach to design and

implement both the logical layer (data models, data flows, and interoperability between components)

and physical layer (technological infrastructure) of a BDW, a critical gap identified in the literature.

The divergence regarding the concept of BDW is alarming, and a prescriptive approach in which

models, methods, and instantiations are tightly coupled is needed, providing a cohesive way to build

BDWs.

1.2 Research Problem, Opportunity, and Goal

Research related to the concept of BDW is scarce, due to the youth of this topic, and there is no

common approach to design and implement it, as the trend mainly consists in finding the best

technology to meet Big Data demands (use case driven approach), instead of a data modeling

approach (data-driven) (Clegg, 2015). Moreover, there are already some best practices, non-

structured guidelines, and implementations in specific contexts, but these do not cover many of the

characteristics of a BDW identified in the literature. As works related to the BDW concept are

multidisciplinary, certain approaches focus on general guidelines and best practices, while others

focus on the technological advancements in storage and analytics, for example. There is no integrated

approach focusing on both the logical layer and on the physical layer, in order to implement the

characteristics of a BDW with adequate evaluation (e.g., benchmarking, prototypes, and data

4 | Advancing the Design and Implementation of Big Data Warehousing Systems

modeling discussion), thus providing a general-purpose approach, and prescribing models and

methods to researchers and practitioners.

In order to identify a relevant research problem, one has conducted a literature review, whose process

is detailed in Table 1.1, highlighting the several search engines, keywords, time period, and relevance

criteria used throughout this work. The main problem identified in the literature is that there is a

significant gap between “this is what a BDW should be” and “this is how it must be designed and

implemented”, obviously leading to a use case driven approach primarily concerned with finding the

best technology to meet demands. The proposal of a prescriptive approach to design and implement

BDWs contributes to the development of new initiatives in a rigorously justified manner, wherein

models (representations of logical and infrastructural components), methods (structured practices),

and instantiations (prototypes or implemented systems) are tightly coupled and grounded on

evaluated practices. Such contribution aims to enrich data-driven approaches in Big Data

environments, in which the models and methods are so general that the context of the instantiations

becomes as irrelevant as possible, similarly to what usually happens in traditional DWs. Big Data

implies severe changes in the way one is used to build traditional DWs, including different techniques

and technologies, but this work assumes that it does not need to imply discarding the relevance of

data models and methods in favor of a use case driven approach. Consequently, the following

research goal is proposed:

“Propose a general-purpose approach for designing and implementing BDWs, wherein models

and methods are adequately integrated and validated.”

To fulfill the previously mentioned gap, and given the urgent need for extending the knowledge base

in BDWing, the proposed approach contains a set of models and methods to guide practitioners

working in this area, and also aims to foster future research related to BDWs, by inviting researchers

to further evaluate it in several implementation contexts. According to Hevner, March, Park, and Ram

(2004), models and methods are framed as Information Technology (IT) artifacts that can be

proposed in research processes related to the field of Information Systems (IS), to which this work

belongs. Models and methods are seen as relevant artifacts that can be used to extend the current

Introduction | 5

knowledge base with new artifacts. In this research process, the Design Science Research

Methodology (DSRM) for IS is used to create these artifacts (Peffers, Tuunanen, Rothenberger, &

Chatterjee, 2007), being described in subsection 1.4.

1.3 Research Objectives

As seen in the previous section, the main goal of this doctoral thesis is the proposal of an approach

to design and implement BDWs, which should respect the characteristics of a BDW according to the

literature, in order to provide prescriptive models and methods for building these complex data assets

without ignoring any relevant aspects. Moreover, this doctoral thesis is not focused on “lift and shift”

strategies, therefore, the coexistence of the traditional DW with Big Data technologies is not considered

here. Consequently, one foresees the use of the proposed approach in the following scenarios: the

organization does not currently have a traditional DW and wants to implement a modern data asset,

namely a BDW; the organization has a traditional DW and wants to replace it (“rip and replace”

strategy); or, finally, the organization relies on a use case driven approach, maintaining a complex

Table 1.1. Literature review process.

Search Engines Search Keywords Evaluation Time Period

ACM Digital
Library

[“Big Data”], to understand the
concept, relevance, challenges,
techniques and technologies. Papers
or other documents are ordered by
relevance, and results are taken into
consideration until a series of titles
suggest that they do not concern the
fundamentals of Big Data enumerated
above. This decision is due to the
thousands of results retrieved from the
search engines.

[“Big Data” AND Warehouse(ing)], to
review works specifically related to the
BDW concept. Papers/documents are
ordered by date. As each search
engine retrieved only a few hundred
articles, all the results are taken into
consideration.

1. Titles and abstracts are
analyzed. If the work is
relevant, then it is saved;

2. Among the saved
literature, introductions
and conclusions are
read. If relevant for
discussion, further
analysis occurs and the
work is cited.

From 01/2010 to
09/2018

Note: Citations of works
prior to 2010 occur if it is
cited in another work under
analysis, or if the work is a
reference in the field.

Google Scholar

IEEE Xplore

Scopus

Science Direct

Web of Science

Google (for
information
about certain
technologies)

6 | Advancing the Design and Implementation of Big Data Warehousing Systems

and not interoperable federation of different technologies, and wants a data-driven approach with high

interoperability between components, well-defined methods, data models, and data flows.

As there is a gap between the understanding of the BDW and the way to implement one, such artifacts

are of major relevance to the scientific community and to the practitioners in the area of data

engineering and data science, consequently leading to a contribution in which models, methods, and

instantiations are tightly coupled and scientifically evaluated. Such contribution provides a structured

guide to DW practitioners and promotes future research regarding the concept of BDW, without seeing

it as a use case driven approach. Taking this into consideration, the research objectives of this work

are defined as follows:

1. Proposal of models and methods:

a. A model of the logical components and their interoperability, using as general guidelines

the National Institute of Standards and technology (NIST) Big Data Reference Architecture

(NBDRA) (NBD-PWG, 2015), the Big Data Processing Flow (Krishnan, 2013), the Data

Highway Concept (Kimball & Ross, 2013), and the Lambda Architecture (Marz & Warren,

2015). This model also represents how data flows through the different components,

rigorously detailing how they interchange data according to the proposed data modeling

method;

b. A method for collecting, preparing, and enriching data flowing to the BDW, including

structured, semi-structured, and unstructured data. As previously mentioned, data

science techniques (e.g., data mining and text mining) should be taken into consideration,

in order to give structure to the data and deliver predictive capabilities. Such concern

should be included in the method to propose. This method should also include concerns

regarding batch data and streaming data (low latency and high frequency);

c. A technological infrastructure model, representing how the Big Data technologies can be

used, organized, and deployed in a shared-nothing architecture;

d. A data modeling method that is able to accommodate all types of data regardless of their

structure and subject. Obviously, unstructured data does not fit into predefined data

Introduction | 7

models, therefore, in this case, data mining and text mining techniques are used to extract

value from data, giving structure to the relevant findings, and storing those in the BDW.

Consequently, the BDW will not only have historical data, but also real-time data and

predictive capabilities.

2. Application and evaluation of the models and methods using several demonstration cases:

a. Evaluate the suitability of the proposed data modeling method when applied to several

real-world problems (e.g., retail, manufacturing, finance, sensor-based analysis, and

digital media). This objective is focused on making available a set of BDW data models

and examples of data modeling guidelines, which practitioners can take into consideration

when building their own applications. These examples also complement the smart cities

BDW demonstration case presented below, by providing other BDWing contexts;

b. Design and implementation details regarding batch and streaming data CPE processes.

Batch processes do not aim for low latency and high frequency, unlike streaming

processes, in which each data point should be loaded into the BDW with a latency

between milliseconds and a few seconds. This demonstration case should also consider

how several data science techniques (e.g., data mining and text mining) can be efficiently

included in batch and streaming data CPE processes, as the approach aims to support

the design and implementation of both descriptive and predictive BDWs, as mentioned in

the previous objectives;

c. Benchmark of several workloads and scenarios, including different Scale Factors (SFs)

and dimensions size for batch data, use of data partitioning, use of nested attributes, drill

across, window and analytics functions, concurrent workloads, and stream processing.

This will allow for the evaluation of how a BDW created using the proposed approach

handles large scans needed for ad hoc analysis, reporting, and data visualization,

compared to a traditional dimensional DW, as well as how it handles streaming scenarios,

concurrent workloads, and semi-structured analytics (e.g., analysis using nested arrays,

key-value pairs, or geometry objects);

8 | Advancing the Design and Implementation of Big Data Warehousing Systems

d. Evaluate the suitability of the proposed approach for solving real-world BDWing problems,

by implementing a prototype of a BDWing system for smart cities that follows the proposed

models and methods. In this case, the SusCity research project will be used, which is

focused on the development and integration of new tools and services to improve the

efficiency of urban resources, reducing the environmental impact and promoting

economic development and reliability (SusCity, 2016). The main goal is to advance the

science of urban systems modeling and the data representation supported by the

collection and processing of Big Data. This allows the creation of new services that explore

economic opportunities and the sustainability of urban systems. The SusCity project has

a testbed in Lisbon that includes several data sources (e.g., sensors, census, buildings

characteristics, and geolocation data related to mobility), generating data at different

velocities (e.g., batch and streaming), with significant volume. Moreover, data science

techniques, such as data mining (e.g., clustering and time series forecasting) and data

visualization, are crucial to create new services to improve urban systems. Therefore, this

research project is used to instantiate the approach, discussing and evaluating the

proposed models and methods for collecting, storing, processing, and analyzing Big Data,

thus proving the suitability of the approach to solve real-world problems.

It is worth mentioning that throughout this doctoral thesis the invention, adaptation or customization

of any Big Data technology is not considered as a contribution. Moreover, this work does not aim to

study or focus on data quality mechanisms. Instead, the focus is on the proposal of a cohesive way

of building BDWs, a model-oriented and method-oriented approach to assure the adequate

interoperability between the different components of a BDW, and evaluate it through demonstration

cases that will use state-of-the-art Big Data technologies already developed.

1.4 Research Methodology

Research on IS is mainly characterized by two paradigms: behavioral science, which is focused on

the development and verification of theories that explain or predict human or organizational behavior;

and design science, which seeks to extend the boundaries of human and organizational capabilities

Introduction | 9

by creating new and innovative IT artifacts, broadly defined as constructs (vocabulary and symbols),

models (abstractions and representations), methods (algorithms and practices), and instantiations

(implemented systems and prototypes) (Hevner et al., 2004). As the proposed approach is a

collection of IT artifacts (models and methods), the use of the DSRM for IS from Peffers, Tuunanen,

Rothenberger, and Chatterjee (2007) is suitable to carry out this research process.

The DSRM for IS aims to provide a rigorous way of carrying out design science research and aid the

acceptance of this kind of research in the field of IS. Without the existence of a model, the community

was facing problems in the evaluation of design science research, and distinguish it from practice

activities was difficult. Therefore, the DSRM for IS is seen as a methodology to produce and present

design science research, helping researchers to ground their work by referencing a commonly

accepted methodology, rather than justifying the research process on an ad hoc basis (Peffers et al.,

2007). Figure 1.1 presents the DSRM for IS used in this work, in which the entry point of the research

process is considered to be problem-centered, after reviewing the literature and identifying the lack of

a prescriptive approach to design and implement BDWs. The research process is as follows:

1. Problem identification and motivation - this activity focuses on defining the research problem

and justifying the value of the solution, both already highlighted in this chapter. The problem

definition is used to motivate the proposal of an artifact that effectively provides a solution.

Figure 1.1. Research methodology (DSRM for IS). Adapted from (Peffers et al., 2007).

10 | Advancing the Design and Implementation of Big Data Warehousing Systems

At this point, the lack of a prescriptive approach to design and implement BDWs covering

logical and physical aspects is the identified research problem, according to the literature,

and the main motivation, as already highlighted, is to address this gap and help researchers

and practitioners in the area. The inputs used in this activity are the state-of-the-art in Big

Data and BDW, as well as the relevance to provide a solution for the identified problem;

2. Define the objectives for a solution - this should be inferred from the problem definition. In

this doctoral thesis, these objectives are presented in section 1.3, encompassed by the main

goal of proposing the BDWing approach. Part of the research objectives are mainly centered

around efficiency, as several benchmarking metrics are used to assess the proposed

guidelines. In this context, a traditional dimensional DW is frequently used as baseline, and

thresholds like executing ad hoc queries in large datasets within a few seconds or tens of

seconds is expected, according to the current state-of-the-art regarding storage technologies

and analytical mechanisms for BDW implementation. Regarding the SusCity prototype, the

evaluation is mainly based on effectiveness, i.e., the artifact is applied to solve the problem,

and it either solves it completely, partially or does not solve it in any form, generating a

discussion of the results. Finally, there are other research objectives presented in section 1.3

aiming to clarify some of the guidelines provided to practitioners, namely the data CPE and

data modeling guidelines. Once there are no similar approaches to design and build BDWs,

the proposal cannot be directly compared to any related work;

3. Design and development - in this activity, the artifacts are created, including the models and

methods of the BDWing approach. They should comply with the characteristics of a BDW

identified in the literature, in order to provide the adequate functionalities. The inputs used

in this activity are the state-of-the-art in Big Data and BDW, mostly the knowledge related to

techniques and technologies suitable for BDWs, as well as some best practices and non-

structured guidelines already present in the literature;

4. Demonstration - the approach is instantiated to demonstrate its usefulness and effectiveness

for solving a real problem in the context of smart cities, namely in the SusCity research

project. In addition to that, as mentioned, a custom-made extension of the SSB benchmark

Introduction | 11

(SSB+) is used to provide another demonstration case and to consolidate the evaluation of

the approach. Furthermore, two other demonstration cases related to data CPE and data

modeling are also developed to consolidate the work regarding some design and development

choices. Consequently, in this doctoral thesis, four demonstration cases are developed, in

order to apply the proposed artifacts in different contexts. Throughout this activity, it is crucial

the knowledge on how to use the artifact to solve the problem;

5. Evaluation - it will be observed and measured how well the approach supports the solution

of the problem, when compared to the research objectives. The evaluation of the

demonstration cases consists in assessing the proposed approach, mainly in terms of

effectiveness, complexity and latency, throughout different phases of the Big Data life cycle

(e.g., collection/loading, cleansing, integration, transformation, and analysis).

Considerations regarding storage, Random Access Memory (RAM), and Central Processing

Unit (CPU) requirements are also relevant for discussion whenever applicable. Finally, the

proposed approach should respect the characteristics of a BDW identified in the literature, in

order to be evaluated as a satisfactory prescriptive approach. The following points detail the

evaluation activity:

a. The proposed approach should be general-purpose, being suitable for BDWing

contexts and focusing on both the physical and logical layers. For its evaluation, an

extension of the SSB benchmark (SSB+) is developed and executed (streaming data

scenarios, drill across, window and analytics functions, dimensions size evaluation,

nested attributes, concurrent workloads, and data partitioning), in order to observe

several phenomena under controlled and general-purpose contexts, providing

adequate measures mainly regarding latency, CPU usage, and memory and storage

constraints. For queries based on large scans of batch and streaming data, the

optimal interactivity threshold is within a few seconds (maximum of 10 seconds),

based on literature related to the users’ tolerance regarding a computer’s response

time (Nah, 2004; Nielsen, 1993), while the satisfactory interactivity threshold is a

few tens of seconds (e.g., 20 or 30 seconds), depending on the business

12 | Advancing the Design and Implementation of Big Data Warehousing Systems

requirements, data volume, complexity of the queries, number of users, frequency

of inserts/updates, and configuration of the infrastructure;

b. In addition to that, the proposed approach is also evaluated using a real-world

instantiation that will show how the same can be applied to produce working systems

in real-world contexts, in this case, the SusCity research project (SusCity, 2016).

This evaluation will focus on the effectiveness of a BDW to support a Web-based

interactive data visualization platform providing intensive geospatial analytics and

simulations (e.g., buildings retrofitting measures and energy grid performance under

different scenarios). In the context of the SusCity project, interactivity requires less

than 10 seconds of response time, for the same reasons presented above (Nah,

2004; Nielsen, 1993);

c. Finally, this work also includes two additional evaluation contexts: the first one

focuses on the development of adequate data CPE processes following the proposed

approach; while the second one focuses on the data modeling aspect of BDWs

according to the method proposed in this work, presenting several BDW data models

that are suitable for real-world applications. In this case, evaluation will mainly focus

on effectiveness and complexity, i.e., assessing if the models and methods are able

to support several data CPE workloads and real-world BDW applications, while

avoiding some complexity typically found in traditional dimensional DWs (e.g.,

several types of dimensions, bridge tables, SCDs, and late arriving dimensions).

6. Communication - it mainly involves writing and publishing this doctoral thesis, scientific

publications in conferences and journals, books, or other communications to practitioners, if

applicable. This activity aims to make widely available the problem and its relevance, as well

as the artifact and its usefulness, novelty, rigor, effectiveness, and efficiency.

1.5 Document Structure

After this chapter with the scope, motivation, research goal, objectives, and methodology, this

document is structured as follows: Chapter 2 presents the relevance, definition, and challenges in Big

Introduction | 13

Data contexts, and the techniques and technologies to design and implement Big Data solutions,

including relevant Big Data architectures; Chapter 3 describes works related to BDWing, including

requirements identification, design changes, guidelines, advancements and implementations in

specific contexts; Chapter 4 presents the proposed approach, providing the models and methods for

designing and implementing effective and efficient BDWs, which allows for the understanding of the

approach in its general form, i.e., without being instantiated in a specific context; Chapter 5 provides

several BDW data models and data modeling considerations that practitioners can follow to

implement BDW applications, being this chapter particularly useful for clarifying and applying the

general data modeling method, and to facilitate the transition from theory to practice; Chapter 6

presents several workloads for collecting, preparing and enriching the data according to the proposed

approach, facilitating the understanding of the adequate mechanisms to deal with the data throughout

these three stages; Chapter 7 evaluates the performance of BDWs, by benchmarking several design

decisions related to the approach proposed in this work, which serves to provide support for its models

and methods; Chapter 8 presents a real-world BDW application in the context of smart cities, namely

discussing the implementation of the SusCity project from data collection to data visualization,

finalizing the discussion of the demonstration cases developed in this work; Chapter 9 concludes with

some remarks about the undertaken work and some prospects for future work.

14 | Advancing the Design and Implementation of Big Data Warehousing Systems

This page was intentionally left blank

Big Data | 15

Chapter 2. Big Data

The way people interact with organizations and the rate at which the transactions occur create

unprecedented challenges in data collection, storage, processing, and analysis. If organizations find

a way to extract business value from this data, they will most likely gain significant competitive

advantages (Villars et al., 2011). Big Data is often seen as a buzzword for smarter and more insightful

data analysis, but it is more than that, it is about new challenging data sources helping to understand

business at a more granular level, creating new products or services, and responding to business

changes as they occur (Davenport et al., 2012).

We live in a world constantly producing and consuming data, being a priority to understand the value

that can be extracted and analyzed from it. Organizations need to understand and analyze relevant

data flows, join data analytics with product/process development, and move it closer to the core

business (Davenport et al., 2012). This chapter presents the relevance of Big Data in today’s world,

several attempts to define it, the related challenges, and several techniques and technologies to

efficiently design and implement Big Data solutions (C. Costa & Santos, 2017a).

2.1 Big Data Relevance

Over the last years, the interest in Big Data has increased considerably (Google Trends, 2018),

particularly after 2012, as can be seen in Figure 2.1. In a McKinsey Global Institute’s report, Manyika

et al. (2011) argue that Big Data will become fundamental for productivity growth, innovation, and

customer relationship among organizations, highlighting its relevance in healthcare, public sector,

retail, manufacturing, and personal-location contexts, stating that value can be generated in each one

of them. Nowadays, data has a strong presence in the daily activities of almost every industry,

alongside labor and capital, as Manyika et al. (2011) demonstrated by estimating that, in 2009,

almost all economic sectors in the United States had, at least, nearly 200TB of stored data per

16 | Advancing the Design and Implementation of Big Data Warehousing Systems

organization with more than 1,000 employees. Other statistics show that the amount of data available

in today’s world is growing exponentially (Chandarana & Vijayalakshmi, 2014).

Nevertheless, as human beings tend to resist to changes, there are still the ones who ask themselves:

“Why Big Data? Why Now?” (Krishnan, 2013). According to Krishnan (2013), the concept of Big Data

is about leveraging access to a vast volume of data, which can help retrieving value for organizations,

with minimal human intervention, due to the advancements made in data processing technologies.

The author claims that Big Data always existed in several industries, but the appearance of

autonomous, fast, flexible, and scalable processes created a new paradigm shift, often resulting in a

cost reduction when compared to traditional data processing approaches.

Organizations find themselves facing this new data-driven way to conduct business, and a paradigm

shift in their infrastructure and way of thinking is, understandably, a step to consider seriously.

However, they need to foresee the value that Big Data can bring to their business (Manyika et al.,

2011):

§ The use of Big Data can make information more transparent and usable across the

organization;

§ Business performance can be increased with more accurate and detailed facts, which is

possible by collecting and processing more transactional data;

§ Better management decisions can be made through data analysis;

§ The use of Big Data has the ability to refine and reinvent products and services.

Figure 2.1. Increased interest in Big Data. Reprinted from (Google Trends, 2018).

Big Data | 17

Even so, the evidence that using Big Data intelligently will improve business performance can still be

questioned, as McAfee, Brynjolfsson, Davenport, Patil, and Barton (2012) highlight by discussing the

inadequacy of business press to demonstrate the real value of being data-driven and testing the

hypothesis that data-driven organizations are better performers than traditional ones. The authors

interviewed executives in 330 organizations and also gathered performance data about their

respective organizations. McAfee et al. (2012) come to an interesting conclusion: organizations that

view themselves as data-driven achieved better performance regarding financial and operational goals.

The authors highlight more productivity and profitability for top organizations that used data-driven

decision-making, even taking into consideration other factors like labor and capital, for example. The

results achieved by McAfee et al. (2012) rigorously corroborate the current trend for Big Data value

within organizations. The use of Big Data will become inevitable for competitive advantages across

most of the industries, from electronic and information industries to finance, insurance, or

government. Big Data can leverage increasing productivity and better customer relationship (Manyika

et al., 2011), and can potentially be used in several business areas to generate significant value for

organizations (Chandarana & Vijayalakshmi, 2014; Manyika et al., 2011; Villars et al., 2011), as

Table 2.1 demonstrates.

According to Brown, Chui, and Manyika (2011), other business areas are worth mentioning, such as

finance, insurance, and real estate. The authors present an approach that analyzes several business

areas by the ease-of-capture Big Data and its potential to generate value. The apparent trend is for

organizations to perceive value in data-driven decision-making and start collecting more data,

contributing to the continuous growth in data volume. Big Data will have a significant impact in value

creation and competitive advantage for organizations, such as new ways to interact with customers

or to develop products, services, and strategies, consequently raising profitability. Another area where

the concept of Big Data is of major relevance is the Internet of Things (IoT), seen as a network of

sensors embedded into several devices (e.g., appliances, smartphones, cars), which is a significant

source of Big Data, bringing many business environments (e.g., cities) into the era of Big Data (M.

Chen et al., 2014).

18 | Advancing the Design and Implementation of Big Data Warehousing Systems

As presented above, Big Data brings competitive advantages to organizations, but there are particular

characteristics that define it, although most of the time they are unquantifiable (Ward & Barker, 2013),

as will be discussed in the next section. Big Data creates a new paradigm shift in the way we collect,

store, process, and analyze data, but organizations can be data-driven and explore the potential of

data from innumerous sources without dealing with Big Data techniques and technologies. In this

case they are just dealing with new data, data that was not previously processed within the

organization, but does not impose severe difficulties in the capabilities of traditional techniques and

technologies. In the next section, the definition of Big Data will be discussed according to several

perspectives from different authors.

2.2 Big Data Characteristics

At this point, the notoriety and relevance of Big Data is understandable, potentially changing the way

organizations operate and create new opportunities based on data-driven approaches. Technological

advancements open the way for unprecedented amounts of data generated each day, at ever-

increasing rates. In 2011, around 1.8 zettabytes of data were produced in a couple of days, more

Table 2.1. Big Data applied in several business areas.

Business Area Examples of Application

Healthcare § Personalize medication and understand causes of diseases, using techniques to extract
value from vast amounts of data about medical history, medication, and drug
manufacturing, for example;

§ Other Big Data sources can include exercise data or even more unstructured data like
medical images.

Environment § Find a correlation between the measured values and the implications for the environment
through the collection of data from multiple sensors (e.g., air and water quality, metrology,
and gas emissions).

Public sector § Use Big Data to prevent fraud and errors regarding taxes;
§ Customize actions by segmenting population;
§ Create more transparency through data availability.

Retail § Event forecasting and customer segmentation, creating personalized products or services;
§ Location based marketing, sentiment analysis, and cross-selling;
§ Logistics optimization.

Manufacturing § Demand forecasting for supply planning;
§ Use of sensors in manufactured products to offer proactive maintenance.

Life sciences § Analyze genetic variations and the effectiveness of potential treatments, using vast
amounts of data.

Big Data | 19

than it was produced from the beginning of civilization until 2003 (M. Chen et al., 2014). Storage

capacity must increase, and new ways of dealing with such amounts of data emerge, but what actually

means Big Data?

First of all, there is no widely accepted threshold for classifying data as Big Data. Ward and Barker

(2013), in an attempt to clearly define Big Data, present several notorious definitions among the

community, highlighting that Big Data is predominantly and “anecdotally” associated with data

storage and data analysis, terms dating back to distant times, and also argue that the adjective “big”

implies significance, complexity, and challenge, but also makes it difficult to quantitatively define Big

Data. Ward and Barker (2013) present several definitions, some defining Big Data by its

characteristics, others based on the augmentation of traditional data with more unstructured data

sources, and some trying to quantify it. They also present definitions which rely on the inadequacy of

traditional technologies to deal with this new type of data, presenting several perspectives from the

industry, including Gartner, Oracle, Intel, Microsoft, and IBM, for example. In order to conclude about

the similarity among the definitions, Ward and Barker (2013) state that all definitions include at least

one of the following aspects: size, complexity, or techniques and technologies to process large and

complex datasets.

Dumbill (2013) attempts to provide a definition: “Big Data is data that exceeds the processing

capacity of conventional database systems. The data is too big, moves too fast, or does not fit the

strictures of your database architectures. To gain value from this data, you must choose an alternative

way to process it”. M. Chen et al. (2014) corroborate this definition by focusing on the fact that

traditional software and hardware cannot recognize, collect, manage, or process this new type of data

in reasonable time. Krishnan (2013) also agrees with these perspectives, defining Big Data by its

complexity, creation speed, and several degrees of ambiguity, whose processing is inadequate for

traditional methods, algorithms, and technologies. Although Ward and Barker (2013) are slightly

critical both regarding the lack of quantification in Big Data’s definition and the use of data storage

and analysis in several attempts to define it, in reality, they conclude by stating that the concept of

Big Data includes storage and analysis of large and complex datasets, using a set of novel techniques.

20 | Advancing the Design and Implementation of Big Data Warehousing Systems

The origin of the concept is relatively unknown, and its definition evolved rapidly, thus raising

uncertainty. Gandomi and Haider (2015) state that size is the characteristic that first stands out, but

others became usual to define Big Data. In 2001, Doug Laney, from Gartner, presented the 3Vs

model (Figure 2.2) to characterize Big Data by its volume, variety, and velocity (Laney, 2001). IBM

and Microsoft based their definitions of Big Data on this model for at least another 10 years (M. Chen

et al., 2014).

According to Gandomi and Haider (2015), volume is a characteristic which indicates the magnitude

of data, mentioning that it is frequently reported between Terabytes and Petabytes, citing the survey

of Schroeck, Shockley, Janet, Romero-Morales, and Tufano (2012), wherein just over half of the

respondents consider datasets bigger than 1TB to be Big Data. However, the authors discuss that

data size is relative and varies according to the periodicity and the type of data. It is impractical to

define a specific threshold for Big Data volume, as different types of data require different technologies

to deal with it (e.g., tabular data and video data), as Gandomi and Haider (2015) exemplify. The

volume in the 3Vs model characterizes the amount of data that is continuously generated (Krishnan,

Figure 2.2. The 3Vs model. Adapted from (Zikopoulos & Eaton, 2011).

Big Data | 21

2013), and the main cause for the ever-increasing volume is the fact that we currently store all our

interactions with the majority of services available in our world (Zikopoulos & Eaton, 2011).

Regarding variety, Big Data can be classified as structured (e.g., transactional data, spreadsheets,

and relational databases), semi-structured (e.g., Web server logs, Extensible Markup Language – XML,

and JavaScript Object Notation - JSON), and unstructured (e.g., social media posts, audio, video, and

images) (Chandarana & Vijayalakshmi, 2014; Gandomi & Haider, 2015). Traditional technologies

can present significant difficulties to store and process Big Data, such as content from Web pages,

click-stream data, search indexes, social media posts, emails, documents, and sensor data, for

example. Most of this data does not fit well in traditional databases and there must be a paradigm

shift in the way organizations perform analyses to accommodate raw structured, semi-structured, and

unstructured data, in order to take advantage of the value in Big Data (Zikopoulos & Eaton, 2011).

The final characteristic in the 3Vs model is velocity, referring either to the rate at which data is

generated or to the speed of analysis and decision support (Gandomi & Haider, 2015). Data can be

generated at different rates, ranging from batch to real-time (streaming) (Chandarana &

Vijayalakshmi, 2014; Zikopoulos & Eaton, 2011). It is relevant to apply the definition of velocity to

data in motion, instead of the rate at which data is collected, stored, and retrieved from storage.

Continuous data streams can create competitive advantages in contexts where the identification of

trends must occur in short periods of time, as in financial markets, for example (Zikopoulos & Eaton,

2011).

Over time, two additional characteristics emerged: value and veracity. Value represents the expected

result of processing and analyzing Big Data (Chandarana & Vijayalakshmi, 2014), which usually has

low value in its raw state, as this is mainly extracted with an adequate analysis (Gandomi & Haider,

2015). According to Chandarana & Vijayalakshmi (2014), value can be obtained through the

integration of different data types to improve business and gain competitive advantages. On the other

hand, veracity draws attention to possible imprecise data, since, sometimes, the analysis is based on

datasets with several degrees of precision, authenticity, and trustworthiness (Chandarana &

Vijayalakshmi, 2014). Gandomi and Haider (2015) corroborate this definition, highlighting the

22 | Advancing the Design and Implementation of Big Data Warehousing Systems

unreliability of certain data sources (e.g., customer sentiments extracted from social media), although

recognizing that they can be valuable when adequate techniques and technologies are used.

Other characteristics, not so noticeable according to the literature, are the variability and complexity,

introduced by SAS (Gandomi & Haider, 2015). Variability is related to the different rates at which

data flows, according to different peaks and inconsistent data velocity. Complexity highlights the

challenge of dealing with multiple data sources, namely to connect, match, clean, and transform

them. Besides these, Krishnan (2013) also proposes three other characteristics: ambiguity, related

to the lack of appropriate metadata, resulting from the combination of volume and variety; viscosity,

when the volume and velocity of data causes resistance in data flows; virality, which measures the

time of data propagation among peers in a network. Figure 2.3 presents a summary of all these

characteristics identified in the literature.

At this point, it seems that trying to quantify any of these characteristics becomes an impossible task.

Big Data remains as an abstract concept (M. Chen et al., 2014). It must be accepted that it can be

a combination of several characteristics, or a strong presence of only one, but it must be recognized

Figure 2.3. Main Big Data characteristics identified in the literature. Adapted from (C. Costa & Santos, 2017a).

Big Data | 23

as data that makes changes in the way we think about techniques and technologies, if they are

inadequate to deal with it. It may be a database or a DW that cannot scale accordingly on a shared-

everything architecture (Krishnan, 2013), or data mining tasks that cannot be finished without parallel

computing. Again, data is “too big, too fast, or too hard for existing tools to process” (Madden, 2012).

Defining Big Data by the inadequacy of traditional technologies is relatively dangerous, as

advancements are constantly being made (e.g. quantum computers), and such definition implies that

Big Data always existed and will continue to exist (Ward & Barker, 2013). The current definitions of

Big Data are relatively dependent on the techniques and technologies to collect, store, process, and

analyze it. These will evolve over time, and we need to learn to live with it. It will always be a matter

of analyzing new technological trends that may benefit business and reconsider new strategies related

to data. Currently, a new paradigm shift is happening. It does not need to be a change in all

organizations, but scientific progress related to Big Data will continue to exist, in order to assure that

organizations have rigorously justified proofs that emerging techniques and technologies can help

them making progresses in data-driven environments. The state-of-the-art regarding Big Data

techniques and technologies will be presented later in this document. Next section presents the

challenges regarding Big Data and the adoption of such initiatives.

2.3 Big Data Challenges

This section presents several challenges regarding Big Data, including general dilemmas, challenges

in the Big Data life cycle, issues in security, privacy, and monitoring, as well as required changes in

organizations. These challenges also serve to identify relevant research topics across several fields.

2.3.1 Big Data General Dilemmas

General dilemmas may include challenges such as the lack of consensus and rigor in Big Data’s

definition, models, and architectures, for example. M. Chen et al. (2014) claim that the concept of

Big Data is often more commercial speculation than it is a scientific research topic. The authors also

mention the lack of standardization in Big Data, such as data quality evaluation and benchmarking.

In fact, the lack of standard benchmarks to compare different technologies is seriously aggravated by

24 | Advancing the Design and Implementation of Big Data Warehousing Systems

the constant technological evolution in Big Data environments (Baru, Bhandarkar, Nambiar, Poess,

& Rabl, 2013).

Even the ways to fully use Big Data remain an open subject to explore, such as applications in science,

engineering, medicine, finance, education, government, retail, transportation, or telecommunications,

for example (M. Chen et al., 2014). Discussions such as how to select the most appropriate data

within several sources or how to estimate their value remain as Big Data dilemmas (Chandarana &

Vijayalakshmi, 2014). Another commonly discussed pitfall is how Big Data helps representing the

population better than a small dataset (Fisher, DeLine, Czerwinski, & Drucker, 2012). This obviously

varies with the context, but the authors call our attention for not assuming that more data is always

better.

2.3.2 Challenges in the Big Data Life Cycle

These challenges are related to technical difficulties in tasks such as Big Data collection, integration,

cleansing, transformation, storage, processing, analysis, and governance:

§ The need to rethink storage devices, architectures, mechanisms, and networks, in order to

achieve more efficient input/output (I/O), data accessibility, and data transmission (C. L. P.

Chen & Zhang, 2014);

§ Scalability becomes crucial to store and analyze data. Handling increasing amounts of data

requires redesigning databases and algorithms to extract value from it (Hashem et al., 2015).

Distributed/Parallel computing becomes crucial to deal with Big Data, assuring availability,

cost efficiency, and elasticity (M. Chen et al., 2014);

§ Assuring data quality and adding value through data preparation becomes challenging in Big

Data environments (C. L. P. Chen & Zhang, 2014). Different data sources may have different

data quality problems (Hashem et al., 2015). These problems and vast amounts of

redundancy can also make data integration more difficult (M. Chen et al., 2014). The

heterogeneity resulting from multiple sources augment these challenges, as traditional

techniques for data analysis expect homogeneous data (Jagadish et al., 2014). Heterogeneity

Big Data | 25

brings implications on data integration (Cuzzocrea, Song, & Davis, 2011) and consequences

in the analysis of Big Data, as the unstructured nature of data sources presents several

challenges regarding transformations to support adequate analytical tasks;

§ Visualizing Big Data requires rethinking traditional approaches due to the volume of data,

thus combining appearance and functionality is crucial (C. L. P. Chen & Zhang, 2014).

Advanced data visualizations are needed to extract value from Big Data (Russom, 2011),

having the capability to scale to thousands or millions of data points, handle multiple data

types, and be easy to use, in order to satisfy several users. Krishnan (2013) argues that

manipulating Big Data is challenging due to its characteristics, namely executing drilldowns

or rollups. In these visualizations, data from multiple sources is typically integrated into a

single picture. The author indicates that technological evolutions would be made to address

the challenge of manipulating Big Data interactively, as discussed later in this document;

§ Searching, mining, and analyzing Big Data is a challenging and relevant research trend,

including Big Data searching algorithms, recommendation systems, real-time Big Data

mining, image mining, text mining, among others (M. Chen et al., 2014). As Gandomi and

Haider (2015) claim, size is frequently the main concern in Big Data, but the unstructured

nature of data also deserves attention (e.g., text, audio, and video) and imposes significant

challenges in these tasks;

§ Big Data governance faces challenges regarding control and authority over massive amounts

of data from different sources (Hashem et al., 2015). Managing such heterogeneous

environment to plan access policies and assure traceability can quickly become almost

impossible without adequate governance tools.

Organizations face several challenges in the Big Data life cycle. New business problems require

technological innovations in the way data flows across the organization. Surpassing these challenges

will depend on the organization’s maturity, since legacy applications and the use of incompatible

formats can impose several difficulties to an adequate integration and extraction of value from Big

Data. Collecting data, namely gaining access to it, may also be a challenge, as integrating data from

26 | Advancing the Design and Implementation of Big Data Warehousing Systems

multiple sources, including external ones, raises questions about others’ intention to share it free of

charge (Manyika et al., 2011).

M. Chen et al. (2014) state that the efficiency in data flows is a key factor to assure an adequate Big

Data processing. The authors also highlight the challenge of building effective real-time computing

models and online applications to analyze Big Data. Other challenges related to processing Big Data

may include the reutilization and reorganization of data, which become laborious at scale. The

characteristics of Big Data require a paradigm shift in databases and analytical technologies, as

dealing with Big Data throughout its life cycle can potentially create severe bottlenecks in networks,

storage devices, and relational databases. Technology is evolving to execute these stages in distributed

environments, becoming dependent on high storage capacity and processing power.

Even relational databases are evolving to accommodate these trends, increasing query performance

and being able to deal with more data variety (Davenport et al., 2012). Combining the benefits of a

Relational Database Management System (RDBMS) and the database systems proposed from the

need to handle Big Data actually represents a research trend, as well as query optimization in Big

Data technologies (Cuzzocrea et al., 2011). Furthermore, advancements are constantly being made

in scalable storage and algorithms. Ji, Li, Qiu, Awada, and Li (2012) argue that processing queries in

Big Data may take significant time, as it is challenging to sequentially iterate through the whole dataset

in a short amount of time. Consequently, the authors highlight the relevance of designing indexes and

considering adequate preprocessing technologies. Hashem et al. (2015) identify the need to study

adequate models to store and retrieve data, a crucial factor to successfully implement Big Data

solutions. Models and algorithms for scalable data analysis also remain an open research issue, as

well as the integration and analysis of data arriving continuously from streams. Mining data streams

has been identified as an emergent research topic in Big Data analytics (H. Chen, Chiang, & Storey,

2012).

Big Data | 27

2.3.3 Big Data in Secure, Private, and Monitored Environments

Nowadays, keeping data secure and private is one of the most concerning tasks for organizations (M.

Chen et al., 2014; Jagadish et al., 2014). Users want to rest assure that any leaks into the public

domain will not occur (Chandarana & Vijayalakshmi, 2014). Sagiroglu and Sinanc (2013), citing a

survey from Intel IT Center (2012), claim that security and privacy are frequently mentioned among

the Big Data concerns of IT managers. It is relevant to plan a Big Data driven security model for

organizations to accurately specify risks and prevent illegal activity or cyber threats. Several

considerations are mentioned, such as authentication, authorization, network traffic analysis, data

protection laws, and mining data related to security. M. Chen et al. (2014) also discuss the potential

for Big Data applications related to security concerns.

Due to the characteristics of Big Data, more risks arise, and traditional data protection methods must

be rethought. M. Chen et al. (2014) argue that Big Data applications face multiple challenges related

to security, privacy, and monitoring: protection of personal privacy during not only data collection, but

also in its subsequent storage and flows; Big Data quality and its influence on the appropriate and

secure use of data; the performance of security mechanisms like encryption is largely influenced by

the scale and variety of data; and other aspects related to secure communications, administration,

and monitoring in environments with multiple users and services. Other relevant challenge, as

highlighted by Hashem et al. (2015), is assuring Big Data integrity, i.e., data is only modified by the

owner or other authorized entities.

Policies related to data are also relevant today, at a time when there is a significant amount of sensitive

data about individuals, such as the one related to their health or finances (Manyika et al., 2011).

Legal issues are being raised regarding the easiness to copy, integrate, and recurrently use data by

different people. Intellectual property, data ownership, and responsibility regarding inaccurate data

deserve proper attention from policy makers (Manyika et al., 2011). Legal and regulatory issues also

deserve attention in several aspects (Ji et al., 2012), like analyzing the adequacy of current laws and

regulations to adequately protect data about individuals (Hashem et al., 2015). Even the constant

28 | Advancing the Design and Implementation of Big Data Warehousing Systems

tracking on employees within an organization can raise discussions regarding adequate work policies

(Michael & Miller, 2013).

Besides these issues, Brown et al. (2011) raise questions about the implications of having data widely

and transparently available. Organizations that rely on costly proprietary data to leverage their

competitive advantages will face challenges due to the promises of more accessible Big Data sources,

as they become widely available in some contexts. The authors also discuss the inherent difficulties

for organizations to share data between departments, forming a coherent view of the organization,

which is additionally aggravated with Big Data. Organizations need to integrate data from multiple

sources and promote collaboration, not only among departments, but also among suppliers and

customers (Brown et al., 2011).

Assuring privacy is both a technical and sociological problem (Jagadish et al., 2014). The inadequate

availability of location-based data allows the possibility to infer a person’s residence, office location,

and identity, for example. Moreover, many other data sources can contain personal identifiers, or

even if no personal identifiers exist, when data is rich enough, reasonable inferences can be drawn

from it (Wigan & Clarke, 2013). Currently, we tend to share more data online, most of the time without

knowing the implications. Another relevant topic, briefly mentioned above, is data ownership, due to

its value for certain organizations that are currently debating about ways of sharing or selling data

without losing control of it (Jagadish et al., 2014). Data ownership is often discussed regarding social

media Websites, since the users’ data is not owned by the organizations although they store it

(Chandarana & Vijayalakshmi, 2014). As Wigan & Clarke (2013) discuss, these organizations tend to

assume that they hold the rights of the data, and sometimes the current legislation benefits them,

allowing organizations to not permanently delete data, even when users ask for it.

Discussing Big Data security, privacy, and monitoring in cloud environments is also relevant.

Organizations frequently recognize that using Big Data technologies in cloud environments helps

reducing their IT costs (Ji et al., 2012), although raising concerns about Big Data storage and

processing infrastructures. Therefore, one of the challenges lies in assuring adequate monitoring and

security without exposing users’ data when processing it (Ji et al., 2012).

Big Data | 29

2.3.4 Organizational Change

Surely Big Data may sound appealing to most organizations, but, frequently, organizational leaders

lack the understanding regarding its value and the means to extract it (Manyika et al., 2011).

Occasionally, the lack of knowledge on how to use analytics is mentioned as the leading obstacle to

become more data-driven (LaValle, Lesser, Shockley, Hopkins, & Kruschwitz, 2011). Within several

business areas, organizations need to monitor trends and gain advantages compared to their

competitors, but many of them lack the talent, the rigorous workflows structure, and the incentives

for adequate Big Data initiatives to better support decision-making (Manyika et al., 2011). Leaders

and policy makers must understand how Big Data can create value, as well as critically think about

IT capabilities, data strategies, analytical talent, and data-driven approaches. This paradigm shift in

organizations requires them to move analytics into the core business and operational functions

(Davenport et al., 2012), changing business processes, delivering insights related to customers,

products, services, and other transactions. McAfee et al. (2012) present five challenges that

organizations will face in management, caused by Big Data initiatives:

§ Assure adequate leadership for a Big Data project;

§ Find suitable data scientists (Provost & Fawcett, 2013), computer scientists, and other

professionals to deal with Big Data, design experiments, and overcome business challenges;

§ Understand and adequately use Big Data technology;

§ Combine problem-solving people with the right data for decision-making;

§ Change organizational culture and rethink how data-driven the organization really is.

Big Data initiatives require a multidisciplinary approach, demanding collaboration to deliver useful

results that must be properly understandable by the organization (Jagadish et al., 2014), but to

accomplish this, challenging organizational changes must occur.

30 | Advancing the Design and Implementation of Big Data Warehousing Systems

2.4 Techniques and Technologies for Big Data Solutions

As previously mentioned, the concept of Big Data is often used to sell something (Fan & Bifet, 2013),

denoting a lack of common understanding, and opening the way for an almost infinite set of

technologies. Unfortunately, this raises significant challenges to understand, adopt, or design

techniques to work with Big Data, since they are tightly coupled with a specific technology. The

opposite problem also occurs, since most of the time in conceptual models, it is not clear which

technology takes place in a certain component of the model. This is mainly due to Big Data’s variety,

but even discarding unstructured data (e.g., text, video, image, and audio), it seems that almost

everyone is trying to sell their solutions to do something with Big Data, without concerns regarding a

common way to design and implement solutions.

The era of Big Data can generate significant controversy. For example, Fan and Bifet (2013), citing

Boyd and Crawford (2012), claim that it is not necessary to distinguish Big Data analytics from data

analytics, as data volume will continue to grow and never decrease. The transition from traditional

techniques and technologies represent a radical paradigm shift, which can include abandoning

shared-everything architectures (Krishnan, 2013), RDBMSs, common Extraction, Transformation, and

Loading (ETL) mechanisms, or the Structured Query Language (SQL), for example. The ambiguity in

Big Data’s definition, the lack of formal and recognized techniques, and the vast set of available

technologies do not help in a peaceful acceptance. It can be argued that the Big Data analytics area

needs approaches like the widely accepted work from Kimball and Ross (2013) that focuses on how

to store and analyze data in a relational DW. Assuring that businesses do not refrain from progress

due to uncertainty or lack of resources is of major relevance.

In order to understand when it is appropriate to rethink traditional techniques and technologies,

according to a survey from Russom (2011), organizations tend to replace traditional platforms when:

§ Massive performance and scalability are required, such as the need to scale to Big Data

contexts with a large volume of data, speed up data collection and queries, or assure

concurrent workloads;

Big Data | 31

§ Business users need advanced analytics (e.g., data mining, statistical analysis, text analytics,

and ad hoc SQL queries), and the current platform is Online Analytical Processing (OLAP)

only;

§ Organizations need self-service and rich visualization tools for end users;

§ The platform lacks modern capabilities, such as support for a Service-Oriented Architecture

(SOA), cloud infrastructures, or in-memory processing.

This section aims to present several techniques to understand and deal with Big Data throughout its

life cycle, from collection to analysis, including storage and mining. These techniques mainly

represent a collection of guidelines that helps designing Big Data solutions, namely their several

components, the relationship between them, and some necessary changes in traditional approaches

for dealing with data. Furthermore, in this section, several Big Data technologies are presented, as

well as a recent standardization proposal for Big Data architectures, published by the National Institute

of Standards and Technology (NIST).

2.4.1 Designing Big Data Solutions

This subsection presents techniques identified in the literature that are adequate to support the design

of Big Data solutions. According to C. L. P. Chen and Zhang (2014), citing Marz and Warren (2015)

and Garber (2012), a Big Data solution generally contemplates the following principles:

§ Present high-level architectures, addressing the distinct role of specific technologies;

§ Include a variety of data science tasks, such as data mining, statistical analysis, machine

learning, real-time visualization, and in-memory analysis;

§ Combine the benefits of different tools for different tasks;

§ Bring analysis closer to the data, in order to avoid moving data;

§ Distribute processing and storage across different nodes in a cluster;

§ Assure coordination between data and processing nodes to improve scalability, efficiency,

and fault-tolerance.

32 | Advancing the Design and Implementation of Big Data Warehousing Systems

2.4.1.1 Big Data Life Cycle and Requirements

There are several considerations throughout the life cycle of Big Data, significantly different from

traditional environments. Dealing with Big Data requires new approaches, which are discussed in this

subsection.

2.4.1.1.1 General Steps to Process and Analyze Big Data

According to a survey including analysts at Microsoft (Fisher et al., 2012), Big Data analytics tasks

can be grouped into five steps: acquire data; choose the architecture based on cost and performance;

shape the data according to the architecture; write and edit code; and reflect and iterate on the

results. Processing Big Data for analysis typically differs from processing traditional transactional data.

As Krishnan (2013) claims, in traditional environments, data is explored, a model is designed, and a

database structure is created. However, in Big Data environments, data is first collected and loaded

into a certain storage system, a metadata layer is applied, and then a structure is created. There is

no need to start by transforming data to properly fit a relational model, as transformations only occur

after having everything stored in efficient storage systems. This represents a shift from a traditional

ETL approach to an Extraction, Loading, and Transformation (ELT) approach. Figure 2.4 presents the

Big Data Processing Flow according to Krishnan (2013).

Figure 2.4. An overview of the Big Data Processing Flow. Adapted from (Krishnan, 2013; C. Costa & Santos, 2017a).

Big Data | 33

The Big Data Processing Flow starts by gathering data from multiple sources, such as Online

Transaction Processing (OLTP) systems, multiple files, sensors, and the Web. This data is then stored

in a landing zone capable of handling the volume, variety, and velocity of data, which is typically a

distributed file system. Data transformations must occur on data stored in the landing zone, fulfilling

the requirements of efficiency and scalability, and the subsequent results can then be integrated into

analytical tasks, operational reporting, databases, or raw data extracts. In this context, Kimball and

Ross (2013) mention relevant best practices regarding the Big Data life cycle:

§ Plan a “data highway” with multiple caches - raw source (immediate), real-time cache

(seconds), business activity cache (minutes), top line cache (24 hours), and DW or long time

series cache (daily, periodic, and annual). Data will flow through these different caches,

according to the business needs;

§ Use Big Data analytics to enrich data before moving it to the next cache. For example,

produce numeric sentiments from mining unstructured tweets. The opposite is also true, so

that earlier caches can benefit from the less granular ones. Kimball and Ross (2013) claim

that the performance implications of this enrichment should be further evaluated, as data

should be moved from the raw source to the real-time cache according to the established

time thresholds. Also, we can store multiple data sources, make them available for querying,

manipulate them, use them to serve business, and then archive them;

§ Adjust the data quality needs according to the latency requirements, i.e., complex data quality

jobs take more time to complete than simpler ones focusing on individual values. However,

Kimball and Ross (2013) also suggest that value should be added to data as soon as

possible, using data integration tasks and including results from data mining, for example.

There must be a balance between latency and business value;

§ Big Data streaming analytics can be relevant for certain data flows, analyzing data and taking

actions as it flows through continuous data streams (Kambatla, Kollias, Kumar, & Grama,

2014). In-database analytics can also be a relevant capability to exploit (Kimball & Ross,

2013).

34 | Advancing the Design and Implementation of Big Data Warehousing Systems

Begoli and Horey (2012) complement these perspectives, stating that several analytical mechanisms

should be included in Big Data solutions, ranging from statistical analysis to data mining and

visualization. Moreover, processed data and insights can be made available using open and

recognized standards, interfaces, and Web services. Regarding Big Data analytics, there is a vast set

of available techniques that can be used to extract value from data. Data mining techniques, such as

clustering, association rules, classification, and regression (Han, Pei, & Kamber, 2012) are still

present in Big Data environments (Manyika et al., 2011), now with the challenge of distributing them

to perform at scale (C. L. P. Chen & Zhang, 2014; Fan & Bifet, 2013). Achieving scalability in these

techniques is what makes Big Data analytics different from traditional data analytics. The range of

analytical mechanisms and the ambiguous terms to define them may lead to a completely new

buzzword: data science. Techniques such as sentiment analysis, time series analysis/forecasting,

spatial analysis, optimization, visualization, or unstructured analytics (e.g., text, audio, and video)

(Gandomi & Haider, 2015), can all be present in the knowledge base of a data scientist (C. Costa &

Santos, 2017b). These techniques are relevant in the Big Data life cycle to extract value from it.

2.4.1.1.2 Architectural and Infrastructural Requirements

The different steps to process Big Data, presented above, must be performed in Big Data

environments, according to several requirements identified by Krishnan (2013):

§ Absence of fixed data models, to adequately accommodate the complexity and size of data,

regardless of its characteristics;

§ Scalable and high-performance systems to collect and process data either in real-time or in

batches;

§ The architecture should support data partitioning due to the volume of data;

§ Data transformations use scalable, efficient, and fault-tolerant mechanisms. The results

should be stored in adequate systems, such as distributed file systems or non-relational

database systems. Data reads should be efficient;

§ Data should be replicated and shared across multiple nodes, to support fault-tolerance,

multistep processing, and multipartitioning.

Big Data | 35

Kimball and Ross (2013) corroborate most of the requirements from Krishnan (2013), and add the

following capabilities expected from Big Data environments: possibility to implement User-Defined

Functions (UDFs) in several programming languages and to execute them over large datasets within

minutes; load and integrate data at high rates; execute queries on streaming data; schedule tasks on

large clusters; and support mixed workloads, including several ad hoc queries or strategic analysis

from multiple users, while loading data in batches or in a streaming fashion.

Big Data solutions should be supported by an adequate infrastructure. Regarding this requirement,

organizations can currently rely on cloud computing, either by using private, public, or hybrid clouds

(Tien, 2013), in order to provide the underlying resources for massive computations (Hashem et al.,

2015). Cloud models, such as Infrastructure-as-a-Service (IaaS), become relevant to accomplish

several requirements in Big Data infrastructures, including scalability, commodity hardware, elasticity,

fault-tolerance, self-manageability, high throughput, fast I/O, and a high degree of parallelism

(Cuzzocrea et al., 2011; Krishnan, 2013). Commodity hardware also plays a relevant role in Big Data

infrastructures, namely due to the lower costs of building shared-nothing architectures (Figure 2.5).

Google’s own papers about the Google File System (GFS) (Ghemawat, Gobioff, & Leung, 2003),

MapReduce (Dean & Ghemawat, 2008), and Bigtable (F. Chang et al., 2008) served as inspiration

for most of these requirements and for several Big Data technologies that will be presented later.

Kimball and Ross (2013) argue that traditional RDBMSs are not suitable for a wide range of Big Data

use cases due to the requirements identified above (e.g., search ranking, sensors, social customer

Figure 2.5. A shared-nothing architecture. Adapted from (Krishnan, 2013).

36 | Advancing the Design and Implementation of Big Data Warehousing Systems

relationship management, document similarity testing, and loan risk analysis). Krishnan (2013) also

claims that DWs based on traditional RDBMSs have several design limitations that imply architectural

and infrastructural changes to process Big Data, since they cannot be distributed as efficiently as

non-relational systems due to Atomicity, Consistency, Isolation, and Durability (ACID) compliance

rules, and due to the fact that data partitioning in these systems often does not necessarily mean

more scalability or workload reduction. Furthermore, the author mentions the fact that in many of

these systems, the CPU and memory are often underused, and the way queries are designed typically

increases the workload, such as executing queries with a star schema pattern on a Third Normal

Form (3NF) database model, generating significant volume of I/O and inadequate network

throughput. Kimball and Ross (2013) present the capabilities that existing RDBMSs vendors are

including to extend their solutions for Big Data environments. The authors compare these extended

versions with the most commonly recognized open source implementation of MapReduce, namely

Apache Hadoop. This comparison is presented in Table 2.2.

2.4.1.2 The Lambda Architecture

The main idea behind the Lambda Architecture (Marz & Warren, 2015) is to think of a Big Data

system as a series of layers that satisfy particular needs. As Figure 2.6 shows, the architecture is

divided into three main components: batch, serving, and speed layers. In the batch layer, a master

dataset stores all the data. As it is sometimes inefficient to read a dataset with possible Petabytes of

data every time a query is executed, the architecture contains batch views in the serving layer, which

are pre-computations of the master dataset. Instead of scanning the entire master dataset, the results

Table 2.2. Comparison between an extended RDBMS and Hadoop MapReduce. Adapted from (Kimball & Ross, 2013).

Characteristic Extended RDBMS Hadoop MapReduce

Proprietary Mostly Proprietary Open Source

Cost Expensive Less Expensive

Variety Data must be structured Does not require structure

Type of operations Adequate for fast indexed lookups Adequate for massive scans

Relational Semantics Deep support Indirect support (e.g., Hive)

Complex Data Structures Indirect support Deep Support

Transaction Processing Deep support Little or no support

Big Data | 37

are returned from batch views with indexing support, thus random reads are possible. Therefore, the

batch layer is not only responsible for storing an immutable and constantly growing master dataset,

but also for computing functions on the same. As Marz and Warren (2015) highlight, creating the

batch views is an high latency operation and should be performed in scalable systems. Then, the

serving layer stores these batch views in a distributed database supporting batch updates and random

reads.

However, with only these two layers, batch views would be quickly outdated, as new data takes time

to propagate from the batch layer into the serving layer. This does not meet the requirements of low-

latency (real-time) environments. Consequently, the authors propose the speed layer, which aims to

compute functions on data in real-time. Rather than processing all the data at once, like the batch

layer, the speed layer only processes recent data. To achieve the smallest possible latency, it does

not even look at all the new data at once. Instead, it updates real-time views as new data becomes

available, which is described as incremental computation. In order to retrieve current results, queries

are answered by looking at the batch and real-time views, merging both results. Consequently, low-

latency updates are taken into consideration, and as batch views are updated, real-time views can be

discarded, since the authors claim that the speed layer is far more complex than the other two. Marz

and Warren (2015) describe how to develop Big Data systems according to the principles of the

Lambda Architecture, highlighting several technological aspects, as well as other guidelines:

Figure 2.6. The Lambda Architecture. Adapted from (Marz & Warren, 2015; C. Costa & Santos, 2017a).

38 | Advancing the Design and Implementation of Big Data Warehousing Systems

§ Store the rawest data to answer as much questions as possible, obtaining different

summarizations and insights. Since Big Data technologies are scalable by nature, they can

handle this requirement;

§ Store untransformed data, since data integration and quality algorithms can be improved in

the future;

§ Make the master dataset immutable, i.e., only adding more data, without update or delete

operations. By doing this, Marz and Warren (2015) claim that human fault-tolerance and

simplicity are assured;

§ Within the master dataset, store data as units called facts. They are atomic, timestamped,

and uniquely identifiable. The authors describe how to strengthen the fact-based model with

information about the types of facts and relationships between them through the use of a

graph schema. Moreover, Marz and Warren (2015) also give guidelines about a possible

folder and file structure for the master dataset, typically stored in a distributed file system.

2.4.1.3 Towards Standardization: the NIST Reference Architecture

The NIST Big Data Public Working Group (NBD-PWG), namely the Reference Architecture Subgroup,

has been working on an open reference architecture for Big Data (NBD-PWG, 2015), in order to create

a tool to facilitate the discussion of requirements, design structures, and operations for Big Data

environments. According to the authors, the NBDRA is not a system architecture, but rather a

common reference, which is not coupled with specific vendors, services, implementations, or any

specific solutions. The NBDRA is presented in Figure 2.7, and the proposed taxonomy for its

components is as follows:

§ System orchestrator - provides requirements regarding policy, governance, architectural

design, resources, business requirements, monitoring, and auditing activities. The system

orchestrator may include actors such as business leadership, consultants, data scientists,

and architects related to information, software, security, privacy, and network;

Big Data | 39

§ Data provider - makes data available through different interfaces, including several data

sources (e.g., raw data or previously transformed data). The data provider can be internal or

external to the organization;

§ Big Data application provider - executes the manipulations in the data life cycle to meet the

requirements established by the system orchestrator. In this component, several capabilities

are combined to create specific data solutions. While the general activities may remain similar

to traditional data processing contexts, Big Data methods and techniques are considerably

different due to scalability concerns;

§ Big Data framework provider - is composed of general resources or services to be used by

the Big Data application provider. This is the role whose changes are more noticeable

because of Big Data (NBD-PWG, 2015), due to the relevance of the infrastructure, data

platforms, and processing frameworks. Different technologies can be used and hybrid

approaches can emerge, providing flexibility and meeting the requirements of the Big Data

application provider;

Figure 2.7. The NIST Big Data Reference Architecture. Adapted from (NBD-PWG, 2015; C. Costa & Santos, 2017a).

40 | Advancing the Design and Implementation of Big Data Warehousing Systems

§ Data consumer - benefits from the value of the Big Data system. The same type of interfaces

used by the data provider can also be exposed to the data consumer, after value has been

added to the original data sources.

The NBDRA has two fabrics encapsulating the aforementioned components: a security and privacy

fabric, which affects all the components of the NBDRA and interacts with the system orchestrator

(policy, requirements, and auditing), the Big Data application provider, and the Big Data framework

provider (development, deployment, and operation); and a management fabric responsible for tasks

such as provisioning, software management, or performance monitoring, which involves

considerations at scale about the system, data, security, and privacy, while maintaining a high level

of data quality and accessibility.

The NBDRA contains five components connected by interoperable interfaces (services) and enveloped

by the two fabrics mentioned above. It supports a variety of business environments and facilitates the

understanding of how Big Data solutions complement existing approaches and differ from them. To

develop this proposal, the authors analyzed a wide range of existing Big Data architectures from

industry, academy, and government (NBD-PWG, 2015).

2.4.2 Big Data Technologies

This subsection highlights several technologies related to Big Data, including Apache Hadoop and

related projects, several distributed databases, and other tools for Big Data analytics.

2.4.2.1 Hadoop and Related Projects

As already mentioned, Hadoop is an open source Apache project based on GFS and MapReduce

(Bakshi, 2012). Hadoop contains two main components: the Hadoop Distributed File System (HDFS)

and a distributed processing framework named Hadoop MapReduce. Hadoop can store and process

vast amounts of data by distributing storage and processing across a scalable cluster of multiple

nodes built with commodity hardware. In HDFS, files are divided into blocks distributed and replicated

across nodes. HDFS assures many requirements identified above, such as fault-tolerance and

availability, for example. Hadoop MapReduce is a programming model and an execution engine for

Big Data | 41

processing large datasets stored in HDFS, based on the divide and conquer method, dividing a

complex problem into many simpler problems, and then combining each simpler solution into an

overall solution to the main problem. These are called the Map and Reduce steps (C. L. P. Chen &

Zhang, 2014). Regarding HDFS, there are two types of nodes in the cluster: a NameNode, which is

responsible for storing metadata about blocks and nodes; and a DataNode, which stores data blocks

(Bakshi, 2012). Regarding Hadoop MapReduce, there are also two types of nodes, namely a

JobTracker that schedules jobs and distributes tasks across slaves called TaskTrackers (C. L. P. Chen

& Zhang, 2014).

Over the years Hadoop has evolved considerably, including the transition from MapReduce to YARN

(Hashem et al., 2015). YARN rethinks the JobTracker and TaskTracker components, replacing them

with a ResourceManager, a NodeManager, and an ApplicationMaster, to solve some problems in

Hadoop MapReduce, such as scalability on large clusters or support for alternative programming

paradigms (Krishnan, 2013). Apart from that, Hadoop has several related projects, as Figure 2.8

demonstrates, also highlighting their main features (Apache Hadoop, 2018).

Other related projects not present in Figure 2.8 may include: Flume, a service to collect, aggregate,

and move large amounts of log data; Oozie, a workflow and coordination system for jobs in Hadoop;

HCatalog, a metadata layer for data stored in Hadoop, built on top of the Hive metastore; Sqoop, a

connector to integrate data from other existing platforms, such as the DW, metadata engines,

enterprise systems, and transactional systems (Krishnan, 2013). There are also more projects that

can interact with Hadoop’s interfaces or be co-located with it, such as projects for real-time stream

processing or interactive ad hoc analysis. Since real-time data processing is becoming increasingly

relevant to organizations (Chandarana & Vijayalakshmi, 2014), Storm is a real-time computation

system to process streams with high throughput and low latency. Kafka, on the other hand, is a

messaging/queuing system to produce and consume messages between processes, in an

asynchronous and fault-tolerant manner (Marz & Warren, 2015).

42 | Advancing the Design and Implementation of Big Data Warehousing Systems

2.4.2.1.1 SQL-on-Hadoop and Interactive low-latency Queries

Interactive and low-latency ad hoc analysis over large datasets is a relevant scenario in organizations.

Occasionally, users do not know the queries in advance and need to execute ad hoc queries within

seconds, even at scale. There is a trend named SQL-on-Hadoop (Floratou, Minhas, & Özcan, 2014)

that is related to the implementation of distributed SQL engines for interactive ad hoc analysis of large

datasets stored not only in Hadoop, but also in distributed databases (e.g., Not Only SQL – NoSQL).

Many SQL-on-Hadoop systems are available under open source licenses, including: Hive on Tez (Huai

et al., 2014); Presto (Presto, 2016); Impala (Kornacker et al., 2015); Drill (Hausenblas & Nadeau,

2013); and Spark SQL (Armbrust et al., 2015). These systems are able to combine data from multiple

Figure 2.8. The Apache Hadoop ecosystem. Adapted from (C. Costa & Santos, 2017a).

Big Data | 43

sources like HDFS files, NoSQL databases, SQL databases, Kafka, among many others, which means

that in a single query they can combine not only data from different systems, but also batch and

streaming data. Consequently, SQL-on-Hadoop systems play a relevant role in BDWing systems, as it

will be discussed later in this work. Moreover, besides SQL-on-Hadoop systems, there are other similar

technologies targeting interactive ad-hoc querying, such as Druid, a columnar store that provides real-

time aggregation and indexing at data ingestion time (F. Yang et al., 2014).

2.4.2.1.2 Hadoop Security

Still related to Hadoop, there are several security projects. Hortonworks (2016) establishes five pillars

for security in Hadoop: administration, authentication, authorization, auditing, and data protection.

Kerberos, Apache Knox, and Apache Ranger are highlighted as projects related to these five pillars,

in order to assure a secure Hadoop environment. Kerberos can be used to authenticate users and

resources within Hadoop clusters. Apache Knox complements Kerberos, by blocking services at the

perimeter of the cluster and hiding the cluster’s access points from end users, thus adding another

layer of protection for perimeter security. Finally, Ranger provides a centralized platform for policy

administration, authorization, auditing, and data protection (e.g., encrypted files in HDFS).

2.4.2.2 Distributed Databases

Database technology has evolved significantly towards handling datasets at different scales and

supporting several applications that may have high needs for random access to data (M. Chen et al.,

2014; Hashem et al., 2015). NoSQL databases have become popular mainly due to the lack of

scalability in RDBMSs, since this new type of databases provides mechanisms to store and retrieve a

large volume of distributed data (Hashem et al., 2015). The relevant factors that motivated the

appearance of NoSQL databases were the strictness of the relational model and the consequent

inadequacy to store Big Data. NoSQL databases are seen as distributed, scalable, elastic, and fault-

tolerant storage systems. They satisfy an application’s need for high availability even when nodes fail,

appropriately replicating data across multiple machines (Kambatla et al., 2014). Relational databases

will certainly evolve and some organizations (e.g., Facebook) are using mixed database architectures

(M. Chen et al., 2014). Combining the benefits of both storage systems is a current research trend,

44 | Advancing the Design and Implementation of Big Data Warehousing Systems

as already mentioned (Cuzzocrea et al., 2011). A recent term is emerging, NewSQL, which combines

the relational data model with the benefits of NoSQL systems, such as scalability (Grolinger,

Higashino, Tiwari, & Capretz, 2013). NoSQL and NewSQL databases are mainly designed to scale

OLTP-style workloads over several nodes, fulfilling the requirements of environments with millions of

simple operations (e.g., key lookups, reads/writes of one record or a small number of records) (Cattell,

2011).

This phenomenon changed the way databases are currently designed. While a RDBMS complies to

ACID properties (Krishnan, 2013), a NoSQL database, as a distributed system, typically follows the

considerations of the Consistency, Availability, and Partition tolerance (CAP) theorem: “any networked

shared-data system can have at most two of three desirable properties” (Brewer, 2012). These

properties include: consistency, equivalent to a single up-to-date copy of the data; high availability of

that data; and tolerance to network partitions. As Brewer (2012) claims, the CAP theorem served the

purpose of leveraging the design of a wider range of systems and trade-offs, in which the NoSQL

movement is a clear example. The fact that two of the three properties should be chosen was always

misleading, states the author, since it tends to simplify the “tensions among properties”. These

properties are more continuous than binary and, therefore, they can have many levels. CAP only

prohibits perfect availability and perfect consistency in the presence of network partitions.

Consequently, the CAP theorem serves the purpose of considering combinations of consistency and

availability that fit in a certain scenario. The author highlights that choices between consistency and

availability can vary within a certain system and according to specific data or users, for example.

Brewer (2012) clarifies this misconception and discusses the relationship between ACID and CAP,

stating that choosing availability only affects some of the ACID’s guarantees. These design

considerations are intrinsic to NoSQL databases, and each may be designed differently regarding

these choices.

There are several NoSQL databases, so enumerating and evaluating all of them becomes a nearly

impossible task. Over 120 NoSQL databases were known in 2011 (Tudorica & Bucur, 2011).

Currently, it is estimated that the list of NoSQL databases has more than 225 elements (NoSQL,

Big Data | 45

2018). Taking this into consideration, NoSQL databases are typically divided into four data models,

which are described as follows, along with several examples:

§ Key-value model - values are typically stored in key-value pairs. The key uniquely identifies a

value of an arbitrary type. These data models are known for being schema-free, but may lack

the capability to adequately represent relationships or structures, since queries and indexing

are assured through the key (Grolinger et al., 2013). Each key is unique and queries are

tightly coupled with keys (M. Chen et al., 2014).

- Examples: Redis; Memcached; BerkeleyDB; Voldemort; Riak; and Dynamo.

§ Column-oriented model - a columnar data model can be seen as an extension of the key-

value model, adding columns and column families, providing more powerful indexing and

querying due to this addition (Krishnan, 2013). This design was largely inspired by Bigtable

(M. Chen et al., 2014; Grolinger et al., 2013), but that does not mean that all column-

oriented databases are fully inspired by it (e.g., Cassandra adopts design aspects from both

Dynamo and Bigtable).

- Examples: Bigtable; HBase; Cassandra; and Hypertable.

§ Document model - suitable for representing data in document format. JSON is here frequently

used. It can contain complex structures, such as nested objects, and it also typically includes

secondary indexes, thus providing more query flexibility than the key-value data model

(Grolinger et al., 2013).

- Examples: MongoDB; CouchDB; and Couchbase.

§ Graph model - based on the graph theory, in which objects can be represented as nodes,

and relationships between them can be represented as edges (Krishnan, 2013). Graphs are

specialized in handling interconnected data with several relationships (Grolinger et al., 2013).

- Examples: Neo4j; InfiniteGraph; GraphDB; AllegroGraph; and HyperGraphDB.

Regarding NewSQL, as the name implies, these databases are based on the relational model

(Grolinger et al., 2013), offering either a pure relational view of the data (e.g., VoltDB, Clustrix, NuoDB,

MySQL Cluster, ScaleBase, and ScaleDB) or similar (e.g., Google Spanner). According to Grolinger et

46 | Advancing the Design and Implementation of Big Data Warehousing Systems

al. (2013), sometimes, interactions with these databases occur in terms of tables and relations, but

they might use different internal representations (e.g., Key-value store). Different NewSQL databases

support different SQL compatibility levels, such as unsupported clauses or other incompatibilities with

the standard. Similarly to NoSQL, NewSQL databases can scale accordingly by adding more nodes

to the cluster.

2.4.2.3 Other Technologies for Big Data Analytics

By describing Hadoop and its related projects, several technologies for Big Data analytics were already

inherently identified: streaming analytics (e.g., Spark Streaming and Storm); data mining and

machine learning (e.g., Spark and Mahout); DWing (e.g., Hive); interactive ad hoc analysis (e.g., Hive

on Tez, Impala, Presto, Drill, and Spark SQL) (Santos et al., 2017; Soliman, 2017); data flow (e.g.,

Pig). However, no data visualization tools were presented yet.

Regarding Big Data visualization, several mashup tools can be highlighted, such as Datameer, FICO

Big Data Analyzer (former Karmasphere), Tableau, and TIBCO Spotfire (Krishnan, 2013). These

mashup tools can integrate data from multiple sources into a single picture. As Krishnan (2013)

highlights, there is also the possibility of visualizing Big Data with statistical tools, like R or SAS, for

example, taking advantage of their capabilities. Other tools are also briefly mentioned in the literature,

such as Jaspersoft Business Intelligence (BI) Suite and Pentaho Business Analytics (C. L. P. Chen &

Zhang, 2014). Certainly, many other visualization tools exist and may be adequate for Big Data

visualization, such as Excel and Power BI, JavaScript libraries, or Python’s plot capabilities.

Besides data visualization, there are other tools to extract, load, transform, and integrate data before

analytical tasks. Talend Open Studio for Big Data is an example of such tool (C. L. P. Chen & Zhang,

2014). Moreover, apart from the aforementioned tools related to Hadoop for data mining and

machine learning, other alternatives identified in the literature may include: MADLib and EMC

Greenplum (Begoli & Horey, 2012); R, MOA, WEKA, and Vowpal Wabbit (Fan & Bifet, 2013); data

mining tools from SAS or IBM (Krishnan, 2013); Rapidminer; and KNIME (M. Chen et al., 2014).

Some of these tools like R and WEKA are not scalable by default, and they are also used in traditional

Big Data | 47

data mining and machine learning environments, where processing large training sets is not a

significant concern. Over time, these tools were extended with several connectors for scalable Big

Data stores and packages for distributed processing (e.g., SparkR, RHadoop, RHive,

distributedWekaBase, distributedWekaHadoop, and distributedWekaSpark), but by default, without

these extensions, they are better suited for small to moderate datasets. This does not mean that they

are not useful in Big Data mining, quite the opposite, but the volume of data that serves as training

and testing sets should be considered (preprocessing large datasets can be useful in these cases).

The same principle applies to other non-distributed algorithms implemented in any other language

like Python or Java, for example. It should be remembered that one of main challenges regarding the

Big Data life cycle is to scale the algorithms to extract value from data (Hashem et al., 2015).

48 | Advancing the Design and Implementation of Big Data Warehousing Systems

This page was intentionally left blank

Big Data Warehousing | 49

Chapter 3. Big Data Warehousing

The DW concept has a long history, and the need to access, analyze, and present data in appropriate

forms to support fact-based decision-making exists in organizations for a long time (Kimball & Ross,

2013). A DW is a repository that consolidates information about the organization, leveraging a vast

range of analyses developed by several users. Traditionally, it is a database that maintains an

historical record of the organization, which is periodically extracted from OLTP sources. The DW is

designed to access multiple records at a time and it is optimized to support analytical tasks (e.g.,

predefined or ad hoc queries, reports, OLAP, and data mining). OLAP is a common analytical task

associated with the DW, mainly consisting in multidimensional structures capable of executing several

tasks according to the desired view of the data (Santos & Ramos, 2009). Summarizing, the DW

concept is commonly defined as a “subject-oriented, integrated, non-volatile, and time-variant

collection of data in support of management’s decisions” (Inmon & Linstedt, 2014), as well as a

“single version of the truth” (Kimball & Ross, 2013).

Since the last decades, traditional DWs are recognized as the enterprise data asset, but the evolution

of advanced analytics (e.g., data mining, statistics, and complex queries), increasing data volume,

and real-time needs to analyze fresh data are driving changes in DW architectures (Russom, 2014).

Nowadays, the DW is evolving, being extended and modernized to support advancements in

technologies and business requirements, in order to prove its relevance in the era of Big Data. DW

modernization is on top of the priorities for professionals, and surveys show that DWs are evolving

dramatically and there are several opportunities to improve and modernize them, since organizations

view them as relevant to today’s businesses (e.g., analytics, data-driven decision-making, operational

efficiency, and competitive advantages) (Russom, 2016).

However, in this modernization process, some challenges arise, such as inadequate governance of

data, lack of skills, cost of implementing new technologies, and difficulties in conceiving a modern

solution that can ingest and process the ever-increasing amounts or types of data. According to

Russom (2016), the average DW stores between 1TB and 3TB of data and it will store between 10TB

50 | Advancing the Design and Implementation of Big Data Warehousing Systems

and 100TB until 2018. Organizations need to consider the modernization of their DW architectures

when some of the following questions arise (Chowdhury, 2014):

§ Is the current platform limited by the amount of data to process?

§ Is the DW a useful repository for all the data that is generated and acquired? Or is some data

being left unprocessed due to current restrictions?

§ Do we want to analyze non-operational data and use new types of analytics?

§ Do we need to ingest data quicker?

§ Do we need to lower the overall cost for analytics?

Therefore, among the community, the concept of BDW is emerging. This chapter presents works

related to the concept of BDW, including: identification of characteristics, requirements, and

guidelines for design change and implementation; proposals of DWs on NoSQL databases;

advancements and benchmarks in storage technologies for BDWs; optimizations in OLAP, query

processing, and execution mechanisms for BDWs; and some implementations in specific contexts.

The following sections are organized by the main topics identified in the literature, and the content

within each section is sorted first by date then by author name, unless there are more than one

publication for the same author. In this case, they will appear together in the text.

3.1 Characteristics and Design Changes for Big Data Warehouses

This section presents several works related to the characteristics and the need for design changes in

DWs to fully support Big Data environments. Research in this topic is still in its infancy and there is

no common approach to design BDWs. Consequently, among the related work, there are authors

who discuss this need and the general changes that have to occur, giving non-structured guidelines

to design BDWs or to revisit traditional modeling techniques. There are also works that discuss logical

architectures or propose implementation of traditional DWs with Big Data extensions.

§ Kearney (2012) states that organizations can create significant value by modernizing their

DWs with Big Data technologies to analyze data, but this demands Massively Parallel

Big Data Warehousing | 51

Processing (MPP) architectures. The author suggests IBM Netezza, a DW appliance

developed by IBM.

§ Kobielus (2012) shows the relevance of Hadoop for the next generation DW, due to its diverse

set of possible roles, such as ETL, data staging, or preprocessing of unstructured data. MPP,

in-database analytics, mixed workloads, and flexible storage are also mentioned as main

features in these DW architectures, which aim to provide a complete view of the truth about

structured and unstructured data.

§ Baboo and Kumar (2013) highlight the need to study storage options and use of Big Data in

DWs. The authors state that when DWs can adequately handle a high volume of data and

real-time needs, organizations will be able to have further insights and make better business

decisions. The authors provide an overview of what is Big Data analytics and its advantages,

calling the attention for future research related to the DW.

§ Cuzzocrea, Bellatreche, and Song (2013) recognize DW and OLAP over Big Data as an

emerging research topic. Among several issues related to OLAP over Big Data, some concerns

associated with the design of DWs are highlighted, such as the size of the fact tables and

innovative ways to compute aggregations, which becomes even more relevant in Big Data

environments. Cuzzocrea and Moussa (2017) also discuss some challenges for

multidimensional database modeling in the age of Big Data, calling the reader’s attention to

several challenges such as: schema-less or dynamic schema data; dimensionality problems

(cubes with hundreds of high cardinality dimensions); the need for intelligent

recommendation systems for data partitioning and computation of summarized data (e.g.,

materialized views); real-time processing; and sophisticated data visualization.

§ Foo (2013) states that in the era of Big Data, organizations have available a set of techniques

and technologies such as Hadoop, stream processing, and high-performance analytics,

which can deliver fast insights. This leads to implementing a federation of multiple

52 | Advancing the Design and Implementation of Big Data Warehousing Systems

repositories and technologies to serve specific purposes. The traditional DW is complemented

with these new technologies and, therefore, interoperability between them becomes crucial.

§ Goss and Veeramuthu (2013) describe the current DW solution in a semiconductor

manufacturing organization, and highlight the need for new solutions based on Big Data

concepts for better data transparency across the organization, experimental and automated

data analysis, or advanced simulations. The authors consider different solutions, such as Big

Data appliances, Hadoop, or massive in-memory databases. They conclude by appealing to

vendors to work together, ditching proprietary infrastructures and offering plug-and-play

components.

§ Kimball and Ross (2013), although mostly focused on traditional DW modeling, provide

relevant best practices to plan a DW in Big Data environments, such as follows:

- Consider complex analytics, not only reporting or ad hoc query; avoid legacy

environments, preventing possible technological changes as much as possible; and

promote the use of sandbox results, where data scientists can work freely;

- Plan data highways, i.e., different caches with different latency requirements, as

shown in the previous chapter; think about extracting facts, even from unstructured

content; be aware of data quality and value; and implement streaming mechanisms;

- Still approach a modeling problem as dimensions and facts, and integrate structured

and unstructured data.

§ Krishnan (2013) study the need to redesign traditional DWs, in order to address significant

challenges (e.g., data types, data volume, performance, fault-tolerance, infrastructural cost,

and user requirements). The author states that these next generation DWs will include data

from several sources and will be a collection of multiple techniques and technologies, such

as RDBMSs, Hadoop, NoSQL, data mining, text mining, reporting, visualization, among other.

The author also discusses some real-world examples that used multiple techniques to

integrate Big Data, and concludes by claiming that there is no solution to fit all contexts.

Big Data Warehousing | 53

Examples of possible logical architectures are presented, as well as the advantages and

disadvantages of each one of them (Krishnan, 2013):

- Architecture based on external integration, wherein traditional technologies are

maintained, and a new platform for processing Big Data is integrated with them

through a data bus. Tasks are executed in two distinct platforms, and when data is

being explored, the data bus assures adequate integration between them, through

appropriate metadata processing. Generally, this approach provides a modular and

heterogeneous design, but implementing the data bus and maintaining an adequate

integration between the two platforms may become complex;

- Hadoop/NoSQL and RDBMS architecture: this approach is similar to the one

presented above, but instead of a complex data bus which integrates data at the

time of exploration, the RDBMS and Hadoop/NoSQL are integrated through a

connector that exchanges data between the two systems. However, if the connector

does not perform adequately, performance becomes severely affected;

- Big Data appliances: these are black box solutions which handle rigorous and

complex workloads associated with Big Data and current RDBMSs. There are several

physical architectures according to each vendor (e.g., Teradata, IBM, and Oracle),

but the logical architecture typically consists in a group task between Hadoop,

NoSQL, and the RDBMS, in order to solve several challenges associated with Big

Data. These solutions are mainly configured according to the user’s requirements

and making subsequent changes to the architecture can be difficult, as stated by

Krishnan (2013);

- Data virtualization architecture: it hides the details about how data is stored, since

the same becomes available to users as if it was stored in a single location, hiding

implementation details. This approach can provide easier maintenance for analytical

workloads, but a lack of governance may occur in multiple data silos, as well as

decreases in performance.

54 | Advancing the Design and Implementation of Big Data Warehousing Systems

§ Mohanty, Jagadeesh, and Srivatsa (2013) compare the BDW with a traditional DW,

highlighting some significant differences, such as the capability to perform exploratory

analysis (e.g., sandboxes), deliver fast insights, and prove business hypothesis based on

multiple sources of ever-increasing data, in a low-latency and scalable way. The authors

present a conceptual BDWing architecture, which mainly consists in the identification of

several techniques and technologies discussed in the literature (e.g., real-time and Hadoop),

illustrating their coexistence with the traditional enterprise DW.

§ Sun, Hu, Ren, and Ren (2013) discuss mainstream implementations of different

architectures. First, the authors present the architecture dominated by MPP databases (e.g.,

Greenplum), which can use MapReduce capabilities in their database engines. Second, the

architecture dominated by MapReduce is presented, where Hive is given as an example,

providing a SQL interface on top of MapReduce. Finally, an integrated architecture is

discussed, wherein the advantages of the other two are fully harnessed (e.g., HadoopDB,

Vertica, and Teradata). The authors envisage future research, such as an adequate

integration between data models and query processing, and pre-computation or indexing of

multidimensional data.

§ Chowdhury (2014) states that traditional infrastructures are not able to capture, manage,

and process Big Data within reasonable time. The author describes Big Data technologies

based on Hadoop, including IBM solutions, which can be used to augment existing DWs built

on top of traditional databases. Several examples of IBM solutions are mentioned, showing

their relevance to complement traditional DWs.

§ T. K. Das and Mohapatro (2014) highlight the need to explore the capabilities of Hadoop, in

order to handle Big Data and then integrate it into an existing DW. Therefore, Hadoop is seen

as a mean to achieve efficient ETL processes for unstructured datasets with significant

volume. An interface between Hadoop and a DW is illustrated, and the authors also state

that the DW can be built on top of Hadoop, but there are no specific details about the

Big Data Warehousing | 55

interface or implementation, such as data flows, models, or proposed technologies. Specific

results are also not mentioned.

§ Golab and Johnson (2014) review recent research problems regarding data stream

warehousing, motivating the need for a DW that is updated in near real-time, rather than

during downtimes, also describing possible system architectures. The authors state that this

concept aims to deal with data volume and velocity, contemplating not only issues in

common DWs (e.g., storing and querying significant amounts of historical data), but also

dealing with stream processing issues, such as handling ordered data, consistency, and near

real-time response, as well as supporting alerts, materialized views, and complex analytics,

for example. Golab and Johnson (2014) present three types of approaches:

- Start with a Database Management System (DBMS) and extend it with the ability to

load and query data arriving in near real-time;

- Start with a data stream engine and then add persistent storage;

- Start with a technology such as Hadoop and add stream processing.

The authors highlight several optimizations needed in a data stream warehousing, such as

fast ETL, efficient data layouts, maintenance of materialized views (incremental or

recomputation), concurrency control, and scalability. According to them, several open

problems deserve attention, including the exploration of hybrid architectures, the use of data

mining and machine learning in a data stream warehouse, and managing the complexity of

having multiple sources.

§ Inmon and Linstedt (2014) extend the Data Vault methodology to design, manage, and

implement a DW. According to the authors, Data Vault 1.0 was mainly focused on data

modeling, while this second version extends it with agile techniques from software

development and minor changes to ensure that modeling techniques work with Big Data

requirements (e.g., unstructured data and NoSQL). They claim that in Data Vault’s 2.0

architecture, platforms such as Hadoop currently fit in as an ingestion and staging area for

56 | Advancing the Design and Implementation of Big Data Warehousing Systems

any data that can proceed to the DW, or as a place to perform data mining and text mining,

storing their subsequent results into relational database engines. Inmon and Linstedt (2014)

state: “eventually, it will be a system capable of housing both relational and non-relational

data simply by design”.

In their approach, the authors show that they can provide platform integration between an

RDBMS and NoSQL platforms using hash keys, allowing for cross-system joins between

them. Consequently, their idea is to allow current organizations to augment their

infrastructure, maintaining current RDBMS engines.

§ O’Leary (2014) discusses the concept of Big Data lake, comparing it with a traditional

enterprise DW. This concept is an analogy to a water lake, where data streams fill the lake

and several users examine it, diving in and taking samples, regardless of its lack of structure.

In contrast, O’Leary (2014) sees the DW as a costly add-on to the enterprise, typically based

on a single source to accommodate a particular set of queries, in a more structured manner.

The author also claims that some challenges arise in a Big Data lake, given that the lack of

structure causes problems to many statistical and machine learning packages, which

sometimes are not designed for distributed environments. Moreover, in a Big Data lake, data

duplication, redundancy, and inconsistency may raise significant problems. Finally, the

author also presents some examples where artificial intelligence can be applied to the Big

Data lake, such as follows: generate tags to facilitate data usage and definition; extract

additional information from different data sources (e.g., temporal patterns); give structure to

unstructured data (e.g., extracting sentiments from Twitter data); improve data quality; and

discover new business insights using machine learning.

§ O’Sullivan, Thompson, and Clifford (2014) present several data modeling considerations for

Big Data deployments, including BDWs. The authors focus on both transactional and

unstructured data, presenting some schema considerations for an adequate integration

between Hadoop and RDBMS-based DWs. The work also highlights an interesting set of future

Big Data Warehousing | 57

needs for BDWing, including the evolution of data models and modeling methods, and the

technologies in which these models are deployed.

§ Russom (2014) discusses the results of a survey from The Data Warehousing Institute (TDWI)

about the evolution of DW architectures. Many professionals from several industries answered

the survey. Russom (2014) identifies several priorities for DW architectures, including:

successful DW architectures should focus on both physical (e.g., server planning) and logical

layers (e.g., data models); analytics is the main driver to evolve traditional DWs, as well as

Big Data and real-time operations; an architecture can have a mix of approaches and

standards; and Hadoop or NoSQL are great additions to traditional DWs, but it is not expected

that these new technologies replace the old ones completely.

Russom (2016) presents a report of several practices and strategies for DW modernization,

resulting from a survey similar to Russom (2014). Several practices are discussed according

to the responses of organizations, including the modernization of DWs by augmenting or

replacing existing platforms. According to the survey, for some organizations, the adoption of

new data platforms through a cloud or Software-as-a-Service (SaaS) paradigm provides

another relevant feature: elasticity with lower costs. Furthermore, 32% of the 473

respondents state that they do not plan to replace their current DW primary platform, while

9% already replaced it, and 43% plan to replace it within 3 years. According to Russom

(2016), “rip and replace is real and will become more common”, such as migrating from a

traditional RDBMS to a newer one, to a new DBMS, or to Hadoop, although according to the

author, the latter was only found in a few rare cases, since Hadoop typically emerges as a

complementary DW platform. Furthermore, it is highlighted that RDBMSs were still preferred

among organizations. The survey concludes by highlighting several priorities to modernize

the DW:

- Add capacity for growing data, users, and analyses, satisfying the requirements

of scalability and velocity;

58 | Advancing the Design and Implementation of Big Data Warehousing Systems

- Deliver new and improved analytical capabilities, along with reporting and data

integration;

- Evaluate if the technology adequately satisfies the business requirements before

adopting it, taking performance and cost into consideration;

- Complement the traditional DW with other platforms, migrating data and

balancing workloads, which requires thinking about a large-scale architecture

and how data flows through different platforms;

- Consider Hadoop for several roles in a DW environment (e.g., data staging, ETL,

and massive parallel execution engine), in order to complement the traditional

DW, and not necessarily to replace it.

§ Clegg (2015) discusses the challenge that Big Data presents to DW architectures, stating

that it would be a mistake to discard decades of architectural best practices based on the

assumption that storage for Big Data is not driven by data modeling. The author argues that

a significant amount of data for analytics and reporting will remain relational. However,

building an adequate architecture has become complex, due to the variety of available

techniques and technologies (e.g., DW appliances, Hadoop, NoSQL, and real-time analytics).

Therefore, DW architectures are entering in a new phase, since Big Data has finally fractured

the traditional enterprise DW, states Clegg (2015), due to the use of Hadoop for data mining

and batch operations, data marts for domain-specific applications, or NoSQL for real-time

and time series data, most of the time with a combination of cloud and on-premises solutions.

Vendors typically claim to have the solution to an organization’s specific problem. Therefore,

organizations moved from an integrated DW to a federation of different technologies

addressing different use cases. According to Clegg (2015), Gartner called this the Logical

DW (Beyer, 2011). The author states that we moved away from a data-driven view of the DW

to a use case driven approach, and the danger of uncoordinated data silos emerge, meaning

that much of the analysis takes place outside the main data store.

Big Data Warehousing | 59

Consequently, replacing parts of the DW architecture with Hadoop and scalable databases

leads to a “lift and shift” replacement strategy. Previously, data modeling was the main

concern, but nowadays, the concern seems to be finding the right technology to meet

demands. The author highlights the need to design a grand architecture and plug

requirements into it, according to valuable use cases. This is a period of transition for DW

architectures, being unknown if stability will be reached soon, but use case driven approaches

seem to be the best strategy for now, states Clegg (2015).

§ Golov and Rönnbäck (2015, 2017) discuss the anchor modeling strategy for highly

normalized MPP databases in Big Data contexts, which allows for high-performance ad hoc

queries, as demonstrated using systems like HP Vertica. The authors also present the

limitations regarding single cluster uses and ETL issues, which can be overcome with some

guidelines provided by the authors.

§ P. Hu (2015) studies the cooperation between Hadoop and a traditional DW, in order to solve

the performance issues of the latter. The author uses Sqoop for data collection and

transmission, and relies on HDFS and Hive for storing data, although no detail is provided

regarding how data flows through the system or how it is stored. A logical architecture is

presented, where it can be seen that unstructured data should be stored in Hadoop, and

structured data should be stored in the traditional DW, assuring communication between

them. However, no explicit details are given regarding how this communication occurs, and

although the author states that a prototype proves the feasibility of the proposed architecture,

the evaluation method and results are not clearly presented. It would be interesting to discuss

the performance of an Hadoop and RDBMS architecture Krishnan (2013) based on a

connector between the two. The cooperation between Hadoop and a traditional DW,

specifically in ETL processes, is also a relevant research topic discussed in other contributions

(Houari, Rhanoui, & Asri, 2017).

60 | Advancing the Design and Implementation of Big Data Warehousing Systems

§ Jukic, Sharma, Nestorov, and Jukic (2015) also focus on how Big Data can augment and

enrich the analytical capabilities of traditional DWs. Big Data is seen as a source for the DW,

and Hadoop as a part of the ETL tools.

§ Jukic, Jukic, Sharma, Nestorov, and Arnold (2017) explore and evaluate the use of columnar

database technology and fully denormalized fact tables. Evaluating this approach using

Greenplum, an MPP database, the authors arrive to the conclusion that a fully denormalized

approach can bring considerable improvements to ETL processes and OLAP queries, namely

better performance due to the lack of join operations. ETL processes also become simpler,

since they avoid complex concepts like Slowly Changing Dimensions (SCDs). Although the

full denormalization of fact tables, i.e., completely flattening the dimensions and facts into a

single table, is arguably a well disseminated guideline in Big Data contexts, the reality is that

such approach is also discussed in traditional DWing contexts (J. P. Costa, Cecílio, Martins,

& Furtado, 2011), in order to avoid the processing costs of join algorithms and the additional

random and sequential I/O operations when joins cannot be processed in-memory, while

often assuring minimal network data exchange operations, which is relevant in distributed

systems like Hadoop and other related projects.

§ Tardío, Mate, and Trujillo (2015) present a methodology to avoid failure in Big Data projects,

in which they identify common problems, best practices, and methods, aiming to increase

the success of new initiatives. They propose a methodology to manage, analyze, and visualize

Big Data, validating the approach through a case study based on electricity consumption.

The proposed methodology consists of five phases: define data stages; acquire and manage

data sources; add value to data; select and implement a BDW; develop visualizations for Big

Data. Then, in order to apply it, the authors choose the technology to carry out the project.

In their case, Hadoop was chosen, since it was more flexible regarding the structure of data.

To conclude the five phases, (Tardío et al., 2015) take the following steps:

1. Define data stages using the concept of data highway (caches) from Kimball

and Ross (2013). In this phase, information requirements must be defined, as

Big Data Warehousing | 61

well as time constraints from collection to analysis, data quality requirements,

and query latency;

2. Collect raw data and load it into the Big Data file system (e.g., HDFS). According

to the requirements, one can choose batch load (e.g. HDFS commands and

MapReduce-based ETL) or streaming load. In the case of streaming load, the

data can be analyzed in real-time (e.g., Spark Streaming) or stored for later

processing. As the authors do not have the goal of real-time analysis, they just

store the data;

3. Define a multidimensional model to add value to the previously stored data,

identifying entities and relationships. The authors consider dividing the problem

into facts and dimensions, and implementing models such as the star schema

(Kimball & Ross, 2013). They also highlight the need to iteratively discover the

multidimensional data model by exploring the raw data, linking it with the

information requirements previously established. According to them, Pig or Hive

can be used to query raw data according to the multidimensional schema.

Tardío et al. (2015) highlight the need for a model which is flexible to further

changes and enrichment (e.g., adding new data sources or using data mining);

4. Implement a BDW that supports most BI tools and query latency requirements.

First, a BDW repository is chosen according to latency requirements, which can

be high (e.g., Hive) or low (e.g., MPP databases like HP Vertica, or in-memory

tools like Power Pivot or Qlikview). Second, the multidimensional model is

implemented taking into consideration the features of the selected repository.

Finally, the data is loaded into the BDW. In their case, Hive was selected in a

combination with in-memory BI tools to support OLAP and dashboard

applications. No details are given regarding the physical implementation of the

data model and its efficiency. Moreover, it is curious that the authors propose

Power Pivot or Qlikview as in-memory tools, since they are not frequently

mentioned as scalable solutions in Big Data environments;

62 | Advancing the Design and Implementation of Big Data Warehousing Systems

5. Develop visualizations for Big Data, using the BDW as the source. In this case,

the authors used Qlikview and Excel.

Tardío et al. (2015) acknowledge that the manual effort required to apply their methodology

remains high, despite all the advantages of having a systematic approach to conduct Big

Data projects.

§ Q. Yang and Helfert (2017) discuss the suitability of a three-layered DWing architecture on

Hadoop, including: the real-time data layer built using Flume and HDFS, wherein log data is

dumped without too much concern regarding its structure; the reconciled data layer, being

responsible for data preparation and data storage, using Hive to deploy a star schema DW;

and finally, the derived data layer, including several pre-computations similar to OLAP cubes,

which are then stored in databases like HBase.

§ Ali (2018) presents a real-time BDWing and Analytics framework with a demonstration case

based on a communications service provider, which involved offloading the ETL from an

Enterprise DW to a Big Data platform. Despite the fact that some of the frameworks’

constructs and guidelines are specifically related to the context of a communications service

provider, there are some guidelines and design considerations that can be useful for the

design of BDWs. The framework proposed by the author allows for the ingestion of streaming

and offline data from RDBMSs, files, and other transaction systems in the

telecommunications context. It is divided into three main components: the real-time

persistent data hub, which consists of several integrators and connectors (JDBC, files

connector, Kafka, and Apache NiFi) to fetch data from multiple sources, which will eventually

land in the BDW; the BDW (implemented using Spark and HDFS), a key component of the

framework that manages raw data in a Hadoop data lake, mainly using JSON and

compressed Optimized Row Columnar (ORC) files as the main formats; and, finally, the active

data analysis platform (implemented using Apache Ignite, Spark Streaming, and Storm) is

considered by the author the core component of the framework, and it is further divided into

three layers that preprocess raw data, assure data modeling and visualization, respectively.

Big Data Warehousing | 63

The output of the active data analysis platform is stored back into the BDW, in order to be

consumed by reporting and campaign purposes, merging several insights and structured

attributes to target (new) subscribers with pertinent campaigns.

§ Golfarelli and Rizzi (2018) conduct a literature review to discuss more than 20 years of DWing

techniques, architectures, and methodologies, already calling the reader’s attention to some

emerging Big Data needs and systems, such as distributed architectures, data partitioning,

and data replication supported by proprietary Big Data appliances, Hadoop, Hive, Presto,

among many other technologies. Regarding some methodologies related to DWs in Big Data

contexts, the authors highlight some research focus being given to OLAP on NoSQL

databases.

§ Tria, Lefons, and Tangorra (2018) present a framework for evaluating methodologies to

design BDWs, defining a set of criteria like application, agility, ontological approach,

paradigm, and logical modeling. The authors also provide ways of dividing methodologies

into classes (e.g., automatic, incremental, and non-relational), as well as a way to define the

characteristics being addressed by the methodology (e.g., value, variety, and velocity).

3.2 Data Warehouses on NoSQL Databases

Although NoSQL databases are mainly designed to scale OLTP applications (Cattell, 2011), that did

not prevent the appearance of works that propose a DW supported by NoSQL systems and data

models, which are presented in this section.

§ Chai, Wu, and Zhao (2013) claim that scalability and efficiency have been key issues in

RDBMS-based DWs. Nowadays, the continuous data growth is seen as a bottleneck to these

systems, and the authors propose a DW based on document-oriented databases, wherein

the ETL process is conducted through MapReduce. The authors conclude that their approach

achieves better scalability, flexibility, and efficiency than an RDBMS-based DW.

64 | Advancing the Design and Implementation of Big Data Warehousing Systems

§ Liu and Vitolo (2013) extend the capabilities of graph databases and develop a Graphical

User Interface (GUI) to visualize graphs. They propose the concept of “graph cube” to achieve

the fundamentals of a graph DW. The authors state that their work motivates for further

technical advancements.

§ Gröger, Schwarz, and Mitschang (2014) propose a flexible integration between data typically

stored in a traditional DW and unstructured data, based on a graph structure to link these

two types of data. The authors evaluate multiple scenarios regarding volume and complexity,

in which the largest graph has 3,000,000 nodes, achieving less than 10s in the execution of

complex queries, which, for example, might be finding the name of all employees with several

links. They use 3 machines, each one running a specific storage system, since their prototype

was supported by three different storage systems.

§ Tria, Lefons, and Tangorra (2014) claim that BDWs differ from traditional DWs, and their

data model should be based on a more flexible design. Therefore, they propose a design

methodology based on the key-value model, which considers entities and relationships. Tria

et al. (2014) propose a set of rules to transform data to the proposed key-value model,

instead of using star or snowflake schemas found in traditional DWs. Performance was not

evaluated, and the authors also envisage the use of document and column-oriented models.

§ Chevalier, El Malki, Kopliku, Teste, and Tournier (2015) study multidimensional DWs on

NoSQL models, in order to support OLAP, namely with column-oriented and document-

oriented models. HBase and MongoDB are used in their experiment. A set of rules to map

data to those models is proposed, and the authors evaluate loading and execution times to

pre-compute aggregates for different levels of detail. They use a 3-node cluster and 3 datasets

(1GB, 10GB, and 100GB) generated from the TPC Benchmark DS (TPC-DS), a decision

support benchmark proposed by the Transaction Processing Performance Council (TPC). The

loading times ranged from around 2m to 132m. According to Chevalier et al. (2015), HBase

computed all the aggregates in 1,700s, while MongoDB finished in 3,210s, so HBase has a

slight advantage, according to the authors, although no certain recommendations are given.

Big Data Warehousing | 65

Furthermore, several directions for future work are identified, such as the identification of

queries that benefit NoSQL models, and the comparison of relational and NoSQL models.

§ Dehdouh, Bentayeb, Boussaid, and Kabachi (2015) propose three approaches which allow

the implementation of BDWs on column-oriented databases, each one differing in the

structure of fact tables and dimensions (normalized, denormalized in a single table, and

denormalized in a single table using column families). The authors propose a set of rules to

map data from a multidimensional model to their data structures in a column-oriented

database. HBase was evaluated in a 25-node cluster, using a SQL interface called Apache

Phoenix. The dataset used in the experiment consists in 6 billion tuples retrieved from the

SSB benchmark. The queries consist in aggregating a measure based on different dimensions

and attributes. Depending on the query, the two experiments conducted by Dehdouh et al.

(2015) show execution times ranging from around 1,000s to over 2,000s for the normalized

model, and around 250s to 600s for the denormalized models, with a small advantage when

using column families.

3.3 Storage Technologies, Optimizations, and Benchmarking for Big Data

Warehouses

The way data is stored, either physically or logically, plays a relevant role on how users interact with

the BDW. Consequently, there are several works that propose optimizations to existing technologies

or new database systems adequate for the typical workloads in a BDW. In this section, Table 3.1

presents several approaches, including their research contribution, main characteristics, and

achieved results.

Table 3.1. Research on storage technologies, optimization, and benchmarking for BDWs.

Work Research contribution Main characteristics Evaluation and results

(Thusoo, Sarma,
et al., 2010)

Hive, an open source
DW solution built on
top of Hadoop.

Supports SQL-like queries
(HiveQL) and UDFs;
includes a metastore with
schemas and statistics.

In 2010, at Facebook, Hive had stored
700TB of data, and it was receiving
5TB daily. The cluster scaled
accordingly to the workloads, including
reporting and ad hoc analysis.

66 | Advancing the Design and Implementation of Big Data Warehousing Systems

Work Research contribution Main characteristics Evaluation and results

(H. Wang, Qin,
Zhang, Wang, &
Wang, 2011)

LinearDB, which joins
the efficiency of parallel
databases and the
scalability and fault-
tolerance of
MapReduce.

Modifies the traditional
star/snowflake schema to
achieve better scalability,
and has a specific query
mechanism to take
advantage from it.

Cluster: 5 nodes.

Dataset: 120M rows (30GB).

Benchmark: SSB.

Results: it was faster than PostgreSQL,
ranging from around 40s to just over
100s. LinearDB also achieved
adequate scalability.

(Guo, Xiong,
Wang, & Lee,
2012)

Mastiff, a MapReduce-
based system to
achieve high loading
speed and query
performance on time-
based data.

Uses optimized table scans
and a column-based query
engine.

Cluster: 20 nodes.

Dataset: 200GB from the TPC
Benchmark H (TPC-H) and 30GB from
a network monitoring system.

Benchmark: TPC-H.

Results: it was able to load data and
perform queries faster than Hive,
HadoopDB and GridSQL.

(Qu, Rappold, &
Dessloch, 2013)

Surpass join
inefficiency in
MapReduce-based
DWs.

Frequently used dimension
columns are pre-joined with
fact tables.

Cluster: 6 nodes.

Benchmark: TPC-H.

Results: reduced the storage footprint,
since data was not fully denormalized,
but the performance improvements
were not stable as the data volume
increased.

(Alsubaiee et al.,
2014)

AsterixDB, a platform
suitable to use cases
related to Big Data
(e.g., Web DW and
social media).

Has a flexible NoSQL-style
data model and a specific
query language; it is
scalable and includes
several data types;
AsterixDB can query data
stored internally or
externally.

AsterixDB performed well against Hive,
a commercial parallel DBMS, and
MongoDB, running some of the tested
queries in less time than the
aforementioned systems.

(Bissiriou &
Chaoui, 2014)

Improve the
performance of
HadoopDB.

A fast and space-efficient
file format (RCFile) is
introduced, as well as a
new SQL-to-MapReduce
translator and a new
column-oriented database.

The authors did not benchmark their
approach.

Big Data Warehousing | 67

Work Research contribution Main characteristics Evaluation and results

(Floratou et al.,
2014)

Compare the
performance of Hive
and Impala as SQL-on-
Hadoop systems.

3 benchmarks are used,
and the comparison
includes the two systems
using recent file formats
(ORC and Parquet).

Cluster: 21 nodes.

Benchmarks: TPC-H, TPC-DS, and
custom I/O tests.

Results: Impala delivered a significant
performance advantage over Hive (on
MapReduce and on Tez) when the
dataset fitted into memory, due to
Impala’s I/O and query efficiency.
Execution times ranged from around
10s to 1,000s on more intensive
queries.

(S. Hu et al.,
2014)

DualTable, which aims
to preserve Hive’s
query performance
when data updates are
frequent.

Combines the streaming
read efficiency of HDFS
and the random write
capabilities of HBase.

Benchmarks: TPC-H and a workload
from a real application.

Results: successfully improved Hive’s
performance. The authors did not
compare their approach with Hive’s
ACID capabilities, since this feature was
not ready at the time.

(Huai et al.,
2014)

Advance Hive’s storage
and runtime
performance.

Update Hive’s existing file
formats to ORC,
improving storage
capacity and data access;
optimize resource usage
through an efficient query
planner and execution
engine.

Cluster: 11 nodes.

Benchmarks: TPC-H and TPC-DS.

Results: significant improvements in
storage and query efficiency.

(Sureshrao &
Ambulgekar,
2014)

Study several
MapReduce-based
storage structures.

Row, column, and hybrid
structures are presented,
as well as RCFile, Mastiff,
and ORC.

Advantages and disadvantages were
presented, but performance was not
evaluated.

(Almeida,
Bernardino, &
Furtado, 2015)

Evaluate storage
technologies for BDWs.

MySQL Cluster and Hive
are compared.

Cluster: 1, 2, and 4 nodes.

Dataset: ranging from 1GB to 24GB.

Benchmark: SSB.

Results: scalability issues were
identified in MySQL cluster, unlike Hive.
According to the authors, MySQL
cluster is best suitable to OLTP.

(Arres, Kabachi,
Boussaid, &
Bentayeb, 2015)

Improve MapReduce
performance through a
new approach to
allocate data blocks.

Related data blocks are
collocated in a particular
form to improve query
performance.

Cluster: 10 nodes.

Dataset: 920GB.

Benchmark: TPC-H.

Results: Query execution time was
reduced. For the presented queries, the
execution times ranged from around
7,000s to 8,000s.

68 | Advancing the Design and Implementation of Big Data Warehousing Systems

Work Research contribution Main characteristics Evaluation and results

(Chao, Li, Liang,
Lu, & Xu, 2015)

DataMPI, an approach
to improve Hive’s
performance.

Uses a message passing
interface.

Cluster: 8 nodes.

Dataset: up to 40GB.

Benchmarks: Intel HiBench and TPC-H.

Results: significantly improved Hive’s
performance (30% to 32% on average).

(Barkhordari &
Niamanesh,
2017)

Atrak, a MapReduce-
based DW.

Improves data locality
with a unified data
format.

Cluster: 50 nodes.

Dataset: 100TB.

Benchmark: TPC-DS.

Results: Atrak presented performance
improvements over systems like Hive
and Spark SQL.

(Chou, Yang,
Jiang, & Chang,
2018)

Evaluation of a system
architecture for power
meter data analysis
with Hive, Impala, and
Spark SQL.

Besides presenting a
system architecture, most
of the work is focused on
comparing the
performance of Hive,
Impala, and Spark SQL.

Cluster: 8 nodes.

Dataset: 56,000,000 to 1,120,000,000
records.

Benchmark: custom-made.

Results: Impala presented better results
in query processing, followed by Spark
and Hive, respectively. Spark also
demonstrated performance benefits in
ETL processing when compared to
Hive.

3.4 Advancements in OLAP, Query, and Integration Mechanisms for Big Data

Warehouses

Research related to analytics on BDWs has become increasingly relevant. The community is focused

on aspects such as combining the benefits of RDBMSs and non-relational systems, proposing query

optimizations in HiveQL, as well as how to store and process multidimensional structures (e.g., OLAP

cubes) in these new systems (Cuzzocrea et al., 2011; Cuzzocrea, 2013, 2016). In the previous

section, research related to storage systems for BDWs was described. Some of the approaches also

propose query planners and executors to improve the performance of these storage systems.

However, in this section, the focus is not on the storage layer, but on OLAP, query, and integration

mechanisms to improve analytical tasks in BDWs, i.e., approaches which focus on advancing

analytical and integration mechanisms for improved interactions with BDWs.

Big Data Warehousing | 69

The community has been vastly contributing to the improvement of analytical tasks over BDWs, either

by embedding predictive models directly into the database using SQL UDFs in parallel database

architectures with high throughput (around 2M records per second) (K. K. Das, Fratkin, Gorajek,

Stathatos, & Gajjar, 2011), or by proposing low-latency query engines to process Hive’s data as it

constantly increases with the number of users, which is the case at Facebook, supporting queries

that scan 5PB of compressed data (Murthy & Goel, 2012). Therefore, reducing latency becomes

critical for exploratory analysis, in cases where creating a vast set of pre-aggregation mechanisms is

significantly inconvenient. Consequently, efficient query processing, real-time ETL mechanisms, and

scalable OLAP on Big Data are research trends related to BDWs, as shown in Table 3.2.

Table 3.2. Research on OLAP, query, and integration mechanisms for BDWs.

Work Research contribution Main characteristics and highlights

(Asif, Dobbie, & Weber,
2013)

Improve real-time data
integration.

Use of algorithms for efficient joins between a stream
and a vast volume of data stored on disk.

(Weidner, Dees, &
Sanders, 2013)

Achieve sub-second query
execution times.

In-memory OLAP is used in environments with
Terabytes of data. Execution times are significantly
fast, usually less than 1s.

(Cuzzocrea & Moussa,
2014)

Study parallel OLAP cubes in
Big Data environments.

OLAP based on relational technology is used, namely
the Mondrian server.

(Cuzzocrea & Moussa,
2018; Cuzzocrea,
Moussa, & Vercelli,
2018)

Support the DW maintenance
process for near real-time
OLAP, making use of big
summary data (e.g.,
materialized views).

Inspired by the Lambda Architecture, the authors
propose an approach for managing and refreshing big
summary data in near real-time OLAP contexts. To
evaluate the approach, the authors use the TPC-H
benchmark and create a set of materialized views on
top of the original dataset.

(Dehdouh, Bentayeb,
Boussaid, & Kabachi,
2014)

Aggregation mechanism based
on OLAP cubes.

The authors propose a columnar NoSQL cube using
Apache Phoenix and HBase. Execution times are
around 20,000s for a 1TB dataset, in a 15-node
cluster.

(Ferrández et al., 2014) Extend the traditional query
mechanisms with question
answering capabilities.

A question answering framework that combines
external unstructured data with structured data stored
in a DW.

(Lebdaoui, Orhanou, &
Elhajji, 2014)

Address the integration of Big
Data into the DW in shorter
time periods.

The volume of data changes is divided to increase the
rate of data integration and to refresh the DW more
often, while preserving data integrity.

(Beheshti, Benatallah,
& Motahari-Nezhad,
2015)

A framework to support scalable
graph-based OLAP Analytics.

Summarization and multiple granularity levels are
used to facilitate the analysis of graphs with significant
volume.

70 | Advancing the Design and Implementation of Big Data Warehousing Systems

Work Research contribution Main characteristics and highlights

(Li & Mao, 2015) A real-time ETL framework to
avoid congestion between OLAP
queries and OLTP updates.

An external dynamic storage area and a replication
mechanism are proposed to avoid blocking issues,
reducing OLAP response times and assuring adequate
real-time accuracy.

(Song et al., 2015) A Hadoop-based OLAP system
to process Big Data.

Adopts a multidimensional model based on
dimensions and measures. Shows performance
advantages in data loading and OLAP over other
evaluated systems.

(H. Wang et al., 2015) Improve BDWs through a new
query processing framework.

Join operations are partially pushed both to a
preprocessing phase and a postprocessing phase. Fact
tables are rearranged so that dimensions’ hierarchies
are compressed to eliminate the need for typical
star/snowflake joins in query processing.

(C. Xu et al., 2015) Octopus, a computation engine
to bridge the gap between data
scientists and the DW.

A SQL-like query language is used to integrate both
database queries and machine learning algorithms. It
can be used to interact with different data sources and
execute machine learning algorithms on that data;
Octopus optimizes the amount of data movement, and
it was able to outperform Spark 1.4 in an analytical
scenario using a 9-node cluster.

(Tian, Özcan, Zou,
Goncalves, & Pirahesh,
2016)

A hybrid approach to join data
stored in HDFS and a
traditional DW.

Study of several algorithms to join data stored in HDFS
and a DW, in order to identify the most adequate
hybrid warehouse architecture.

3.5 Implementations in Specific Contexts

Several business products rely on the value that can be extracted from the DW through analytical

techniques, such as ad hoc queries, dashboards, reports, or data mining, for example. Therefore,

among the literature, there are some approaches that present specific applications of a DW in Big

Data environments, often referred as a BDW. In this section, these approaches will be presented, as

well as their respective contributions to the topic of BDWing.

§ Thusoo, Shao, et al. (2010) present the DW and analytics infrastructure at Facebook, which

includes Scribe, Hadoop, and Hive as the fundamental components of log collection, storage,

and analytics, which combined make available a DW that can handle 10TB of compressed

data every day. At Facebook, Hive is used for reporting, ad hoc queries, and analysis.

Big Data Warehousing | 71

§ Brulé (2013) explores the use of Hadoop, NoSQL, MPP DWs, stream processing, and

predictive analytics in the energy and production industry, highlighting several potential use

cases for their application, in order to augment an industry which is typically based on

physics-based models and simulations, as the author claims.

§ S. Wang et al. (2014) aim to improve the performance of a DW about biological data,

conducting an experimental evaluation to compare a key-value model in HBase with a data

model in MySQL cluster and MongoDB. The authors demonstrate that the key-value model

outperformed the others, and can be used to retrieve results based on relevant biological

questions.

§ Bondarev and Zakirov (2015) present a demonstration case about student performance,

using Sqoop to import data from a relational DW to Hive, maintaining a snowflake schema

and using it to create visual analyses. There are also other BDW applications in the education

sector, such as the implementation case from Santoso and Yulia (2017) demonstrating the

use of Hadoop as a Big Data tool for the data ingestion/staging phase to enhance an RDBMS-

based system.

§ Chennamsetty, Chalasani, and Riley (2015) propose a system to provide insights from

historical data about patients, as the Healthcare industry can produce vast amounts of data.

Hive is used to store the data, supporting further analytics like data visualizations about

patients. This work highlights Hive’s capabilities to support a BDW. Sebaa, Chikh, Nouicer,

and Tari (2018) also provide a Hive-based implementation to improve healthcare resources

distribution (optimal allocation of resources), presenting a constellation-based data model

and data partitioning considerations.

§ Ramos, Correia, Rodrigues, Martins, and Serra (2015) and Martins et al. (2015) propose an

augmentation of the traditional DW, namely using automatic techniques to collect data from

the Web, and store it in a NoSQL database (MongoDB), in order to complement the hotel’s

internal data stored in a traditional DW. Ramos et al. (2017) also propose a BDWing system

72 | Advancing the Design and Implementation of Big Data Warehousing Systems

for the hospital sector, whose main focus is related to other healthcare works previously

presented in this section.

§ Vardarlier and Silahtaroglu (2016) propose a system to help universities in the decision-

making process, collecting data from several sources and storing it in a BDW, to further apply

machine learning algorithms. Although the authors defined the proposed system as a BDW,

they do not clearly discuss its characteristics, techniques, or technologies and, therefore, it

is not conclusive if it is an augmentation of the traditional DW or a solution that uses SQL-

on-Hadoop, for example.

3.6 Final Remarks

The research related to the BDW is mainly divided into five topics, as seen in previous sections: the

characteristics and design changes for DWs in Big Data environments; DWs on NoSQL databases;

storage technologies, optimizations, and benchmarking for BDWs; advancements in OLAP, query,

and integration mechanisms for BDWs; and implementations in specific contexts. Figure 3.1 presents

the distribution of the works related to BDWing discussed in this document, grouped by the main

topic. The results indicate that research regarding the characteristics and design of BDWs is more

predominant, discussing characteristics, design changes, guidelines, logical architectures,

Figure 3.1. Number of works related to research on BDW, grouped by the main topic.

0

5

10

15

20

25

30

35

Characteristics &
design of BDWs

Advancements in
OLAP, query &

integration
mechanisms

Storage technologies,
optimizations &
benchmarking

Implementations in
specific contexts

DWs on NoSQL
databases

Big Data Warehousing | 73

techniques, and technologies. Works related to analytics and storage for BDWs are the second and

third more predominant topics, respectively, proposing and evaluating several approaches to improve

BDWs and their analytical capabilities. Moreover, some works also present implementations in specific

contexts, while others propose DWs supported by NoSQL databases.

Furthermore, according to the literature review, several characteristics can define a BDW:

§ Parallel/distributed storage and processing of large amounts of data;

§ Scalability (accommodate more data, users, and analyses);

§ Elasticity to provide a more efficient way of scaling-out and scaling-in depending on the

organizational needs;

§ Flexible storage, including semi-structured and unstructured data;

§ Real-time capabilities (stream processing, low-latency, and high-frequency updates);

§ High performance with near real-time response;

§ Mixed and complex analytics (e.g., ad hoc or exploratory analysis, data mining, text mining,

statistics, machine learning, reporting, visualization, advanced simulations, and materialized

views);

§ Interoperability in a federation of multiple technologies;

§ Fault-tolerance, mainly achieved through data partitioning and replication;

§ And the use of commodity hardware to reduce the costs of implementation, maintenance,

and scalability.

Moreover, Hadoop and NoSQL databases are mentioned either as a replacement of the traditional

DW or as a way to augment its capabilities (e.g., ETL, data staging, and preprocessing of unstructured

data), thus forming a federation of different technologies that enable the aforementioned

characteristics. Figure 3.2 presents a conceptual model of the BDW, which illustrates these

characteristics and strategies discussed above.

Designing a BDW should focus both on the physical layer (technological infrastructure) and on the

logical layer (data models, data flows, and interoperability between components). Augmenting the

74 | Advancing the Design and Implementation of Big Data Warehousing Systems

capabilities of traditional DWs with new technology is a valid approach and, arguably, currently

preferred among organizations, strategy that is known as “lift and shift”. However, “rip and replace”

strategies will become more common, wherein traditional DWs are fully replaced due to their

limitations in Big Data environments (Russom, 2014, 2016). The “lift and shift” strategy creates a

federation of several technologies and may represent a change of perspective from a data-driven view

of the DW to a use case driven view (Clegg, 2015). Therefore, data modeling was previously the main

concern, being now replaced by finding the right technology to meet demands, leading to the risk of

uncoordinated data silos.

Current research, although of significant value, only contributes to specific characteristics of a BDW,

advancing some existent technology, proposing a new one, or developing a specific implementation

for a particular use case. The phenomenon among research on Big Data is noticeable: most are

concerned with “selling” their technique or technology. There is a lack of prescriptive research on

BDW, since there is no integrated approach to design BDWs, as formerly existed in traditional DWs,

like the well-known approaches from Kimball or Inmon. This is mainly the result of shifting from a

data-driven view of the DW to a use case driven view, and also due to the young age of Big Data as a

research topic. However, as Clegg (2015) claims, it would be a mistake to discard decades of

Figure 3.2. A conceptual model of the BDW.

Big Data Warehousing | 75

architectural best practices based on the assumption that storage for Big Data is not relational nor

driven by data modeling principles or guidelines.

The fact that there is a significant number of works related to SQL-on-Hadoop proves that the data

structures known for many years are more relevant than ever, although modified and optimized for

Big Data contexts. Of course, there is unstructured data that does not adequately fit into these data

structures, but there are also techniques to extract value from that data, and then use it to fuel a

BDW (e.g., data mining, text mining, and machine learning). The problem identified in this literature

review is that there is a significant gap between “this is what a BDW should be” and “this is how one

designs and implements it”, which then leads to a use case driven approach, primarily concerned

with choosing the right technology to meet demands. As approaches are use case driven, the

knowledge and guidelines that can be retrieved from one implementation to the others are only

possible because the circumstances are the same, thus not creating gradual and iterative knowledge,

crucial for fundamental advancements in the area.

Among the works discussed in this chapter, there are already some best practices and general

guidelines of major relevance, but they do not focus on both the physical layer (technological

infrastructure) and the logical layer (data models, data flows, and interoperability between

components) to implement the characteristics of a BDW, with adequate and detailed demonstration,

discussion, and evaluation. This is of major relevance for the scientific and technical community

related to BDWing, since it consequently leads to a contribution in which models (representation of

data structures and components), methods (structured practices) and instantiations (prototypes and

implemented systems) are tightly coupled. Such approach can lead to a prescriptive contribution to

design and implement BDWs according to their characteristics of parallel/distributed storage and

processing, scalability, elasticity, real-time, high performance, mixed and complex analytics, flexible

storage, interoperability, fault-tolerance, and commodity hardware.

76 | Advancing the Design and Implementation of Big Data Warehousing Systems

This page was intentionally left blank

An Approach for the Design and Implementation of Big Data Warehousing Systems | 77

Chapter 4. An Approach for the Design and Implementation of Big Data

Warehousing Systems

The approach proposed in this work is a prescriptive contribution that researchers and practitioners

can either use for building BDWs or for considering as background knowledge for future research. It

significantly extends the current scarce and scattered contributions regarding BDWing, as it includes

prescriptive models and methods that can be used as a guide for designing and implementing these

complex analytical systems. The approach is based on the “rip and replace” strategy (Russom, 2016),

discarding traditional RDBMS-based DWs and replacing them with state-of-the-art Big Data techniques

and technologies. It is an approach that aims to address the characteristics of a BDW (Figure 3.2),

focusing on both the logical and physical layers. This chapter describes the proposed approach,

presenting its prescriptive models and methods, namely: a model of logical components and data

flows; a method for data CPE processes; a model for the technological infrastructure; and a method

for data modeling focusing on data storage and analytics.

4.1 Model of Logical Components and Data Flows

The logical components included in the proposed approach (Figure 4.1) are defined according to the

components present in the NBDRA (NBD-PWG, 2015), since it aims to comply with current standards

and trends in the Big Data community. Obviously, the same presents some significant modifications

and also extends the NBDRA with new components, since the latter is a general architecture for Big

Data solutions and, therefore, not specifically designed towards BDWs. The approach here proposed

also takes into consideration relevant guidelines provided by previous published works, such as the

Big Data Processing Flow proposed by Krishnan (2013) and the Data Highway Concept proposed by

Kimball and Ross (2013). Furthermore, the approach often encourages compliance with three of the

main principles of the Lambda Architecture (Marz & Warren, 2015): first, one should store data at

the highest level of detail (e.g., raw data in the distributed file system component), since it may serve

future analytical purposes not previously planned; second, whenever possible, one should model data

structures to store a set of immutable events, avoiding updates to existing data, in order to simplify

78 | Advancing the Design and Implementation of Big Data Warehousing Systems

the BDWing system; finally, data at different speeds certainly has different requirements and,

therefore, different logical components for batch and streaming data must be taken into

consideration. The model of logical components and data flows (Figure 4.1) is divided into six main

components: data provider; data consumer; Big Data application provider; Big Data framework

provider; system orchestrator; and security, privacy, and management.

Figure 4.1. Model of logical components and data flows.
Dashed components are seen as optional depending on the implementation goals.

An Approach for the Design and Implementation of Big Data Warehousing Systems | 79

4.1.1 Data Provider and Data Consumer

The data provider component represents each actor introducing new data into the BDW (e.g., person,

sensor, computer, smartphone, and Web stream). Therefore, this component represents several data

sources, external or internal, online or offline, collected automatically or manually. Among the

responsibilities of the data provider, the following can be highlighted: assure adequate data privacy

and security; enforce access rights; make data available through suitable interfaces; and provide

adequate metadata. In contrast, a data consumer represents an end-user or an external system that

can perform the following actions: search and download data; analyze data (e.g., execute ad hoc

queries, and train/test data science models); construct or consume reports and other data

visualization mechanisms (e.g., dashboards); and include data in business processes. To access the

data available in the implemented BDWing system and protected by the security, privacy, and

management component (e.g., authentication and authorization mechanisms), the data consumer is

able to use the interfaces made available by the Big Data application provider through demand-based

interaction, where the data consumer initiates the interaction and waits for a response (NBD-PWG,

2015).

4.1.2 Big Data Application Provider

The Big Data application provider component is responsible for assuring three relevant stages in the

data that flows throughout the different BDW components:

1. Collection - in this stage, the data is collected from data providers, arriving at the BDWing

system at the rawest state possible. The data can arrive at the system through two different

velocities, batch or streaming. Data arriving in batches is immediately stored in a distributed

file system, since one of the main challenges in Big Data is variety (different structures, types,

and sources), and this file system is a component that allows the storage of any variety and

volume of data. This data will then be processed in the next stage. In contrast, if the data is

arriving in a streaming fashion, it does not need to be stored yet, and it flows to the

preparation and enrichment stage. However, an alternative route in the streaming flow can

80 | Advancing the Design and Implementation of Big Data Warehousing Systems

exist, storing streaming raw data in the distributed file system, as Figure 4.1 shows, being

this data available for further tasks, such as disaster recovery or training of data science

models on unmodified streaming data;

2. Preparation and enrichment - the batch data previously stored is extracted from the

distributed file system with the goal of being prepared and enriched to provide analytical

value. The same happens with the streaming data, although it arrives at this stage directly

from the collection stage, as previously explained. The preparation and enrichment of data

can include all sorts of cleansing, integration, transformation, and aggregation processes.

New attributes can also be created and derived from the raw data, without any limitation, as

well as the extraction of hidden patterns in unstructured data (e.g., image, video, and text).

These processes can not only take as input the new data arriving at the system, but also read

the data already stored in the BDW, establishing comparisons and trends, for example.

Besides finding patterns in unstructured data using data science techniques (e.g., text

mining), these processes can also include predictions from previously trained data science

models based on problems such as classification, regression, clustering, and time series

forecasting. It must be remembered that the goal of this stage is to prepare and enrich data

to serve the current business goals and expectations, whether they are based on facts or on

predictions made by previously trained data science models (flow marked with a dashed

circle in Figure 4.2). The way to implement these processes differs according to the velocity

of the data (batch or streaming), since different velocities typically require different paradigms

and technologies, but the essential steps are similar. In the proposed approach, batch and

streaming data follow different routes, but are prepared and enriched with the same goals in

mind: fuel the analytical objects to which the data belongs, structuring data according to

their granularity key, descriptive attributes, and analytical attributes, whether they are facts

or predictions extracted from the raw data being collected. The method for data modeling

detailed in section 4.3 explains these concepts, detailing how data should be modelled in

the BDW. After this stage, the data is stored in its corresponding indexed storage component:

batch data is stored in the batch storage; and streaming data is stored in the streaming

An Approach for the Design and Implementation of Big Data Warehousing Systems | 81

storage. Figure 4.2 illustrates the proposed method for CPE processes, summarizing the

steps described above;

3. Access, analytics, and visualization - this is the third and final stage of the data in a BDWing

system. In this stage, the data consumers have access to the data in two fundamental ways:

batch and interactive access. A batch access can be typically used for complex visualization

Figure 4.2. Method for CPE processes.

82 | Advancing the Design and Implementation of Big Data Warehousing Systems

tasks (e.g., deep and complex reporting) or for training and testing data science models,

which typically require intensive computation. The data science sandbox (see Figure 4.1) is

a crucial component of the BDW, where data scientists can explore the data stored in the

distributed file system and indexed storage components, create models, extract useful

insights, and use the results to improve or create new analytical objects. Therefore,

preparation and enrichment processes can also start with batch jobs originated from the data

science sandbox, without the need for a collection stage, basically meaning that the data

science sandbox is just considered as another data provider in this context. These are tasks

that do not necessarily require an interactive response time and, therefore, can be seen as

batch-oriented tasks. In contrast, tasks such as ad hoc querying, OLAP, and exploratory data

visualization require an interactive behavior to keep the data consumer engaged in the current

analysis and exploration of data. The tasks enumerated previously are relatively similar to the

ones performed in a traditional DW (e.g., reporting, data visualization, and exporting data to

run data mining algorithms). Obviously, there are some particularities to take into

consideration in Big Data environments (volume, variety, and velocity), but there is no need

to propose a specific method to perform these tasks, since Figure 4.1 is already self-

explanatory.

4.1.3 Big Data Framework Provider

This logical component includes the several subcomponents related to the resources that are

necessary to provide an adequate distributed storage and processing platform for the BDW, as well

as an adequate communication with its external actors (e.g., data providers and data consumers).

Therefore, this component is mainly related to infrastructural concepts, such as

messaging/communications, resource management, infrastructures (physical or virtual), data

processing paradigms (batch, interactive, and streaming), and data organization and distribution

paradigms (distributed file system and indexed storage).

An Approach for the Design and Implementation of Big Data Warehousing Systems | 83

4.1.3.1 Messaging/Communications, Resource Management, and Infrastructures

The messaging/communications component represents the need to assure reliable queuing and data

transmission between nodes in a cluster that scales horizontally (NBD-PWG, 2015). It must be

remembered that scalability is one of the main characteristics of BDWs. Messaging/communications

techniques must also assure adequate fault-tolerance when nodes fail. In the design and

implementation of BDWs, this component is relatively transparent to the stakeholders involved in the

project, since it is directly related to the technologies chosen to implement the several logical

components of the BDWs (section 4.2). Each technology may implement different

messaging/communications techniques, and, depending on the application context, one may prefer

a specific technique that better meets the requirements of the project. This is something that

stakeholders should be aware, but it is often transparent to the team installing and configuring these

technologies.

Regarding the resource management component, it represents a relevant concern included in the

technologies that assure distributed storage and processing, which are an adequate way of achieving

scalability in a BDW. These technologies must efficiently manage the resources available in the cluster,

namely CPU and memory. The inadequate management of these resources may severely impact the

performance of the BDW. One of the main concepts regarding this component is data locality, since

data is too big to be moved from the storage nodes to the processing nodes through the network

(NBD-PWG, 2015). Therefore, the processing needs to be closer to the storage (C. L. P. Chen &

Zhang, 2014), typically co-locating the processing and storage nodes in the cluster. Similarly to the

messaging/communications component, the resource management component is directly related to

the technology chosen to implement a specific logical component. Each technology may use different

techniques to manage resources.

Finally, the logical component related to the infrastructures highlights all the physical and/or virtual

elements necessary to run the tasks assigned to each component of the BDW, including the network

to transfer data, the CPU and memory to provide adequate data processing, and the storage to

provide data persistence. Physical resources represent the hardware used across the different nodes

84 | Advancing the Design and Implementation of Big Data Warehousing Systems

in a horizontally scalable cluster. In contrast, virtual resources are frequently used to achieve an

elastic and flexible allocation of physical resources, typically referred to as IaaS. Although Big Data

technologies can be deployed on virtualized environments, the majority of them are designed to run

directly on physical commodity resources (NBD-PWG, 2015), providing efficient I/O by distributing

multiple CPUs, memory units and disks across a cluster of commodity machines based on a shared-

nothing architecture.

4.1.3.2 Processing

In a BDW built using the proposed approach, there are three types of processing according to the

different levels of latency, namely batch, interactive, and stream processing. Generally, the boundaries

between these three types of processing are not clear. However, in this work, they are defined as

follows:

§ Batch processing - this type of processing involves latencies ranging between several minutes

and hours. Examples of batch processing may include: the periodic CPE of vast amounts of

historical data from data providers; the processing of deep and complex reports or ad hoc

queries; and the training of data science models, which involves complex and processing-

intensive data mining and text mining algorithms. These tasks are ideal for running in the

background without the need for user intervention;

§ Interactive processing - this type of processing is used to provide query execution times

ranging from milliseconds to a few tens of seconds, depending on the infrastructure and data

volume. There are a few data organization, distribution, and modeling strategies used in this

work that allow for this level of latency even with ever-increasing amounts of data. Such

strategies include: data denormalization; data partitioning; and inter-storage and

materialization pipelines (see subsection 4.1.3.3 and section 4.3);

§ Stream processing - in this work, this type of processing only concerns the latency in data

CPE processes, meaning that data consumers do not have direct access to the data being

streamed. Instead, streaming data is stored in the streaming storage component and it is

An Approach for the Design and Implementation of Big Data Warehousing Systems | 85

immediately available to the data consumers through interactive processing supported by

this data storage component. Regarding the levels of latency, streaming data should arrive

at the streaming storage in milliseconds or a few seconds, in order to be immediately

available to data consumers. However, when preparing and enriching streaming data,

sometimes, it is useful to create micro batch jobs to perform specific operations, such as

small aggregations, window operations, application of data science models, and merging

streaming data with batch data to establish trends. Micro batches can be seen as a

significantly small batch of data records, instead of handling them individually. The size of a

micro batch job is often customizable in several streaming technologies. When this type of

operations is needed, the data arrives in a streaming fashion to the BDWing system, but may

only be available after a few tens of seconds or even minutes, depending on the size of the

micro batch. Micro batches can also help improving the throughput of the data flow, only

requesting an insert operation on the streaming storage component when a micro batch is

completed, instead of creating a request for each data record.

4.1.3.3 Storage: Data Organization and Distribution

Data organization and distribution is a crucial aspect in the proposed approach. It is designed with

the goal of providing a flexible and scalable data storage solution that is aware of data volume, variety,

and velocity, without necessarily discarding a data modeling method. In this context, the storage

design philosophy presented here is based on two relevant components: the distributed file system,

which is an unstructured data storage solution, wherein data does not necessarily need to have a

specific schema nor does it need to be modelled in a specific way; and the indexed storage

component, wherein the data must comply with specific structures, although they are based on a

flexible modeling technique suitable for BDWs, as detailed in section 4.3. These two components are

also related to the logical component that provides all the metadata for the data stored in the file

system and in the indexed storage components (e.g., file locations, data types, descriptions, and

relevant timestamps).

86 | Advancing the Design and Implementation of Big Data Warehousing Systems

4.1.3.3.1 Distributed File System

Making the analogy to the traditional DWs, the distributed file system can be seen as an empowered

staging area, wherein raw data can not only be stored for later preparation and enrichment, but also

for training data science models based on structured or unstructured data, since a file system

adequately supports schema-less data sources. Therefore, data scientists can use this file system as

a sandbox to explore the data and discover hidden patterns, providing useful insights to support the

decision-making process. Taking a closer look at Figure 4.1, it can be observed that data scientists

can also use this component to store the results of queries submitted to the indexed storage

component, and use these results to create or improve data science models based on several

techniques and algorithms. These models and insights can then be included in further data CPE

processes, combining them with data arriving at the BDW and storing the result in the analytical

objects (section 4.3) stored in the indexed storage component.

This approach provides adequate flexibility to freely explore the data in its raw state, to combine it

with previously stored data, if applicable, and to make sure that the sandbox findings flow to the

indexed storage component, which assures that the analytical requests from data consumers are

fulfilled. Take as an example a company that sells jewelry in several countries. This company collects

data from its point of sale systems using batch processing, as well as unstructured text from social

media using stream processing. Data scientists use the unstructured data stored in the distributed

file system to train a text mining model for extracting sentiments regarding the different types of

jewelry in several countries. In the indexed storage, the company stores an analytical object for the

sales data and an analytical object for the sentiments expressed regarding the different types of jewelry

in each country. Meanwhile, after days of querying the data stored in the indexed storage component

and saving the findings in the distributed file system, a certain data scientist can start to classify a

sale as “expected” or “unexpected”, which results from the comparison between the jewelry being

sold and the sentiments expressed for that product in the country in which the sale is being made.

This is an example of the usefulness and flexibility of the distributed file system in a BDWing system

built using the proposed approach, in order to complement or create analytical objects stored in the

indexed storage component.

An Approach for the Design and Implementation of Big Data Warehousing Systems | 87

4.1.3.3.2 Indexed Storage

Contrasting with the distributed file system, the indexed storage is a component oriented towards

data modeling, i.e., data needs to be structured according to a specific data model. However, in this

work, the data model based on analytical objects offers significant flexibility, while maintaining a

structured schema suitable for querying and OLAP. This modeling method is further discussed in

section 4.3. In this subsection, the focus is on the logical components responsible for storing these

analytical objects. The indexed storage component is divided into two main storage types, namely the

batch storage and the streaming storage. Nevertheless, the data modeling approach is the same for

the two types of storage, storing all the data in analytical objects and their descriptive and analytical

attributes.

The batch storage component represents a repository of analytical objects that are refreshed less

frequently, since the data only arrives in a batch-oriented fashion and, therefore, the time interval

between updates is usually several minutes, hours, days, weeks, or months, for example. In contrast,

the streaming storage component stores analytical objects that are refreshed frequently, since the

data arrives through streaming mechanisms and, therefore, updates are usually happening with time

intervals of milliseconds, seconds, or a few minutes (for large micro batches). A relevant component

related to these two storage types is the inter-storage pipeline, which is responsible for transferring

data between the streaming storage and the batch storage. Consequently, the same analytical object

may exist simultaneously in these two storage components. This may happen if the technology being

used to support the streaming storage has fast random access to data, but it is not optimized for fast

sequential access. In contrast, if the technology is the same for both storage types, so either balanced

or more optimized for fast sequential access and not for fast random access, frequently, the inter-

storage pipeline may only need to execute background jobs to distribute data in a more efficient way,

such as, for example, merging many small files originated by the streaming process into one larger

file, since small files can become a problem in Hadoop (Mackey, Sehrish, & Wang, 2009). It must be

remembered that, internally, indexed storage systems also persist data as files. The inter-storage

pipeline is optional, depending on the infrastructure being deployed to support the BDW, since

technology is constantly evolving, and there is increasing interest in exploring storage systems that

88 | Advancing the Design and Implementation of Big Data Warehousing Systems

adequately support both fast sequential access and fast random access in Big Data environments,

as discussed in section 4.2.

Other optional subcomponents included in the indexed storage component are the materialization

pipeline and the materialized objects. A materialized object is an object that stores the results of a

query executed over one or more analytical objects. The materialization pipeline is the logical

component that assures this materialization process. Materialization can be significantly helpful for

improving execution times in contexts where the data consumer consistently submits similar queries

to the BDWing system. Moreover, materialization also helps storing the results of deep and complex

requests like long-running reports, which otherwise will take a significant amount of time to complete.

Materialization may typically represent a trade-off between data timeliness and response times, but

there are several contexts where the data consumers do not need the most recent data available in

the BDW. Nevertheless, materialized objects can be refreshed when a new batch of data arrives at

the system or when the inter-storage pipeline runs a background job (Figure 4.1). Consequently, the

materialization pipeline can either re-process the whole materialized object, or perform an incremental

change by reading it and complementing it with new data.

To conclude this subsection regarding the indexed storage component, it is relevant to highlight that

the analytical objects stored either in the batch storage or in the streaming storage can be organized

and distributed using two relevant concepts: partitioning and bucketing/clustering (Thusoo, Sarma,

et al., 2010). These two concepts can largely influence query performance in certain contexts. When

relying on an indexed storage that makes use of partitioning, all the data of an analytical object is

stored as many small pieces of data inside the storage system, dividing a large dataset into many

small and more manageable parts that can be accessed individually, without the need to search the

entire dataset. An example of partitioning is storing an analytical object like sales transactions using

a separate storage location for each year, month and/or day. If one needs to analyze the sales of the

last month, the indexed storage system only needs to scan the partition corresponding to the

respective month. Partitioning can be significantly helpful when data consumers have a well

standardized access to data, such as querying the data stored in analytical objects for a certain period

An Approach for the Design and Implementation of Big Data Warehousing Systems | 89

of time (e.g., year, month, and day) or place (e.g., country, region, and city). Consequently,

partitioning improves the performance of queries when the typical filtering attributes are used to

partition the dataset. Partitioning can also be significantly useful when data is loaded in periodic

batches or in batches corresponding to certain places, since a partition can be assigned for each

batch.

Bucketing/clustering represents a technique to make sure that a range of records are stored in the

same group/bucket or sorted in a certain way, according to the attribute(s) used for

bucketing/clustering. The way it is physically implemented differs according to the technology, i.e.,

some storage technologies may group a range of values in the same file, while others can order the

values and make sure they are stored in a sorted fashion. Following the example of sales transactions,

if a certain organization has several sales employees, using a bucketing/clustering technique with the

identification of the employee, the indexed storage can store the transactions of the same employee

in the same bucket, or make sure the transactions are sorted according to the identification of the

employee. Partitioning and bucketing/clustering can be used together, and query performance can

be significantly impacted when adequate strategies are taken into consideration (E. Costa, Costa, &

Santos, 2018).

4.1.4 System Orchestrator and Security, Privacy, and Management

The system orchestrator is seen as an overarching role, including several actors (humans and/or

software) that manage and orchestrate the daily operations of the BDWing system. The system

orchestrator aims to configure and manage other components of the architecture, in order to sustain

the workloads that are being constantly executed. Its tasks include: assign/provision the Big Data

Framework Provider (subsection 4.1.3) to physical or virtual nodes; provide GUIs for the specification

and management of workloads; and monitor the system and its workloads through the security,

privacy, and management component, taking into account the requirements and constraints, such

as business requirements, policies, architectural design choices, and resources, for example (NBD-

PWG, 2015).

90 | Advancing the Design and Implementation of Big Data Warehousing Systems

In the proposed approach, the security, privacy, and management component represents an

overarching concern that is related to all other components in the BDWing system. Managing such

complex system typically involves several considerations at a massive scale, while the system

performs multiple tasks in a production cluster with several nodes. Among the tasks concerning this

component, the following can be highlighted (NBD-PWG, 2015):

§ Policy, metadata, and access management (authentication and authorization);

§ Provide adequate encryption capabilities at networking or storage levels (if needed);

§ Provide adequate auditing capabilities;

§ Disaster recovery in case of data loss;

§ Provide adequate monitoring mechanisms for the resources and performance of the system;

§ Make available adequate platforms for resource allocation and provisioning, as automated

as possible;

§ Configure and manage the installed software.

4.2 Model of Technological Infrastructure

While the model of logical components and data flows represents an artifact for the design of BDWing

systems, the model of the technological infrastructure represents an artifact for their implementation,

focusing on the technologies that can instantiate each logical component, as well as focusing on the

hardware that can be used to deploy the BDWing system. In this section, Figure 4.3 presents the

model of the technological infrastructure, including several state-of-the-art technologies for each

logical component of the BDW presented in Figure 4.1. Therefore, a direct association can be made

between the two figures, aiming to provide a coherent view and simplicity in the design and

implementation phases of BDWing initiatives. The colors (blue, orange, and green) are used according

to the types of processing depicted in Figure 4.1 (batch, interactive, and streaming, respectively). The

technologies presented in Figure 4.3 must be seen as suggestions made by this work, which is based

on several Hadoop-related projects, and not as a preference over any other technology that

researchers and practitioners may find suitable for implementation. This is the reason why the model

illustrates that there is space for other possibilities. For each logical component, several suitable

An Approach for the Design and Implementation of Big Data Warehousing Systems | 91

technologies are presented, which must be seen as alternatives or complementary ones, and not as

mandatory in all implementations. Finally, Figure 4.3 also presents how these technologies are

Figure 4.3. Model of the technological infrastructure.

92 | Advancing the Design and Implementation of Big Data Warehousing Systems

supported by a scale-out infrastructure, deployed on-premises or on the cloud, either using physical

or virtual resources.

Starting with data collection, Flume and Kafka are suitable technologies that can be used to collect

data in a streaming fashion. In contrast, Sqoop can be used to move batches of data from relational

databases into HDFS. There are also ETL tools oriented towards Big Data contexts (e.g., Talend Big

Data), which include components for both batch and streaming data collection. However, frequently,

these tools, in their open source versions at least, just provide an integrated GUI for submitting tasks

to systems such as Flume, Kafka, and Sqoop. Therefore, technically, the technologies mentioned

above still have to be deployed on the infrastructure. Furthermore, for specific data collection

scenarios, one may need to implement custom collectors developed using well-known programming

languages, such as Java, Python, and Scala, either for batch or streaming scenarios.

For data preparation and enrichment using batch processing, Hadoop-related projects like Pig, Hive,

and Spark are adequate technologies. Native MapReduce code, although complex, can also be used

for this purpose, as well as Talend Big Data. Regarding preparation and enrichment via streaming,

Storm, Spark Streaming, and Talend Big Data can be used. Nevertheless, as mentioned above,

Talend, in its open source version, typically makes use of the other components to assure adequate

distributed processing, since its native components may not be scalable. Since these tools include a

vast set of storage connectors and data processing components, some of them are also adequate to

support the implementation of the inter-storage and materialization pipelines (namely the technologies

marked with an asterisk in Figure 4.3). The technology to choose for this purpose will obviously

depend on the choice of the storage technologies.

Storage technologies are one of the crucial aspects of the BDWing system, and maybe one of the

most difficult to understand. In regard to the Big Data technologies for the distributed file system,

HDFS is a not-so-complicated choice, since it provides a way of storing all kinds of data, structured

or not. The dilemma relies on the indexed storage component, i.e., on the batch storage and on the

streaming storage. One may take one of the following approaches: the first being based on

infrastructural simplicity, which releases management burden for system orchestrators; the second

An Approach for the Design and Implementation of Big Data Warehousing Systems | 93

being a hybrid approach, which can assure more efficient refresh processes, but can also impose

more challenges concerning the management of the infrastructure.

Assuming one aims for infrastructural simplicity, the same storage technology is reused as many

times as possible. Therefore, since HDFS is used as the distributed file system, it can also be used

both for historical and streaming storage. Hive uses HDFS to store the data, so, technically, using

Hive tables to store the analytical objects is as complex as using raw HDFS files. Consequently, using

HDFS with file formats oriented towards analytics like Parquet and ORC (Huai et al., 2014), or using

Hive tables stored in these formats, represent the approach with maximum infrastructural simplicity.

However, this approach may sacrifice data refresh rates, since streaming mechanisms will have to

group data records in larger micro batches, in order to avoid creating multiple small files, as these

can cause concerns in Hadoop (e.g., larger metadata footprint in RAM and unsatisfactory NameNode

performance) (Mackey et al., 2009), as briefly mentioned in section 4.1. This phenomenon occurs

because HDFS and Hive are currently oriented towards fast sequential access and not towards fast

random access (more details related to streaming scenarios are provided in section 7.3). The problem

is that increasing the micro batch size also increases the interval between data collection and its

availability for querying in the BDWing system. Despite this, there are many streaming contexts where

it is not an issue if data is only available a few minutes later after its collection.

Taking this into consideration, to achieve shorter time intervals between the collection of data and its

availability for querying, one can use storage systems oriented towards fast random access, such as

NoSQL databases. Another advantage of these systems is the capability to perform random reads or

updates on data, which can be useful for certain BDW applications. For instance, the use of these

systems enables efficient update operations on records, in cases where it is not feasible to model

data as a set of immutable events. However, since these databases are mainly used for OLTP-based

workloads (Cattell, 2011), they typically do not perform as well as the fast sequential access systems

for OLAP-based workloads. Consequently, choosing NoSQL databases solves the small files problem

in Hadoop, but may also bring more infrastructural complexity and slower query execution times for

OLAP-based workloads (results provided in section 7.3).

94 | Advancing the Design and Implementation of Big Data Warehousing Systems

Among NoSQL databases, one can also highlight the relevance and possible use of in-memory NoSQL

databases like Redis (Redis, 2018), or even NewSQL databases like Apache Ignite (Apache Ignite,

2018), if the chosen querying and OLAP system supports these technologies. In fact, some of these

technologies may provide faster query execution times, as they sometimes have more optimized in-

memory architectures. Again, the modularity of the approach allows for these flexible implementation

choices without changing any significant architectural construct or data modeling guideline. Another

adequate technology for streaming scenarios is Druid (F. Yang et al., 2014), a columnar store that

can be used to support interactive and concurrency-heavy applications focusing on slicing-and-dicing,

drilling down, and aggregating event data. Druid achieves this by aggregating and indexing time-based

data as soon as it arrives to the system, providing sub-second queries over vast amounts of streaming

data (Correia, Santos, Costa, & Andrade, 2018). Another adequate use case for Druid is the storage

of materialized objects due to its on-the-fly aggregation mechanisms. Although Druid can be used for

the batch storage component as well (Correia et al., 2018), this work highlights its use for streaming

and materialization scenarios containing aggregated data indexed by temporal attributes, as this can

be recognized as its main design focus. As many other Big Data technologies, Druid has its limitations

(e.g., lack of support for random access operations), and practitioners should perform a preliminary

analysis when choosing storage technologies, as the ecosystem is rapidly evolving.

Furthermore, there are other technologies aiming to provide a middle ground between fast sequential

access and fast random access, which is the example of Kudu, being able to support both scenarios

without the need for different storage systems (Lipcon et al., 2015). Kudu can be co-located with

other components of the Hadoop ecosystem and, therefore, can be used together with HDFS. Using

the same storage system for both batch data and streaming data can also reduce infrastructural

complexity, although HDFS should continue to be used as the distributed file system. Furthermore,

as previously stated, technology is evolving rapidly, and with the community advancing Hive

transactions and streaming support (Apache Hive, 2018), streaming scenarios and update operations

in Hive are becoming more streamlined. Currently, in the implementation of BDWing systems,

practitioners should spend some time studying how these systems work, as well as their advantages

An Approach for the Design and Implementation of Big Data Warehousing Systems | 95

and disadvantages, in order to implement an adequate and stable storage system for the BDW, since

there is no optimal solution for all implementation contexts.

Regarding data access, analytics, and visualization, there are several technologies that can be used

for specific tasks. Spark MLlib and Mahout are two machine learning and data mining libraries that

make use of distributed processing to extract patterns from a large volume of data. R, Python, and

WEKA, for example, can also be used for this purpose, but one should be aware of their limitations

in Big Data environments, as previously discussed in section 2.4.2.3. However, during the last years,

these technologies began to include processing components that are able to establish connections to

distributed systems such as Spark and Hadoop. Technically, any machine learning and data mining

technology able to process large amounts of data and with adequate connectors to Hadoop-related

systems can be used in a BDW data science sandbox. Still in this context, technologies such as

Tableau, Microsoft Power BI, or TIBCO Spotfire can be used to visualize data. Moreover, more

customized visualizations can be created with custom-made JavaScript applications (e.g., intensive

geospatial analytics – see the SusCity data visualization platform in section 8.4). The data visualization

tool being implemented needs to provide adequate connectors for the querying and OLAP

technologies. However, in certain scenarios wherein direct access is required, bypassing the querying

and OLAP engine is acceptable through the use of native storage drivers (e.g., HDFS, Hive,

NoSQL/NewSQL, Kudu, and Druid), or through the development of custom-made Web services (e.g.,

REST Web services), in order to avoid some incompatibilities, or to assure higher concurrency and

efficiency for certain scenarios demanded by data consumers (e.g., concurrent custom-made Web

data visualizations).

The querying and OLAP systems are crucial for BDWing, since they provide an interactive SQL

interface to query the data stored in the batch storage and in the streaming storage. These systems

are frequently mentioned as SQL-on-Hadoop systems, although they also support other data sources

like NoSQL databases. There are several alternatives, some of which can be highlighted: Hive (on

Tez) (Huai et al., 2014); Drill (Hausenblas & Nadeau, 2013); Impala (Kornacker et al., 2015); Spark

SQL (Armbrust et al., 2015); Presto (Presto, 2016); and HAWQ (L. Chang et al., 2014). Benchmarking

96 | Advancing the Design and Implementation of Big Data Warehousing Systems

several SQL-on-Hadoop systems is an advisable step when implementing a BDWing system (Santos

et al., 2017), in order to evaluate if their response times, scalability, and SQL compatibility meet the

established requirements. Furthermore, evaluating their connectivity with the storage and data

visualization systems is of major relevance to implement an adequate and interoperable BDWing

system.

Such complex technological infrastructure needs to be secured and properly managed, assuring the

fulfillment of the security and privacy policies, as well as making available a set of mechanisms to

monitor the behavior of the infrastructure and act accordingly, if necessary. In this context, Ambari

can be used to provision, manage, and monitor a Hadoop cluster supporting the BDWing system.

Regarding security, there are several technologies that can be used depending on the specific

requirements: Kerberos can provide secure authentication for users and resources; Knox can provide

perimeter security, hiding the details of the cluster’s access points and blocking services; Sentry can

be used to define adequate authorization policies to access data; and Ranger, which is similar to

Sentry, provides a centralized platform for policy administration, authorization, auditing, and data

protection (HDFS encryption). There are other ways of assuring data security and privacy, such as

using specific encryption mechanisms or access control lists made available by different technologies.

To conclude this section, there are some relevant guidelines that should be taken into consideration

when deploying an adequate infrastructure for BDWing:

1. Plan the infrastructure to mainly scale horizontally (scale-out), in order to reduce costs and

leverage the full potential of emergent Big Data technologies like Hadoop. “Because Hadoop

uses industry-standard hardware, the cost per Terabyte of storage is, on average, ten times

cheaper than a traditional relational DW” (Krishnan, 2013);

2. Co-locate storage and processing nodes in the cluster, in order to avoid moving data from

one node to another, causing bottlenecks in the network (C. L. P. Chen & Zhang, 2014). As

can be seen in Figure 4.3, storage and processing nodes are always co-located. This means

that querying and OLAP technologies should be installed in all the storage nodes, thus data

is not moved across nodes when the data consumers submit a request;

An Approach for the Design and Implementation of Big Data Warehousing Systems | 97

3. Implement a Just a Bunch of Disks (JBOD) configuration for each storage node. If a

Redundant Array of Independent Disks (RAID) configuration must be used, implement a RAID-

0 strategy (W. Xu, Luo, & Woodward, 2012);

4. Implement at least a 1-gigabit Ethernet network infrastructure (Shvachko, Kuang, Radia, &

Chansler, 2010).

4.3 Method for Data Modeling

This section presents the data modeling method to design the data structures stored in the indexed

storage component of the BDW. It discusses how data should be modelled according to specific data

structures denominated as analytical objects, which include descriptive and analytical attributes (and

families). Moreover, other concepts are also presented and discussed in this section, such as

materialized objects, granularity keys, atomic values, collections, partition keys and

bucketing/clustering keys. All these concepts are presented in the general data model (Figure 4.4).

Finally, this section also discusses the concept of complementary analytical object, proper ways of

joining and uniting batch and streaming analytical objects, strategies to handle dimensional data

(outsourced descriptive families), and some data modeling best practices.

4.3.1 Analytical Objects and their Related Concepts

In this work, an analytical object is defined as an isolated subject of interest for analytical purposes.

Analytical objects are highly denormalized and autonomous structures that are able to answer queries

without the constant need to join dimension and fact tables. The benefits of full denormalized

structures in terms of performance and ETL simplicity is a topic periodically discussed and evaluated

by the DWing community (Jukic et al., 2017; Santos et al., 2017; Santos & Costa, 2016; J. P. Costa

et al., 2011), as previously seen in section 3.1. Typical analytical objects found in organizations may

include: sales; purchases; inventory management; employee vacations; employee performance;

(potential) customer interactions; customer complaints; transactions during the manufacturing

process; among many others. In order to identify an analytical object, one just needs to identify a

subject of interest in a specific analytical context. They might be found in traditional business

98 | Advancing the Design and Implementation of Big Data Warehousing Systems

processes or in new organizational contexts, such as social media interactions and initiatives,

recommendation systems, or sensor-based decision-making, for example. An organization can identify

analytical objects by either looking at the data currently being produced (data-driven), or by looking

at its current goals and start collecting data to fuel these analytical objects (requirements-driven).

Figure 4.4. General data model.

An Approach for the Design and Implementation of Big Data Warehousing Systems | 99

An analytical object includes descriptive and analytical families, as well as descriptive and analytical

attributes, respectively. Families are just a logical representation to group related attributes, and there

is no need to physically implement them in the storage system. Descriptive attributes provide a way

of interpreting analytical attributes through different perspectives, using aggregation or filtering

operations, for example. One can associate them with the attributes found in the traditional

dimensions of a DW (Kimball & Ross, 2013). Natural keys (e.g., product code, employee code, and

customer code) can also be included as descriptive attributes, if the practitioner foresees an

application for these attributes (e.g., specific analyses or update operations on records). In contrast,

analytical attributes provide numeric values (sometimes embedded in complex/nested data

structures that also contain text data) that can be analyzed through the use of the different descriptive

attributes (e.g., grouped or filtered), including factual and predictive attributes. Factual attributes

represent numeric evidences of something that happened in a specific record of the analytical object,

and can be associated with facts in a traditional fact table (Kimball & Ross, 2013). Predictive

attributes provide insights retrieved from the application of data science models and, therefore, they

do not represent numeric evidences of something that happened, but rather an estimate of what

happened or a prediction of what can happen in a near future. Predictive attributes are a crucial

concept to adequately integrate predictive capabilities in the BDW, and can also store relevant

patterns extracted from unstructured data (e.g., text, images, and video).

A record of an analytical object stores all the values corresponding to an event associated with that

object, taking into consideration its different attributes. Descriptive and analytical attributes can

contain atomic values or collections. Atomic values are stored as simple data types, such as an

integer, float, double, string, or varchar. Collections store more complex structures like arrays, maps,

or JSON objects. These complex and nested data structures, together with a flexible denormalized

model without rigid relationships between tables, allow the exploration of the full potential provided

by Big Data storage systems.

The granularity key is a relevant concept associated with an analytical object. The granularity key is

tightly coupled with the analytical object, identifying the level of detail of the data that will be stored

100 | Advancing the Design and Implementation of Big Data Warehousing Systems

in each record. The granularity key of an object is defined by one or more descriptive attributes that

uniquely identify a record, although this constraint does not have to be physically implemented in the

storage system through a primary key, since some Big Data storage systems may not support such

concept. One only needs to assure that each record complies with the granularity key of the object,

which defines its level of detail.

Take as an example an analytical object “sales”. Its granularity key can be defined solely by the

unique identifier of the sales order. In this case, each record stores the general data about the sales

order. The data about products sold in this order can be stored in a collection, or not stored at all, if

for some reason there is no interest in that analysis. However, if the granularity key of the analytical

object “sales” is defined by the identifier of the sales order and the identifier of the product, one

record per product will be stored. There is no rigorous rule for preferring collections over redundant

data stored across records, and vice versa. System orchestrators should consider their current

preferences, skills, and technological or infrastructural constraints (e.g., some querying technology

may not support collections, or the size limitations in collections may not be suitable for that context).

This will depend on the implementation context. In the proposed approach, the granularity of the

analytical object is never considered a limitation, nor does one apply any specific rule or guideline.

As discussed in subsection 4.1.3.3.2, an analytical object can be partitioned and bucketed/clustered

by specific descriptive attributes (technically, using analytical attributes is perfectly possible as well,

although not as usual). The attributes that are used to partition the analytical object form the partition

key, which fragments the analytical object into more manageable parts that can be accessed

individually. This work does not provide a rigorous rule to partition analytical objects, but encourages

system orchestrators to use time and/or geospatial attributes as the partition key (E. Costa et al.,

2018), since data can be typically loaded and filtered in hourly/daily/monthly batches for specific

places (e.g., cities, regions, and countries). This will obviously depend on the implementation context,

but this is typically an adequate strategy for several contexts. Another advantage of partitions can be

highlighted in scenarios wherein data should be updated (e.g., perform a batch update because some

records were modified or were previously incorrect), which allows practitioners to recompute just the

An Approach for the Design and Implementation of Big Data Warehousing Systems | 101

required partitions instead of the entire analytical object. In contrast, the attributes used as

bucketing/clustering key assure that a range of records are stored in the same group/bucket or sorted

in a certain way. However, system orchestrators need to plan this strategy according to frequent

access patterns requested by data consumers. The proposed approach highlights the relevance of

this concept, but does not aim to provide any rule in this area, due to the fact that it may vary

significantly according to the implementation context.

4.3.2 Joining, Uniting, and Materializing Analytical Objects

In the proposed approach, analytical objects can complement each other. Although there are no

physical relationships implemented in the storage system, Big Data querying technologies (e.g., SQL-

on-Hadoop systems) are able to join different datasets given specific attributes. Therefore, an

analytical object may contain, in its descriptive attributes, the attributes that correspond to the

granularity key (or part of it) of another object. In this case, an object is considered a complementary

analytical object if its granularity key (or part of it) is included in another analytical object (e.g., the

“customer account” object in section 5.2, whose part of the granularity key is referenced by another

object, and the “product” object in section 5.1, whose granularity key is fully referenced by another

object). Such integration allows for the association between two analytical objects through a join

operation. Another type of association can be made using descriptive attributes that do not correspond

to the granularity key of the analytical objects. In this case, analytical objects can be joined using

regular descriptive attributes, such as a simple date, for example. A date may not define the

granularity key of an analytical object, but it can be used as a join attribute between analytical objects.

If many to many associations are identified between analytical objects, one can use collections to

solve this issue, i.e., one analytical object contains a collection in its descriptive attributes that stores

the association with many records of another analytical object. Once again, it must be highlighted

that there is no physical relationship between analytical objects, neither it is mandatory to prepare

and enrich data to create these associations between analytical objects. Technically, analytical objects

can be joined by any attribute without practitioners being concerned with foreign key relationships

and indexes. Certainly, there are many contexts in which analytical objects are analyzed

102 | Advancing the Design and Implementation of Big Data Warehousing Systems

independently, without ever needing to join them. However, whenever necessary, the approach offers

support for it.

At this point, a question may begin to emerge: “If a new denormalized approach is being proposed

to solve the complexity in join-dependent data models, how can one perform efficient join operations

between analytical objects if they can potentially store Gigabytes, Terabytes, or Petabytes of data?”.

To answer this question, Figure 4.5 presents the process of joining analytical objects, which highlights

the need to execute all the required operations in each analytical object through the use of subqueries,

or relying on efficient query optimizers to adequately and automatically process both sides of the join

operation before the join itself occurs. Then, and only then, the results of these subqueries (or pre-

join processing from query optimizers) are joined accordingly. This approach vastly reduces the

complexity of join operations, since each subquery on each side of the join is already as aggregated

(or filtered) as possible. Figure 4.5 provides an example SQL query showing how to perform this type

Figure 4.5. Process of joining analytical objects.

An Approach for the Design and Implementation of Big Data Warehousing Systems | 103

of join operations. If the “WITH” keyword is not compatible with the current querying and OLAP

technology, one can also make use of subqueries in the “FROM” or “JOIN” clause. The same

concepts are also valid for union operations.

This process of joining analytical objects should be applied in each join operation, not only including

complementary analytical objects, but also materialized objects and analytical objects in different

storage systems (see Figure 4.4). Since analytical objects can have a significant number of records,

joining them can become a time-consuming task, even when using the join approach presented in

Figure 4.5. It is in this context that materialized objects are useful and efficient. Complex and long-

running queries can be materialized through the materialization pipeline (see Figure 4.4), giving origin

to the materialized objects, which can be further joined with other analytical objects. The

materialization pipeline also assures the update of materialized objects with new data. Materialized

objects can be stored either in the batch storage or in the streaming storage, depending on the access

patterns of data consumers (e.g., using NoSQL databases for the streaming storage can provide

adequate random access capabilities for specific analytical scenarios). Summarizing the concept of

materialized objects, it can be concluded that they are able to store the results of time-consuming

queries, increasing the performance of the BDWing system, since several data consumers can

consume this materialized object much faster than the original analytical objects. Consequently,

materialized objects may be analogous to OLAP cubes in traditional DW environments, containing

pre-aggregated data meant to be consumed in a faster and more efficient way.

Besides join operations, this work also considers the use of union operations, typically useful to

combine analytical objects stored in the batch storage with analytical objects stored in the streaming

storage. Uniting analytical objects in different storage systems enables the visualization of batch and

streaming data using a single query. Also relevant is the fact that queries can take advantage of union

operators while the inter-storage pipeline does not transfer the records from a streaming analytical

object to the corresponding batch analytical object.

104 | Advancing the Design and Implementation of Big Data Warehousing Systems

4.3.3 Dimensional Big Data with Outsourced Descriptive Families

In certain contexts, data still remains highly relational and dimensional, i.e., different analytical objects

will share common descriptive families. One adequate example is “sales transactions”, which can be

analyzed using several descriptive families like “customer”, “product”, and “supplier”, for example.

Besides that, these descriptive families can be included in several other analytical objects, such as

“customer complaints”, “purchases”, “inventory management”, among others.

As discussed previously in this section, the proposed approach allows the use of joins between

analytical objects. However, it does not include the concept of dimensions. Typically, flat structures

are preferred to avoid the cost of join operations and to achieve better performance, as demonstrated

in Chapter 7. However, completely flat structures vastly increase the storage size of the BDW when

compared to dimensional structures (e.g., star schema). The problem becomes really severe if

multiple analytical objects share the same descriptive families, because the increase in storage size

can get out of control, especially if these descriptive families have a significant number of attributes.

Obviously, one may be able to sacrifice storage space, which is cheaper than processing power, in

exchange for better performance. Taking into consideration the insights provided in Chapter 7, it may

be advantageous to use a flat analytical object that is 3 times bigger than the corresponding star

schema. However, if one considers contexts with several flat analytical objects that share the same

descriptive families, the BDW size can grow in a rate that the organization cannot sustain.

Furthermore, there are certain contexts in which star schemas can outperform flat analytical objects

(see subsection 7.2.3).

For these reasons, and supported by the results presented in Chapter 7, one promotes the following

guidelines for modeling dimensional Big Data using the concept of outsourced descriptive family:

1. A descriptive family should be outsourced to a complementary analytical object if one or a

combination of the following conditions is verified:

a. The descriptive family is frequently included in other analytical objects (phenomenon

that is relatively similar to the conformed dimensions concept in Kimball’s

An Approach for the Design and Implementation of Big Data Warehousing Systems | 105

approach), avoiding extreme redundancy in the BDW, especially if the descriptive

family has a considerable number of attributes. Otherwise, outsourcing frequently

reused descriptive families with few attributes may not be compelling;

b. The descriptive family has low cardinality, i.e., its distinct records will form a low-

volume complementary analytical object that easily fits into memory, enabling the

capability to perform map/broadcast joins in SQL-on-Hadoop engines (see

subsection 7.2.1 and 7.2.3);

c. The frequency of data ingestion of the complementary analytical object is equivalent

to the other analytical objects it is related to. For example, if one is using the BDW

to store and process streaming data from social networks, having a “user”

complementary analytical object is only practical if the users’ data is also streamed

to the BDW as soon as a customer signs up for the social network, otherwise the

BDW will suffer from problems such as the late arriving dimensions phenomenon in

dimensional DWs (Kimball & Ross, 2013). If such design requirement is not possible

to fulfil for some reason, then flat analytical objects are preferred in these contexts;

d. The descriptive family alone can provide considerable analytical value when analyzed

independently, forming a real analytical object. For example, “customer” may serve

as a complementary analytical object when outsourced from a descriptive family of

another object, but it can also be used independently to measure customer

performance if it contains analytical attributes related to average sales, average

returns, current reviews, among other factual or predictive data.

2. Complementary analytical objects resulting from the outsourcing of descriptive families

should use natural granularity keys, as maintaining surrogate keys is not practical in most of

the BDW storage technologies, both for batch and streaming scenarios (e.g., lack of proper

support for auto-increments). Searching for the surrogate keys corresponding to the natural

keys flowing through CPE workloads also becomes very inefficient and unpractical, especially

in streaming workloads;

106 | Advancing the Design and Implementation of Big Data Warehousing Systems

3. The records of complementary analytical objects resulting from the outsourcing of descriptive

families should also be designed to be immutable, whenever possible, similarly to the records

of regular analytical objects. If such is not possible or applicable for the requirement being

fulfilled, these complementary analytical objects should at least be either efficient to update

or easy to recompute using a CPE workload (fully or partially using partitions), in order to

avoid dealing with complex SCD-like scenarios. Despite this guideline, practitioners should

feel free to create mutable complementary analytical objects (as well as regular analytical

objects) whenever the technologies storing the batch/streaming object support proper

updates. Again, BDWing technology is evolving in this matter, and this guideline must not be

seen as absolutely mandatory if performance is not severely compromised (see subsection

5.2.1 for further discussion on this topic);

4. By simply outsourcing descriptive families to complementary analytical objects, only

descriptive attributes are considered. This means that the resulting complementary analytical

objects do not hold any analytical families and attributes, and, therefore, any analytical value.

Although this is possible in the proposed approach, it somehow violates the principle that

analytical objects should be autonomous structures that can answer some queries without

the need for any join operations. This principle will not be true for a complementary analytical

object “customer” that will only be used to complement other analytical objects, for example,

as previously exemplified in this section. Consequently, one encourages practitioners to use

the concept of “aggregated facts as dimension attributes” in Kimball’s approach (Kimball &

Ross, 2013). Although not mandatory, this technique allows practitioners to include analytical

attributes (facts or predictions) in these complementary analytical objects, meaning that

these attributes can not only be used for filtering or labelling records, but also to perform

calculations, as one is modeling an analytical object after all, and not only a traditional

dimension. Using this strategy, the “customer” analytical object can be used to

independently answer specific queries, such as “what is the average revenue generated by

certain customers?”, without needing to query both the “sales” analytical object and the

“customer” analytical object. Following this example, the “customer” analytical object can

An Approach for the Design and Implementation of Big Data Warehousing Systems | 107

even include predictive attributes, such as a cluster label based on the customer’s value to

the organization (see subsection 6.5.1). Obviously, similarly to what Kimball and Ross (2013)

state, these pre-aggregations create more burden in the processes that make data flow to the

system, but also provide more analytical value and, sometimes, eliminate the need for

complex and costly queries. Such trade-offs still hold true in the proposed approach.

4.3.4 Data Modeling Best Practices

This subsection presents several best practices that can be applied to a BDW data model, in order to

clarify some questions that may arise in its design and implementation, including the use of null

values, the preparation of spatial and temporal attributes, and the modeling of records as immutable

events.

4.3.4.1 Using Null Values

The use of null values in the BDW is not forbidden, and for certain cases is even advisable. However,

there are some relevant practices that must be taken into consideration. Regarding analytical

attributes, one advises the use of null to indicate the absence of a value, since null values are often

ignored in querying, OLAP, and visualization technologies, which do not take them into account when

performing aggregations on data. If numbers like 0 or -999, for example, are used to indicate the

absence of a value, every time an aggregation is performed, filters need to be applied first to ignore

these values, since they affect an average/sum calculation.

In contrast, regarding descriptive attributes with a text data type, the use of “Unknown” or “Not

Applicable” is more user-friendly and appropriate when using these attributes to aggregate analytical

attributes. However, there are certain data types in which the use of null values is still preferable (or

the only solution) to indicate the lack of values in descriptive attributes, namely types such as boolean,

arrays, or maps.

108 | Advancing the Design and Implementation of Big Data Warehousing Systems

4.3.4.2 Date, Time, and Spatial Objects vs. Separate Temporal and Spatial Attributes

The date and time objects presented in Figure 4.4 include several temporal attributes that

complement the analytical objects stored in the BDW. Including these attributes (e.g., “is holiday”,

“is weekend”, “month”, and “year”) in the analytical objects can severely increase their storage size

and consequently affect the stability and performance of the BDWing system. These objects are

considerably small and will not significantly affect the performance of the BDW by requiring a join

operation, as seen in Chapter 7.

One encourages the use of the date and time objects to store a vast set of temporal attributes that

can be used by the analytical objects. An adequate practice would be the use of standard dates (e.g.,

“yyyy-mm-dd”) and standard time representations (e.g., “hh:mm”) in all analytical objects, which

would then allow to join them with the date and time objects.

Moreover, with this approach, practitioners can also use several UDFs to interact with the single date

or time attributes stored in the analytical objects, in order to create new attributes not present in the

date and time objects. Extracting attributes at runtime may not significantly impact the query

execution time, sometimes just showing insignificant increases. Nevertheless, one does not

discourage the use of separate temporal attributes (e.g., “day”, “month”, “year”, “hour”, and

“minutes”), quite the contrary, since they are still significantly useful in certain contexts. One

particular example is the specification of partition keys, given that, frequently, only simple data types

like strings or integers can be used in the partition key. Therefore, if one needs to use “month” as the

partition key, there may be the need to have a separate temporal attribute “month”. Concluding, the

use of the date and time objects or the use of separate temporal attributes depends on the

implementation context, and system orchestrators should evaluate the most adequate solution for

the context.

Regarding the use of spatial objects, they prove to be significantly useful for standardizing spatial

attributes across the analytical objects of the BDW, such as assuring that a city and a country have

the same exact meaning (and characteristics) throughout the entire data model. However,

An Approach for the Design and Implementation of Big Data Warehousing Systems | 109

practitioners should be careful with large and detailed spatial objects (e.g., “building number”, “street

name”, and “coordinates”), because join operations can certainly create performance bottlenecks in

Big Data contexts. Therefore, one should prefer maintaining these highly detailed characteristics (e.g.,

“building number” and “coordinates”) in the analytical object in a denormalized form, while creating

less granular spatial objects like “city”, for example, which can also include the corresponding

countries in a denormalized form (see subsection 5.3.2). However, highly detailed spatial objects are

acceptable in scenarios wherein one can predict their growth, because the number of records they

can have is already known or expected a priori.

4.3.4.3 Immutable vs. Mutable Records

As previously discussed, one encourages practitioners to model analytical objects as a set of

immutable events. As Marz and Warren (2015) discuss, simpler implementations can be achieved by

eliminating the complexity associated with update operations, which can sometimes raise

concurrency issues. This modeling style will probably suite most of the analytical scenarios in

organizations, since the granularity of each analytical object can be rethought to treat each record as

an immutable event.

Take as an example an analytical object to store customer complaints (Figure 4.6). A certain

organization knows that a customer complaint has several states over time. A possible approach,

which allows the records to be updated, is to have one analytical object that stores a customer

complaint in each record. When a recently opened customer complaint arrives at the BDW, it is stored

in a record with the status “open”, not having a due date yet. In the meanwhile, this record will have

to be updated when the customer complaint is “finished”. In contrast, another approach is to model

the analytical objects according to a set of events related to customer complaints. When a recently

opened customer complaint arrives at the BDW, a record is created containing the status and the

date associated with that status. When the status of the customer complaint changes, new data

arrives at the BDW, and a new record for each state change is stored. This second approach assures

that each record is immutable, eliminating the need for update operations.

110 | Advancing the Design and Implementation of Big Data Warehousing Systems

Despite the fact that queries need to be structured in different ways, the two analytical objects

presented in Figure 4.6 are able to answer the same analytical questions. Furthermore, one can argue

that the immutable analytical object is more oriented towards ad hoc querying, wherein data

consumers can discover relevant patterns and delays among processes related to customer

complaints. However, the proposed approach does not forbid the use of mutable analytical objects,

considering that practitioners plan the BDW technological infrastructure according to the random

access trade-offs and limitations of the several technologies presented in section 4.2. Modeling

analytical objects as a set of immutable events is a suggestion, not a rigorous rule, since updates can

be performed on storage systems that adequately support random access operations, as previously

discussed in subsection 4.1.3.3.2 and further explored in subsections 5.1.3, 5.2.1 and 5.2.4. As

previously discussed, technology is constantly evolving, and these trade-offs or limitations may not be

an issue in certain implementation contexts. The proposed approach does not aim to restrict any use

of specific functionalities, giving practitioners an adequate flexibility regarding data modeling.

However, one highlights the need to assure that the logical components, data flows, infrastructure,

and data model are all properly integrated and aligned to serve the business goals.

Figure 4.6. Example of immutable and mutable records.

An Approach for the Design and Implementation of Big Data Warehousing Systems | 111

4.3.5 Data Modeling Advantages and Disadvantages

This modeling approach based on denormalized and nested data is seen as a crucial step to achieve

a flexible storage in the BDW. When compared to the relational data modeling approaches found in

traditional DWs, this work trades less redundancy and smaller DW sizes for the following advantages:

1. Assures better performance in query execution, due to the lack of constant join operations

between dimensions and fact tables imposed by traditional dimensional and 3NF data

models;

2. Provides a flexible denormalized model without the need to perform complex surrogate key

maintenance and lookups for each insert, allowing for simpler and more efficient batch and

streaming CPE processes, by avoiding known-problems such as SCDs and late arriving

dimensions (especially in streaming scenarios);

3. Preferably focuses on modeling analytical objects as a set of immutable events and,

therefore, there is no need to frequently deal with concepts such as SCDs (Kimball & Ross,

2013). However, as explored in subsection 5.2.1, this does not mean that mutable objects

are forbidden, and when using them, some of the SCDs considerations still hold true;

4. Avoids other traditional dimensional data modeling, ETL, and DW maintenance problems like

having to consider several types of dimensions (e.g., mini dimensions, junk dimensions,

shrunken dimensions, and bridge tables), which in Big Data contexts are arguably

unnecessary, as saving some storage space and achieving less-redundant data models, may

come at the cost of spending a considerable amount of time in data modeling, implementing

ETL processes, and maintaining the DW (not to mention performance costs), which may be

a compelling reason why, nowadays, practitioners pursue more flexible analytical contexts.

Consequently, despite some data redundancy, in several contexts, the proposed approach

provides simpler data models than a dimensional or 3NF DW, reducing the time needed from

collection to analytics;

5. Highlights nested structures as relevant constructs in certain BDW data models and

applications, which can be significantly useful in certain contexts (see Chapter 5 and Chapter

112 | Advancing the Design and Implementation of Big Data Warehousing Systems

8), such as storing geospatial objects for intensive geospatial analysis, and solving many to

many relationship issues typically found in relational databases (e.g., a customer complaint

may have several responsible employees, which are also responsible for several customer

complaints).

Nevertheless, the proposed data modeling method has some characteristics that may be considered

as disadvantages when compared to the aforementioned methods to design DWs, which include:

1. The total size of certain BDWs (typically the ones whose data sources are highly dimensional

with frequently reused dimensions) may increase drastically due to extreme denormalization,

reason why the approach introduces the concept of date/time objects, spatial objects,

complementary analytical objects, and outsourced descriptive families. Consequently,

practitioners should take into consideration the guidelines provided in subsections 4.3.4.2

and 4.3.3, as well as the data models explored in Chapter 5, mainly in section 5.1 and 5.3,

as the original data sources tend to be highly dimensional, being the same dimensions reused

frequently by different business processes/analytical subjects. Without these strategies, the

resulting BDWs would be significantly larger than the DWs based on star schemas or 3NF

data models. Nowadays, storage size is cheap, but may often lead to unnecessary concerns

and costs regarding systems administration, which can be avoided by using the constructs

discussed above, whenever practical and applicable;

2. If the data source fueling an analytical object is based on a relational database, the CPE

workloads for that object may need to include a considerable amount of join operations,

either being performed in the source (as a SQL query for example), or being performed in

the technology supporting the workloads. However, in Big Data contexts, many of the data

sources are non-relational (e.g., sensor data, NoSQL databases, spreadsheets, XML files,

and JSON files), making the proposed method for data modeling significantly more

compelling and simpler for BDWs.

Big Data Warehouses Modeling: From Theory to Practice | 113

Chapter 5. Big Data Warehouses Modeling: From Theory to Practice

After the presentation of the general data modeling method in section 4.3, this chapter explores its

use in several BDWing contexts, since more practical examples and real-world applications may be

required for practitioners to master some of the proposed data modeling guidelines. Consequently,

this chapter aims to provide several examples of BDWing applications using the proposed data

modeling method, in order to clarify some of the guidelines provided previously, and to evaluate their

suitability in a broader scope of analytical applications focused on: traditional enterprise setups with

human resource management, purchases, sales, promotions, goods returns, inventory management,

and production process; financial market; retail; code version control systems; media events

(broadcast, printed and Web news); and air quality measurement systems.

5.1 Multinational Bicycle Wholesale and Manufacturing

As already seen, Big Data can be defined as data whose characteristics impose severe difficulties to

traditional DWing platforms. Frequently, there may be a misconception regarding the need to satisfy

all Big Data characteristics to deploy a BDW, such as the need to process vast amounts of

unstructured data arriving at theoretically unlimited velocities. However, in this section, one will

present how a BDW can be modelled to encompass traditional business processes like human

resources management, sales, purchases, production, among others.

Obviously, traditional DWs have long been the backbone for analytics over traditional and structured

business processes, but this section provides a way of modeling such complex scenario in a BDW

created using the proposed approach, in order to provide more data modeling simplicity, less ETL

effort without complex dimension maintenance and surrogate key lookups, and more processing

efficiency by reducing the constant need to join several tables, while being fully compliant with a

shared-nothing and open source vision of what a BDW should be. Such benefits can attract

organizations that are starting their analytical platforms based on open source Big Data technologies,

114 | Advancing the Design and Implementation of Big Data Warehousing Systems

as well as organizations looking to replace their expensive DW appliances or limited relational

databases.

For this example, one uses the Adventure Works database, a relational OLTP database from a fictitious

company that manufactures and sells bicycles, included as part of the Microsoft SQL Server samples

(Microsoft, 2018). This database has a relatively complex schema that covers a wide spectrum of

business processes and entities (e.g., employees, vendors, customers, stores, departments, products,

work/production orders, purchases, sales, and inventories). The complete representation of the

Adventure Works database is available in (Dataedo, 2017).

After applying the data modeling method, the resulting BDW data model can be seen in Figure 5.1,

containing 7 analytical objects (“employee history”, “sales line”, “product review”, “product vendor

history”, “purchase line”, “product inventory”, and “work order”), 3 complementary analytical objects

(“product”, “vendor”, and “special offer”), 1 date object, 1 time object, and 2 spatial objects (“city”

and “territory”). Descriptive attributes are divided into descriptive families, while analytical attributes

are divided into analytical families, when applicable. Analytical objects can also contain outsourced

descriptive families that are linked to a complementary analytical object through a unique identifier

(granularity key) of that object, identifying a specific record. Several of these constructs and design

guidelines, already discussed in section 4.3, are detailed and exemplified here, not only for this

specific example, but also for the other BDW examples in the following sections.

The data model presented in Figure 5.1 sometimes omits certain attributes of the original Adventure

Works database, in order to simplify its presentation in this work, such as the omission of the attributes

in the “header” analytical family of the “sales line” analytical object due to its similarity with the

“purchase line” analytical object or, for example, the omission of the attributes from the “customer”

and “sales person” descriptive families of the “sales line” analytical object, due to the wide spectrum

of available attributes (different practitioners may choose to incorporate different attributes).

Therefore, the main idea is to exemplify the modeling approach and not to extensively enumerate the

attributes.

Big Data Warehouses Modeling: From Theory to Practice | 115

Figure 5.1. Adventure Works BDW data model.

116 | Advancing the Design and Implementation of Big Data Warehousing Systems

5.1.1 Fully Flat or Fully Dimensional Data Models

The example in Figure 5.1 demonstrates the use of outsourced descriptive families and

complementary analytical objects (subsection 4.3.3), using them to overcome extreme redundancy

and storage size increase. By revisiting the arguments for the use of these concepts in subsection

4.3.3, one can highlight the following:

1. “Product” is an adequate candidate for a complementary analytical object because its

attributes would otherwise appear repeated in several analytical objects, as a product is a

core business entity in this context. A “product” object allows for the standardization of the

products information across the BDW, and since new products are not added rapidly in this

context, this is an adequate design choice, because it will not severely affect join

performance, as broadcast/map joins will still be efficient as time goes by. The “product”

object by itself holds a significant analytical value, which distinguishes itself from a traditional

dimension just to avoid redundancy, as one can be interested in analyzing several metrics

regarding products, without needing any additional analytical objects. This is therefore a

valuable construct in the approach, and it resembles the concept of “aggregated facts for

dimensions” from Kimball and Ross (2013). In subsection 5.1.3, one will detail how this

concept can be implemented;

2. For the same reasons, “vendor” is also an adequate complementary analytical object that

serves two outsourced descriptive families from the “product vendor history” and the

“purchase line” analytical objects. However, in contrast to “product”, “vendor” does not have

any evident analytical attributes, although “is preferred vendor” and “credit rating” could be

considered analytical attributes as well, as the proposed approach offers this flexibility due to

the denormalization process, allowing the execution of aggregate functions over any attribute

present in the analytical object without involving any kind of join operation. Moreover, as

explained above, other analytical attributes can be created (e.g., average monthly purchases).

Another relevant consideration is the fact that “vendor” is also related to the spatial objects,

so one can conclude that, as there is no need to define foreign keys in BDWs created using

Big Data Warehouses Modeling: From Theory to Practice | 117

the proposed approach, objects in the data model can be flexibly joined, as long as there are

common unique identifiers among them (simple or composed);

3. “Special offer” is considered a complementary analytical object, although it is only related to

the “sales line” analytical object and, therefore, it does not necessarily serve the purpose of

avoiding extreme redundancy. However, theoretically, it represents a standard analytical

object that happens to be joinable with the sales information by a unique identifier.

Consequently, as seen in subsection 4.3.2, two analytical objects can be joined together,

being the designation of complementary analytical object assigned to the object whose

granularity key (or part of it) is included in other objects, which in this case makes “special

offer” a complementary analytical object of “sales line”;

4. Other potential candidates for complementary analytical objects could be the “employee”

and “customer” objects. Regarding a possible “employee” complementary analytical object,

there is employee information in the “employee history” and “sales line” objects but, in this

model, one can consider that only a subset of the employee attributes are relevant for each

analytical object, thus denormalization and redundancy is appropriate and, therefore, there

is no need for a complementary analytical object integrating the employee information. In

the case of the “customer” analytical object, since customer information only appears in the

”sales line” analytical object, there is no apparent need for a complementary analytical object

that can be shared by other analytical objects, being the level of denormalization presented

in Figure 5.1 appropriate for this context. However, the creation of a “customer” analytical

object is possible and sometimes encouraged, as can be seen in the data model depicted in

section 5.3.

5.1.2 Nested Attributes

Nested attributes are a valuable construct in the proposed modeling method, as they provide a

considerable amount of flexibility and a new set of analytical possibilities. As can be seen in Figure

5.1, considering the “work order” analytical object, one can observe that although this object stores

information at the work order level, the routing attribute stores more granular information at the work

118 | Advancing the Design and Implementation of Big Data Warehousing Systems

order route level, detailing the several production steps of a specific order. This allows for a broader

range of ad hoc queries to inspect routing information, without the need for heavy drill across

operations. As mentioned in subsection 7.2.4, lambda or explode functions can be used to explore

nested data. Nested attributes are also used in the “product” complementary analytical object to

store the history of prices and costs of the products. These attributes are arrays of structs/rows (or

similar data structures), and can serve to analyze price/cost history of a specific product, again,

without the need to join tables. These constructs are powerful for ad hoc exploration of data, but

require some attention when performing heavy aggregations or filtering operations based on nested

values, as seen in subsection 7.2.4. Another relevant aspect to consider is the size of the collections,

as they are not meant to grow rapidly, due to the fact that some Big Data technologies may present

limitations when performing insert, read, or update operations on large nested attributes.

Consequently, they are preferred in scenarios wherein practitioners can estimate their initial size and

potential growth.

5.1.3 Streaming and Random Access on Mutable Analytical Objects

As stated in Chapter 4, one promotes the storage of immutable events, not only due to the fact that

some of the core concepts of the approach take inspiration from the Lambda Architecture, but also

due to some current limitations of Big Data storage technologies when performing update operations

(e.g., HDFS/Hive). However, this guideline does not prevent practitioners from modeling and

implementing mutable (complementary) analytical objects. In this subsection, one will discuss how

mutable objects can be incorporated in a BDW, considering “product” and “product vendor history”

as examples.

As stated previously, some of the analytical attributes of the “product” complementary analytical

object resemble the concept of aggregated facts for dimensions (Kimball & Ross, 2013) (e.g., “avg

month sales” and “avg month sold qty” attributes). However, without proper support for update

operations, each month, this analytical object would have to be completely reconstructed to store the

new monthly values. In contrast, if needed, as discussed in section 4.2, practitioners may opt for

storage systems that are suitable for random reads and writes. When choosing a NoSQL database,

Big Data Warehouses Modeling: From Theory to Practice | 119

for example, one does not need to recompute the “product” object, just to update the average monthly

metrics for each product.

The proposed approach assumes that this type of design choice follows the streaming data flow in

Figure 4.1, because this work only suggests NoSQL databases for the streaming storage component,

not the batch storage component. However, it is evident that, in this case, the updates happen in

relatively large batch intervals, which may or may not be supported by streaming technologies

depending on the CPE workload execution frequency (e.g., every time a customer purchases

something, each day, or each month). Such assumption forces these analytical objects to be stored

in the streaming storage component, regardless of the CPE workload being based on batch or stream

processing. This is a design choice of the proposed approach, as the batch data flows still remain

considerably similar to constantly inserting/updating values on a streaming analytical object stored

in a NoSQL database.

Nevertheless, with the rapidly evolving Big Data technological landscape, support for update

operations and ACID transactions is a concern of several storage technologies, and Hive is no

exception. Therefore, if practitioners choose a Hive transactional table to store products data, this

scenario can be adequately supported by the batch storage component, without the need to store the

“product” analytical object in a NoSQL database (streaming storage). Transactional tables are

significantly optimized in Hive version 3 (Apache Hive, 2018), thus being a relevant feature to explore

in future prototypes and production systems. Consequently, nowadays, practitioners do not

necessarily have to choose NoSQL databases to adequately perform random insert/update

operations with moderate frequency.

The context for the “product vendor history” is almost identical to the previous one. In contrast to

these two examples, “employee history” is an example of how a potentially mutable object can be

transformed into an immutable object, as each time some employee data changes (e.g., personal

information, department, shift, or salary), a new record is created, which allows for analyzing

employee history in significantly flexible ways.

120 | Advancing the Design and Implementation of Big Data Warehousing Systems

5.2 Brokerage Firm

The financial sector has been increasingly considering the adoption of Big Data techniques and

technologies as part of the Fintech phenomena (Gai, Qiu, & Sun, 2018). A brokerage firm, facilitating

the trading of financial securities, can represent an appealing application context for a BDW, as it

stores and processes vast amounts of daily market and news data, as well as trading and watching

data of several securities related to multiple brokers and customer accounts. Consequently, in this

section, one models a BDW for a fictional brokerage firm depicted in the TPC Benchmark E (TPC-E)

(TPC, 2018), which thoroughly details a concurrent transactional database system for financial

brokerage contexts.

In this work, one transforms the TPC-E data model into a BDW data model using the proposed

approach (Figure 5.2). The brokerage firm BDW data model is presented in a simplified manner, in

order to avoid repeated constructs already detailed in this chapter and, therefore, some

(complementary) analytical objects are not detailed at the family or attribute level.

5.2.1 Unnecessary Complementary Analytical Objects and Update Problems

In the BDW data model depicted in Figure 5.2, there are 3 complementary analytical objects:

“customer account”, “broker”, and “security”. In this example, “customer” and “company” could

theoretically be included as complementary analytical objects, but due to their lack of isolated

analytical value for this specific context, as well as the frequency in which they appear related to other

objects, both were not considered as complementary analytical objects, preferring some

denormalization steps: “customer” data appears denormalized in the “customer account” object;

“company” data appears denormalized in the “news” and “security” objects.

However, this design decision also means that the “watch list” analytical object, which in the original

TPC-E model is related to the “customer” table and not to the “customer account” table, needs to be

indirectly joined with the “customer account”. In this case, in order to retrieve customer information

associated with specific watch list data, one needs to, for example, perform a left outer join retrieving

Big Data Warehouses Modeling: From Theory to Practice | 121

the customer information from its last customer account. Moreover, if there is a change in some

attribute related to the customer, not the customer account, one needs to choose an update strategy:

1. Replace the values in all the related customer accounts by scanning the entire analytical

object or several partitions (similarly to SCD type 1);

2. Update only the last customer account;

Figure 5.2. Brokerage firm BDW data model.

122 | Advancing the Design and Implementation of Big Data Warehousing Systems

3. Only update customer accounts when a new account is inserted, as the customer created

the accounts before this update, and such information is somehow valuable for business

analysis (immutable events strategy);

4. Insert a new record for each customer account with the updated values (similarly to SCD

type 2).

If practitioners find this design approach suitable for their use cases, the same can be implemented

to provide more simplicity in CPE workloads, otherwise a new complementary analytical object

“customer” can also be created, as the approach provides this flexibility by delegating some design

decisions to practitioners according to their implementation’s specificities. Regarding update

operations on complementary analytical objects, design choices are often influenced by the adoption

of a specific technology (see 4.2 and 4.3.4.3), due to their random access or batch update

capabilities. However, some of these choices and challenges are also somehow related to the concept

of SCDs (Kimball & Ross, 2013), as some of the underlying challenges of updating denormalized

dimensions resemble the challenges of updating complementary analytical objects, due to data

redundancy (scanning vast amounts of data to update certain values) and history maintenance.

Several strategies from multiple SCD types (e.g., SCD type 1, 2, and 3) can also be applied to

complementary analytical objects, but one needs to consider that the proposed approach does not

have the concept of surrogate key and, therefore, practitioners should rely on the originally defined

granularity key, as well as modification dates and flags to indicate the current/active records, when

needed, in order to appropriately join analytical objects, which creates a slightly more complex

granularity key (granularity key information on subsection 4.3.1). In this example, “customer account”

would not have a simple “customer account id” as granularity key, but a complex granularity key like

“customer account id”, “insert date”, “expiration date”, and “is current”.

5.2.2 Joining Complementary Analytical Objects

As already dissected throughout this work, the approach considers every table as an analytical object,

which can be complementary, or not, depending if they contain descriptive attributes that are

Big Data Warehouses Modeling: From Theory to Practice | 123

outsourced from other objects, or not. Frequently, as seen in this brokerage firm, complementary

analytical objects may resemble traditional dimensions, despite the fact that one encourages

practitioners to provide analytical attributes for these complementary objects. This is the case for the

“broker” and “security” objects in this example. Considering the guidelines provided in subsection

4.3.3, for BDW data models with significantly large complementary analytical objects created with the

purpose of supporting outsourced descriptive families, if interactive query execution is a priority, one

should consider denormalizing data even further, by including attributes from the “security” object in

the “trade” object for example, taking into consideration the data model of this brokerage firm. This

may be the case for the “security” complementary analytical object, which can become significantly

large depending on the securities being traded in this context.

5.2.3 Data Science Models and Insights as a Core Value

One of the main design concerns of the proposed approach is to close the gap between data science

models/results and the BDW data structures that store the data for later use. Throughout this work,

one already discussed this topic several times (see subsection 4.1.2 and section 6.5). For this

brokerage firm, one can apply the concept of predictive attributes to make data science results

available to other analytical applications (e.g., dashboards, ad hoc querying, custom-made

applications, and simulations). Such examples may include: the “recommended securities” and the

“list cluster” in the “watch list” object, which can be derived from a recommendation engine and a

clustering algorithm respectively; and the “polarity” attribute from the “news item” object, which may

be the result of a sentiment analysis process that classifies a news item as being positive or negative,

in order to enrich the decision-making processes that the BDW can support.

In contexts where custom-made applications may need to access the data stored in the BDW, such

as a brokerage firm Web site that recommends securities to millions of customers based on the

“watch list” recommendations, the “watch list” analytical object becomes an adequate candidate for

a streaming analytical object that is stored in a NoSQL database to provide adequate random access

to millions of concurrent users, a use case wherein NoSQL databases thrive (strategy already

discussed in subsection 4.1.3.3.2, section 4.2, and subsection 5.1.3).

124 | Advancing the Design and Implementation of Big Data Warehousing Systems

5.2.4 Partition Keys for Streaming and Batch Analytical Objects

Considering this financial brokerage context, the “trade” object is noticeably the analytical object in

which most of the decision-making process will be centered in. Analyzing a stream of trading data

can provide significant business value, accelerating the decision-making process in several forms.

However, a trade follows different stages (e.g., request, cash transaction, and settlement), and as

modelled in Figure 5.2, it may have different attributes filled in depending on its type (e.g., cash or

margin trade).

One of constructs that can be used in this context is the partition key. By using this construct,

practitioners can easily use the same analytical object to store both batch and streaming records, in

this case, trading data. For example, if one partitions the “trade” object using the “status” attribute

(or any other attribute available in the transactional system indicating different states of the trade),

both batch and streaming data can be stored in the same analytical object and in the same storage

technology (e.g., Hive), wherein the trade can be constantly updated until it reaches a state of

completion. By using different Hive partitions to divide batch and streaming records of the same table,

one can have different schemas for each partition, which means that some attributes of the “trade”

analytical object may only be included in specific partitions, depending on the state of the trade (e.g.,

requested or settled). This is possible for storage technologies that can have schemas defined at the

partition level, which is the case when using Hive.

This capability also means that the frequent use of update operations (e.g., Hive transactions) can

be restricted to streaming partitions, as once the trade reaches completion, the chances of it being

updated are rather reduced. This demonstrates the flexibility of the proposed approach, which allows

for a seamless integration between batch and streaming data, and efficient ways of conducting update

operations, despite the fact that it encourages the modeling of immutable objects whenever possible.

However, in this case, in order to provide a timely and interactive analysis, the “trade” analytical

object can be made mutable without significantly sacrificing efficiency, due to technological evolutions

like Hive transactions (Apache Hive, 2018).

Big Data Warehouses Modeling: From Theory to Practice | 125

5.3 Retail

In this section, one provides an example of a BDW that supports a retail organization derived from

the TPC-DS benchmark (TPC, 2017a), with store, catalog, and Web sales. This section provides some

specific details regarding retail contexts that may be useful for practitioners, and that were possibly

overlooked in the Adventure Works BDW (section 5.1), since it represents a broader organizational

context. The retail BDW data model presented in Figure 5.3 presents several analytical objects

(including complementary) in a highly dimensional model, focusing on sales, returns, promotions,

customers, items, and warehouses.

Figure 5.3. Retail BDW data model.

126 | Advancing the Design and Implementation of Big Data Warehousing Systems

5.3.1 Simpler Data Models: Dynamic Partitioning Schemas

Similarly to the concepts demonstrated in subsection 5.2.4, the retail BDW data model presented in

Figure 5.3 also makes use of the partition key to provide simplicity and agility when collecting,

preparing, and enriching the data that flows to the BDW. However, considering this example, one

does not use the partition key and dynamic partition schemas to simplify batch and streaming

analytics in the same analytical object, but rather to provide simpler data models. By making use of

different schemas for different partitions, using Hive for example, one can efficiently store what would

possibly be three separate analytical objects into just one, i.e., store, catalog, and Web sales into the

“sale” analytical object partitioned by “sales type”. Each partition can have different attributes, which

provides a centralized and efficient way of storing each type of sales. This phenomenon also happens

for the “return” object, as it is almost identical in structure when compared to the “sale” object,

according to this specific retail context. Furthermore, in this example, “sale” is considered as a

complementary analytical object, since the “return” object includes the granularity key of the “sale”

object in its descriptive families, due to the fact that a return is related to a “sale order/ticket number”

and an “item”. Such relationship may resemble scenarios in which practitioners use degenerate

dimensions for drilling across fact tables, first aggregating the two result sets, as much as possible,

and then combining the results, as also discussed in subsection 4.3.2.

5.3.2 Considerations for Spatial Objects

According to the proposed approach, a priori designed spatial objects are not mandatory. However,

as seen in the previous data models, they are encouraged in predictable scenarios. Considering this

retail context, despite the fact that customers have specific addresses, it frequently happens that sales

are not billed nor shipped to the default customer address and, therefore, they end up being also

attached to the sale itself, not only to the customer. It is possible, and perfectly plausible to include

a spatial object (e.g., city) in the data model depicted in Figure 5.3, but, for this example, one shows

that it is not mandatory to have one, as one may choose to perform the analysis at the city and

country level only, i.e., without other standardized spatial attributes across the BDW (e.g., county,

Big Data Warehouses Modeling: From Theory to Practice | 127

region, and continent), which makes the effort of having to join the “sale” or “customer” analytical

objects with a “city” spatial object with more attributes almost useless.

Choosing the adequate attributes that are suitable for the analyses should always be a relevant

consideration (Figure 5.3), and it will influence the use of wide spatial objects with several attributes

or a few denormalized attributes in the analytical objects. Both possibilities are suitable for this

context, but this example only serves the purpose of highlighting that, for specific contexts, spatial

objects may not be particularly useful. Furthermore, one aspect that practitioners should take into

consideration is to avoid significantly large spatial objects (e.g., denormalized hierarchies ranging from

building numbers to country names). In this case, some of the more granular geospatial information

can be contained within a descriptive family of the analytical object (e.g., building number and

building type), and the less granular information can be stored in the spatial object (e.g., city and

country).

5.3.3 Analyzing Non-Existing Events

Considering a traditional DW, if one uses a “customer” transactional table to directly load a

“customer” dimension, the DW will be able to answer queries like the following: “which customers

have not returned a single item?”. However, considering a BDW with a fully denormalized analytical

object “return”, such analysis would not be possible, reason why practitioners have the option of

using complementary analytical objects like “customer”. The same consideration holds true for spatial

objects, as one may want to analyze the cities in which the organization did not sell any item.

Consequently, for such analytical use cases, practitioners should definitely consider complementary

analytical objects, as well as date, time, and spatial objects, since fully denormalized analytical objects

only store the events (records) that actually occur.

5.3.4 Wide Descriptive Families

Previously, in subsection 5.3.2, one has highlighted the relevance of adequately choosing the

attributes that are relevant for the expected analyses. Such statement does not imply that there is the

need to know each query that will be submitted to the system. Nevertheless, frequently, there are

128 | Advancing the Design and Implementation of Big Data Warehousing Systems

certain attributes that are considered as irrelevant for the analytical use cases of the BDW being

implemented. In these cases, adequately choosing the attributes allows for smaller descriptive

families, which is a relevant aspect when using fully denormalized structures, since, with larger

descriptive families, more redundant data would be stored throughout several records, instead of just

one or few attributes that allow for join operations with complementary analytical objects.

Taking into consideration the retail context illustrated in this section, the “store” descriptive family

from the “sale” object can theoretically hold a considerable number of attributes. However, certain

attributes may be considered as irrelevant depending on the analytical use cases, such as the store’s

“GMT offset” or “tax percentage”, if the decision-making process of the organization does not consider

such information. Consequently, narrow descriptive families should be preferred whenever possible,

without sacrificing analytical value. Despite this guideline, if wide descriptive families are mandatory

for a specific case, columnar file formats (e.g., ORC and PARQUET) with compression techniques can

provide an efficient way of storing analytical objects with hundreds or thousands of columns.

Furthermore, if needed, one can create a “store performance” complementary analytical object

related to sales, outsourcing the “store” descriptive family, as such object would provide significant

analytical value at the store level, including several ratios between number of workers, floor space,

and sales numbers, for example. The flexibility of the approach regarding dimensional data allows the

delegation of some design decisions to practitioners, depending on the intended analysis and data

characteristics.

5.3.5 The Need for Joins in Data CPE Workloads

Considering the TPC-DS data model (TPC, 2017a), information like customer demographics,

customer household demographics, customer income, and customer address appears related using

foreign key relationships between the several dimensions that contain this information and the

“customer” dimension. In the BDW presented in Figure 5.3, all this information is denormalized into

the “customer” complementary analytical object. Again, if one needs to answer queries like “is there

any customer demographic class in which the organization does not have any customer?”, this design

Big Data Warehouses Modeling: From Theory to Practice | 129

choice is not appropriate, and the “customer demographics” descriptive family inside the “customer”

object will need to be outsourced to a complementary analytical object. However, one assumes that

this is not the case in this retail context.

Considering this denormalization process, with a “customer” complementary analytical object that

includes demographics, household, address, and income information, at first glance, one may find

the data CPE process to be somehow simpler than maintaining several separate dimensions, which,

in fact, can be partially true. However, the degree of simplicity depends on the transactional source

that fuels the “customer” object:

§ If the transactional source is a relational database in which this information comes from

several tables, then the data CPE workload corresponding to the loading and refreshment of

the “customer” object will need to perform several joins to provide a fully denormalized

structure;

§ In contrast, considering the large-scale retail scenarios using NoSQL databases to support

the vast amount of transactions being generated, this data may arrive at the BDW already

denormalized (e.g., column-oriented and document-oriented NoSQL databases),

representing the opposite situation and providing a high degree of simplicity without the need

to perform join operations, which considerably simplifies the data CPE workload.

5.4 Code Version Control System

The software industry is under constant evolution, and open source or subscription-based remote

version control systems like GitHub have been a core pillar of current software management and

dissemination. GitHub is one of the main platforms for collaboration in software projects, whose

activity has the potential to generate vast amounts of data. In this section, one explores the GitHub

public dataset available on Google BigQuery (Google, 2018) regarding 2.9 million public software

repositories, in order to model a BDW that supports the decision-making process regarding the activity

and metrics of these repositories’ commits and content in large-scale environments. The BDW data

130 | Advancing the Design and Implementation of Big Data Warehousing Systems

model illustrated in Figure 5.4 includes the “commit” and “repository” analytical objects, being the

latter a complement to the first, and it also includes the date and time objects.

The “commit” analytical object stores data regarding the commits that have been made to the several

repositories, including information regarding the author and the committer. This analytical object does

not contain any relevant analytical attribute and, therefore, count operations will be the primary focus

of analysis. The “repository” complementary analytical object stores information regarding the current

state of the 2.9 million public repositories, including the license, an array containing the information

of several files for each branch, an array containing the code (in bytes) of each programming language

in the repository, and the number of issues classified by type (possibly extracted by scrapping and

mining the text from the issues page of each repository, for example).

Both the “commit” and the “repository” objects can be implemented as streaming analytical objects,

in which they are updated as soon as each commit or any other file activity takes place. However,

due to the chosen data model, the streaming implementation may differ, as the “commit” object is

Figure 5.4. BDW data model for code version control systems.

Big Data Warehouses Modeling: From Theory to Practice | 131

an immutable append-only object, in which each commit originates a new record, while the

“repository” object is a mutable object, because the nested analytical attributes should be updated

(e.g., code in bytes and number of files) instead of originating a new record. Consequently, the

“repository” object can be implemented using a NoSQL database with adequate support for fast

random-access to nested objects or, depending on the specific implementation details (e.g., update

frequency, latency requirements, and update throughput), as already seen, Hive transaction tables

can also be an option.

5.5 A Global Database of Society – The GDELT Project

The GDELT project makes available an open database that monitors worldwide broadcast, print, and

Web news, identifying the people, locations, organizations, topics, sources, emotions, among many

other information regarding news (GDELT, 2018). The data model presented in Figure 5.5 represents

a BDW to support decision-making processes using worldwide event data from the GDELT project,

which is composed by date and time objects, a “city” spatial object (including denormalized data

regarding the countries corresponding to the cities), and an “event” analytical object. This analytical

object is responsible for storing news/events, with data regarding the event and the actors involved

Figure 5.5. BDW data model for the GDELT project.

132 | Advancing the Design and Implementation of Big Data Warehousing Systems

in it. The actors’ data regarding name, city (attribute related to the spatial object “city”), group (e.g.,

United Nations or World Bank), ethnic and religion information, geocoordinates, among others, is

stored in a complex data type (e.g., Row or Struct) for organization purposes, which can also contain

other complex data types (e.g., “religions” and “types” arrays). Consequently, the “event” object

allows for several analytical applications to process and analyze worldwide news/events.

5.6 Air Quality

The final BDW example of this chapter is focused on air quality analysis through sensors spread

across different locations. The example presented in this section is based on the open air quality

platform (OpenAQ, 2018). The BDW data model depicted in Figure 5.6 integrates a spatial object

“city”, date and time objects, and a “measurement” analytical object corresponding to the measured

value of a specific parameter from a specific location, date, and time. The “measurement” analytical

object has geospatial coordinates which are not present in the spatial object. This is a design choice

that is always encouraged, due to the high cardinality of geospatial coordinates. Consequently, space

is broken down into levels of detail, and the lower levels are typically stored in spatial objects, while

the higher levels of detail are stored in the analytical object, as already explored in subsection 5.3.2.

Figure 5.6. BDW data model for air quality analysis.

Big Data Warehouses Modeling: From Theory to Practice | 133

Real-time aggregations on sensor data are a really adequate use case for specific technologies like

Druid (Correia et al., 2018), a columnar storage that provides aggregations and indexing at ingestion

time. Such design and implementation choice can fuel a “measurement” analytical object modelled

at a higher level of detail, as, for example, the “value” attribute can be an average of each minute,

instead of the raw sensor readings produced each second. Besides the use of Druid, this scenario

can also be supported by a Spark Streaming CPE workload using window operations or micro batch

aggregations, for example, storing the resulting data in the streaming storage system of the BDW.

Nevertheless, when using Druid (or similar technologies), one should pay attention to the specificities

of the data models that these technologies require, because, for example, Druid currently handles

descriptive and analytical attributes in fully denormalized structures, which does not completely

correspond to the data model presented in Figure 5.6. However, as seen in this work, the proposed

approach for BDWing is relatively flexible and, if that is the case, practitioners can adopt a fully

denormalized “measurement” analytical object without spatial, date, or time objects. After these

considerations, this section can be seen as a collection of insights that practitioners can use to design

streaming analytics on sensor data, specifically for air quality analysis in this case, but with further

applications for other sensor-based analytical workloads.

134 | Advancing the Design and Implementation of Big Data Warehousing Systems

This page was intentionally left blank

Fueling Analytical Objects in Big Data Warehouses | 135

Chapter 6. Fueling Analytical Objects in Big Data Warehouses

One of the most laborious stages in the implementation of DWs, whether they are traditional or

oriented for Big Data environments, is the development of ETL processes. As seen in the previous

chapter, one does not use this terminology, in order to avoid confusion between ETL and ELT

processes, which can cause several unnecessary discussions. Thus, this approach prefers the

friendlier NIST terminology (collection and preparation), extending it with the term “enrichment”, due

to the relevance of derived attributes (feature engineering) for more impactful and actionable insights.

As previously discussed, in the proposed approach, these processes are known as CPE

processes/workloads. This chapter presents several examples of relevant CPE workloads that

practitioners may find useful when implementing BDWs. In these examples, Spark and Talend Open

Studio for Big Data are used for demonstration purposes. Designing and developing CPE workloads

for BDWs can be considered one of the most time-consuming and difficult tasks in BDWing. For that

reason, structuring several examples that demonstrate typical tasks in these environments is seen as

a relevant contribution, mainly to the practitioners’ community. Such examples are part of the

demonstration activity in the DSRM for IS methodology used in this research process.

6.1 From Traditional Data Warehouses

Migrations from traditional DWs to BDWs will typically become more common (Russom, 2016). In

BDWing implementations, one of the potential workloads will be the migration of the organization’s

current relational DW to a BDW. This section presents how this task can be achieved using Sqoop,

HDFS, Spark, and Hive, four technologies depicted in Figure 4.3. In fact, the guidelines here provided

are also useful for CPE workloads that read data from relational OLTP databases to fuel the BDW.

Sqoop is used to transfer data from relational databases to HDFS, and Spark is used to prepare and

enrich the data before storing it in the batch storage component (Hive in this example).

136 | Advancing the Design and Implementation of Big Data Warehousing Systems

Figure 6.1 illustrates the data flow between the components of a possible technological infrastructure.

The first step of this process consists in transferring the data from the RDBMS that currently supports

the DW to HDFS. This task can be done using Sqoop’s import functionality:

sqoop import --connect <db_connection_string> {authentication_details} --table

<table_name> --target-dir <path_to_data_folder>

In this example, the data from a traditional sales DW modelled according to the SSB benchmark is

used, containing one fact table (“lineorder”) and four dimensions: “customer”, “supplier”, “part”,

and “date dim” (O’Neil, O’Neil, & Chen, 2009). After transferring the data and storing it in the

distributed file system (HDFS), one can start the preparation and enrichment of this data according

to the desired analytical object. In this case, the analytical object is a fully denormalized structure

containing all the resulting attributes from the join between the fact table and each dimension, despite

the fact that, as seen in section 4.3, analytical objects represent flexible and efficient structures that

can be more than just a full denormalization of fact tables. The following Spark 2 Python code

illustrates a typical script to perform this task:

1. Import Spark packages and classes.

from pyspark.sql import SparkSession, Row

from pyspark.sql.types import *

2. Define two variables: “hdfsPath” and “hiveDbName”.

hdfsPath = “hdfs://<servername>:8020/<path_to_data_folder>/”

hiveDbName = “ssb”

Figure 6.1. CPE workload for traditional DW migration.

Fueling Analytical Objects in Big Data Warehouses | 137

3. Create Spark session.

4. Create the Hive database for the BDW.

spark.sql(“DROP DATABASE IF EXISTS “ + hiveDbName + “ CASCADE”)

spark.sql(“CREATE DATABASE “ + hiveDbName)

5. Create a Spark DataFrame and a Spark Temporary View for each table imported from Sqoop.

This will allow the execution of SQL-based instructions on top of the data that has been stored

on HDFS.

...

dfSchema = StructType([

 StructField(“custkey”, IntegerType(), True),

 StructField(“name”, StringType(), True),

 StructField(“address”, StringType(), True),

 StructField(“city”, StringType(), True),

 StructField(“nation”, StringType(), True),

 StructField(“region”, StringType(), True),

 StructField(“phone”, StringType(), True),

 StructField(“mktsegment”, StringType(), True)])

customerDF = spark.read \

 .csv(hdfsPath + “customer”, header=False, schema=dfSchema)

customerDF.createGlobalTempView(“customer”)

...

6. Create the Hive table to store the analytical object. In this example, the table uses the ORC

file format, which is an optimized columnar format that considerably improves Hive’s

performance (Huai et al., 2014). The Parquet file format can also be used for Hive tables, in

order to achieve adequate performance (Parquet, 2018).

spark = SparkSession \

 .builder \

 .appName(“Create SSB Analytical Object”) \

 .config(“spark.sql.warehouse.dir”, “/apps/hive/warehouse/”) \

 .enableHiveSupport() \

 .getOrCreate()

138 | Advancing the Design and Implementation of Big Data Warehousing Systems

spark.sql(“CREATE TABLE ssb.analytical_obj (c_custkey int, c_name varchar(25), ...)

STORED AS ORC”)

7. Join the five tables (one fact table and four dimensions) and store the result in the previously

created Hive table. If the Hive table is partitioned, the insert statement should reflect the

partition scheme, and the adequate HiveQL constructs should be used. This example

illustrates a table without partitions.

spark.sql(“INSERT INTO ssb.analytical_obj SELECT ... FROM global_temp.lineorder LEFT

OUTER JOIN global_temp.customer ON ...”)

8. Depending on the total size of the resulting table and the number of partitions in the

DataFrame, Spark can generate several small ORC files, which can interfere with the

performance and adequate operation of Hive and Hadoop. Consequently, the following Hive

Data Definition Language (DDL) statement may be useful, in order to concatenate these

small ORC files into larger ones. Practitioners may consider this statement in their CPE

workloads. Note: there are other ways of manipulating the number of output files, including

some Spark configurations and functions (e.g., coalesce and repartition).

ALTER TABLE ssb.analytical_obj CONCATENATE

9. Finally, it is relevant to highlight the need to assure that after every CPE workload, the table

and column statistics in Hive are adequately computed and refreshed, taking the maximum

advantage of this query optimization mechanism. Therefore, the following Hive DDL is also

significantly relevant in these scenarios.

ANALYZE TABLE ssb.analytical_obj COMPUTE STATISTICS

ANALYZE TABLE ssb.analytical_obj COMPUTE STATISTICS FOR COLUMNS

6.2 From OLTP NoSQL Databases

In Big Data environments, NoSQL databases are typically the main driver for OLTP workloads,

assuring adequate scalability in intensive random access scenarios (Cattell, 2011). Organizations are

Fueling Analytical Objects in Big Data Warehouses | 139

currently using NoSQL databases for several applications, for example: massive online sales services

(e.g., Amazon); IoT applications; search engines (e.g., Google); and mobile applications.

This section presents a workload to collect, prepare and enrich data from Cassandra, which is used

to store millions of records from sensors. The sensors send a record to Cassandra every 15 minutes,

including the following attributes: “sensor id”; “date” – a timestamp containing the date and time of

the record; “building id” – the building in which the sensor is located; “kwh” – the energy consumption

recorded at that moment. The goal of this workload is to collect Cassandra’s data for a specific month

and store it in the BDW’s batch storage (Hive). The Hive analytical object used for this purpose will

be partitioned by year and month. Throughout the workload, the data will be aggregated to match an

hourly aggregation level, instead of the original “quarter of an hour” aggregation level. This workload

can be coded using the following Spark Java code:

1. Import Spark packages and classes. In this example, one will use the DataStax open source

Spark Cassandra connector.

import org.apache.spark.sql.Dataset;

import org.apache.spark.sql.Row;

import org.apache.spark.sql.SaveMode;

import org.apache.spark.sql.SparkSession;

import static org.apache.spark.sql.functions.col;

...

2. Create the main Java class and method that will be used to include the several tasks for this

workload. As already known, the first task is the definition of the Spark Session.

SparkSession spark = SparkSession

 .builder()

 .appName(“Read sensor records from Cassandra”)

 .config(“spark.cassandra.connection.host”, <hostname(s)>)

 .config(“spark.cassandra.auth.username”, <username>)

 .config(“spark.cassandra.auth.password”, "<password>")

 .config(“spark.sql.warehouse.dir”, “/apps/hive/warehouse/”)

 .config(“hive.exec.dynamic.partition.mode”, “nonstrict”)

 .enableHiveSupport()

 .getOrCreate();

140 | Advancing the Design and Implementation of Big Data Warehousing Systems

3. Create a Spark Dataset that reads data from the Cassandra table. Spark Datasets are an

abstraction introduced in Spark 1.6, which combines the benefits of Spark DataFrames

(Spark SQL’s optimized execution engine) with the benefits of Resilient Distributed Datasets

(RDDs), namely strong typing and the ability to use powerful lambda functions (Spark, 2017).

Dataset<Row> ds = spark.read().format(“org.apache.spark.sql.cassandra”)

 .option(“keyspace”, <keyspace_name>)

 .option(“table”, <table_name>)

 .load();

4. Filter the Dataset to select a specific month (January), and aggregate the Dataset to match

an hourly aggregation level.

Dataset<Row> dsFiltered = ds.filter(month(col(“date”)).equalTo(1));

Dataset<Row> dsGrouped = dsFiltered

 .groupBy(

 col(“sensor_id”),

 date_format(col(“date”), “YYYY-MM-DD HH:00:00”).as(“moment”),

 col(“building_id”))

 .sum(“kwh”);

5. Store the Dataset into the corresponding Hive table and partition. Since dynamic partitioning

is enabled in the Spark Session configurations, Spark will figure out the partitioning scheme

automatically. One needs to be aware that using the method presented below, the columns

of the Dataset must be ordered according to the columns of the Hive table, being the

partitioning columns the last ones. Similarly to the previous section, after this task, one can

concatenate small files and recompute table and column statistics.

dsGrouped.select(

 col(“sensor_id”),

 col(“moment”),

 col(“building_id”),

 col(“sum(kwh)”),

 year(col(“moment”)),

 month(col(“moment”)))

 .write().mode(SaveMode.Overwrite).insertInto(<hive_database.table>);

Fueling Analytical Objects in Big Data Warehouses | 141

6.3 From Semi-Structured Data Sources

The variety of data is one of the major characteristics for defining Big Data. As already highlighted,

data may be more or less structured depending on the underlying source. The previous CPE workloads

focused on relatively structured data, namely relational and column-oriented schemas. In this section,

the focus is on semi-structured data sources, which can typically produce data in formats that are

not completely detached from a schema, but are significantly flexible or nested, such as server logs,

JSON, or XML files, for example.

Take as an example the following GeoJSON file, which is basically a JSON file that, among other

attributes, holds geospatial information about buildings in Lisbon:

“features”: [

 {“type”: “Feature”,

 “properties”: {

 “Shape_Leng”: 68.663877,

 “Shape_Area”: 276.535056,

 “L_HtRf”: 21,

 “Building_Occupation”: 3, ...

 },

 “geometry”: {

 “type”: “MultiPolygon”,

 “coordinates”: [[[

 [-9.095283006673773, 38.75460513863176, 0.0],

 [-9.095298222128497, 38.754405797462653, 0.0], ...]]]

 }

 }, ...

In the proposed approach, one highlights the use of analytical objects that can contain nested

structures. Extracting useful attributes for analysis and implementing an analytical object that

adequately deals with semi-structured data is the key in this specific scenario. In order to handle

semi-structured data, one needs to assure two relevant aspects: the technology used to implement

the CPE workload must be able to process these data structures; and the technology used to store

the results of the workload should also be able to handle semi-structured data. Regarding the first

aspect, in this section, Talend Open Studio for Big Data is used to build the CPE workload. However,

142 | Advancing the Design and Implementation of Big Data Warehousing Systems

there are many other technologies that are suitable for this purpose (Spark inclusively). Regarding the

second aspect, Hive is used again as the batch storage of the BDW, since it can adequately handle

flexible and nested data structures like arrays and maps, not only providing ways of storing them, but

also providing ways of querying and performing analytics on these structures.

Figure 6.2 presents a Talend job used to collect the aforementioned GeoJSON file from HDFS,

preparing and enriching it with supplementary GeoJSON files. This job is responsible for fueling a

previously created analytical object storing several buildings indicators in Lisbon, including not only

their geospatial information, but also their associated services (e.g., gyms and restaurants),

occupation, and construction characteristics, for example.

Figure 6.2. CPE workload for semi-structured data.

Fueling Analytical Objects in Big Data Warehouses | 143

This job starts by reading the content of the GeoJSON file, and Talend Open Studio for Big Data is

able to automatically deduce its schema by inspecting a sample of the records within the file. Then,

one is able to join the buildings file with other supplementary files, like parishes, neighborhoods

(subsections), and services inside the building or near it. The service list can be extracted from the

Google Maps Application Programming Interface (API), and afterwards, one can use several Talend

components (e.g., list aggregations and custom java code) to create a list of services associated with

each building and make it available in the appropriate format.

Finally, after all the previous tasks are completed, the data is sent to HDFS and a temporary Hive

table is created to store that data in text format. As previously highlighted, Hive tables in ORC or

Parquet format are more suitable for analytical purposes, so one needs to move the data from this

temporary table to the table using the ORC format. This procedure of using a temporary table is

common in Hive-based DWs. However, practitioners may find other ways to directly move the data to

ORC tables without the need for a temporary table, for example, using the ORC API. The final result

is an analytical object stored as a Hive table, which is able to handle a variety of structures, including

arrays and maps.

6.4 From Streaming Data Sources

Until now, only the use of the BDW’s batch storage component was demonstrated. When a source

generates data through streaming mechanisms, one needs to rely on the streaming storage of the

BDW. Data velocity is another relevant characteristic in Big Data environments, and in this section,

one will be discussing the development of a streaming CPE workload to fuel the BDW. Kafka is used

for data collection, Spark Streaming is used for data preparation and enrichment, and Cassandra is

used as the NoSQL database responsible for the BDW’s streaming storage. Figure 6.3 summarizes

this CPE workload.

1. The first step is the development of a Kafka producer. In this example, this producer generates

a record each five seconds, corresponding to a random product sale in a simulated e-

commerce environment. Each record contains a key (“sales id”) and a value (“URL” of the

144 | Advancing the Design and Implementation of Big Data Warehousing Systems

Web page wherein the product was purchased). The following Java code snippets

demonstrate this scenario, and can be used as a guide for other Kafka producers.

a. Import the Java packages and classes. For this producer, the Apache Kafka API is

used.

...

import org.apache.kafka.clients.producer.KafkaProducer;

import org.apache.kafka.clients.producer.ProducerRecord;

import org.apache.kafka.clients.CommonClientConfigs;

import org.apache.kafka.clients.producer.Callback;

import org.apache.kafka.clients.producer.ProducerConfig;

import org.apache.kafka.clients.producer.RecordMetadata;

b. Create the Java class and its variables. Generally, this class needs the topic in which

the producer will publish the records, the producer object, and several properties

that reflect the infrastructure in use and the application requirements (e.g.,

secure/unsecure cluster and the number of acknowledgments to consider a request

as being completed). In this example, there is also one variable containing random

products used to generate random online sales URLs.

Figure 6.3. Streaming CPE workload using Kafka, Spark Streaming, and Cassandra.

Fueling Analytical Objects in Big Data Warehouses | 145

public class DummyProducer extends Thread {

 private final String topic;

 private final KafkaProducer<String, String> producer;

 private final Properties props;

 private final String[] products;

...

c. Create the constructor that initializes the variables enumerated above.

public DummyProducer(String topic, String kafkaServerUrl, int kafkaServerPort)

{

 this.products = new String[] {

 “smartphonex7”, “pc4”, “keyboardy”, “monitorpro”

 };

 this.props = new Properties();

 this.props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,

 kafkaServerUrl + “:” + kafkaServerPort);

 this.props.put(ProducerConfig.CLIENT_ID_CONFIG, “DummyProducer”);

 this.props.put(CommonClientConfigs.SECURITY_PROTOCOL_CONFIG,

 “SASL_PLAINTEXT”);

 this.props.put(ProducerConfig.ACKS_CONFIG, “all”);

 this.props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,

 “org.apache.kafka.common.serialization.StringSerializer”);

 this.props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,

 “org.apache.kafka.common.serialization.StringSerializer”);

 this.producer = new KafkaProducer<>(props);

 this.topic = topic;

}

d. Create the run method that is responsible for the execution of the main task, i.e.,

generating an URL of a random online sale each five seconds for an infinite period

of time. In this example, a random product is selected between a set of four available

products (see code snippet above). Each sale also contains a random flag indicating

if the sale was the result of a recommendation based on a previous visualized

product (“redirected” attribute).

@Override

public void run() {

146 | Advancing the Design and Implementation of Big Data Warehousing Systems

 Random random = new Random();

 String message;

 while(true) {

 String salesID = “” + random.nextInt() + System.currentTimeMillis();

 message = String.format(

 “\”http://mywebstore.com/?product=%s&redirected=%s\””,

 this.products[random.nextInt(4)], random.nextBoolean()

);

 ProducerRecord<String, String> data = new ProducerRecord<>(

 this.topic, salesID, message

);

 this.producer.send(data);

 try {

 Thread.sleep(5000);

 } catch (InterruptedException ex) {

 System.err.println(ex.getMessage());

 }

 }

}

e. Finally, create the main method of the “DummyProducer” class, which will simply

run the Kafka producer given a Kafka topic, broker, and port.

public static void main(String args[]) {

 DummyProducer producer = new DummyProducer(<topic>, <kafka_broker>, <port>);

 producer.start();

}

2. Having a streaming producer is just part of the CPE workload, namely it represents the

collection step of the workload. Consequently, in BDWing environments, one typically needs

to prepare and enrich the data before making it available for analytical purposes. One way

of achieving this goal is to use the powerful and stable Spark Streaming API, which allows

the relatively easy use of multiple functions (e.g., filter, join, count, and map) on streaming

sources like Kafka, assuring adequate scalability and fault-tolerance. The following Java code

snippets demonstrate a Spark Streaming application that uses regular expressions to extract

information from the Kafka messages and to store the results in the BDW’s streaming storage

Fueling Analytical Objects in Big Data Warehouses | 147

component. In this example, Cassandra is used to store a streaming analytical object

containing the “sales id”, the “product”, and the “redirected” attributes.

a. Import the required packages for this Spark Streaming application. The crucial APIs

are the Spark Core API, the Spark Streaming API, the Spark Streaming Kafka API,

and the DataStax Cassandra connector.

...

import static com.datastax.spark.connector.japi.CassandraJavaUtil.

javaFunctions;

import static com.datastax.spark.connector.japi.CassandraJavaUtil.mapToRow;

import org.apache.spark.SparkConf;

import org.apache.spark.streaming.api.java.*;

import org.apache.spark.streaming.kafka010.*;

import org.apache.kafka.clients.consumer.ConsumerRecord;

import org.apache.kafka.common.serialization.StringDeserializer;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.streaming.Durations;

b. After creating the main class and the main method of the Spark Streaming

application, configure the Kafka connector appropriately, including the consumer

configurations and the list of topics to consume. The following code snippet

illustrates the configuration for a Kerberized cluster, in which the Spark consumer

informs Kafka when it has finished consuming a certain offset, that is why one

disables Kafka auto commits and uses the “offsetRanges” variable. This assures

that the Spark consumer only acknowledges the processing of certain offsets when

the records were already stored in Cassandra. One will clarify this functionality later

in this subsection.

Map<String, Object> kafkaParams = new HashMap<>();

 kafkaParams.put(“bootstrap.servers”, <kafka_broker>:<port>);

 kafkaParams.put(“key.deserializer”, StringDeserializer.class);

 kafkaParams.put(“value.deserializer”, StringDeserializer.class);

 kafkaParams.put(“group.id”, “spark.events”);

 kafkaParams.put(“auto.offset.reset”, “latest”);

 kafkaParams.put(“enable.auto.commit”, false);

148 | Advancing the Design and Implementation of Big Data Warehousing Systems

 kafkaParams.put(“security.protocol”, “SASL_PLAINTEXT”);

 Collection<String> topics = Arrays.asList(<topic(s)>);

 final AtomicReference<OffsetRange[]> offsetRanges = new AtomicReference<>();

c. Create the Spark configuration and the Spark Streaming object. Since one is storing

the results in Cassandra, the Cassandra connection properties are also needed,

similarly to the previous OLTP NoSQL-based CPE workload. In this example, the

streaming application processes data arriving from Kafka in 10 seconds micro batch

intervals. As highlighted in subsection 4.1.3.2, micro batches are configurable, and

they are often a trade-off between latency, throughput, and flexibility.

SparkConf conf = new SparkConf()

 .setAppName(“StreamingCPEWorkload”)

 .set(“spark.cassandra.connection.host”, <host(s)>)

 .set("spark.cassandra.auth.username", <username>)

 .set("spark.cassandra.auth.password", <password>);

JavaStreamingContext jssc = new JavaStreamingContext(

 conf, Durations.seconds(10)

);

JavaInputDStream<ConsumerRecord<Integer, String>> stream =

 KafkaUtils.createDirectStream(

 jssc,

 LocationStrategies.PreferConsistent(),

 ConsumerStrategies.Subscribe(topics, kafkaParams)

);

d. As previously stated, this application is using manual Kafka commits and, therefore,

one needs to inform Kafka when the data has been processed. Consequently, the

first step after creating the stream is to store the Kafka offset range in the Spark

application, in order to commit the offsets already processed after the data has been

successfully stored in Cassandra. The following function needs to be the first function

called after the creation of the stream, since it does not work after the application of

transformations to the “stream” object. This assures that the application has

Fueling Analytical Objects in Big Data Warehouses | 149

“exactly-once” semantics instead of “at-least-once” semantics, which assures that

data arriving from Kafka does not get processed and stored twice.

stream.foreachRDD((JavaRDD<ConsumerRecord<Integer, String>> rdd) -> {

 OffsetRange[] offsets = ((HasOffsetRanges) rdd.rdd()).offsetRanges();

 offsetRanges.set(offsets);

});

e. To extract the “product” and “redirected” attributes arriving from Kafka’s messages,

one can use regular expressions applied to the URL. The “map” transformation can

be used to extract these attributes. Spark Streaming offers several transformations,

window, join, and output functions that can be used for streaming contexts. For

example, joining a stream with an historical dataset can be significantly useful for

BDWing purposes, in order to prepare and enrich data for certain analytical objects.

JavaDStream<DummySale> transformedStream = stream

 .map((ConsumerRecord<Integer, String> event) -> {

 String[] fields = event.value().split(“\”;\””);

 Matcher m = Pattern

 .compile("product=(.*)&redirected=(.*)").matcher(fields[1]);

 m.find();

 return new DummySale(

 fields[0], m.group(1), Boolean.parseBoolean(m.group(2))

);

});

f. Since all the processing tasks for this example are already completed, the results

can be stored in Cassandra, and the Spark Streaming application can then commit

the offsets to Kafka, acknowledging that it already processed and stored that specific

records. It should be noted that, in this example, “DummySale” is a typical Java

Bean containing the same attributes as the analytical object stored in Cassandra. It

is used to apply a schema to each row in the Spark RDD.

transformedStream.foreachRDD((JavaRDD<DummySale> rdd) -> {

 javaFunctions(rdd).writerBuilder(

 <topic>, <cassandra_database>, mapToRow(DummySale.class)

150 | Advancing the Design and Implementation of Big Data Warehousing Systems

).saveToCassandra();

 ((CanCommitOffsets) stream.inputDStream()).commitAsync(offsetRanges.get());

});

g. Finally, the last task consists in simply starting the application and waiting for its

termination.

try {

 jssc.start();

 jssc.awaitTermination();

} catch (InterruptedException ex) {

 System.err.printf("The application '%s' has stopped! ", conf.getAppId());

}

6.5 Using Data Science Models

One of the main aspects in the proposed approach (previously described in Chapter 4) is the inclusion

of data science models in CPE workloads fueling the BDW. This work considers data science as an

umbrella for several related and more specific subareas, including: data mining/machine learning;

text mining; image mining; and video mining. Regarding data mining, traditional DWs are frequently

considered a relevant data source for the algorithms used in this area, since they typically contain an

extensive record of historical data regarding the organization. Since these algorithms need a vast

training set to extract patterns, traditional DWs are natural sources of data for feeding these

algorithms, and can be considered “clients of the DW” (Kimball & Ross, 2013). This is also true for

a BDW (Figure 4.1), wherein it can be queried by data scientists that are “playing” with the data in

the data science sandbox. However, this work extends this ideology by inviting practitioners to include

data mining/machine learning algorithms in CPE workloads, in order to create new predictive

attributes and include them in the analytical objects stored in the BDW (Figure 4.2).

The same strategy stays valid for unstructured data science techniques like text mining, image mining,

or video mining. These techniques are not frequently seen in traditional DWing environments. One

can argue that raw unstructured data holds almost no value for analytical purposes. Patterns should

be extracted using data science techniques and then, since these results are already relatively

structured, they can follow their path to an OLAP-oriented system like the BDW. Another argument

Fueling Analytical Objects in Big Data Warehouses | 151

that can be made is that the rigid structure of relational DWs can be seen as a significant barrier in

these scenarios, since most of the time it becomes unnatural, time-consuming, and inefficient to

model dimensions, fact tables, and relationships for this type of analytical workloads.

For example, when an organization is collecting images in real-time and instantaneously using an

algorithm to predict an occurrence of a certain pattern in that image (e.g., template matching for

manufacturing quality control), it becomes really inefficient to fuel a relational DW via streaming

mechanisms. For each image being analyzed, a typical ETL process has to scan the several

dimensions for any changes since the last DW refresh (e.g., new rows to add/update in dimension

tables), or to retrieve each dimension’s surrogate key for matching the foreign key of each new row

in the fact table, for example. In these contexts, relational DWs are not the most adequate solution,

and fully denormalized structures (analytical objects), are arguably more efficient and simpler to

implement, since their corresponding CPE workloads are considerably easier to develop and maintain

when compared to traditional ETL processes.

In Big Data environments, there is the need to integrate both structured and unstructured sources

(Kimball & Ross, 2013). As previously discussed, predictive analytics is also a relevant use case that

BDWs must consider among their set of mixed and complex analytical workloads. This is the reason

why including structured and unstructured data science models in the CPE workloads can be seen

as a way of extracting the value hidden in Big Data, which can then be used to make predictions of

future events and to fuel the analytical objects stored in the BDW. This section discusses two types

of CPE workloads including data science models, using data mining/machine learning models for

structured data and using text mining, image mining, and video mining models for unstructured data.

6.5.1 Data Mining/Machine Learning Models for Structured Data

Predictive attributes are the key for predictive analytics inside BDWs. One highlights the use of data

science models to create these attributes. The data stored either in the file system or in the indexed

storage of the BDW can be used to train these predictive models, which can then be used to enrich

data arriving at the system with new predictive attributes. In these contexts, data mining/machine

152 | Advancing the Design and Implementation of Big Data Warehousing Systems

learning models can be significantly useful for CPE workloads dealing with structured data. This

subsection uses the Spark MLlib API to demonstrate one of many data mining techniques that can

be used in BDWing systems, namely clustering.

Clustering can be used when the training dataset is not previously labeled with the attribute one wants

to predict, which can also be mentioned as unsupervised learning. There are many other techniques

available in Spark MLlib, either unsupervised (e.g., association rules) or supervised (e.g., classification

and regression), assuring a scalable way of training, testing, and applying data mining/machine

learning models. The following Java code snippets demonstrate the use of clustering algorithms in

Spark, namely the very broadly used K-means algorithm. Figure 6.4 presents an overview of the CPE

workload being implemented in this subsection.

1. Import the java packages needed for the application.

...

import org.apache.spark.sql.SparkSession;

import org.apache.spark.ml.clustering.KMeansModel;

import org.apache.spark.ml.clustering.KMeans;

import org.apache.spark.ml.feature.MinMaxScaler;

import org.apache.spark.ml.feature.MinMaxScalerModel;

import org.apache.spark.ml.feature.VectorAssembler;

import org.apache.spark.ml.linalg.Vector;

import org.apache.spark.sql.Dataset;

import org.apache.spark.sql.Encoders;

import org.apache.spark.sql.Row;

2. Create the main class and the main method, which starts by initiating the Spark Session. In

this example, one will be segmenting customers according to their buying behavior (following

the example context of section 6.1): how many orders do they place? How much revenue do

they generate to the company? Are they regular monthly customers?

SparkSession spark = SparkSession

 .builder()

 .appName(“Segmenting Customers using K-means”)

 .config(“spark.sql.warehouse.dir”, “/apps/hive/warehouse/”)

 .config(“hive.exec.dynamic.partition.mode”, “nonstrict”)

Fueling Analytical Objects in Big Data Warehouses | 153

 .enableHiveSupport()

 .getOrCreate();

3. To accomplish this goal, the analytical object created in subsection 6.1 can be used, which,

as already seen, is based on the SSB dataset (O’Neil et al., 2009). Since the analytical object

corresponds to data that is already stored in the BDW, this workload does not include a data

collection stage from an external data provider. This represents a workload that uses the

models, insights, and results derived from the data science sandbox component of the BDW

and, therefore, the data science sandbox can be considered the data provider. In this

example, using Spark SQL, one can submit a query to the Hive batch storage component, in

order to retrieve the training set needed to segment customers, as mentioned above.

Figure 6.4. Example of using data mining/machine learning algorithms in CPE workloads.

154 | Advancing the Design and Implementation of Big Data Warehousing Systems

Dataset<Row> customerSales = spark.sql(“

WITH

customerSales AS (

SELECT c_custkey, c_name, c_city, c_nation, c_region, c_mktsegment, od_monthnuminyear,

sum(quantity) as monthly_quantity, sum(revenue) as monthly_revenue, count(1) as

monthly_orders

FROM ssb_analytical_objects.analytical_obj10

GROUP BY c_custkey, c_name, c_city, c_nation, c_region, c_mktsegment, od_monthnuminyear

),

minmax AS (

SELECT c_custkey, MIN(monthly_revenue) min_monthly_revenue, MAX(monthly_revenue)

max_monthly_revenue

FROM customerSales

GROUP BY c_custkey)

SELECT customerSales.c_custkey, c_name, c_city, c_nation, c_region, c_mktsegment,

stddev((monthly_revenue - min_monthly_revenue)/(max_monthly_revenue -

min_monthly_revenue)) revenue_monthly_stddev, sum(monthly_revenue) revenue,

sum(monthly_orders) total_orders, sum(monthly_quantity) quantity

FROM customerSales

LEFT OUTER JOIN minmax ON customerSales.c_custkey = minmax.c_custkey

GROUP BY customerSales.c_custkey, c_name, c_city, c_nation, c_region, c_mktsegment

“);

4. One of the main tasks in data mining/machine learning processes is feature engineering. In

this example, the previous query already did part of the job by creating a training set with

customers and their respective orders, revenue, and standard deviation regarding monthly

revenue. However, one way to improve the efficiency of learning algorithms is feature scaling,

i.e., providing a standard scale for all features. Moreover, in Spark MLlib 2, all features must

be contained in a Vector object and, therefore, one can use the VectorAssembler to transform

the original data from Hive, while at the same time replacing null values with zeros, so that

the VectorAssembler can be properly used. The following code snippet illustrates these simple

feature engineering tasks used in this workload. Spark offers several other functions for these

purposes.

Fueling Analytical Objects in Big Data Warehouses | 155

VectorAssembler assembler = new VectorAssembler()

 .setInputCols(new String[]{“revenue_monthly_stddev”, “revenue”, “total_orders”})

 .setOutputCol(“vectors”);

Dataset<Row> vectorizedData = assembler.transform(customerSales.na().fill(0));

MinMaxScaler scaler = new MinMaxScaler()

 .setInputCol(“vectors”)

 .setOutputCol(“features”);

MinMaxScalerModel scalerModel = scaler.fit(vectorizedData);

5. The next step consists in training and testing the K-means model with the previously prepared

features. After training the model, data scientists can evaluate its performance, by changing

the number of clusters to be created and analyzing the behavior of the within cluster sum of

squared errors, and by manually inspecting the clusters’ centers, for example. This evaluation

allows the understanding of what each cluster means. For example: one cluster may

represent customers with less orders, but generating more revenue for the company and at

constant monthly rates; in contrast, another cluster may represent irregular customers with

several orders, but generating low income for the company. In this workload, for

demonstration purposes, the selected number of clusters is 2.

KMeans kmeans = new KMeans().setK(2).setSeed(1L);

KMeansModel model = kmeans.fit(trainingSet);

double wssse = model.computeCost(trainingSet);

System.out.println(“Within Set Sum of Squared Errors = ” + wssse);

Vector[] centers = model.clusterCenters();

System.out.println(“Clusters Centers: ”);

for (Vector center : centers) {

 System.out.println(center);

}

6. Despite the fact that in this workload one trains, tests, and applies the model in the same

Spark application, both the feature engineering models and the K-means model can be

permanently saved and used later in future executions of this or other workloads. This means

that the models do not need to be trained each time that they are applied.

156 | Advancing the Design and Implementation of Big Data Warehousing Systems

try {

 model.write().save(“<path_in_hdfs>”);

} catch (IOException ex) {

 System.err.println(“Error saving the model!”);

}

7. The last step is storing the results into the new Hive analytical object. The inclusion of data

science models in CPE workloads does not always need to generate new analytical objects.

Sometimes, the workload simply refreshes the analytical object with new data. Other times,

existing analytical objects can be updated with new attributes (e.g., Hive supports different

schemas for different partitions in a table). In this workload, since one is training, testing,

and applying the learning model using a single application, each time the workload is

executed the analytical object is created/overwritten. This analytical object contains attributes

similar to those of the “customerSales” Spark Dataset used to train the K-means model, but

with the addition of the cluster to which the customer belongs, along with a user-friendly

description of the cluster according to its centroid. This is possible by applying the predict

method of the K-means model. Having an analytical object containing the customers’ buying

behavior allows for interesting analyses, even allowing the join between this analytical object

and the original one containing all sales transactions. It should be noted that, in this example,

“customerSale” is a typical Java Bean containing the same attributes as the analytical object

stored in Hive.

Dataset<CustomerSale> analyticalObject = trainingSet.map((Row r) -> {

 int cluster = model.predict((Vector) r.get(11));

 String levConstantIncome;

 String levRevenueGenerated;

 String levTotalOrders;

 switch (cluster) {

 case 0:

 levConstantIncome = “Buys more frequently”;

 levRevenueGenerated = “Low”;

 levTotalOrders = “Low”;

 break;

 case 1:

 levConstantIncome = “Buys less frequently”;

Fueling Analytical Objects in Big Data Warehouses | 157

 levRevenueGenerated = “Average-Higher”;

 levTotalOrders = “Average-Higher”;

 break;

 default:

 levConstantIncome = “NA”;

 levRevenueGenerated = “NA”;

 levTotalOrders = “NA”;

 break;

 }

 CustomerSale c = new CustomerSale();

 c.setC_custkey(r.getInt(0));

 c.setC_name(r.getString(1));

 c.setC_city(r.getString(2));

 c.setC_nation(r.getString(3));

 c.setC_region(r.getString(4));

 c.setC_mktsegment(r.getString(5));

 c.setRevenue_monthly_stddev((int) r.getDouble(6));

 c.setRevenue((int) r.getDouble(7));

 c.setTotal_orders(r.getLong(8));

 c.setCluster(“cluster” + cluster);

 c.setLev_constant_income(levConstantIncome);

 c.setLev_revenue_generated(levRevenueGenerated);

 c.setLev_total_orders(levTotalOrders);

 return c;

}, Encoders.bean(CustomerSale.class));

analyticalObject.write().mode(SaveMode.Overwrite).insertInto(“<hive table>”);

6.5.2 Text Mining, Image Mining, and Video Mining Models

Although unstructured data mining is relatively different from structured data mining, the general

steps presented in the previous subsection can still be applied. For that reason, as Figure 4.2

demonstrates, the proposed method for CPE is fairly similar both for structured and unstructured

data. Obviously, while one can use classification, regression, clustering, association rules, or time

series forecasting for extracting patterns and making predictions in structured environments (Pujari,

2001), regarding unstructured contexts, the techniques may be severely different (although

sometimes they overlap). Regarding the technologies to be used in these contexts, they depend on

the specific use case. For example, Spark MLlib does not have an extensive set of text mining

158 | Advancing the Design and Implementation of Big Data Warehousing Systems

algorithms, but it offers some text-based feature extraction and clustering algorithms (e.g., TF-IDF,

Word2Vec, and LDA). However, currently, Spark does not offer adequate support for image or video

mining algorithms. In these contexts, choosing complementary technologies for the data science

sandbox is appropriate, such as Python, for example, which offers some interesting libraries oriented

towards image mining.

In BDWing environments, the inclusion of unstructured data science models in CPE workloads has

the goal of extracting structured predictive attributes, which are structured findings extracted from

unstructured sources. These attributes can be considered the structured value that can be extracted

from unstructured data, which by itself in its raw state would not be significantly relevant for BDWing

purposes. The data has to be prepared and enriched using adequate techniques and technologies

capable of mining the value from these sources. Only then, the results of these tasks provide analytical

value.

Figure 6.5 presents a workflow based on Figure 4.2, including several techniques useful in these

scenarios. As can be seen, despite the challenges and complexity of unstructured data mining, the

general tasks remain similar to a CPE workload that includes data mining/machine learning

algorithms for structured data. First, the data is collected using batch or streaming mechanisms. For

a specific source and a specific technique, a previously trained model is used to extract structured

patterns from text, images, or video, depending on the use case. Complementary datasets can also

be used for data enrichment, if applicable. After all the attributes of the analytical object are created

(descriptive, factual, and predictive), the analytical object is ready to be used. So far, there is no

difference compared to the CPE workload of the previous subsection.

That being said, the difference solely relies on the use of new and challenging techniques: for text

mining, techniques such as information extraction and sentiment analysis can be significantly useful

for extracting entities (e.g., people and dates), relationships (e.g., events), and sentiments from raw

text (Gandomi & Haider, 2015). This will make possible the fueling of analytical objects which can be

significantly useful for several organizations; for image mining purposes, techniques like object

recognition (e.g., template matching) and image classification can also be significantly useful (Zhang,

Fueling Analytical Objects in Big Data Warehouses | 159

Hsu, & Lee, 2001); finally, for video mining, video classification and video clustering can be used

(Vijayakumar & Nedunchezhian, 2012), which have similar goals as their structured data mining

counterparts, although, of course, with different specifications. These are just some examples of

possible techniques, since the list can be considerably extended. However, for demonstrating their

role in BDWing environments, these techniques provide adequate examples of the capabilities of

unstructured analytics in BDWs.

Figure 6.5. Including unstructured data science models in CPE workloads.

160 | Advancing the Design and Implementation of Big Data Warehousing Systems

This page was intentionally left blank

Evaluating the Performance of Big Data Warehouses | 161

Chapter 7. Evaluating the Performance of Big Data Warehouses

This chapter discusses the evaluation of BDWs built using the proposed approach. In order to evaluate

the performance of a BDW, several related benchmarks can be used, such as the TPC-DS benchmark

(TPC, 2017a) or the SSB benchmark (O’Neil et al., 2009), for example. In this work, an extension of

the SSB benchmark, named SSB+ (C. Costa & Santos, 2018), was specifically created for BDWing

contexts, combining batch and streaming data. An extension of the original SSB benchmark was

needed due to the lack of workloads that combine volume, variety, and velocity of data, with adequate

customization capabilities and integration with current versions of different Big Data technologies.

Moreover, one needs to evaluate different modeling strategies (e.g., flat structures, nested structures,

and star schemas) and different workload considerations (e.g., partitioned analytical objects and

dimensions’ size in star schema-based BDWs) and, therefore, an adaptation of the SSB benchmark

is required. This chapter presents the SSB+ Benchmark, discussing the performance, advantages,

and disadvantages of several design and implementation choices in the proposed approach,

extending and integrating previously published scientific works (C. Costa & Santos, 2018; E. Costa,

Costa, & Santos, 2017).

7.1 The SSB+ Benchmark

This section details the SSB+ Benchmark, namely the data model, queries, system architecture, and

infrastructure. Besides serving as a proof-of-concept validation, presenting several insights related to

relevant design decisions for BDWs, the SSB+ Benchmark is useful for practitioners to evaluate the

performance of their own implementations.

7.1.1 Data Model and Queries

The SSB+ Benchmark data model (C. Costa & Santos, 2018), presented in Figure 7.1, is based on

the original SSB benchmark (O’Neil et al., 2009), so all the original tables remain the same

(“lineorder”, “part”, “supplier”, and “customer”), with the exception of the “date” dimension, which

has been streamlined to remove the several temporal attributes that are not used in the 13 original

162 | Advancing the Design and Implementation of Big Data Warehousing Systems

SSB queries. These 13 queries do not suffer any modification besides the replacement of “where

clause” joins for ANSI SQL joins with an explicit join operator. This measure is taken to assure an

optimal execution plan in the optimizers of the query engines.

Since the original SSB benchmark only takes into consideration a star schema-based DW, the SSB+

also includes jobs for transforming the “lineorder” star into a flat “lineorder” analytical object.

Obviously, the original 13 SSB queries are also modified to match the new flat analytical object. These

changes allow us to compare the advantages and disadvantages of star schemas and flat structures

for BDWs. Moreover, the SSB+ also considers two different dimensions’ sizes: the original TPC-H sizes

(TPC, 2017b) (benchmark in which the original SSB is based), which includes larger “part”,

“customer”, and “supplier” tables; and the original SSB sizes, in which these tables are smaller to

represent more traditional dimensions in the retail context. This SSB+ feature allow us to understand

the impact of the dimensions’ size in star schema-based BDWs. Furthermore, the SSB+ also includes

a “returns” table (flat analytical object and star schema fact table) and 4 new queries to evaluate the

performance of drill across operations and window and analytics functions.

Regarding the streaming workloads of the SSB+ Benchmark, a new “time” dimension table is

included, as the data stream has a “minute” granularity. This new dimension can then be joined with

Figure 7.1. SSB+ data model. Adapted from (O’Neil et al., 2009; C. Costa & Santos, 2018) with extended content.

Evaluating the Performance of Big Data Warehouses | 163

the new “social part popularity” fact table, as well as other existing dimensions like “part” and “date”.

A flat version of this fact table is also available for performance comparison purposes. The “social

part popularity” table contains data from a simulated social network, where users express their

sentiments regarding the parts sold by the organization represented in the SSB and SSB+ Benchmark.

Along with these new tables, 3 new streaming queries were developed for both the star schema-based

BDW and the flat-based BDW, performing several aggregation, filtering, union, and join operations on

streaming data. All the applications, scripts, and queries for the SSB+ Benchmark can be found in

(C. Costa, 2017).

7.1.2 System Architecture and Infrastructure

The SSB+ Benchmark takes into consideration several technologies to accomplish different goals,

from data CPE workloads to querying and OLAP tasks. These technologies are presented in Figure

7.2. Starting with the CPE workloads, for batch data, the SSB+ considers a Hive script with several

beeline commands that load the data from HDFS to the Hive tables stored in the ORC format, an

efficient columnar file format for data analytics. Several SFs can be generated using the original SSB

generator. This work considers the SF=30, SF=100, and SF=300 for the batch performance

evaluation. Regarding streaming data, a Kafka producer generates simulated data at configurable

rates, and this data is processed by a Spark Streaming application that finally stores it in Hive and

Cassandra. Streaming data is stored both in Hive and Cassandra for benchmarking purposes (see

section 7.3).

For querying and OLAP, this work considers both Hive on Tez and Presto, which are two robust and

efficient SQL-on-Hadoop engines (Santos et al., 2017). Obviously, practitioners can run the SSB+

Benchmark with any SQL-on-Hadoop engine of their choice, as long as they develop the adequate

scripts to run the workloads. Currently, the repository pointed in the previous subsection contains only

applications and scripts supporting the technologies mentioned in Figure 7.2. However, all the content

of the repository is open to the public, in order to facilitate any change or extension. Hive and Presto

are used to provide insights from different SQL-on-Hadoop engines, in order to see if the conclusions

hold true for more than one engine, since one of them may perform better with certain data modeling

164 | Advancing the Design and Implementation of Big Data Warehousing Systems

strategies, for example. However, in the streaming workloads, only Presto is used, since it targets

interactive SQL queries over different data sources, including NoSQL databases, which is not a very

proclaimed feature in Hive, although it can also be used for this purpose. Moreover, despite Tez’

tremendous improvements to Hive’s performance, Hive on Tez may not be considered a low-latency

engine, as the results presented in this chapter may suggest.

The infrastructure used in this work is a 5-node Hadoop cluster with 1 HDFS NameNode (YARN

ResourceManager) and 4 HDFS DataNodes (YARN NodeManagers). The hardware used in each node

includes:

§ 1 Intel core i5, quad core, with a clock speed ranging between 3.1GHz and 3.3 GHz;

§ 32GB of 1333MHz DDR3 RAM, with 24GB available for query processing;

Figure 7.2. SSB+ architecture. Adapted from (C. Costa & Santos, 2018).

Evaluating the Performance of Big Data Warehouses | 165

§ 1 Samsung 850 EVO 500GB Solid State Drive (SSD) with up to 540 MB/s read speed and

up to 520 MB/s write speed;

§ 1 gigabit Ethernet card connected through Cat5e Ethernet cables and a gigabit Ethernet

switch.

The operative system in use is CentOS 7 with an XFS file system, and the Hadoop distribution is the

Hortonworks Data Platform (HDP) 2.6. Besides Hadoop, a Presto coordinator is also installed on the

NameNode, as well as 4 Presto workers on the 4 remaining DataNodes. All configurations are left

unchanged, apart from the HDFS replication factor, which is set to 2, as well as Presto’s memory

configuration, which is set to use 24GB of the 32GB available in each worker (identical to the memory

available for YARN applications in each NodeManager).

7.2 Batch OLAP

Batch OLAP queries are seen as queries that take as input vast amounts of data stored in the batch

storage component of the BDW. This section discusses the performance of batch OLAP queries for

BDWs using two modeling approaches: star schemas and flat analytical objects. Moreover, this

section also addresses the impact of the dimensions’ size in star schemas, the use of nested

structures in analytical objects, the improvement of the BDW’s performance by using adequate data

partitioning, and the performance of drill across queries and window and analytics functions.

7.2.1 Comparing Flat Analytical Objects with Star Schemas

This first evaluation consists in analyzing the performance, storage size, CPU usage, and memory

requirements of flat analytical objects and star schemas, using the 13 SSB+ batch queries. Regarding

the star schema, all the workloads depicted in this subsection use the larger dimensions instead of

the smaller ones, which will only be discussed in subsection 7.2.3.

Analyzing the small to medium SFs, illustrated in Figure 7.3, it can be concluded that the performance

advantage of having flat analytical objects is quite noticeable. For the majority of the queries, the flat

166 | Advancing the Design and Implementation of Big Data Warehousing Systems

object is able to considerably outperform the star schema, especially in the SF=100 workload, wherein

the performance of a star schema with a high number of rows starts to degrade. Interestingly, such

Figure 7.3. Small to medium batch SSB+ workloads.
Star schema (SS); analytical object (AO). Hive’s results are based on (E. Costa et al., 2017).

Evaluating the Performance of Big Data Warehouses | 167

phenomenon does not hold true for Hive’s Q2.2, and the star schema presents better performance

in this scenario, possibly due to some performance problems in Hive’s ability to process string range

comparisons (“p_brand1 between 'MFGR#2221' and 'MFGR#2228') in significantly larger amounts

of data (see Figure 7.4 to understand the storage size impact of the flat analytical object). The same

phenomenon does not occur in the Presto SQL-on-Hadoop engine.

Moreover, looking into Hive’s Q1.1, Q1.2, and Q1.3, the flat analytical object and the star schema

performance is fairly similar, which is comprehensible, since for these queries, the star schema only

needs to join the fact table “lineorder” with the dimension “date”. As the flat analytical object is

around 2.5 times bigger than the corresponding dimensional DW stored in the ORC format (see Figure

7.4), it balances out the cost of the join operation. However, in Presto’s SF=100 workload, despite

this fact, the flat analytical object still outperforms the star schema. At this point, Presto started to

present very satisfactory performance when using completely flat structures.

Regarding the large-scale batch workload (SF=300), depicted in Figure 7.5, the trend continues,

namely the overall performance advantage of using flat structures. The performance of a Hive star

schema for most of the queries is not satisfactory for interactive scenarios, often being more than 3

or 4 times slower than a flat structure. There are some exceptions (Hive/Presto’s Q1.1, Q1.2, and

Q1.3; and Hive’s Q4.3), mainly due to the aforementioned reasons, i.e., the storage size of the flat

structure causes a significant overhead in the I/O tasks of the queries, which mainly makes them I/O

Figure 7.4. Storage size for the SF=300 using different modeling approaches.

168 | Advancing the Design and Implementation of Big Data Warehousing Systems

bound queries, and causes the flat analytical object to perform worse than the star schema.

Consequently, despite the fact that flat structures tend to perform significantly better than star

schemas in these environments, there are certain queries wherein joining a fact table with a small

dimension (e.g., “date” dimension) is faster than executing the same queries on flat structures.

However, one also needs to consider the storage size of these two data sources. Looking at Figure

7.4, the entire star schema DW using the ORC file format has around 51GB, while its flat counterpart

has around 139GB. Considering the infrastructure used in this work and previously described in

subsection 7.1.2, the entire star fits into memory, while the flat analytical object far surpasses the

total amount of memory available for querying.

Smaller dimensions allow for a very efficient type of join, known as broadcast join (or map join in

Hive) (Floratou et al., 2014). When using broadcast joins, the smaller tables involved in the join

operation are broadcasted to the memory of the nodes involved in the computation, which means

that the large table (traditionally a fact table) is joined with all these structures in memory, while it is

being processed throughout the nodes. The effects of using broadcast joins can be seen in Figure

7.5, in which Presto reveals a significant decrease in query execution times, comparing to the more

conventional distributed join. However, despite this advantage, Presto is even faster when using flat

structures that do not need any join at all. Such results do not favor the dimensional approach for

DWs in Big Data environments.

Moreover, doing broadcast joins is not always possible, since this technique requires that the

dimensions fit into a fraction of the memory available for query processing, which is not always the

case if the dimensions are naturally large or become larger through the application of type 2 SCD

techniques (Jukic et al., 2017; Kimball & Ross, 2013). Certain query optimizers do not automatically

select the most appropriate join technique according to the size of the tables, which is the case of

Presto’s optimizer in version 0.180. In this work, the two join techniques (distributed and broadcast)

were manually selected. When enforcing broadcast joins, one must be aware that if the broadcasted

input is too large, “out of memory” errors can occur, due to the lack of memory to process all inputs.

Hive 1.2.1, included in the Hortonworks Data Platform used in this work, automatically selects the

Evaluating the Performance of Big Data Warehouses | 169

most appropriate type of join. Nevertheless, since all configurations are left to their default values,

Hive does not trigger a map join in the SF=300 workload (and for certain SF=100 queries as well),

since the threshold regarding the fraction of memory dedicated for map join is probably surpassed.

This leads to a severe performance degradation for the star schema implemented in Hive. Such

Figure 7.5. Large-scale batch SSB+ workload.
Star schema with broadcast joins (SS BJ); analytical object (AO); star schema with distributed joins (SS DJ). Hive’s results are based
on (E. Costa et al., 2017).

170 | Advancing the Design and Implementation of Big Data Warehousing Systems

phenomenon raises a relevant discussion regarding the effect of the dimensions’ size in the star

schema modeling approach, which will be further discussed in subsection 7.2.3.

Besides these memory requirements, during the benchmark, one analyzed the cumulative and peak

memory for each query running in Presto, and it was observed that the star schema tends to achieve

a higher peak memory when processing queries. The total amount of memory used for star schema-

based queries is also substantially higher than flat-based queries in Presto’s workloads. Regarding

CPU usage, Figure 7.6 shows that despite being slower, the star schema tends to have a significantly

higher CPU usage than a flat analytical object. On average, in Presto’s workloads, the star schema

uses considerably more CPU time. Consequently, significantly higher CPU usage can also be seen as

a drawback of star schema-based BDWs.

7.2.2 Improving Performance with Adequate Data Partitioning

Data partitioning can significantly impact the performance of storage systems. DWs are typically

partitioned by date, or parts of a date (e.g., year, month, and day). However, there are other relevant

attributes that can be typically used for partitioning, which are related to specific implementation

Figure 7.6. Presto CPU time for the star schema and the flat analytical object.

Evaluating the Performance of Big Data Warehouses | 171

contexts. Depending on the attributes frequently used in the where clause of the queries, data

partitioning can considerably reduce query execution times, since the amount of data that needs to

be processed will be much smaller. Another benefit of this technique is the simplification of CPE

workloads, due to the fact that one can make specific changes to previously loaded partitions, without

affecting the entire dataset. For example, if CPE workloads for sales data are executed each day, and

there was a mistake in the data that was loaded yesterday, today’s workloads can correct these

mistakes by completely overwriting yesterday’s partition without affecting the entire dataset.

Sometimes, especially in Big Data environments, completely overwriting partitions becomes more

efficient than updating multiple records. Furthermore, frequently, Big Data storage systems do not

provide adequate updating capabilities (e.g., HDFS/Hive without ACID transactions enabled).

The workloads presented in the previous subsection do not make use of partitioning strategies, which

is not very typical in real-world contexts. However, it allows the evaluation of queries over large

amounts of data. In certain organizations and contexts, even daily batches of data are significantly

large and, therefore, it becomes relevant to understand how well flat analytical objects and star

schemas can handle a large volume of data for certain infrastructures. In contrast, the workloads

presented in this subsection use the SSB+ dataset partitioned by “order year”, which is the attribute

that appears more frequently in the where clause of the 13 SSB+ batch queries.

Figure 7.7 presents the results of the SF=300 workload using data partitioning, including a flat

analytical object and a star schema, and comparing them with the results achieved in the SF=300

workload of the previous subsection. Obviously, the performance advantage of using partitions is

noticeable when the queries include the “order year” attribute as a filter. This is the main reason why

the dataset was partitioned in the first place. This is true both for Presto and Hive. However, while

Presto typically presents the expected behavior when the query does not benefit from the partition

scheme, i.e., there is an increase in query execution or any difference is negligible, Hive presents an

odd and unexpected behavior at first glance. The Q2 and Q3 variants are not supposed to benefit

from this partitioned scheme, since they do not take advantage of any relevant “order year” filtering

operations in the where clause. The Q3 variants tend to filter “order year” using a range of values,

172 | Advancing the Design and Implementation of Big Data Warehousing Systems

but the range is so wide that it is almost equivalent as scanning the entire dataset. Despite this, Hive’s

execution times for Q2 and Q3 variants (except Q2.2) drop drastically for the star schema using

partitions, which is not expected at all.

After inspecting the execution of the queries more closely, one observes that, using data partitioning,

generally, some of the query plans for the Q2 and Q3 variants changed, and more mappers and

Figure 7.7. Large-scale batch SSB+ SF=300 workload with data partitioning.
Star schema (SS); star schema partitioned (SS-P); analytical object (AO); analytical object partitioned (AO-P). Hive’s results are based
on (E. Costa et al., 2017).

Evaluating the Performance of Big Data Warehouses | 173

reducers were produced. This number is affected by the organization of the ORC files in the system,

as the partitioned Hive table may contain a different number of files with different sizes. Since the

number of mappers and reducers is automatically derived in this work, this new number seems to

drastically affect the query performance, resulting in a massive drop in query execution times for the

star schema. These benefits are also present in the flat analytical object, but with much less

predominance, since the query execution times for the Q2 and Q3 variants did not drop as significantly

as in the star schema workload.

Presto does not behave like Hive for the star schema Q2 and Q3 variants, presenting expected results,

i.e., results similar to the workload without partitions, even demonstrating small increases in execution

times, which is to be expected, since there is the overhead of scanning multiple partitions when the

query does not take advantage of the data partitioning scheme. In contrast, there is a significant

performance advantage when running the Q2 and Q3 variants over the flat analytical object with

partitions, which again is an unexpected behavior.

Investigating more in depth on this issue, one could argue that there are certain scenarios where

natural hierarchies between attributes can cause ORC files to distribute data in such a way that it

unintentionally improves query performance. This phenomenon happens because of a feature known

as predicate pushdown at the ORC file/stripe level, together with file/stripe level statistics. For

example, if one partitions a table by “supplier region”, the queries that filter the data by “supplier

nation” will also significantly benefit from this partitioning scheme. The attributes “supplier region”

and “supplier nation” form a natural hierarchy, and a specific partition will only contain countries that

belong to the corresponding region. Consequently, the ORC files/stripes within this partition will

provide statistics regarding the countries contained in them, and the query execution engine (e.g.,

Presto or Hive) can completely ignore files/stripes that do not contain the countries being filtered in

the query, which makes query processing much faster, since it scans less data. However, this does

not happen in the partitioning scheme used in this benchmark, as the Q2 variants do not filter the

data by any attribute hierarchically related to “order year”, and Q3.1, Q3.2, and Q3.3 only discard 1

in 8 years of data. Therefore, as previously explained, one can only conclude that the different

174 | Advancing the Design and Implementation of Big Data Warehousing Systems

organization of ORC files when using partitions may also affect stages, tasks, and drivers that are

planned in Presto’s queries, resulting in a performance boost, similarly to the one caused by having

different numbers of mappers and reducers in Hive, but with less predominance.

Overall, data partitioning is a mechanism that BDWing practitioners need to seriously take into

consideration, as the performance advantage it brings is significantly noticeable. One needs to

understand recurrent query patterns, namely the attributes that appear more frequently in where

clauses, as well as specific needs for CPE workloads, in which data partitioning can be helpful, as

previously explained.

7.2.3 The Impact of Dimensions’ Size in Star Schemas

Large dimensions can have a considerable impact in star schema-based DWs, as they require more

time to compute the join operations between the fact tables and the dimension tables. In previous

workloads, one used larger dimensions’ sizes. Although this may not be the usual scenario for many

traditional contexts, such as store sales analysis, for example, larger dimensions are typically found

in several Big Data contexts. Let us take into consideration a very large Web sales company like

Amazon, which has hundreds of millions of customers and products. In these contexts, dimensions’

size may be very similar to the ones evaluated in subsection 7.2.1. In Big Data environments, there

may be many other use cases that rely on very large dimensions, such as the set of Facebook users,

which easily surpasses the 1 billion mark nowadays.

Nevertheless, there are also several contexts wherein dimensions can have a small size, because

many organizations can generate several sales transactions only based on a small set of products,

customers, and suppliers, for example. For this reason, it becomes interesting to analyze the

performance impact caused by dimensions with different sizes. Figure 7.8 illustrates the results of

the SF=300 workload for large and small dimensions.

The workloads for the flat analytical object were executed again, since smaller dimensions in the star

schema also imply less cardinality in the descriptive attributes of a fully denormalized structure, e.g.,

if there are less rows in the customer dimension, there are also less distinct values in the “customer

Evaluating the Performance of Big Data Warehouses | 175

name” attribute. The cardinality of the attributes can also affect the performance of “group by” and

“order by” operators and, therefore, the flat analytical object was reconstructed and evaluated again.

At first glance, looking at Hive’s workloads, the result was relatively unexpected. The flat analytical

object, which until now was the modeling approach with better performance in almost every query

Figure 7.8. Large-scale batch SSB+ SF=300 workload with small dimensions.
Star schema with large dimensions (SS-LD); star schema with small dimensions (SS-SD); analytical object with large dimensions (AO-
LD); analytical object with small dimensions (AO-SD). Adapted from (C. Costa & Santos, 2018).

176 | Advancing the Design and Implementation of Big Data Warehousing Systems

and workload, was surpassed by the star schema with small dimensions. This shows that when using

Hive as the SQL-on-Hadoop engine, practitioners may sometimes benefit from modeling the BDW

using dimensional structures, which not only saves a considerably amount of storage size, but as

Figure 7.8 demonstrates, it can also bring considerable performance advantages. In this scenario,

one concludes that if Hive is able to perform a map join, having a larger denormalized structure may

not be appropriate for highly dimensional data, such as sales data. The overhead caused by a storage

size that is around 2.5 times bigger (see Figure 7.4) leads to a performance drop, and may become

a bottleneck for the Hive query engine. Consequently, in these cases, practitioners may consider the

strategy presented in subsection 4.3.3, discussing the modeling of traditional dimensions as

complementary analytical objects for dimensional BDWing contexts.

Considering only Hive’s results in a small dimensions scenario, they would benefit the dimensional

approach for modeling BDWs, namely: in the context of traditional DWing, structuring data as fact

tables and dimension tables (Kimball & Ross, 2013); and in the context of the proposed approach,

structuring data as analytical objects and complementary analytical objects. Consequently, one saw

that considering Hive’s results, it sometimes makes sense to model parts of the BDW’s data that way.

However, frequently, Big Data does not adequately fit into the strictures of dimensional and relational

approaches (e.g., high volume/velocity sensor data or social media data). Moreover, taking a closer

look at Presto’s workloads, which are typically much faster than Hive’s workloads, it can be observed

that, generally, the star schema with smaller dimensions is significantly slower than the corresponding

flat table. Furthermore, the star schema with smaller dimensions is frequently slower than the flat

table with the higher attributes’ cardinality (corresponding to larger dimensions). Overall, the star

schema with smaller dimensions takes 61% more time to complete the workload when compared to

the equivalent flat table. The discussion in this subsection is an adequate example why one uses two

SQL-on-Hadoop systems in each workload, as the insights retrieved from these specific tests

sometimes differ according to the system.

Summarizing the conclusions, there is no hard rule. In certain BDWing contexts, practitioners need

to consider their limitations regarding storage size and the characteristics of a particular dataset: is

Evaluating the Performance of Big Data Warehouses | 177

data highly dimensional? Do the dimensions have a high number of rows or a large storage footprint

and, therefore, not enabling map/broadcast joins? Are these dimensions frequently reused by other

analytical contexts? In this work, these concerns are discussed in subsection 4.3.3, which is the result

of relevant insights provided by this evaluation. Furthermore, practitioners may need to perform some

preliminary benchmarks with sample data before fully committing to either the extensive use of

complementary analytical objects or the use of flat analytical objects without any complementary

joins.

7.2.4 The Impact of Nested Structures in Analytical Objects

Nested structures like maps, arrays, and JSON objects can be significantly helpful in certain contexts.

For example, Chapter 8 discusses one of these contexts, describing the implementation of a BDW for

smart cities, wherein geospatial analytics is a priority, including several geometry attributes that are

typically complex and nested. There are many contexts where the use of nested structures can be

adequately integrated in the data modeling approach. As exemplified in subsection 4.3.1, sales

analysis is another context where practitioners may find appealing the application of nested

structures, namely using a less granular analytical object “orders” with the granularity key “order

key”, and using a nested structure to store the data about the products sold in a particular order

(e.g., “product name”, “quantity”, and “revenue”). The proposed approach fosters the use of nested

structures when feasible, but is it really the most efficient solution every time? Do the processing of

less rows and the smaller storage footprint always create tangible advantages?

To answer these questions, let us consider Figure 7.4, which compares the storage size (SF=300) of

the different modeling approaches used in this work. Considering the nested analytical object created

for this evaluation, one can conclude that it represents 68% of the equivalent flat analytical object’s

storage size, and roughly 186% of the equivalent star schema’s size. Moreover, this new modeling

approach is able to reduce the number of rows from 1.8 billion to just 450 million, since the

granularity of this analytical object is “order”, instead of “line order”. The data regarding the lines of

the order is stored in a nested structure, namely an array of Struct values named “lines” (similarly to

the Row datatype in certain SQL-on-Hadoop systems).

178 | Advancing the Design and Implementation of Big Data Warehousing Systems

At first glance, these numbers look promising, but Figure 7.9 shows a different perspective with the

results of executing the SF=300 Q4.1 in all modeling approaches. Q4.1 was chosen because it

involves all the dimensions, representing a scenario wherein practitioners will need to aggregate and

filter data that is stored in the nested attribute “lines”. This allows the evaluation of applying different

operators to nested attributes, like the array of Structs used in this context. To achieve the same

results as the other modeling approaches, since one is dealing with nested structures, other SQL

operators must be used, such as lambda expressions, as the following modification of the Q4.1 SQL

query demonstrates:

SELECT od_year, c_nation, SUM(profit) AS profit

FROM (SELECT od_date, c_custkey,

 REDUCE(lines,

 CAST(0.0 AS real),

 (s, x) -> IF(x.s_region = 'AMERICA' AND (x.p_mfgr = 'MFGR#1' OR x.p_mfgr =

 'MFGR#2'), s + (x.revenue - x.supplycost), s),

 s -> s) AS profit

 FROM <db_name>.<table_name>)

WHERE c_region = 'AMERICA' GROUP BY od_year, c_nation ORDER BY od_year, c_nation;

Despite saving storage space and having much less rows, the nested analytical object is the modeling

approach with the lowest performance. It can be concluded that storing a large number of attributes

in a complex structure may result in a large overhead regarding query processing times. After all, one

Figure 7.9. Performance of a nested analytical object in the SSB+ context.
Star schema with small dimensions (SS-SD); star schema with large dimensions (SS-LD); analytical object with large dimensions (AO-
LD); analytical object with small dimensions (AO-SD); nested analytical object (NAO). Adapted from (C. Costa & Santos, 2018).

Evaluating the Performance of Big Data Warehouses | 179

is storing all the attributes of the “part” and “supplier” dimension in this array of Structs, along with

the several facts regarding the lines of the order. Such data modeling choice requires the use of

lambda expressions or lateral views to answer Q4.1. In this particular test, looking into the query

execution, Presto uses the majority of the time computing the lambda expression, which results in a

significant increase in query execution time.

These results do not mean that processing nested structures is always detrimental for performance.

It depends on the complexity of the structure and what kind of operators will be applied. As shown in

this evaluation, highly complex nested structures that will be accessed sequentially to answer most

of the queries may not be an adequate design pattern. However, as will be shown in Chapter 8,

nested structures offer great flexibility, can be really efficient for certain access patterns, and allow

the introduction of new analytical workloads in the BDW, such as intensive geospatial simulations

and visualizations.

7.2.5 Drill Across Queries and Window and Analytics Functions

In a traditional DWing context, submitting queries to combine data from multiple fact tables is a

frequent phenomenon, which can also be described as drilling across fact tables. On the other hand,

window and analytics functions (e.g., over clause, partition by, and rank) also play a relevant role in

the ad hoc exploration of the data. Consequently, this subsection explores the performance of BDWs

when using drill across and window and analytics functions, following the same strategies already

presented above, i.e., using a flat analytical object and a star schema with Hive and Presto (with

broadcast joins) as SQL-on-Hadoop engines. Figure 7.10 summarizes the results for the 4 queries in

this SF=300 workload, which are available in (C. Costa, 2017). The first 3 queries focus on drill across

operations and the last one focuses on window and analytics functions, using the following questions:

§ (Q5) Sum of the quantities ordered from the top 20 suppliers that had complaints from

American customers in the last 4 years;

180 | Advancing the Design and Implementation of Big Data Warehousing Systems

§ (Q6.1) Number of times the company have sold parts from the manufacturer ‘MFGR#3’,

provided by Asian suppliers, with an average selling price over 1000$ in America, which have

been returned more than one time;

§ (Q6.2) Top 10 parts with an average selling price over 1000$ that were returned more than

one time;

§ (Q7) Top 5 parts of every market segment according to the generated revenue.

The results of this workload revealed that, overall, the performance of a completely flat analytical

object is more satisfactory than a star schema, although Q6.1-Hive is an exception to this trend.

Considering Presto’s results, which was the SQL-on-Hadoop engine that revealed greater differences,

one can observe that, frequently, the flat analytical object completes the query in approximately half

the time needed for the star schema. Considering Hive’s results, the star schema is faster in one of

the four queries, although with less significance than Presto’s results (only 10 seconds). In contrast,

considering Q6.2-Hive, one of the queries in which the star schema is slower than the flat analytical

object, the difference in performance is considerable, which shows that certain queries using

subqueries with large (less filtered) intermediate results may significantly impact the performance

Figure 7.10. Performance of an analytical object (AO) and a star schema (SS) in a workload based on drill across queries and
window and analytics functions.

Evaluating the Performance of Big Data Warehouses | 181

when drilling across fact tables of a star schema. Consequently, it can be concluded that, based on

overall performance, flat analytical objects are able to provide significantly lower execution times than

star schemas in scenarios with drill across queries and window and analytics functions.

7.3 Streaming OLAP

Streaming scenarios are common in BDWing contexts. The BDW must be able to adequately deal

with the high velocity and frequency of the CPE workloads. Daily or hourly batch CPE workloads may

not always be the most effective or efficient solution to solve specific problems, and streaming CPE

workloads can be significantly useful in these cases. This section evaluates the performance of BDWs

created using the proposed approach in streaming scenarios, while discussing several concerns that

practitioners must take into consideration.

Using the SSB+ Benchmark, one can observe the performance of the streaming storage of the BDW.

As illustrated in Figure 4.3, there are several technologies that can be used to implement this storage

component, being responsible for storing data that flows continuously to the BDW with low-latency

requirements. In section 4.2, the trade-offs between these different technologies were also discussed.

For example, Hive adequately deals with sequential access workloads, typically found in OLAP

queries, but it is not adequate for random access, which is often suitable for storing streaming data.

In contrast, NoSQL databases like Cassandra are efficient in random access scenarios, but typically

fall short in sequential access workloads required for analytical contexts. Consequently, this

subsection evaluates the performance of these two technologies using the two main data modeling

strategies previously explored: a flat analytical object and a traditional star schema approach, as

detailed in section 7.1. The data flow is as follows:

1. A Kafka producer generates 10 000 records each 5 seconds;

2. A Spark Streaming application with a 10 seconds micro batch interval consumes the data

for that interval and stores it in Hive and Cassandra;

3. Presto is used to query both streaming storage systems, every hour, over a period of ten

hours.

182 | Advancing the Design and Implementation of Big Data Warehousing Systems

7.3.1 The Impact of Data Volume in the Streaming Storage Component

The performance of the streaming storage system of a BDW typically starts to degrade as the amount

of stored data increases. This is the main reason why the proposed approach includes an inter-storage

pipeline to move the data from the streaming storage system to the batch storage system.

Consequently, in this subsection, one is interested in analyzing how the data volume affects the

performance of the streaming storage component of the BDW.

Figure 7.11 illustrates the total execution time for all streaming queries (Q8, Q9, and Q10) during a

ten-hour workload with roughly constantly increasing data volume. Each hour, all the queries are

executed using Presto, both for the flat analytical object and the star schema, and both for Hive and

Cassandra. The queries Q8, Q9, and Q10 are focused on the following analytical questions:

§ (Q8) The 2 countries that have the most positive average sentiment polarity united with the

2 countries that have the most negative average sentiment polarity;

Figure 7.11. Cassandra and Hive SSB+ streaming results.
Star schema (SS); analytical object (AO). Adapted from (C. Costa & Santos, 2018).

Evaluating the Performance of Big Data Warehouses | 183

§ (Q9) The count of sentiments that were expressed by females in Portugal or Spain, grouped

by product (part) category and period of the day (e.g., dawn, morning, afternoon, and night);

§ (Q10) The groups of product (part) categories and genders having an average sentiment

polarity greater than the total average sentiment polarity.

There are several relevant insights that emerge from this evaluation. The first one is regarding the

overall effect of data volume on both systems. Looking into the trend present in this ten-hour workload,

one can conclude that both Hive and Cassandra are affected in a linear fashion, i.e., as hours pass

by (as well as data volume), the increase in the execution time of the workload can be modelled as

a linear function. A significant drop in performance as the data volume increases is to be expected in

Cassandra, since as previously argued, sequential access over large amounts of data is not one of its

strong points. However, this is not expected in Hive, since as the batch workloads demonstrate, when

using Presto to query Hive, one is able to achieve much faster execution times than the ones obtained

in this streaming workload, even with significantly higher SFs (e.g., SF=30 with 180 000 000 rows).

Despite this observation, detailed afterwards, it can also be concluded that Hive is always much faster

than Cassandra, until the mark of 50 million rows is reached. After this moment, it becomes clear

that the Spark Streaming micro batch interval is too short for the demand, and the application is also

generating thousands of small files in HDFS (storage backend for Hive). Therefore, after the 50 million

rows mark, hundreds of micro batches are being delayed, which makes the results for Hive

inconclusive, as the number of stored rows does not match those of Cassandra. Overall, it can be

concluded that having small micro batch intervals when using Hive may severely deteriorate the

performance of the system, complementing the conclusion made before regarding the overhead of

having many small files stored in HDFS.

Cassandra also shows some delay in write operations when being queried by Presto, which causes

the Spark Streaming application to queue a few micro batch jobs. However, this phenomenon is

significantly less concerning than the one in Hive’s scenario, and the streaming system is able to

control the load without too much delay. Moreover, this is not caused by an increase in data volume,

184 | Advancing the Design and Implementation of Big Data Warehousing Systems

but rather a concurrency issue and resource starvation while Presto queries are running. One can

always sacrifice data timeliness by increasing the micro batch interval, but to compare the results

between Cassandra and Hive, the write latency and throughput should be identical. In this case,

Cassandra adequately handles 20 000 rows each 10 seconds without significant delays, despite

being slower, while Hive fails to do so, despite being faster for all workloads under the 58 million rows

mark. This efficiency problem is discussed in more detail in the next subsection, among other relevant

considerations for streaming scenarios in BDWing systems.

In this analysis, it is also interesting to evaluate the performance of a flat analytical object and a star

schema. In this streaming context, the performance is considerably similar in both cases. The star

schema is typically faster when using Cassandra, while the flat analytical object is typically faster

when using Hive. In the SSB+ Benchmark, the star schema for the streaming scenario is not very

extensive or complex, which in this case favors this modeling approach, since queries do not have to

join an extensive set of tables. Despite this, it can be concluded that both modeling strategies are

feasible, without any significant performance drawback. In the star schema’s case, as the dimension

tables are stored in Hive, it can also be concluded that using a SQL-on-Hadoop system like Presto is

also feasible to combine complementary analytical objects stored in Hive (e.g., “part” and “time”)

with streaming analytical objects stored in Cassandra. It must be remembered that the proposed

approach uses the concept of complementary analytical objects to model dimensions, when

practitioners prefer the use of dimensional structures for certain contexts (see subsection 4.3.3).

7.3.2 Considerations for Effective and Efficient Streaming OLAP

A successful streaming application can be seen as an adequate balance between data timeliness and

resource capacity. To explain these trade-offs, this subsection is divided into three main problems

that emerged from the evaluation of the SSB+ Benchmark, presenting possible solutions to overcome

these issues:

1. High concurrency in multi-tenant clusters (multiple users and multiple technologies) can

cause severe resource starvation;

Evaluating the Performance of Big Data Warehouses | 185

2. Storage systems oriented towards sequential access (e.g., Hive) may present some problems

when using small micro batch intervals;

3. Inter-storage pipeline operations and CPE workloads should be properly planned, and the

adequate amount of resources should be reserved.

Starting with the first problem, the proposed approach promotes a shared-nothing and scale-out

infrastructure that is typically capable of multi-tenancy, i.e., it adequately handles the storage and

processing needs of multiple BDWing technologies and users. Streaming applications, like the one

discussed in the previous section, typically require a nearly constant amount of CPU and memory for

long periods of time. Data arrives at the system continuously, thus it needs to assure that the workload

has the adequate amount of resources.

A common setup, like the one evaluated in this chapter, would be a producer (e.g., Kafka), a

consumer (e.g., Spark Streaming), a storage system (e.g., Cassandra and Hive), and a query and

OLAP engine (e.g., Presto). At first glance, the first three components of this setup may seem to work

perfectly fine. However, once one adds the query and OLAP engine, resource consumption can get

significantly high, and the performance of the streaming application may suffer, because one did not

choose the adequate trade-off between data timeliness and resource capacity. Take as an example

Figure 7.12. If carefully observed, in certain periods of time coinciding with the time interval when

Presto queries are running, there is a significant increase in the processing time of the micro batches,

which consequently causes an increase in the scheduling time of further micro batches.

In this case, this happens because there is not enough resource capacity in the current infrastructure

to handle the processing demands of Spark Streaming, Cassandra, and Presto running

simultaneously. In these periods of time, these technologies are mainly racing for CPU usage, and

the initial micro batch interval of 10 seconds is not enough to maintain the demands of the streaming

application. Again, these insights bring us back to the previously discussed trade-off: either resource

capacity is increased, in this case more CPU cores, or the micro batch time interval is raised, which

inevitably affects data timeliness. In this benchmark, the queries are only executed each hour, thus

186 | Advancing the Design and Implementation of Big Data Warehousing Systems

the system is only affected during these periods. However, in real-world applications, users are

constantly submitting queries, which makes this consideration hard to ignore.

Regarding the use of storage systems like Hive for streaming scenarios, as seen in the previous

subsection, it has its advantages, namely reduced query execution times, since it can be considerably

faster than Cassandra. Nevertheless, this performance advantage comes at a cost: as data volume

increases, the number of small files stored in HDFS rises considerably, generating a significant load

on the infrastructure. One small file is created for each RDD partition, in this case each 10 seconds,

due to the chosen micro batch interval. In a matter of hours, the Hive table has stored thousands of

small files (see Figure 7.13). The problem is that, as the number of files increases, HDFS metadata

operations take more time, thus affecting the time it takes for Spark Streaming to save the data in

the Hive table. A write operation in HDFS includes steps like searching for the existence of the file

and checking user permissions (White, 2015), which with thousands of files can take longer than

Figure 7.12. Spark Streaming monitoring GUI showing resource starvation when using Cassandra and Presto simultaneously.
Adapted from (C. Costa & Santos, 2018).

Evaluating the Performance of Big Data Warehouses | 187

usual. Nevertheless, one needs to highlight that this problem can be solved by applying an adequate

partition scheme to streaming Hive tables, e.g., partitioning by “date” and “hour”, which creates a

folder structure containing fewer files in each folder and, therefore, reducing the time to execute

metadata operations (Vale Lima, Costa, & Santos, 2019).

At this point, the system can be under intensive load and the Spark Streaming application queues

hundreds of micro batches. Micro batches are queued when the Spark application cannot process

them before the defined micro batch interval, in this case 10 seconds. Again, this predefined micro

batch interval is not able to assure that the data gets processed before the next micro batch, and the

performance of the streaming application is compromised. In Hive’s case, this is much more severe

than the concurrency issue shown by running Cassandra and Presto simultaneously. In Hive’s case,

even increasing resource capacity is not the best solution, and one should prefer higher micro batch

intervals, which will consequently create bigger files. Moreover, the inter-storage pipeline is

significantly relevant to periodically consolidate these small files into bigger files, or moving them into

another analytical object which contains historical data. It must be remembered that Hadoop prefers

large files, which are then partitioned, distributed, and replicated as blocks.

Figure 7.13. Thousands of small files created in HDFS (Hive’s storage backend) when using Spark Streaming.

188 | Advancing the Design and Implementation of Big Data Warehousing Systems

Finally, and taking into consideration the phenomena discussed above, the inter-storage pipeline and

CPE workloads should also be carefully planned when streaming applications are using the cluster’s

resources. These operations can be really heavy on CPU and memory, and can unexpectedly cause

resource starvation, as seen with Presto and Cassandra running simultaneously. Practitioners should

not take this lightly, and Linux Cgroups, YARN queues, and YARN CPU isolation can be extremely

useful to assure that the current infrastructure is able to properly assure a rich, complex, and multi-

tenant environment such as a BDW. These techniques assure that resources are adequately shared

by multiple applications, by assigning portions of the resources according to the expected workloads.

Moreover, practitioners should evaluate their requirements regarding data timeliness, and avoid small

micro batch intervals for streaming applications when they are not needed, as well as avoiding the

execution of really complex inter-storage pipelines or CPE workloads when business users are

intensively using the BDW. More resource capacity may not always be the most efficient solution to

the problem, since even in commodity hardware environments, buying hardware always comes at a

cost, while making some of these changes may increase efficiency without any relevant implication.

7.4 SQL-on-Hadoop Systems Under Multi-User Environments

In real-world environments, the BDW will not be queried by a single business user. The system may

have to support several decision-makers at different organizational levels. Single-user benchmarks

allow us to understand the raw performance of a certain system without considering concurrency.

However, one should expect to design and implement a BDW with the goal of supporting several users

simultaneously.

Since the proposed approach promotes the use of SQL-on-Hadoop engines as the frontend for

querying and OLAP, the way these systems handle concurrency is a key factor for a BDW that

adequately supports several users. Consequently, this section discusses the performance of Hive and

Presto in a SF=30 concurrent workload, wherein four users execute the 13 SSB+ batch queries

simultaneously. In this case, the smaller SF=30 was used to create an adequate balance between

the concurrency requirements, the size of the dataset, and the available infrastructure (subsection

7.1.2). In this evaluation, the SQL-on-Hadoop systems were left to their default configurations.

Evaluating the Performance of Big Data Warehouses | 189

Looking at Table 7.1, Presto emerges as the fastest engine. However, since one is looking into multi-

user efficiency, execution time may not be the only metric to take into consideration. Obviously, if

Presto is the fastest engine to retrieve the results to the concurrent users submitting the queries, it

can perfectly be considered the most adequate system. The problem is that, in single-user workloads,

Presto already tends to be significantly faster than Hive, which gives it a severe advantage in this

multi-user test. Taking a closer look at Table 7.1, one of the most interesting insights is Hive’s increase

in execution time from single-user to multi-user queries. Despite its inferior performance in single-user

workloads when compared to Presto, Hive is the system that gets less affected by having multiple

users submitting queries simultaneously. An increase below the 3x mark means that, in a concurrent

environment with four users, the system is able to execute the query faster than executing the same

query four times in a single-user environment.

These results aim to provide an overview regarding the performance of SQL-on-Hadoop systems under

concurrent environments. Generally, it can be concluded that SQL-on-Hadoop systems are able to

handle concurrent queries on relatively modest hardware, such as the one used in this work.

Table 7.1. Multi-user SSB+ workload SF=30.
Multi-user execution (M - in seconds); single-user execution (S - in seconds).

Queries Hive (S) Hive (M) Presto (S) Presto (M)

Q1.1 23 42 4 20

Q1.2 24 45 5 20

Q1.3 24 43 4 18

Q2.1 26 66 3 18

Q2.2 36 99 3 13

Q2.3 24 80 4 13

Q3.1 28 63 4 17

Q3.2 28 64 3 16

Q3.3 25 57 4 14

Q3.4 25 63 5 17

Q4.1 28 85 5 20

Q4.2 28 69 5 20

Q4.3 28 64 5 19

Total 347 839 (Increase: 1.4x) 52 225 (Increase: 3,3x)

190 | Advancing the Design and Implementation of Big Data Warehousing Systems

Obviously, all of the configurations were not changed, which does not always represent the best setup

for these systems, especially since concurrency configurations are one of the aspects that may need

some tuning to achieve optimal performance in production systems. However, performing a

benchmark using the vanilla version of the systems also means that any kind of over-fitting does not

occur and they are on the same level, without any misconfigurations. Depending on the SQL-on-

Hadoop system practitioners end up choosing for their BDWs, it is advisable and necessary to read

the documentation and adjust any relevant configuration. It must also be remembered that each

version of the systems brings a number of improvements, and if concurrency performance is a critical

factor to choose the SQL-on-Hadoop system, then an on-site benchmark may be needed before

making any decision.

Big Data Warehousing in Smart Cities | 191

Chapter 8. Big Data Warehousing in Smart Cities

This chapter discusses the implementation of the SusCity BDW in the context of smart cities (C. Costa

& Santos, 2017c; Monteiro, Costa, Pina, Santos, & Ferrão, 2018; SusCity, 2016), which is built upon

the proposed models and methods as a demonstration case. In the context of smart cities, vast

amounts of heterogeneous data are constantly being produced by an extensive network of

interconnected things, including smartphones, smart meters, temperature sensors, noise sensors,

smart appliances, location sensors, among many others. Moreover, there are also other data sources

like the cities’ transactional database systems, geospatial files, census data, and data provided by

private companies responsible for certain city services. This phenomenon is typically associated with

the concepts of IoT and Big Data (Jara, Bocchi, & Genoud, 2013). Consequently, smart cities are

seen as rich BDWing contexts, given these extensive set of data sources and their relevance in the

cities’ decision-making process.

8.1 Logical Components, Data Flows, and Technological Infrastructure

In the context of smart cities, an adequate BDWing approach is crucial to support the decision-making

process at scale, complying with the characteristics of a BDW. Figure 8.1 presents the SusCity BDWing

architecture, following the proposed approach. The logical layer helps researchers and practitioners

understanding the logical components of the system and how data flows throughout these

components. It uses the taxonomy of the proposed approach, partially inherited from the NBDRA

(NBD-PWG, 2015), since the lack of concepts standardization can be an issue in Big Data research,

as discussed in Chapter 2 and Chapter 3. The technological infrastructure focuses on the technologies

used for instantiating the logical components and on the infrastructure in which these technologies

are deployed (detailed later in subsection 8.1.2).

192 | Advancing the Design and Implementation of Big Data Warehousing Systems

Figure 8.1. The SusCity BDWing architecture. Adapted from (C. Costa & Santos, 2017c).

Big Data Warehousing in Smart Cities | 193

8.1.1 SusCity Architecture

Regarding the logical layer, the first component is the data provider, making data available for further

storage and processing. In a typical smart cities context, which is the case of the SusCity research

project (SusCity, 2016), the data provider component can include several actors:

§ Municipality – the municipality itself is able to make available several data sources relevant

for analytical tasks, including buildings information or geospatial representations of the city’s

infrastructures, for example. The city’s transactional systems are also valuable data sources;

§ IoT infrastructure – includes different kinds of sensors reporting electricity consumption,

temperature, noise, and mobility patterns, for example. This data is significantly relevant to

understand events and real-time patterns in the city;

§ Private companies – the city’s infrastructures are not always public and, therefore,

interactions with private companies are of major relevance in smart cities, in order to collect

historical energy consumption, buildings certificates, water consumption, census data,

among many other data sources;

§ Researchers and citizens – research projects being conducted in the city are a relevant data

source for the BDW, including simulation data regarding different phenomena in the city (e.g.,

buildings’ energy efficiency and mobility patterns), or any other relevant insights

corresponding to scientific studies impacting the city. Moreover, citizens engaged in the

initiatives promoted by researchers or by the municipality can provide useful data for the

decision-making process, such as personal energy consumptions, mobility patterns, and

service consumption habits.

Taking into consideration the data sources presented in Figure 8.1 and discussed above, data may

arrive at the BDW via batch or streaming mechanisms. For data arriving in batches, one uses Talend

Open Studio for Big Data (Talend, 2017) and a HDFS client to upload it to the distributed file system.

Before any preparation and enrichment process, data is first uploaded to HDFS, since raw data may

serve further analytical purposes (e.g., training and testing data mining models) or may be useful for

disaster recovery, in case some problems occur in the storage component. HDFS is capable of

194 | Advancing the Design and Implementation of Big Data Warehousing Systems

handling large amounts of structured, semi-structured, and unstructured data, distributing them

across several nodes in the cluster for further preparation and enrichment. For data arriving in a

streaming fashion, Kafka (Kafka, 2018) is used to assure highly scalable and robust data collection.

Periodically, one can optionally move data from Kafka to HDFS, using systems such as LinkedIn’s

Gobblin (Qiao et al., 2015), in cases where streaming raw data is also useful for further purposes.

To prepare and enrich batch data, the SusCity BDWing architecture takes into consideration the

volume of data. If the dataset being processed fits in the constraints of non-distributed technologies,

Talend Open Studio for Big Data is used to prepare and enrich data, since it offers a wide set of

processing components (e.g., filtering, aggregation, joins, and type parsing) in a user-friendly graphical

interface. However, when the volume of the dataset requires distributed processing, Spark (Shanahan

& Dai, 2015) is used to accomplish the preparation and enrichment tasks. In streaming scenarios,

one can use Spark Streaming to process data as it arrives at the BDWing system. Previously trained

data mining models can also be applied in this phase, using WEKA (Hall et al., 2009) for small-scale

algorithms (e.g., classification/regression of previously aggregated data or time series forecasting

problems) and Spark MLlib for large-scale algorithms, i.e., when the training set contains vast

amounts of very detailed data, not previously aggregated. Relevant data mining use cases in smart

cities contexts may include forecasting and segmenting energy consumption (C. Costa & Santos,

2015); predicting attendance at the city’s events; or segmenting buildings according to their

characteristics and energy efficiency. The same logic applies to unstructured data, since text mining

algorithms, for example, can also be applied using WEKA, Spark or any other suitable technology, in

order to extract structured patterns to be further stored in the BDW.

Once the data is prepared and enriched, it is stored in the storage component. The storage component

consists of three subcomponents. The distributed file system (HDFS) acts as a staging area and

sandbox, storing raw batch and streaming data, and temporary files needed in the data science

sandbox component. It is a crucial component to assure a flexible storage capable of handling data

variety from several sources. HDFS is also the underlying storage system for Hive, the technology

used in the batch storage component of the proposed architecture. Hive is a DWing system on

Big Data Warehousing in Smart Cities | 195

Hadoop, frequently mentioned as the de-facto SQL-on-Hadoop solution. In the SusCity BDWing

architecture, Hive tables stored as ORC files (Huai et al., 2014) are used to store large amounts of

structured data, using the proposed data modeling method (the SusCity data model is presented in

section 8.2). In this work, Hive only stores data arriving in batches, since it is mainly designed for fast

sequential access to data. For fast random access, Cassandra is used as the NoSQL database

supporting the streaming storage component, since one can assure hundreds or thousands of

concurrent writes frequently required by typical streaming applications. Previous benchmarks reveal

that Cassandra is a suitable distributed database for intensive random read and random write

scenarios (C. Costa & Santos, 2016b). Moreover, Cassandra tables are also modelled according to

the data modeling method proposed in this work (section 8.2).

Regarding the use of Hive as a streaming storage system, without several concerns (e.g., efficient

compaction techniques), Hive tends to generate several small files in HDFS, which can become a

bottleneck in the system. Despite the current advancements regarding Hive’s transactions (Apache

Hive, 2018), Hive’s suitability for a large number of concurrent and continuous writes needs to be

tested in prototype or production systems. As mentioned, Hive is a DWing system on Hadoop mainly

used to scale OLAP applications. Since NoSQL databases are mainly designed to scale OLTP

applications (Cattell, 2011), they are not as effective and efficient as Hive in sequential access

scenarios, typically required in OLAP applications, as can be further seen in section 8.3. Therefore,

the SusCity BDWing system considers these trade-offs and maintains two separate storage

technologies for batch and streaming data. As techniques and technologies evolve and stabilize, the

same technology may be able to adequately support both scenarios, as discussed in section 4.2.

The goal of the BDW is to support analytical tasks. Consequently, the access, analytics, and

visualization component is crucial to deliver adequate insights for data-driven decision-making

processes. The querying and OLAP component, using Presto, assures the communication between

the batch storage, the streaming storage, and the data visualization component. Presto was open

sourced by Facebook, and it is seen as a SQL-on-Hadoop system providing low-latency query

execution over large amounts of data (Presto, 2016). In fact, it is more than a SQL-on-Hadoop system,

196 | Advancing the Design and Implementation of Big Data Warehousing Systems

since it can provide a SQL interface to a vast set of storage technologies besides Hive (Hadoop),

including NoSQL databases like Cassandra and MongoDB. Therefore, in the proposed architecture,

Presto is used to query Hive tables and Cassandra tables. As previously discussed, since Cassandra

is less efficient than Hive for fast sequential access (section 8.3), one also uses Presto to transfer

data between Cassandra and Hive, avoiding the accumulation of vast amounts of historical data in

the Cassandra tables. For more complex queries that surpass the interactivity threshold defined for

the SusCity data visualization component (10 seconds), Presto is also used to create materialized

views stored in Hive tables.

Although several improvements have been made in Hive, such as the Tez execution engine (Floratou

et al., 2014; Huai et al., 2014), Presto achieves significantly faster execution times when querying

Hive tables (as can be seen in Chapter 7), reason why it is used as the querying and OLAP engine in

the proposed architecture. Interactive query execution is one of the main requirements of the SusCity

data visualization component, in order to engage users through a responsive interface. Therefore, the

data visualization component (discussed in section 8.4) uses Presto to submit SQL queries to the

batch and streaming storage systems. Presto is also able to combine data from these two components

using a single query (e.g., joins and unions), which is of major relevance to combine historical and

streaming data into a unified view of the data.

Although some benchmarks demonstrated that interactive SQL-on-Hadoop systems similar to Presto

(e.g., Impala) may struggle with datasets that do not fit into memory (Floratou et al., 2014), one did

not feel the need to use the Hive execution engine in the SusCity project, since Presto was able to

execute all the workloads requested by the SusCity testbed, processing several Gigabytes of data from

energy grid simulations, buildings information, geospatial files, historical energy consumption data,

and more than one hundred smart meters. However, if certain scalability issues arise, the Hive

execution engine is always available for more demanding workloads. Scalability will certainly not be

an issue, since Presto is being used at Facebook to perform queries over its Petabyte-scale Hive DW,

thus it is possible to scale the cluster to accommodate growing data in a smart cities context.

Big Data Warehousing in Smart Cities | 197

Still concerning analytical tasks, the application of data science models (e.g., data mining and text

mining models) is only possible with an adequate sandbox where data scientists can explore the data,

training and testing models to support their hypotheses (C. Costa & Santos, 2017b). Therefore, the

proposed architecture includes a dedicated component, named data science sandbox, which

interacts with HDFS. Since raw batch and streaming data can be stored in HDFS, data scientists can

interact with this data to produce models capable of extracting patterns and making predictions when

new data arrives at the preparation and enrichment component. WEKA and Spark are the driving

forces for this purpose, as previously discussed.

Security, privacy, and management is a relevant component in the SusCity BDWing architecture.

There are certain Hadoop-related technologies that can be used to assure a secure environment that

is properly managed. In this work, Kerberos is used to provide a secure authentication protocol in

Hadoop. To assure an extra-layer of security and privacy, Ranger can be used to deploy rigorous

authorization policies, defining which users have access to certain files or tables (Hortonworks, 2016).

Regarding Cassandra’s security, TLS/SSL encryption can be used for client-to-node or node-to-node

communications. Cassandra also makes available simple password authentication and an internal

authorization model. In a smart cities context, data privacy is a main concern and, therefore, whenever

possible, one encourages the anonymization of sensitive data before storing it in the BDW (C. Costa

& Santos, 2016a). Finally, Ambari can be used to manage and monitor the Hadoop components

deployed in the cluster (Apache Hadoop, 2018).

8.1.2 SusCity Infrastructure

All the components and technologies discussed in the previous subsection are deployed in 5

commodity hardware machines installed on-premises, which have been capable of supporting the

workloads demanded by the SusCity testbed. In this demonstration case, each machine has 16GB

of RAM, Intel i5 quad-core CPUs, and 500GB 7200rpm hard disks (except node 1, which has an Intel

i7 quad-core CPU and a 256GB SSD drive). All the machines are connected using a 1 Gigabit Ethernet

switch and 5 Ethernet CAT6 cables, as Hadoop clusters should be deployed using at least a 1 Gigabit

Ethernet network (Shvachko et al., 2010). The use of Big Data technologies like Hadoop, Spark, and

198 | Advancing the Design and Implementation of Big Data Warehousing Systems

Cassandra, which rely on commodity hardware and shared-nothing infrastructures, allows scaling the

cluster as data volume increases and workloads become more demanding.

Due to resource limitations, Hadoop and Cassandra nodes are co-located (node 3, node 4, and node

5). Presto and Spark are also deployed in these nodes for co-located processing. Distributed

processing technologies should be co-located with storage nodes, since in Big Data environments the

processing should be brought closer to the storage, in order to avoid moving large amounts of data

through the network (C. L. P. Chen & Zhang, 2014). The collection technologies (Kafka, Talend Open

Studio, and HDFS client), non-distributed processing technologies (Talend Open Studio and WEKA),

and the Web Server making available dashboards with Chart.js (Chart.js, 2017) and the Google Maps

API (Google Maps, 2017) are all deployed within node 1, again due to resource limitations. Ideally,

in a production environment, these should have dedicated nodes and Kafka should be distributed

across several nodes in the cluster. Node 2, besides being the Hadoop NameNode, assures several

tasks related to the security, privacy, and management of the cluster, containing the Kerberos Key

Distribution Center and Ambari.

8.2 SusCity Data Model

As seen in section 4.3, the main concept in the proposed data modeling method is the analytical

object, representing a subject of interest to be analyzed. Typical analytical objects in smart cities may

include: general indicators about buildings; buildings energy consumption; losses in the energy grid;

indicators about the nodes in the energy grid; and the energy consumption recorded by smart meters.

Making the analogy to traditional DWs, analytical objects have the same capabilities of fact tables. In

contrast to fact tables, they typically are fully denormalized structures, in which all the attributes

needed for analyzing the subject of interest are included in one single analytical object, without the

need for dimension tables, avoiding constant and demanding join operations. Join operations in Big

Data environments are costly (Floratou et al., 2014; Marz & Warren, 2015; NBD-PWG, 2015; H. Wang

et al., 2011), since tables may store vast amounts of data. Joining several dimensions with fact tables

for each query can be significantly resource-demanding (see subsections 4.3.2 and 4.3.3 for concepts

Big Data Warehousing in Smart Cities | 199

focusing on efficient dimensional patterns and join operations, and subsection 8.2.1 for their specific

application in the SusCity BDW).

Guided by the approach proposed in this work, each analytical object of the SusCity data model

contains two types of attributes: descriptive attributes (top half of the analytical objects in Figure 8.2)

and analytical attributes (bottom half of the analytical objects in Figure 8.2). Moreover, outsourced

descriptive families (see subsection 4.3.3) for each analytical object are also presented in Figure 8.2.

Descriptive attributes support typical OLAP tasks by providing different perspectives for aggregations

and filtering operations. These are analogous to the attributes of the dimension tables in traditional

DWs, and allow the interpretation of the analytical attributes through different perspectives. Analytical

attributes are an analogy to the facts in a traditional fact table, but with the particularity that they can

not only contain facts (historical indicators), but also predictions derived from the application of data

science models. Take as an example the analytical object “buildings energy consumption” in Figure

8.2, which contains a cluster defining the consumption behavior of each building and a forecast of

its energy consumption (kWh) for the following days, information obtained using the WEKA’s clustering

and time series forecasting algorithms, as proposed by C. Costa and Santos (2015).

Descriptive and analytical attributes can store simple data types (e.g., integer, float, and varchar) or

complex types (e.g., arrays, maps, and GeoJSON objects). The use of complex types to extend the

capabilities of BDWs is detailed in subsection 8.2.2. Descriptive attributes are also relevant to define

partition keys (PKs in Figure 8.2) and granularity keys (GKs in Figure 8.2). Certain descriptive

attributes can be used to control certain aspects of data locality. In Hive, a partition key distributes

the data throughout different folders according to the value of the attribute. In Cassandra, the partition

key helps determining which node should be used to store/read the data, since it tries to evenly

spread the data across different nodes in the cluster. There is no rigorous rule for defining partition

keys, and one should evaluate the patterns of the queries and/or the refreshing rates of the analytical

objects. For example, in the SusCity BDW, one uses the “simulation scenario” attribute for the

partition key in the “energy grid losses” and “energy grid nodes indicators” Hive tables, since one

loads the data in batches corresponding to yearly simulations for each stress scenario in the energy

200 | Advancing the Design and Implementation of Big Data Warehousing Systems

grid. Moreover, the “simulation scenario” is an attribute frequently used in the where clause of the

queries referring these analytical objects. Regarding the “smart meters records” Cassandra table, it

is possible to use “sm id” as the partition key, balancing the data throughout the nodes in the cluster

according to the identifier of the smart meter. In Cassandra, the partition key is the first part of the

primary key, which in this case is a compound key using “sm id” and “record date”. In Hive, one

does not need to define primary keys.

Figure 8.2. The SusCity BDW data model. Adapted from (C. Costa & Santos, 2017c) with extended content.

Big Data Warehousing in Smart Cities | 201

As can be seen in Figure 8.2, analytical objects can be joined together to answer certain queries.

These join operations are optional, due to the fact that analytical objects can be modeled without any

external references to other objects, which is the case for most of the analytical objects in the SusCity

BDW. There is no need for declaring foreign keys at object creation, and analytical objects can be

joined using all the attributes whose values match. This approach is detailed in subsection 8.2.1.

Complementing what was already mentioned regarding querying and OLAP, it is possible to use Presto

to perform joins and unions between batch analytical objects (Hive tables) and streaming analytical

objects (Cassandra tables), providing useful insights extracted from historical and real-time data, as

can be seen in Figure 8.2. The size of the datasets being joined is of major relevance for an adequate

query performance, and it should be taken into consideration. This is the reason why analytical objects

should almost never be joined in their raw format. First, one needs to aggregate and filter (as much

as possible) each analytical object involved in the join operation. The larger the inputs on each side

of the join operation, the more complex and slower the query becomes. In this case, materialized

views stored in Hive tables are significantly helpful for maintaining interactive response times in query

execution and the responsiveness of the data visualization platform (see section 4.3.2 for more details

on join operations and materialization processes).

Summarizing the main strategies for this modeling approach, one can highlight three major strategies:

mainly use fully denormalized structures to avoid the cost of join operations in Big Data environments;

the use of nested structures, which are not typically found in traditional modeling techniques, can

provide more flexibility and performance advantages in specific scenarios; divide data flows and

storage components into batch and streaming, as discussed and explored by Marz and Warren

(2015), but that does not need to imply different data modeling strategies, as the proposed data

modeling method demonstrates, since it can be used both for batch and streaming contexts.

8.2.1 Buildings Characteristics as an Outsourced Descriptive Family

Looking at Figure 8.2, it can be seen that the Hive table “buildings general indicators” can be joined

with the “buildings energy consumption” table, for example. This capability is useful to understand

202 | Advancing the Design and Implementation of Big Data Warehousing Systems

relationships between the characteristics of buildings and their energy consumption, such as: to what

degree does the number of occupants influence the building’s energy consumption?

These join operations are severely different from the join operations required between fact tables and

dimension tables, since one only uses them in queries that relate different analytical objects, which

is much less frequent than joining fact tables and dimensions for each query. Considering the SusCity

BDW, the “building id” attribute is present in three analytical objects: “buildings general indicators”;

“buildings energy consumption”; and “smart meters records”. Instead of replicating the information

about buildings in these three objects and creating unnecessary redundancy, taking into consideration

that the “buildings general indicators” object is relatively small (around 60 000 records for the city of

Lisbon), it can be easily joined with the other two objects, in order to answer specific questions.

Consequently, one can outsource the buildings characteristics to the “buildings general indicators”

complementary analytical object, and only place the “building id” in the “buildings energy

consumption” and “smart meters records” analytical objects, as a link to the outsourced descriptive

family (similarly to a foreign key in traditional DWs).

Nevertheless, when there is no need to relate energy consumption with buildings characteristics, all

three objects are completely independent and are capable of answering different queries without

relying on any join operations. Such flexibility is one of the strongest points of the proposed approach,

which provides constructs and structured guidelines that practitioners can follow to solve specific

problems, depending on the considerations and trade-offs previously discussed in section 4.3.

8.2.2 Nested Structures in Analytical Objects

In the SusCity BDW, complex types are used to store nested structures that will be interpreted

afterwards by the data visualization component. For example, a large building can be associated with

more than one service (e.g., laundry, supermarket, restaurant, and gym). Using a nested complex

type like a map (e.g., HashMap), one can store this data using a single record associated with that

building. Saving geometry objects in GeoJSON strings is also relevant for geospatial analysis in a

smart cities context. Figure 8.3 exemplifies this data modeling technique, showing how the “services”

Big Data Warehousing in Smart Cities | 203

map and the “geometry” GeoJSON are stored. As can be seen in Figure 8.3, following the proposed

approach, one can place the number of services by distance and type nested in the “buildings general

indicators” analytical object, avoiding the need to create a new object to store the services for each

building. This provides significant flexibility when building custom-made data visualizations (see

subsection 8.4), avoiding the need to perform complex queries to join different tables.

8.3 The Inter-storage Pipeline

The need to transfer the data between storage components was already highlighted in section 8.1,

but it will be quantitatively evaluated in this section. As mentioned, NoSQL databases are OLTP-

oriented (Cattell, 2011), unlike Hive, which is an OLAP-oriented technology. Typically, OLTP systems

relax sequential access efficiency for random access efficiency. Therefore, systems like Cassandra

are adequate for the constant random write operations frequently demanded by the real-time

collection of data from thousands of smart meters. However, these systems lack the efficiency to

process (e.g., aggregate) large amounts of historical data, which is frequently demanded by OLAP

queries. Table 8.1 presents the results from an experiment conducted in the infrastructure and testbed

of the SusCity research project, evaluating the response times when submitting Presto queries to Hive

Figure 8.3. SusCity nested structures (example).

204 | Advancing the Design and Implementation of Big Data Warehousing Systems

tables and Cassandra tables. As demonstrated in Table 8.1, given the same analytical object and the

same amount of data, Presto OLAP queries on Hive Tables (ORC file format) perform significantly

faster than the queries on Cassandra tables. This corroborates the statements previously mentioned

and the decision of periodically moving historical data from Cassandra to Hive, maintaining only the

most recent data in Cassandra. The periodicity of this data transfer depends on the specific

requirements regarding interactivity in response times, the volume of data being stored, and the

available infrastructure. Data can be transferred on an hourly, daily, weekly or monthly basis, for

example.

8.4 The SusCity Data Visualization Platform

Throughout this chapter, one focused on the logical and physical layers of the BDW. In this section,

one highlights some relevant use cases in which the data visualization platform can help the city’s

stakeholders in the decision-making process. As previously presented, the SusCity data visualization

platform was developed using modern JavaScript libraries like the Google Maps API V3 and Chart.js.

Obviously, since it is a Web-based platform, core languages are also present (HTML, CSS, and pure

JavaScript), as well as other supporting JavaScript libraries like jQuery (jQuery, 2017). It is a platform

purely based on a service-oriented architecture, using Java REST Web services to establish the

communication between the JavaScript components of the platform and the querying and OLAP

engine instantiated by Presto. Each query submitted to the BDW goes to this REST backend for an

adequate modularity of the platform. Using this service-oriented and modular approach, it becomes

easier to update or replace components and technologies, if that need arises in the future.

Table 8.1. Performance comparison between analytical objects stored in Hive and Cassandra. Based on (C. Costa & Santos, 2017c).

Query Input Rows Output Rows Hive Cassandra

Show the last 10 smart meters records. ~2.8 million 10 0.56s 3.08s

Calculate the average of kWh grouped by
smart meter.

~2.8 million 214 0.56s 4.2s

Count how many records a certain smart
meter contains.

~2.8 million 1 0.74s 0.98s

Big Data Warehousing in Smart Cities | 205

In this section, one will briefly present several dashboards developed in the SusCity research project,

which can also be interesting applications for other smart cities initiatives. The following dashboards

are just a few examples of the SusCity data visualization platform’s capabilities, and the SusCity

demonstration case itself considers other data sources and experiments (e.g., data mining and

machine learning insights) that were not fully developed and implemented in the visualization

platform. Furthermore, due to security and privacy issues, the visualizations illustrated in this section

are built upon incomplete, omitted and/or changed testbed data and, therefore, results are not

conclusive for any real-world based decision-making process.

8.4.1 City’s Energy Consumption

The first dashboard (Figure 8.4) is based on the energy consumption of each parish in the city (2

parishes in the SusCity testbed). Decision-makers are able to understand the energy consumption in

each parish and analyze the city’s consumption by hour, time period (e.g., morning or afternoon) or

by quarter. Users can interact with multiple parishes by clicking on them, revealing the energy

consumption for specific parishes, and comparing it with the overall consumption of the city, with the

goal of extracting insights regarding critical zones in the city, for example.

Figure 8.4. SusCity data visualization platform - energy consumption dashboard. Adapted from (C. Costa & Santos, 2017c).

206 | Advancing the Design and Implementation of Big Data Warehousing Systems

Other dashboards in the SusCity platform (e.g., Figure 8.6) focus on the analysis of the buildings in

the city, including information about their cooling/heating systems, energy consumption and

efficiency, and envelope properties (e.g., window glass type and window materials). In the SusCity

data visualization platform, one can also make available the predictive capabilities of the SusCity

BDW, such as the segmentation (clustering) of buildings according to their energy consumption, and

the respective energy forecasting for the next days or weeks, as conceptually explored in this work

(section 8.2) and as also presented by C. Costa and Santos (2015).

8.4.2 City’s Energy Grid Simulations

A dashboard to simulate and analyze stress scenarios in the energy grid can be significantly useful in

the context of smart cities, as depicted in Figure 8.5. Each scenario corresponds to a set of input

parameters (e.g., number of electrical vehicles, photovoltaic area, and number of charging stations)

that may affect the behavior of the energy grid, such as energy losses, load, and maximum peak

power. In the SusCity BDW, the results of the simulations for these scenarios are stored in analytical

objects, as presented in section 8.2, and the data visualization platform can use the querying and

Figure 8.5. SusCity data visualization platform - energy grid simulation dashboard. Adapted from (C. Costa & Santos, 2017c).

Big Data Warehousing in Smart Cities | 207

OLAP engine to extract and provide useful insights for stakeholders interested in the impact that

certain initiatives have on the energy grid. Due to the modular and service-oriented nature of the

SusCity data visualization platform, and the flexible and scalable SusCity BDW, one is able to provide

dashboards for decision-makers, regardless of data volume, variety, and velocity, without being hold

back by rigid data modeling techniques and complex data CPE pipelines.

8.4.3 Buildings’ Performance Analysis and Simulation

Understanding the buildings’ efficiency is a crucial aspect for a smart and sustainable city. One of

the SusCity platform main focuses is the geospatial analysis of the buildings in Lisbon, based on an

extensive set of characteristics, such as: geometry; construction; energy consumption and efficiency;

envelope properties (e.g., type of window and type of window frame); heating and cooling systems in

use; and occupation schedule.

The flexible data model and storage components of the SusCity BDW, i.e., the lack of a strict relational

data model and the efficient use of GeoJSON objects, together with a rich API for geospatial analytics

like the Google Maps API, provide an extensive set of analytical capabilities for the city’s government.

As can be seen in Figure 8.6, stakeholders can visualize the general distribution of the energy classes

across Lisbon, the thermal inertia of the buildings, type of window and window frame, among other

metrics georeferenced by building. Each chart is interactive and can be used as a filter to analyze

how buildings are related to a certain property (e.g., metal window frame, double glass window, and

low thermal inertia). As a consequence, the dashboard in Figure 8.6 is not only useful for the city’s

government, but it is also useful for private companies interested in promoting retrofitting initiatives

to modernize buildings.

Similarly to the energy grid simulations (subsection 8.4.2), the SusCity BDW can also support

simulations at the building level. Figure 8.7 demonstrates the use of simulation data to evaluate the

impact of specific retrofitting initiatives (e.g., change the windows in 25% of the buildings in Lisbon).

Besides analyzing the impact of retrofitting initiatives, decision-makers can also use the dashboard in

Figure 8.7 to analyze the archetype of a specific building, among many other characteristics previously

208 | Advancing the Design and Implementation of Big Data Warehousing Systems

mentioned: geometry; construction; heating and cooling systems; and occupation schedule.

Consequently, having a BDW whose data model facilitates the integration of a vast set of data sources,

without rigid structures, is one of the main aspects that allows the development of these Big Data

analyses in the context of smart cities.

Figure 8.6. SusCity data visualization platform - buildings analysis dashboard.

Figure 8.7. SusCity data visualization platform - buildings simulation dashboard. Adapted from (Monteiro et al., 2018).

Big Data Warehousing in Smart Cities | 209

8.4.4 Mobility Patterns Analysis

Studying mobility is a crucial aspect in a smart city. Understanding how people or goods travel within

the city, or how citizens tend to use private or public transports, for example, is an interesting subject

for several decision-makers, including the city’s government and public/private transportation

companies. Another interesting scenario is the footprint analysis of the city’s streets, according to

several indicators, such as CO2 emissions or average speed.

Figure 8.8 focuses on the analysis of the city’s mobility patterns, in order to foresee future initiatives

to facilitate the use of either private or public transportation. The analysis goes according to the

following steps:

1. The city is modelled as a grid with several sections;

2. Every section is colored in the map according to one of three indicators: number of daily

trips; job transport accessibility; and average travel time;

3. By clicking in one section of the grid, decision-makers can understand how that section

performs regarding the three indicators mentioned above.

Figure 8.8. SusCity data visualization platform - mobility grid dashboard.

210 | Advancing the Design and Implementation of Big Data Warehousing Systems

Analyzing the data at the grid level is interesting to understand the mobility behavior within different

sections of the city. However, the flexible data model of the SusCity BDW and the geospatial

capabilities of the SusCity data visualization platform also make possible the analysis of several

indicators at the street level. To demonstrate these capabilities, Figure 8.9 presents several streets

colored according to the ratio between average speed and maximum allowed speed, so that

stakeholders can understand in which streets citizens tend to frequently overcome the speed limit.

The analysis in Figure 8.9 focuses on the security concern within mobility patterns, but there are

several other potential use cases for this kind of analysis, such as the identification of the busiest or

more polluting streets, for example.

Figure 8.9. SusCity data visualization platform - mobility dashboard at street level.

Conclusion | 211

Chapter 9. Conclusion

Throughout this work, Big Data was seen as a concept of major relevance in today’s world, whose

popularity has increased considerably during the last years. Areas like smart cities, manufacturing,

retail, finance, software development, environment, digital media, among others, can benefit from the

collection, storage, processing, and analysis of Big Data, leveraging unprecedented data-driven

workflows, and considerably improving the decision-making processes. This new type of data is being

defined not only by its characteristics (e.g., volume, variety, and velocity), but also by the limitations

it imposes on traditional storage and processing technologies. Organizations seeking Big Data

initiatives are facing many challenges, such as the lack of consensus in definitions, models, and

architectures, and the difficulties regarding the Big Data life cycle design and implementation.

Since the DW concept has a long history as one of the most valuable enterprise data assets, in this

work, it became relevant to study its role, design and implementation in Big Data environments. The

concept of BDW is emerging as either an augmentation or a replacement of the traditional DW.

Research in this topic is still in its infancy, and as Big Data is often synonymous of ambiguity, the

same happens for the concept of BDW. After the literature review process, this work identified that

the BDW can be defined using the following characteristics:

§ Parallel/distributed storage and processing of large amounts of data, including fault-

tolerance concerns;

§ Scalability (accommodate more data, users, and analyses) and elasticity, using commodity

hardware to lower the costs of implementation and maintenance;

§ Flexible storage, including unstructured data;

§ Real-time capabilities (stream processing, low-latency, and high-frequency updates);

§ High performance with near real-time response;

§ Interoperability in a federation of multiple technologies;

212 | Advancing the Design and Implementation of Big Data Warehousing Systems

§ Mixed and complex analytics (e.g., ad hoc or exploratory analysis, data mining, text mining,

statistics, machine learning, reporting, visualization, geospatial analytics, advanced

simulations, and materialized views).

Considering the state-of-the-art in BDWing, it can be concluded that there is no common approach to

build BDWs, and there are innumerous Big Data technologies to choose from, each trying to stand

out, which creates barriers in the design and implementation of Big Data solutions like BDWing

systems, since most of the time these technologies’ role is misunderstood, eventually overlapping

each other. Current logical architectures and non-structured contributions only solve part of the

problem by providing some general and relatively unstructured constructs and guidelines, but

ambiguity regarding the BDW techniques and technologies that are more adequate for several

contexts still prevails, mainly due to the lack of general-purpose, detailed, integrated, and adequately

evaluated approaches.

Currently, the design and implementation of BDWs is mainly seen as a use case driven approach,

instead of a data-driven one, which used to be the case for traditional DWs. Previously, data modeling

was the primary concern, but, nowadays, practitioners are mainly concerned with trying to find the

right technology to meet the demands of Big Data, leading to possible uncoordinated data silos. It

would be a mistake to discard years of architectural best practices based on the assumption that

storage for Big Data is not driven by data modeling (Clegg, 2015). Works related to the SQL-on-

Hadoop movement are a suitable proof that the data structures known for a long time are still relevant,

although modified and optimized. Obviously, unstructured data does not adequately fit into these

structures, but, as this work demonstrated, there are data science techniques to extract value from it

and subsequently fuel the BDW (e.g., data mining and text mining). Complex systems like BDWs

require changes in different logical and technological components, data flows, and data structures,

but this does not imply discarding the relevance of models and methods in favor of a use case driven

approach.

Until now, there was no structured and general-purpose approach describing how to design and

implement BDWs, with adequately evaluated models (representations of logical and technological

Conclusion | 213

components, data flows, and data structures), methods (structured practices), and instantiations

(e.g., demonstration cases through prototyping and benchmarking). This scientific and technical gap

served as the main motivation for this work, as, in one’s modest opinion, the existing logical

architectures, non-structured guidelines, best practices, and implementations in specific contexts,

although relevant, did not provide a complete, general-purpose, detailed, and thoroughly evaluated

approach that practitioners needed to design and implement BDWs according to their characteristics.

The obvious gap between “this is what a BDW should be” and “this is how you design and implement

it” motivated the proposal of this approach, an integrated, detailed, and general-purpose prescriptive

contribution to design and implement BDWs, using models and methods that were adequately

evaluated through different demonstration cases. That being said, one recognizes that the proposal

of this approach was, at first glance, a possibly ambitious goal, but one also considers that the same

was achieved, as practitioners and researchers have currently available a set of artifacts that can be

used to build BDWs and to foster future research as techniques and technologies evolve. The following

sections describe the undertaken work and achieved results, the main contributions to extend the

existing knowledge barriers, and some prospects of future work.

9.1 Undertaken Work and Achieved Results

Considering the research goal and objectives of this doctoral thesis, one can state that the undertaken

work and achieved results are divided into five main work fronts, namely the proposed approach for

BDWing and the four demonstration cases: SSB+ Benchmark; SusCity BDWing system; data CPE

workloads experimentation; and the demonstration of real-world BDW data models. Furthermore,

these five work fronts took place on different activities of the research methodology (DSRM for IS),

including design and development, demonstration, and evaluation.

The design and development of the proposed approach consisted in the creation of several models

and methods to build BDWs. These models and methods were submitted to a continuous refinement

process, wherein the several demonstration cases helped to not only facilitate the evaluation of the

approach, but also to iteratively improve it. Finished this doctoral thesis, it can be highlighted that the

following models and methods were developed:

214 | Advancing the Design and Implementation of Big Data Warehousing Systems

1. A model of logical components and data flows (section 4.1), which can be used to understand

the components that should be considered in the design of a BDW, how they interoperate,

and how data flows through the system. The model is composed of several components

related to BDW storage, processing, access, analytics, system administration and

management, and security and privacy, detailing how they form a BDWing system that follows

the constructs of Big Data standards like the NBDRA;

2. A method for collecting, preparing, and enriching batch and streaming data (subsection

4.1.2), so that practitioners can understand the different steps involved from data collection

to data storage in BDWing contexts. The method not only clarifies batch and streaming data

flows, but also details how data science models and insights can be incorporated into data

CPE workloads, enabling predictive capabilities and allowing for the extraction of value from

unstructured data (e.g., text, video, image);

3. A model of the technological infrastructure (section 4.2), resulting from an extensive research

and development process that took place in this doctoral thesis, in order to identify and test

several technologies suitable to instantiate the different components proposed in the model

of logical components and data flows. The technological infrastructure model presents

several alternatives that can be used to implement a BDWing system, including data CPE

workloads, storage, querying and OLAP, data mining/machine learning, and data

visualization technologies. Moreover, this model also provides some guidelines on how to

deploy BDWing systems on cloud environments or on-premises;

4. A method for BDW data modeling (section 4.3), which, together with the aforementioned

contributions, represents a relevant artifact to fulfil one of the main challenges in Big Data

environments, i.e., the lack of standard data modeling contributions. The method presents

several constructs, such as analytical objects; descriptive and analytical families; descriptive,

factual, and predictive attributes (resulting from data science models and insights); nested

attributes; granularity key; partition key; bucketing/clustering key; date, time, and spatial

objects; materialized objects; complementary analytical objects; and outsourced descriptive

families. The data modeling method provides a way of structuring batch and streaming data

Conclusion | 215

using the same constructs regardless of the underlying technology supporting the storage

system, providing an abstraction layer that practitioners can rely on to model BDWs

supported by HDFS/Hive, NoSQL/NewSQL databases, Kudu, Druid, among other systems

(see section 4.2).

The models and methods proposed in this work form a set of artifacts for the design and

implementation of BDWing systems, and consider both structured, semi-structured, and unstructured

batch and streaming data, providing adequate ways of collecting, storing, processing, and analyzing

this data. Taking this into consideration, the proposed approach can be used by practitioners and

researchers as a structured, integrated, and general-purpose approach that can be prescribed to solve

several real-world BDWing problem, aiming to support structured analytics on Big Data environments

while taking advantage of the several BDW characteristics. Furthermore, the approach was evaluated

and refined using the several demonstration cases applied in this doctoral thesis, which provides a

solid scientific and technical basis.

The first demonstration case consisted in the modeling of 6 BDW data models to solve potential real-

world problems. In this demonstration case, one used several artificial datasets (e.g., Adventure

Works, TPC-DS, and TPC-E), as well as other publicly available datasets, including the GitHub

repositories dataset, the GDELT event database, and the open air quality API. For each dataset, one

modelled a BDW data model using the proposed approach, which was significantly useful to

thoroughly explain the several proposed models and methods. The approach by itself was developed

to be relatively simple to follow, but one should take into consideration that a “rip and replace”

approach like the one proposed in this work can be significantly disruptive and potentially confusing

when designing and implementing specific parts of a BDWing system. Consequently, this

demonstration case was performed in this doctoral thesis, in order to clarify when to apply specific

guidelines, trying to provide different contexts and design decisions that practitioners may face in the

future. Furthermore, this demonstration case, together with the considerations from the following data

CPE demonstration case, the SSB+ Benchmark, and the SusCity demonstration case, was relevant

to demonstrate the effectiveness and simplicity of the proposed approach, generating several BDW

216 | Advancing the Design and Implementation of Big Data Warehousing Systems

data models that, by avoiding some complexity related to traditional dimensional DWs (e.g., different

types of dimensions, bridge tables, surrogate keys, SCDs, and late arriving dimensions), take less

time to structure, fuel, maintain, and extend with new batch and streaming data (structured, semi-

structured, and unstructured), which inevitably provides more storage flexibility and generally more

performance, and accelerates the time from data collection to analysis. Consequently, these insights

represent compelling reasons for the adoption of a BDWing strategy in organizations.

The second demonstration case was based on designing and implementing several data CPE

processes focused on structured, semi-structured, and unstructured batch and streaming data, in

order to cover different challenges related to collecting, preparing, and enriching data flowing to a

BDW. Different data characteristics require different strategies, reason why this demonstration case

was crucial to provide adequate examples to practitioners, showing the effectiveness of the proposed

data CPE method. This demonstration case also highlighted the complexity differences between

traditional ETL processes and data CPE workloads based on the proposed approach, namely:

§ The use of denormalized structures allow for much simpler processes when the underlying

data source is already flat or nested, such as sensor readings, NoSQL databases, Excel/CSV

files, XML/JSON files, Web APIs, among many others sources frequently seen in Big Data

environments. Not having to develop and maintain complex workloads to fuel several types

of dimension tables/concepts (e.g., mini dimensions, shrunken dimensions, junk

dimensions, bridge tables, late arriving dimensions), as well as avoiding the need to perform

constant surrogate key lookups while loading a fact table is definitely a compelling

advantage, especially in Big Data environments wherein one is focusing on accelerating the

time to insight, instead of spending a significant amount of time trying to model and maintain

the BDW. Nevertheless, if the underlying source is already relational, the contrasting

phenomenon occurs, i.e., one may need to perform several join operations to fuel a certain

denormalized analytical object;

§ The lack of dimension tables also means that streaming scenarios are possible without

complex operations like surrogate key lookups, or complex concepts such as SCDs or late

Conclusion | 217

arriving dimensions. The descriptive attributes of an immutable analytical object behave like

an SCD type 2 scenario, in which each record is associated with the current values of the

descriptive attributes. When using outsourced descriptive families and complementary

analytical objects, practitioners can consider different updating approaches, as discussed in

subsections 4.3.3 and 5.2.1, in order to overcome some challenges that may be relatively

similar to SCDs and late arriving dimensions.

The third demonstration case consisted in developing and executing an extension of the SSB

benchmark (O’Neil et al., 2009), the SSB+. This benchmark served the purpose of evaluating several

design and implementation guidelines of the proposed approach, in terms of effectiveness and

efficiency (e.g., latency and resource usage), using as baseline, when appropriate, a star schema DW.

The results provided in this work demonstrated that, generally, a fully denormalized analytical object

is able to outperform a star schema throughout different SFs (some of them exceeding the amount

of available memory), different SQL-on-Hadoop engines, and different descriptive attributes cardinality

(dimension tables size), which means that even in contexts wherein dimension tables were relatively

small to fit into memory (allowing efficient map/broadcast joins), a fully denormalized analytical

object was more efficient (faster execution times and less CPU usage and memory dependability),

surpassing the need for constant join operations between the fact table and the corresponding

dimension tables. Analytical objects were also generally faster in drill-across and window analytics

scenarios. Nevertheless, this demonstration case also shown that there is space for relational

structures (see subsections 4.3.3 and 4.3.4.2), which can be beneficial for reducing the storage

footprint of a BDW created using the proposed approach, avoiding extreme and unnecessary

redundancy and, in certain contexts, consequently increasing processing efficiency (see subsection

7.2.3). This last insight enabled the refinement of the approach through the creation of spatial, date,

and time objects, and the creation of outsourced descriptive families.

Generally, the results achieved by flat analytical objects accomplished the optimal threshold in small

to medium SFs (queries executed within a few seconds) and the satisfactory threshold in large SFs

(queries executed within a few tens of seconds). Considering the evaluated SFs and the available

218 | Advancing the Design and Implementation of Big Data Warehousing Systems

infrastructure, one can conclude that the proposed approach can be used to provide interactive query

execution in BDWing contexts. Moreover, there are other strategies considered in the proposed

approach that are able to provide even faster results than the ones seen in this SSB+ Benchmark,

such as materialized objects. One can conclude that despite the limitations of the available

infrastructure, the SSB+ Benchmark revealed adequate results, which proves that the proposed

approach can be used to design and implement BDWs not only when the expected BDW size fits into

memory, but also when the same exceeds it, resulting in effective and efficient BDWs capable of

assuring complex ad hoc querying and OLAP on commodity hardware and shared-nothing

infrastructures.

Still in this demonstration case, other workloads were also evaluated in terms of query latency,

including nested attributes, data partitioning, and concurrent workloads, which provided several

guidelines that practitioners can take into consideration. Furthermore, the SSB+ Benchmark also

served the purpose of evaluating the streaming performance of a BDW, corroborating that the

proposed approach to store, process, and combine batch and streaming data is feasible, since using

a single query submitted through the querying and OLAP engine, one can combine batch and

streaming data into a “unified picture”. The streaming workload was significantly relevant to

understand the limitations of technologies like HDFS/Hive (e.g., random access disadvantages and

small files problem) and NoSQL databases (e.g., Cassandra’s sequential access disadvantages) when

storing and retrieving vast amounts of data, and the implications that they can have on query

performance. These insights were used to not only corroborate previous assumptions, but also to

complement them with further guidelines to practitioners, which are depicted throughout Chapter 4.

Finally, the fourth demonstration case consisted in applying the proposed approach in a smart cities

context, namely the SusCity research project (C. Costa & Santos, 2017c; SusCity, 2016). The SusCity

BDWing system was a prototype developed in the aforementioned project, in which one followed the

proposed models and methods, proving the suitability of the approach to solve real-world problems.

The architecture of the system follows the proposed logical components and data flows, the

supporting technologies are compliant with the proposed technological infrastructure model, and the

Conclusion | 219

SusCity data model is guided by the proposed data modeling method. The SusCity BDW was able to

support an interactive Web-based data visualization platform focusing on several smart cities

concerns, such as energy, buildings efficiency, and mobility, providing adequate response times,

ranging from milliseconds to a few seconds over millions of records. The SusCity data visualization

platform made available several geospatial and simulation capabilities in smart cities contexts (e.g.,

buildings retrofitting measures and energy grid stress scenarios), proving that using the proposed

guidelines, BDWs are able to support new mixed and complex analytical workloads. Moreover, to

complement the insights provided by the SSB+ Benchmark, the SusCity demonstration case also

shown the relevance of clearly defining batch and streaming data CPE, storage and querying

guidelines, as well as the relevance of complementary analytical objects (e.g., “buildings indicators”

in subsection 8.2.1).

9.2 Contributions to the State-of-the-art

According to the undertaken work and achieved results presented above, to the best of one’s

knowledge, it can be concluded that this approach represents a relevant contribution to the scientific

and technical community, making available a set of artifacts for BDW design and implementation that

not only can foster future research, but above all, can help practitioners build these complex systems,

which otherwise would typically fall into a use case and ad hoc driven process. The models and

methods proposed in this work were scientifically backed up by a DSRM for IS research process using

4 demonstration cases that allowed the evaluation of the approach mainly in terms of effectiveness,

complexity, latency, and, when applicable, resource considerations (CPU usage, memory constraints,

and storage footprint). Consequently, one can conclude that this approach successfully fulfills the

scientific gap previously identified, i.e., the lack of a prescriptive and integrated contribution for the

design and implementation of BDWs, with adequately evaluated models and methods.

Despite the relative novelty of the topic, one tried to take into consideration previously existing

contributions, reason why this approach is built upon some general constructs and guidelines

provided by the Lambda Architecture (Marz & Warren, 2015), the NBDRA (NBD-PWG, 2015), the Big

Data Processing Flow (Krishnan, 2013), the Data Highway Concept (Kimball & Ross, 2013), and even

220 | Advancing the Design and Implementation of Big Data Warehousing Systems

some data denormalization encouragements discussed in previous works (Jukic et al., 2017; Santos

et al., 2017; Santos & Costa, 2016; Dehdouh et al., 2015; J. P. Costa et al., 2011). Scientific progress

is often made by disruptive approaches, but it is also relevant to try to build something with a solid

foundation, which was relatively difficult in this work, considering the lack of maturity and

contributions related to BDWing. However, this work’s contribution to the state-of-the-art in BDWing

was only possible due to previously explored paths and the relevant contributions of several related

works, including the vast amounts of scientific and technical works related to traditional DWing

systems, shaping several academic and professional formations, whose absence would otherwise

make unfeasible the advancements regarding DWs in Big Data environments.

Taking this into consideration, and now focusing on the communication activity of the DSRM for IS

methodology, several scientific publications related to this research work have been positively reviewed

and accepted by the scientific community, which allowed the dissemination of several results.

Moreover, technical content related to the work proposed here was also presented in practice-oriented

forums, and a future opportunity for the dissemination of the approach through a book publication is

already taking place. The following publications (summarized in Table 9.1) represent the

communication activity associated with this doctoral thesis:

§ Journal Publications

- Costa, C., & Santos, M. Y. (2017). Big Data: State-of-the-art concepts, techniques,

technologies, modeling approaches and research challenges. IAENG International

Journal of Computer Science, 44, 285–301;

- Costa, C., & Santos, M. Y. (2017). The data scientist profile and its

representativeness in the European e-Competence framework and the skills

framework for the information age. International Journal of Information

Management, 37(6), 726–734. https://doi.org/10.1016/j.ijinfomgt.2017.07.010;

- Santos, M. Y., Martinho, B., & Costa, C. (2017). Modeling and implementing big

data warehouses for decision support. Journal of Management Analytics, 4(2), 111–

129;

Conclusion | 221

- Santos, M. Y., Oliveira e Sá, J., Andrade, C., Vale Lima, F., Costa, E., Costa, C., …

Galvão, J. (2017). A Big Data system supporting Bosch Braga Industry 4.0 strategy.

International Journal of Information Management. https://doi.org/10.1016/

j.ijinfomgt.2017.07.012;

- Monteiro, C. S., Costa, C., Pina, A., Santos, M. Y., & Ferrão, P. (2018). An urban

building database (UBD) supporting a smart city information system. Energy and

Buildings, 158, 244–260. https://doi.org/10.1016/j.enbuild.2017.10.009;

- Costa, E., Costa, C., & Santos, M. Y. (2019). Evaluating Partitioning and Bucketing

Strategies for Hive-based Big Data Warehousing Systems. Journal of Big Data.

Manuscript submitted for publication.

Table 9.1. Scientific publications.

Type Numbers Detail

Scimago Q1
Journals

3 publications

1 submitted for publication

(2) Journal of Information Management (IJIM)
(1) Energy and Buildings
(1) Journal of Big Data

CORE Ranking A
Conferences

1 publication (1) International Conference on Advanced Information
Systems Engineering (CAISE)

Scimago Q2
Journals

1 publication (1) International Journal of Computer Science (IJCS)

CORE Ranking B
Conferences

3 publications (2) International Database Engineering & Applications
Symposium (IDEAS)
(1) European, Mediterranean, and Middle Eastern Conference
on Information Systems (EMCIS)

Book Chapters 1 publication
1 in press

(1) Encyclopedia of Big Data Technologies
(1) Emerging Perspectives in Big Data Warehousing

Books 1 in press (1) Big Data: Concepts, Warehousing and Analytics. FCA -
Editora de Informática

Other conferences
and journals of
international
scientific circulation
and review

7 publications (1) International Conference on Computer Science & Software
Engineering
(1) International Conference on Data Mining and Big Data
(DMBD)
(3) World Conference on Information Systems and
Technologies (WorldCIST)
(1) International Conference on Intelligent Systems
(1) Journal of Management Analytics

222 | Advancing the Design and Implementation of Big Data Warehousing Systems

§ Conference Proceedings

- Santos, M. Y., & Costa, C. (2016). Data Warehousing in Big Data: From

Multidimensional to Tabular Data Models. In Proceedings of the Ninth International

C* Conference on Computer Science & Software Engineering (pp. 51–60). ACM.

https://doi.org/10.1145/2948992.2949024;

- Santos, M. Y., & Costa, C. (2016). Data Models in NoSQL Databases for Big Data

Contexts. In 2016 International Conference of Data Mining and Big Data (DMBD)

(pp. 1–11). Springer-Verlag, LNCS 9714. http://doi.org/10.1007/978-3-319-

40973-3_48;

- Santos, M. Y., Oliveira e Sá, J., Costa, C., Galvão, J., Andrade, C., Martinho, B., …

Costa, E. (2017). A Big Data Analytics Architecture for Industry 4.0. In Á. Rocha, A.

M. Correia, H. Adeli, L. P. Reis, & S. Costanzo (Eds.), Recent Advances in Information

Systems and Technologies. WorldCIST 2017 (pp. 175–184). Springer International

Publishing. https://doi.org/10.1007/978-3-319-56538-5_19;

- Costa, C., & Santos, M. Y. (2017). A Conceptual Model for the Professional Profile

of a Data Scientist. In Á. Rocha, A. M. Correia, H. Adeli, L. P. Reis, & S. Costanzo

(Eds.), Recent Advances in Information Systems and Technologies. WorldCIST 2017

(pp. 453–463). Springer International Publishing. https://doi.org/10.1007/978-3-

319-56538-5_46;

- Costa, C., & Santos, M. Y. (2017). The SusCity Big Data Warehousing Approach for

Smart Cities. In Proceedings of International Database Engineering & Applications

Symposium. IDEAS 2017 (p. 10). https://doi.org/10.1145/3105831.3105841;

- Costa, E., Costa, C., & Santos, M. Y. (2017). Efficient Big Data Modeling and

Organization for Hadoop Hive-Based Data Warehouses. In Information Systems.

EMCIS 2017 (pp. 3–16). Springer, Cham. https://doi.org/10.1007/978-3-319-

65930-5_1;

- Santos, M. Y., Costa, C., Galvão, J., Andrade, C., Martinho, B. A., Lima, F. V., &

Costa, E. (2017). Evaluating SQL-on-Hadoop for Big Data Warehousing on Not-So-

Conclusion | 223

Good Hardware. In Proceedings of the 21st International Database Engineering &

Applications Symposium. IDEAS 2017 (pp. 242–252). ACM.

https://doi.org/10.1145/3105831.3105842;

- Costa, C., & Santos, M. Y. (2018). Evaluating Several Design Patterns and Trends in

Big Data Warehousing Systems. In J. Krogstie & H. A. Reijers (Eds.), Advanced

Information Systems Engineering. CAISE 2018 (pp. 459–473). Springer, Cham.

https://doi.org/10.1007/978-3-319-91563-0_28;

- Costa, E., Costa, C., & Santos, M. Y. (2018). Partitioning and Bucketing in Hive-

Based Big Data Warehouses. In Á. Rocha, A. Hojjat, L. P. Reis, & S. Costanzo (Eds.),

Trends and Advances in Information Systems and Technologies. WorldCIST 2018

(pp. 764–774). Springer, Cham. https://doi.org/10.1007/978-3-319-77712-2_72;

- Correia, J., Santos, M. Y., Costa, C., & Andrade, C. (2018). Fast Online Analytical

Processing for Big Data Warehousing. In International Conference on Intelligent

Systems.

§ Book Chapters

- Costa, C., Andrade, C., & Santos, M. Y. (2018). Big Data Warehouses for Smart

Industries. In S. Sakr & A. Zomaya (Eds.), Encyclopedia of Big Data Technologies.

Springer, Cham. Retrieved from https://link.springer.com/referenceworkentry/

10.1007/978-3-319-63962-8_204-1;

- Vale Lima, F., Costa, C., & Santos, M. Y. (2019). Real-Time Big Data Warehousing.

In D. Taniar (Ed.), Emerging Perspectives in Big Data Warehousing. IGI Global. In

press.

§ Books

- Santos, M. Y., & Costa, C. (2019). Big Data: Concepts, Warehousing and Analytics.

FCA - Editora de Informática. In press.

224 | Advancing the Design and Implementation of Big Data Warehousing Systems

9.3 Future Work

Regarding future work, there is space for further exploration and contributions, not only related to the

proposed approach, but also to other BDWing contexts. Regarding the need to detail some claims

and results presented in this doctoral thesis, one can start by highlighting the need to further evaluate

other storage technologies suitable for BDWs, meaning that more specific implementation guidelines

can be given to practitioners if one further understands the sequential and random access capabilities

of other storage technologies like Hive transaction tables (especially in Hive 3), Druid, Kudu, NewSQL

databases (e.g., Apache Ignite), and other NoSQL databases (e.g., Redis, HBase, and MongoDB).

Although they should adequately fit in the general approach proposed in this work, since the logical

components, data flows, and data modeling method can be generalized to different storage

technologies, having other insights regarding the advantages and disadvantages of certain storage

systems for batch and streaming data helps providing more implementation details (e.g., mutable

analytical objects problems, inter-storage pipeline considerations, and streaming inefficiencies), and

helps clarifying some uncertainty related to the technologies that were not thoroughly tested through

benchmarking, prototyping, or production systems.

Still related to this question, another argument that may be raised is related to the efficiency of

NewSQL systems in assuring highly scalable batch and streaming storage and processing of vast

amounts of data for both transactional and analytical purposes, using traditional relational data

modeling techniques, which again may not necessarily hold true for every scenario related to BDWing,

just like there is a severe misconception regarding the NoSQL databases’ suitability for fast sequential

access to data required for BDWing scenarios. Executing a more extensive SSB+ Benchmark with

more technologies would definitely serve to clarify these doubts, and understand the advantages and

disadvantages of certain promising technologies. Moreover, other storage technologies could also

reveal interesting and more interactive results in streaming workloads, being adequate alternatives to

the evaluated ones (Hive and Cassandra). Certain technologies were already explored in recently

published works, namely the benchmarking of Druid for analytical purposes (Correia et al., 2018),

revealing very satisfactory performance with sub-second queries over large amounts of data, while

Conclusion | 225

other technologies like Kudu are still under evaluation. Access to more powerful infrastructures will

allow the replication of the SSB+ Benchmark with more technologies, and, maybe more relevant,

fragmenting the cluster in a more efficient way, e.g., deploying streaming and batch technologies in

separate nodes, which avoids the resource starvation sometimes observed in the SSB+ streaming

workloads performed in this work.

Furthermore, there are a few other implementation details that may need more attention in future

works, namely how update and data movement operations really affect the performance and

maintenance of the BDW, evaluating the scenarios where it is not feasible or preferable to model

some analytical objects as immutable, as well as evaluating scenarios wherein the data has to be

constantly moved between storage systems, or small files have to be merged together, for example.

A relevant factor to consider is that, in contexts with more data redundancy, updating specific values

may require scanning vast amounts of records in denormalized analytical objects, or recomputing

entire partitions and, therefore, it may become interesting to rigorously evaluate the BDW’s

performance while executing update operations. The same applies for data movement operations,

such as periodically moving data from the streaming storage to the batch storage, or compacting

small files generated in Hive streaming scenarios. Other concerns related to the configuration and

infrastructure of BDWs may also be relevant to explore in the future, such as providing further details

on efficient deployments for BDWs in highly concurrent environments, with optimal implementation

guidelines for contexts wherein hundreds or thousands of users and applications are concurrently

submitting queries to support analytical applications.

Finally, one considers that the approach proposed in this work covers a wide range of BDW

applications. However, by the end of this doctoral thesis, one raised interest in studying how the BDW

can interact with other applications in the Big Data landscape (e.g., transactional workloads on NoSQL

databases, and complex event processing with predictions and immediate actions). Consequently,

the proactivity characteristic in BDWs can be considered a relevant trending topic for a near future,

making sure that the analytical results and insights (e.g., aggregated measures and KPIs) can be

taken into consideration in a real-time environment, wherein historical data, streaming events, and

226 | Advancing the Design and Implementation of Big Data Warehousing Systems

predictions lead to a set of immediate actions (sometimes automatic) that should take place

according to a set of complex rules predefined in a certain organizational context like manufacturing.

Consequently, studying the relationship between Big Data, BDWing, business rules, and complex

event processing is certainly a research path to contemplate in the following years.

References | 227

References

Ali, A. R. (2018). Real-time big data warehousing and analysis framework. 2018 IEEE 3rd International
Conference on Big Data Analysis (ICBDA), 43–49.
https://doi.org/10.1109/ICBDA.2018.8367649

Almeida, R., Bernardino, J., & Furtado, P. (2015). Testing SQL and NoSQL approaches for big data
warehouse systems. International Journal of Business Process Integration and Management,
7(4), 322–334. https://doi.org/10.1504/IJBPIM.2015.073656

Alsubaiee, S., Altowim, Y., Altwaijry, H., Behm, A., Borkar, V., Bu, Y., … Westmann, T. (2014).
AsterixDB: A Scalable, Open Source BDMS. Proc. VLDB Endow., 7(14), 1905–1916.

Apache Hadoop. (2018). Welcome to Apache Hadoop. Retrieved July 3, 2018, from Welcome to
Apache Hadoop website: https://hadoop.apache.org/

Apache Hive. (2018). Hive Transactions. Retrieved July 27, 2018, from
https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions

Apache Ignite. (2018). Open source memory-centric distributed database, caching, and processing
platform - Apache IgniteTM. Retrieved August 7, 2018, from https://ignite.apache.org/

Armbrust, M., Xin, R. S., Lian, C., Huai, Y., Liu, D., Bradley, J. K., … others. (2015). Spark sql:
Relational data processing in spark. Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, 1383–1394. Retrieved from
http://dl.acm.org/citation.cfm?id=2742797

Arres, B., Kabachi, N., Boussaid, O., & Bentayeb, F. (2015). Intentional Data Placement Optimization
for Distributed Data Warehouses. 2015 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), 80–86. https://doi.org/10.1109/SMC.2015.27

Asif, N., Dobbie, G., & Weber, G. (2013). Big data management in the context of real- time data
warehousing. In Big Data Management, Technologies, and Applications (pp. 150–176).
https://doi.org/10.4018/978-1-4666-4699-5.ch007

Baboo, L. D. S., & Kumar, P. R. (2013). Next generation data warehouse design with big data for big
analytics and better insights. Global Journal of Computer Science and Technology, 13(7).
Retrieved from http://computerresearch.org/index.php/computer/article/view/180

Bakshi, K. (2012). Considerations for big data: Architecture and approach. 2012 IEEE Aerospace
Conference, 1–7. https://doi.org/10.1109/AERO.2012.6187357

Barkhordari, M., & Niamanesh, M. (2017). Atrak: a MapReduce-based data warehouse for big data.
The Journal of Supercomputing, 1–15. https://doi.org/10.1007/s11227-017-2037-3

Baru, C., Bhandarkar, M., Nambiar, R., Poess, M., & Rabl, T. (2013). Benchmarking Big Data
Systems and the BigData Top100 List. Big Data, 1(1), 60–64.
https://doi.org/10.1089/big.2013.1509

228 | Advancing the Design and Implementation of Big Data Warehousing Systems

Begoli, E., & Horey, J. (2012). Design Principles for Effective Knowledge Discovery from Big Data.
2012 Joint Working IEEE/IFIP Conference on Software Architecture (WICSA) and European
Conference on Software Architecture (ECSA), 215–218. https://doi.org/10.1109/WICSA-
ECSA.212.32

Beheshti, S.-M.-R., Benatallah, B., & Motahari-Nezhad, H. R. (2015). Scalable graph-based OLAP
analytics over process execution data. Distributed and Parallel Databases, 34(3), 379–423.
https://doi.org/10.1007/s10619-014-7171-9

Beyer, M. (2011, November 3). Mark Beyer, Father of the Logical Data Warehouse, Guest Post.
Retrieved April 5, 2016, from Gartner Blog website: http://blogs.gartner.com/merv-
adrian/2011/11/03/mark-beyer-father-of-the-logical-data-warehouse-guest-post/

Bissiriou, C. A. A., & Chaoui, H. (2014). Big Data Analysis and Query Optimization Improve HadoopDB
Performance. Proceedings of the 10th International Conference on Semantic Systems, 1–4.
https://doi.org/10.1145/2660517.2660529

Bondarev, A., & Zakirov, D. (2015). Data warehouse on Hadoop platform for decision support systems
in education. 2015 Twelve International Conference on Electronics Computer and Computation
(ICECCO), 1–4. https://doi.org/10.1109/ICECCO.2015.7416884

Boyd, D., & Crawford, K. (2012). Critical Questions for Big Data. Information, Communication &
Society, 15(5), 662–679. https://doi.org/10.1080/1369118X.2012.678878

Brewer, E. (2012). CAP twelve years later: How the “rules” have changed. Computer, 45(2), 23–29.
https://doi.org/10.1109/MC.2012.37

Brown, B., Chui, M., & Manyika, J. (2011). Are you ready for the era of ‘big data’ [Report]. Retrieved
from http://www.t-systems.com/solutions/download-mckinsey-quarterly-
/1148544_1/blobBinary/Study-McKinsey-Big-data.pdf

Brulé, M. R. (2013). Big data in E&P: Real-time adaptive analytics and data-flow architecture. SPE
Digital Energy Conference and Exhibition, 305–311. https://doi.org/10.2118/163721-MS

Cattell, R. (2011). Scalable SQL and NoSQL data stores. ACM SIGMOD Record, 39(4), 12–27.
https://doi.org/10.1145/1978915.1978919

Chai, H., Wu, G., & Zhao, Y. (2013). A Document-Based Data Warehousing Approach for Large Scale
Data Mining. In Q. Zu, B. Hu, & A. Elçi (Eds.), Pervasive Computing and the Networked World
(pp. 69–81). Springer Berlin Heidelberg.

Chandarana, P., & Vijayalakshmi, M. (2014). Big Data analytics frameworks. 2014 International
Conference on Circuits, Systems, Communication and Information Technology Applications
(CSCITA), 430–434. https://doi.org/10.1109/CSCITA.2014.6839299

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., … Gruber, R. E. (2008).
Bigtable: A Distributed Storage System for Structured Data. ACM Trans. Comput. Syst., 26(2),
4:1–4:26. https://doi.org/10.1145/1365815.1365816

References | 229

Chang, L., Wang, Z., Ma, T., Jian, L., Ma, L., Goldshuv, A., … others. (2014). HAWQ: a massively
parallel processing SQL engine in hadoop. Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data, 1223–1234. Retrieved from
http://dl.acm.org/citation.cfm?id=2595636

Chao, L., Li, C., Liang, F., Lu, X., & Xu, Z. (2015). Accelerating Apache Hive with MPI for Data
Warehouse Systems. 2015 IEEE 35th International Conference on Distributed Computing
Systems (ICDCS), 664–673. https://doi.org/10.1109/ICDCS.2015.73

Chart.js. (2017). Chart.js | Open source HTML5 Charts. Retrieved March 5, 2017, from
http://www.chartjs.org/

Chen, C. L. P., & Zhang, C.-Y. (2014). Data-intensive applications, challenges, techniques and
technologies: A survey on Big Data. Information Sciences, 275, 314–347.
https://doi.org/10.1016/j.ins.2014.01.015

Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business Intelligence and Analytics: From Big Data
to Big Impact. MIS Quarterly, 36(4), 1165–1188. https://doi.org/10.2307/41703503

Chen, M., Mao, S., & Liu, Y. (2014). Big Data: A Survey. Mobile Networks and Applications, 19(2),
171–209. https://doi.org/10.1007/s11036-013-0489-0

Chennamsetty, H., Chalasani, S., & Riley, D. (2015). Predictive analytics on Electronic Health Records
(EHRs) using Hadoop and Hive. 2015 IEEE International Conference on Electrical, Computer
and Communication Technologies (ICECCT), 1–5.
https://doi.org/10.1109/ICECCT.2015.7226129

Chevalier, M., El Malki, M., Kopliku, A., Teste, O., & Tournier, R. (2015). Implementing
multidimensional data warehouses into NoSQL. International Conference on Enterprise
Information Systems (ICEIS 2015), 172–183. Retrieved from
ftp://ftp.irit.fr/IRIT/SIG/2015_ICEIS_CEKTT.pdf

Chou, S., Yang, C., Jiang, F., & Chang, C. (2018). The Implementation of a Data-Accessing Platform
Built from Big Data Warehouse of Electric Loads. 2018 IEEE 42nd Annual Computer Software
and Applications Conference (COMPSAC), 01, 87–92.
https://doi.org/10.1109/COMPSAC.2018.10208

Chowdhury, S. (2014). Big data and data warehouse augmentation. Retrieved from IBM Corporation
website: https://www.ibm.com/developerworks/analytics/library/ba-augment-data-
warehouse1/ba-augment-data-warehouse1-pdf.pdf

Clegg, D. (2015). Evolving data warehouse and BI architectures: The big data challenge. TDWI
Business Intelligence Journal, 20(1), 19–24.

Correia, J., Santos, M. Y., Costa, C., & Andrade, C. (2018). Fast Online Analytical Processing for Big
Data Warehousing. International Conference on Intelligent Systems.

Costa, C. (2017). SSB+ GitHub Repository. Retrieved from
https://github.com/epilif1017a/bigdatabenchmarks

230 | Advancing the Design and Implementation of Big Data Warehousing Systems

Costa, C., & Santos, M. Y. (2015). Improving cities sustainability through the use of data mining in a
context of big city data. 2015 International Conference of Data Mining and Knowledge
Engineering, 1, 320–325. Retrieved from
https://repositorium.sdum.uminho.pt/handle/1822/36713

Costa, C., & Santos, M. Y. (2016a). BASIS: A big data architecture for smart cities. 2016 SAI
Computing Conference (SAI), 1247–1256. https://doi.org/10.1109/SAI.2016.7556139

Costa, C., & Santos, M. Y. (2016b). Reinventing the Energy Bill in Smart Cities with NoSQL
Technologies. In S. Ao, G.-C. Yang, & L. Gelman (Eds.), Transactions on Engineering
Technologies (pp. 383–396). https://doi.org/10.1007/978-981-10-1088-0_29

Costa, C., & Santos, M. Y. (2017a). Big Data: State-of-the-art concepts, techniques, technologies,
modeling approaches and research challenges. IAENG International Journal of Computer
Science, 44, 285–301.

Costa, C., & Santos, M. Y. (2017b). The data scientist profile and its representativeness in the
European e-Competence framework and the skills framework for the information age.
International Journal of Information Management, 37(6), 726–734.
https://doi.org/10.1016/j.ijinfomgt.2017.07.010

Costa, C., & Santos, M. Y. (2017c). The SusCity Big Data Warehousing Approach for Smart Cities.
Proceedings of the 21st International Database Engineering & Applications Symposium. IDEAS
2017, 264–273. https://doi.org/10.1145/3105831.3105841

Costa, C., & Santos, M. Y. (2018). Evaluating Several Design Patterns and Trends in Big Data
Warehousing Systems. In J. Krogstie & H. A. Reijers (Eds.), Advanced Information Systems
Engineering. CAISE 2018 (pp. 459–473). https://doi.org/10.1007/978-3-319-91563-0_28

Costa, E., Costa, C., & Santos, M. Y. (2017). Efficient Big Data Modelling and Organization for Hadoop
Hive-Based Data Warehouses. In M. Themistocleous & V. Morabito (Eds.), Information Systems.
EMCIS 2017 (pp. 3–16). https://doi.org/10.1007/978-3-319-65930-5_1

Costa, E., Costa, C., & Santos, M. Y. (2018). Partitioning and Bucketing in Hive-Based Big Data
Warehouses. In Á. Rocha, A. Hojjat, L. P. Reis, & S. Costanzo (Eds.), Trends and Advances in
Information Systems and Technologies. WorldCIST 2018 (pp. 764–774).
https://doi.org/10.1007/978-3-319-77712-2_72

Costa, J. P., Cecílio, J., Martins, P., & Furtado, P. (2011). ONE: A Predictable and Scalable DW Model.
Data Warehousing and Knowledge Discovery, 1–13. https://doi.org/10.1007/978-3-642-
23544-3_1

Cuzzocrea, A. (2013). Analytics over Big Data: Exploring the Convergence of DataWarehousing, OLAP
and Data-Intensive Cloud Infrastructures. 2013 IEEE 37th Annual Computer Software and
Applications Conference, 481–483. https://doi.org/10.1109/COMPSAC.2013.152

Cuzzocrea, A. (2016). Warehousing and Protecting Big Data: State-Of-The-Art-Analysis, Methodologies,
Future Challenges. Proceedings of the International Conference on Internet of Things and Cloud
Computing, 14:1–14:7. https://doi.org/10.1145/2896387.2900335

References | 231

Cuzzocrea, A., Bellatreche, L., & Song, I.-Y. (2013). Data Warehousing and OLAP over Big Data:
Current Challenges and Future Research Directions. Proceedings of the Sixteenth International
Workshop on Data Warehousing and OLAP, 67–70.
https://doi.org/10.1145/2513190.2517828

Cuzzocrea, A., & Moussa, R. (2014). A Cloud-Based Framework for Supporting Effective and Efficient
OLAP in Big Data Environments. 2014 14th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), 680–684. https://doi.org/10.1109/CCGrid.2014.129

Cuzzocrea, A., & Moussa, R. (2017). Multidimensional database modeling: Literature survey and
research agenda in the big data era. 2017 International Symposium on Networks, Computers
and Communications (ISNCC), 1–6. https://doi.org/10.1109/ISNCC.2017.8072024

Cuzzocrea, A., & Moussa, R. (2018). Towards Lambda-Based Near Real-Time OLAP over Big Data.
2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), 438–
441. https://doi.org/10.1109/COMPSAC.2018.00067

Cuzzocrea, A., Moussa, R., & Vercelli, G. (2018). An Innovative Lambda-Architecture-Based Data
Warehouse Maintenance Framework for Effective and Efficient Near-Real-Time OLAP over Big
Data. Big Data – BigData 2018, 149–165. https://doi.org/10.1007/978-3-319-94301-5_12

Cuzzocrea, A., Song, I.-Y., & Davis, K. C. (2011). Analytics over large-scale multidimensional data:
the big data revolution! Proceedings of the ACM 14th International Workshop on Data
Warehousing and OLAP, 101–104. Retrieved from http://dl.acm.org/citation.cfm?id=2064695

Das, K. K., Fratkin, E., Gorajek, A., Stathatos, K., & Gajjar, M. (2011). Massively Parallel In-database
Predictions Using PMML. Proceedings of the 2011 Workshop on Predictive Markup Language
Modeling, 22–27. https://doi.org/10.1145/2023598.2023601

Das, T. K., & Mohapatro, A. (2014). A Study on Big Data Integration with Data Warehouse.
International Journal of Computer Trends and Technology (IJCTT)–Volume, 9. Retrieved from
http://www.ijcttjournal.org/Volume9/number-4/IJCTT-V9P137.pdf

Dataedo. (2017). AdventureWorks – Data Dictionary. Retrieved from
https://dataedo.com/download/AdventureWorks.pdf

Davenport, T. H., Barth, P., & Bean, R. (2012). How big data is different. MIT Sloan Management
Review, 54(1), 43–46.

Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified Data Processing on Large Clusters.
Commun. ACM, 51(1), 107–113. https://doi.org/10.1145/1327452.1327492

Dehdouh, K., Bentayeb, F., Boussaid, O., & Kabachi, N. (2014). Columnar NoSQL CUBE: Agregation
operator for columnar NoSQL data warehouse. 2014 IEEE International Conference on Systems,
Man and Cybernetics (SMC), 3828–3833. https://doi.org/10.1109/SMC.2014.6974527

Dehdouh, K., Bentayeb, F., Boussaid, O., & Kabachi, N. (2015). Using the column oriented NoSQL
model for implementing big data warehouses. Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and Applications (PDPTA), 469. Retrieved from

232 | Advancing the Design and Implementation of Big Data Warehousing Systems

http://search.proquest.com/openview/fb990658e2d8b7f76720b0a6707b9e89/1?pq-
origsite=gscholar

Dumbill, E. (2013). Making sense of big data. Big Data, 1(1), 1–2.
https://doi.org/10.1089/big.2012.1503

Fan, W., & Bifet, A. (2013). Mining big data: current status, and forecast to the future. ACM SIGKDD
Explorations Newsletter, 14(2), 1–5. https://doi.org/10.1145/2481244.2481246

Ferrández, A., Maté, A., Peral, J., Trujillo, J., Gregorio, E. D., & Aufaure, M.-A. (2014). A framework
for enriching Data Warehouse analysis with Question Answering systems. Journal of Intelligent
Information Systems, 46(1), 61–82. https://doi.org/10.1007/s10844-014-0351-2

Fisher, D., DeLine, R., Czerwinski, M., & Drucker, S. (2012). Interactions with big data analytics.
Interactions, 19(3), 50–59. https://doi.org/10.1145/2168931.2168943

Floratou, A., Minhas, U. F., & Özcan, F. (2014). SQL-on-Hadoop: Full Circle Back to Shared-nothing
Database Architectures. Proc. VLDB Endow., 7(12), 1295–1306.
https://doi.org/10.14778/2732977.2733002

Foo, A. (2013). Is the data warehouse dead? IBM Data Management Magazine, (5). Retrieved from
https://www.ibmbigdatahub.com/blog/data-warehouse-dead

Gai, K., Qiu, M., & Sun, X. (2018). A survey on FinTech. Journal of Network and Computer
Applications, 103, 262–273. https://doi.org/10.1016/j.jnca.2017.10.011

Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics.
International Journal of Information Management, 35(2), 137–144.
https://doi.org/10.1016/j.ijinfomgt.2014.10.007

Garber, L. (2012). Using In-Memory Analytics to Quickly Crunch Big Data. Computer, 45(10), 16–18.
https://doi.org/10.1109/MC.2012.358

GDELT. (2018). The GDELT Project. Retrieved August 6, 2018, from https://www.gdeltproject.org/

Ghemawat, S., Gobioff, H., & Leung, S.-T. (2003). The Google file system. ACM SIGOPS Operating
Systems Review, 37, 29–43. https://doi.org/10.1145/1165389.945450

Golab, L., & Johnson, T. (2014). Data stream warehousing. 2014 IEEE 30th International Conference
on Data Engineering (ICDE), 1290–1293. https://doi.org/10.1109/ICDE.2014.6816763

Golfarelli, M., & Rizzi, S. (2018). From Star Schemas to Big Data: 20+ Years of Data Warehouse
Research. In S. Flesca, S. Greco, E. Masciari, & D. Saccà (Eds.), A Comprehensive Guide
Through the Italian Database Research Over the Last 25 Years (pp. 93–107).
https://doi.org/10.1007/978-3-319-61893-7_6

Golov, N., & Rönnbäck, L. (2015). Big Data Normalization for Massively Parallel Processing
Databases. In M. A. Jeusfeld & K. Karlapalem (Eds.), Advances in Conceptual Modeling (pp.
154–163). https://doi.org/10.1007/978-3-319-25747-1_16

References | 233

Golov, N., & Rönnbäck, L. (2017). Big Data normalization for massively parallel processing databases.
Computer Standards & Interfaces, 54, Part 2, 86–93.
https://doi.org/10.1016/j.csi.2017.01.009

Google. (2018). GitHub Repositories Dataset on Google BigQuery. Retrieved August 6, 2018, from
https://bigquery.cloud.google.com/dataset/bigquery-public-data:github_repos

Google Maps. (2017). Google Maps JavaScript API. Retrieved March 5, 2017, from
https://developers.google.com/maps/documentation/javascript/

Google Trends. (2018). Interest in Big Data over time. Retrieved August 7, 2018, from
https://www.google.pt/trends/explore#q=big%20data

Goss, R. G., & Veeramuthu, K. (2013). Heading towards big data building a better data warehouse
for more data, more speed, and more users. Advanced Semiconductor Manufacturing
Conference (ASMC), 2013 24th Annual SEMI, 220–225. Retrieved from
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6552808

Gröger, C., Schwarz, H., & Mitschang, B. (2014). The Deep Data Warehouse: Link-Based Integration
and Enrichment of Warehouse Data and Unstructured Content. IEEE 18th International
Enterprise Distributed Object Computing Conference (EDOC), 210–217.
https://doi.org/10.1109/EDOC.2014.36

Grolinger, K., Higashino, W. A., Tiwari, A., & Capretz, M. A. (2013). Data management in cloud
environments: NoSQL and NewSQL data stores. Journal of Cloud Computing: Advances,
Systems and Applications, 2(1), 22.

Guo, S., Xiong, J., Wang, W., & Lee, R. (2012). Mastiff: A MapReduce-based System for Time-Based
Big Data Analytics. 2012 IEEE International Conference on Cluster Computing (CLUSTER), 72–
80. https://doi.org/10.1109/CLUSTER.2012.10

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA
data mining software: an update. ACM SIGKDD Explorations Newsletter, 11(1), 10–18.

Han, J., Pei, J., & Kamber, M. (2012). Data Mining: Concepts and Techniques (3rd ed.). Elsevier.

Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Khan, S. U. (2015). The rise of
“big data” on cloud computing: Review and open research issues. Information Systems, 47, 98–
115. https://doi.org/10.1016/j.is.2014.07.006

Hausenblas, M., & Nadeau, J. (2013). Apache drill: interactive ad-hoc analysis at scale. Big Data,
1(2), 100–104.

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design Science in Information Systems
Research. MIS Q., 28(1), 75–105.

Hortonworks. (2016). Solving Apache Hadoop Security: A Holistic Approach to a Secure Data Lake
[White paper]. Retrieved from Hortonworks website: http://hortonworks.com/info/solving-
hadoop-security/

234 | Advancing the Design and Implementation of Big Data Warehousing Systems

Houari, M. E., Rhanoui, M., & Asri, B. E. (2017). Hybrid big data warehouse for on-demand decision
needs. 2017 International Conference on Electrical and Information Technologies (ICEIT), 1–6.
https://doi.org/10.1109/EITech.2017.8255261

Hu, P. (2015). The Cooperative Study Between the Hadoop Big Data Platform and the Traditional
Data Warehouse. Open Automation and Control Systems Journal, 7, 1144–1152.

Hu, S., Liu, W., Rabl, T., Huang, S., Liang, Y., Xiao, Z., … Wang, J. (2014). DualTable: A Hybrid
Storage Model for Update Optimization in Hive. ArXiv:1404.6878 [Cs]. Retrieved from
http://arxiv.org/abs/1404.6878

Huai, Y., Chauhan, A., Gates, A., Hagleitner, G., Hanson, E. N., O’Malley, O., … Zhang, X. (2014).
Major Technical Advancements in Apache Hive. Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data, 1235–1246.
https://doi.org/10.1145/2588555.2595630

Inmon, W. H., & Linstedt, D. (2014). Data Architecture: A Primer for the Data Scientist: Big Data,
Data Warehouse and Data Vault (1st ed.). Morgan Kaufmann.

Intel IT Center. (2012). Peer Research: Big Data Analytics [Report]. Retrieved from Intel website:
http://www.intel.com/content/dam/www/public/us/en/documents/reports/data-insights-
peer-research-report.pdf

Jagadish, H. V., Gehrke, J., Labrinidis, A., Papakonstantinou, Y., Patel, J. M., Ramakrishnan, R., &
Shahabi, C. (2014). Big data and its technical challenges. Communications of the ACM, 57(7),
86–94. http://dx.doi.org/10.1145/2611567

Jara, A. J., Bocchi, Y., & Genoud, D. (2013). Determining human dynamics through the internet of
things. Proceedings of the 2013 IEEE/WIC/ACM International Joint Conferences on Web
Intelligence (WI) and Intelligent Agent Technologies (IAT)-Volume 03, 109–113. Retrieved from
http://dl.acm.org/citation.cfm?id=2569254

Ji, C., Li, Y., Qiu, W., Awada, U., & Li, K. (2012). Big Data Processing in Cloud Computing
Environments. Proceedings of the 2012 12th International Symposium on Pervasive Systems,
Algorithms, and Networks (i-Span 2012), 17–23. https://doi.org/10.1109/I-SPAN.2012.9

jQuery. (2017). jQuery. Retrieved March 5, 2017, from https://jquery.com/

Jukic, N., Jukic, B., Sharma, A., Nestorov, S., & Arnold, B. K. (2017). Expediting analytical databases
with columnar approach. Decision Support Systems, 95, 61–81.
https://doi.org/10.1016/j.dss.2016.12.002

Jukic, N., Sharma, A., Nestorov, S., & Jukic, B. (2015). Augmenting Data Warehouses with Big Data.
Information Systems Management, 32(3), 200–209.
https://doi.org/10.1080/10580530.2015.1044338

Kafka. (2018). Apache Kafka Homepage. Retrieved July 3, 2018, from https://kafka.apache.org/

References | 235

Kambatla, K., Kollias, G., Kumar, V., & Grama, A. (2014). Trends in big data analytics. Journal of
Parallel and Distributed Computing, 74(7), 2561–2573.
https://doi.org/10.1016/j.jpdc.2014.01.003

Kearney, M. (2012). Embracing big data from the warehouse. IBM Data Management Magazine, (4).
Retrieved from http://www.ibmbigdatahub.com/blog/embracing-big-data-warehouse

Kimball, R., & Ross, M. (2013). The data warehouse toolkit: The definitive guide to dimensional
modeling (3rd ed.). John Wiley & Sons.

Kobielus, J. (2012). Hadoop: Nucleus of the next-generation big data warehouse. IBM Data
Management Magazine, (7). Retrieved from http://www.ibmbigdatahub.com/blog/hadoop-
nucleus-next-generation-big-data-warehouse

Kornacker, M., Behm, A., Bittorf, V., Bobrovytsky, T., Choi, A., Erickson, J., … Yoder, M. (2015).
Impala: A modern, open-source sql engine for hadoop. Proceedings of the 7th Biennial
Conference on Innovative Data Systems Research (CIDR’15).

Krishnan, K. (2013). Data Warehousing in the Age of Big Data (1st ed.). San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.

Laney, D. (2001). 3D Data Management: Controlling Data Volume, Velocity, and Variety [Report].
Retrieved from META Group Inc website: http://blogs.gartner.com/doug-
laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-
Variety.pdf

LaValle, S., Lesser, E., Shockley, R., Hopkins, M. S., & Kruschwitz, N. (2011). Big data, analytics and
the path from insights to value. MIT Sloan Management Review, 52(2), 21–32.

Lebdaoui, I., Orhanou, G., & Elhajji, S. (2014). An Integration Adaptation for Real-Time
Datawarehousing. International Journal of Software Engineering and Its Applications, 8(11),
115–128.

Li, X., & Mao, Y. (2015). Real-Time data ETL framework for big real-time data analysis. 2015 IEEE
International Conference on Information and Automation, 1289–1294.
https://doi.org/10.1109/ICInfA.2015.7279485

Lipcon, T., Alves, D., Burkert, D., Cryans, J., Dembo, A., Percy, M., … McCabe, C. P. (2015). Kudu:
Storage for Fast Analytics on Fast Data. Retrieved from Cloudera website:
http://getkudu.io/kudu.pdf

Liu, Y., & Vitolo, T. M. (2013). Graph Data Warehouse: Steps to Integrating Graph Databases Into the
Traditional Conceptual Structure of a Data Warehouse. 2013 IEEE International Congress on Big
Data (BigData Congress), 433–434. https://doi.org/10.1109/BigData.Congress.2013.72

Mackey, G., Sehrish, S., & Wang, J. (2009). Improving metadata management for small files in HDFS.
2009 IEEE International Conference on Cluster Computing and Workshops, 1–4.
https://doi.org/10.1109/CLUSTR.2009.5289133

236 | Advancing the Design and Implementation of Big Data Warehousing Systems

Madden, S. (2012). From databases to big data. IEEE Internet Computing, 16(3), 4–6.
http://dx.doi.org/10.1109/MIC.2012.50

Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H. (2011). Big
data: The next frontier for innovation, competition, and productivity [Report]. Retrieved from
McKinsey Global Institute website: http://www.citeulike.org/group/18242/article/9341321

Martins, D., Ramos, C. M. Q., Rodrigues, J. M. F., Cardoso, P. J. S., Lam, R., & Serra, F. (2015).
Challenges in Building a Big Data Warehouse Applied to the Hotel Business Intelligence.
Proceedings of the 6th Int. Conf. on Applied Informatics and Computing Theory. Retrieved from
http://w3.ualg.pt/~jrodrig/papers_pdf/2015AICT2015.pdf

Marz, N., & Warren, J. (2015). Big Data: Principles and best practices of scalable real-time data
systems. Manning Publications Co.

McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D. J., & Barton, D. (2012). Big data. The
Management Revolution. The Management Revolution. Harvard Bus Rev, 90(10), 61–67.

Michael, K., & Miller, K. W. (2013). Big Data: New Opportunities and New Challenges [Guest editors’
introduction]. Computer, 46(6), 22–24. https://doi.org/10.1109/MC.2013.196

Microsoft. (2018). SQL-server-samples: Official Microsoft GitHub Repository containing code samples
for SQL Server. Retrieved from https://github.com/Microsoft/sql-server-samples

Mohanty, S., Jagadeesh, M., & Srivatsa, H. (2013). Big Data imperatives: enterprise Big Data
warehouse, BI implementations and analytics (1st ed.). Apress.

Monteiro, C. S., Costa, C., Pina, A., Santos, M. Y., & Ferrão, P. (2018). An urban building database
(UBD) supporting a smart city information system. Energy and Buildings, 158, 244–260.
https://doi.org/10.1016/j.enbuild.2017.10.009

Murthy, R., & Goel, R. (2012). Peregrine: Low-latency Queries on Hive Warehouse Data. XRDS, 19(1),
40–43. https://doi.org/10.1145/2331042.2331056

Nah, F. F.-H. (2004). A study on tolerable waiting time: how long are Web users willing to wait?
Behaviour & Information Technology, 23(3), 153–163.
https://doi.org/10.1080/01449290410001669914

NBD-PWG. (2015). NIST Big Data Interoperability Framework: Volume 6, Reference Architecture
(Technical Report No. NIST SP 1500-6). Retrieved from National Institute of Standards and
Technology website: http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1500-6.pdf

Nielsen, J. (1993). Usability Engineering (1st ed.). Amsterdam: Morgan Kaufmann.

NoSQL. (2018). NOSQL Databases. Retrieved November 1, 2018, from http://nosql-database.org/

O’Leary, D. E. (2014). Embedding AI and Crowdsourcing in the Big Data Lake. IEEE Intelligent
Systems, 29(5), 70–73. https://doi.org/10.1109/MIS.2014.82

O’Neil, P. E., O’Neil, E. J., & Chen, X. (2009). The star schema benchmark (SSB). Retrieved from
http://www.cs.umb.edu/~poneil/StarSchemaB.PDF

References | 237

OpenAQ. (2018). OpenAQ Platform. Retrieved August 6, 2018, from OpenAQ website:
https://openaq.org/

O’Sullivan, P., Thompson, G., & Clifford, A. (2014). Applying data models to big data architectures.
IBM Journal of Research and Development, 58(5/6), 18–1.

Parquet. (2018). Apache Parquet Homepage. Retrieved March 27, 2016, from Apache Parquet
Homepage website: https://parquet.apache.org/

Peffers, K., Tuunanen, T., Rothenberger, M., & Chatterjee, S. (2007). A Design Science Research
Methodology for Information Systems Research. J. Manage. Inf. Syst., 24(3), 45–77.
https://doi.org/10.2753/MIS0742-1222240302

Presto. (2016, October). Presto | Distributed SQL Query Engine for Big Data. Retrieved October 23,
2016, from https://prestodb.io/

Provost, F., & Fawcett, T. (2013). Data Science and its Relationship to Big Data and Data-Driven
Decision Making. Big Data, 1(1), 51–59. https://doi.org/10.1089/big.2013.1508

Pujari, A. K. (2001). Data mining techniques (1st ed.). Universities press.

Qiao, L., Li, Y., Takiar, S., Liu, Z., Veeramreddy, N., Tu, M., … others. (2015). Gobblin: Unifying data
ingestion for Hadoop. Proceedings of the VLDB Endowment, 8(12), 1764–1769.

Qu, W., Rappold, M., & Dessloch, S. (2013). Adaptive prejoin approach for performance optimization
in mapreduce-based warehouses. CEUR Workshop Proceedings, 1020, 5–9. Retrieved from
Scopus.

Ramos, C. M. Q., Correia, M. B., Rodrigues, J. M. F., Martins, D., & Serra, F. (2015). Big data
warehouse framework for smart revenue management. Advances in Environmental Science and
Energy Planning, 13–22.

Ramos, C. M. Q., Martins, D. J., Serra, F., Lam, R., Cardoso, P. J. S., Correia, M. B., & Rodrigues, J.
M. F. (2017). Framework for a Hospitality Big Data Warehouse: The Implementation of an
Efficient Hospitality Business Intelligence System. International Journal of Information Systems
in the Service Sector (IJISSS), 9(2), 27–45. https://doi.org/10.4018/IJISSS.2017040102

Redis. (2018). Redis Homepage. Retrieved August 7, 2018, from https://redis.io/

Russom, P. (2011). Big data analytics (pp. 1–35) [Best Practices Report]. Retrieved from TDWI
Research website: https://tdwi.org/~/media/0C630BCFD9064A9287148F1FA33460E4.pdf

Russom, P. (2014). Evolving Data Warehouse Architectures in the Age of Big Data. Retrieved from
The Data Warehouse Institute website: https://tdwi.org/research/2014/04/best-practices-
report-evolving-data-warehouse-architectures-in-the-age-of-big-data.aspx

Russom, P. (2016). Data Warehouse Modernization in the Age of Big Data Analytics. Retrieved from
The Data Warehouse Institute website: https://tdwi.org/research/2016/03/best-practices-
report-data-warehouse-modernization/asset.aspx?tc=assetpg

238 | Advancing the Design and Implementation of Big Data Warehousing Systems

Sagiroglu, S., & Sinanc, D. (2013). Big data: A review. 2013 International Conference on Collaboration
Technologies and Systems (CTS), 42–47. https://doi.org/10.1109/CTS.2013.6567202

Santos, M. Y., & Costa, C. (2016). Data Warehousing in Big Data: From Multidimensional to Tabular
Data Models. Proceedings of the Ninth International C* Conference on Computer Science &
Software Engineering, 51–60. https://doi.org/10.1145/2948992.2949024

Santos, M. Y., Costa, C., Galvão, J., Andrade, C., Martinho, B. A., Lima, F. V., & Costa, E. (2017).
Evaluating SQL-on-Hadoop for Big Data Warehousing on Not-So-Good Hardware. Proceedings of
the 21st International Database Engineering & Applications Symposium. IDEAS 2017, 242–252.
https://doi.org/10.1145/3105831.3105842

Santos, M. Y., & Ramos, I. (2009). Business Intelligence: Tecnologias da informação na gestão de
conhecimento (2nd ed.). FCA - Editora de Informática.

Santoso, L. W., & Yulia. (2017). Data Warehouse with Big Data Technology for Higher Education.
Procedia Computer Science, 124, 93–99. https://doi.org/10.1016/j.procs.2017.12.134

Schroeck, M., Shockley, R., Janet, S., Romero-Morales, D., & Tufano, P. (2012). Analytics: The real-
world use of big data. How innovative enterprises extract value from uncertain data. Retrieved
from https://www.ibm.com/smarterplanet/global/files/se__sv_se__intelligence__Analytics_-
_The_real-world_use_of_big_data.pdf

Sebaa, A., Chikh, F., Nouicer, A., & Tari, A. (2018). Medical Big Data Warehouse: Architecture and
System Design, a Case Study: Improving Healthcare Resources Distribution. Journal of Medical
Systems, 42(4), 59. https://doi.org/10.1007/s10916-018-0894-9

Shanahan, J. G., & Dai, L. (2015). Large scale distributed data science using apache spark.
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2323–2324. Retrieved from http://dl.acm.org/citation.cfm?id=2789993

Shvachko, K., Kuang, H., Radia, S., & Chansler, R. (2010). The Hadoop Distributed File System.
2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), 1–10.
https://doi.org/10.1109/MSST.2010.5496972

Soliman, M. A. (2017). Big Data Query Engines. In A. Y. Zomaya & S. Sakr (Eds.), Handbook of Big
Data Technologies (pp. 179–217). https://doi.org/10.1007/978-3-319-49340-4_6

Song, J., Guo, C., Wang, Z., Zhang, Y., Yu, G., & Pierson, J.-M. (2015). HaoLap: A Hadoop based
OLAP system for big data. Journal of Systems and Software, 102, 167–181.
https://doi.org/10.1016/j.jss.2014.09.024

Spark. (2017). Spark SQL and DataFrames - Spark 2.1.1 Documentation. Retrieved May 30, 2017,
from https://spark.apache.org/docs/latest/sql-programming-guide.html#datasets-and-
dataframes

Sun, L., Hu, M., Ren, K., & Ren, M. (2013). Present Situation and Prospect of Data Warehouse
Architecture under the Background of Big Data. Information Science and Cloud Computing

References | 239

Companion (ISCC-C), 2013 International Conference On, 529–535. Retrieved from
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6973646

Sureshrao, G. S., & Ambulgekar, H. P. (2014). MapReduce-based warehouse systems: A survey.
2014 International Conference on Advances in Engineering and Technology Research (ICAETR),
1–8. https://doi.org/10.1109/ICAETR.2014.7012854

SusCity. (2016). SUSCITY – An MIT Portugal Project. Retrieved May 4, 2016, from http://suscity-
project.eu/inicio/

Talend. (2017). Talend Open Studio for Big Data Product Details. Retrieved March 5, 2017, from
https://www.talend.com/download_page_type/talend-open-studio/

Tardío, R., Mate, A., & Trujillo, J. (2015). An iterative methodology for big data management, analysis
and visualization. 2015 IEEE International Conference on Big Data (Big Data), 545–550.
https://doi.org/10.1109/BigData.2015.7363798

Thusoo, A., Sarma, J. S., Jain, N., Shao, Z., Chakka, P., Zhang, N., … Murthy, R. (2010). Hive-a
petabyte scale data warehouse using hadoop. IEEE 26th International Conference on Data
Engineering (ICDE), 996–1005. Retrieved from
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5447738

Thusoo, A., Shao, Z., Anthony, S., Borthakur, D., Jain, N., Sen Sarma, J., … Liu, H. (2010). Data
Warehousing and Analytics Infrastructure at Facebook. Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, 1013–1020.
https://doi.org/10.1145/1807167.1807278

Tian, Y., Özcan, F., Zou, T., Goncalves, R., & Pirahesh, H. (2016). Building a Hybrid Warehouse:
Efficient Joins Between Data Stored in HDFS and Enterprise Warehouse. ACM Trans. Database
Syst., 41(4), 21:1–21:38. https://doi.org/10.1145/2972950

Tien, J. M. (2013). Big Data: Unleashing information. Journal of Systems Science and Systems
Engineering, 22(2), 127–151. https://doi.org/10.1007/s11518-013-5219-4

TPC. (2017a). TPC-DS - Homepage. Retrieved August 16, 2017, from http://www.tpc.org/tpcds/

TPC. (2017b). TPC-H - Homepage. Retrieved August 16, 2017, from http://www.tpc.org/tpch/

TPC. (2018). TPC-E - Homepage. Retrieved August 3, 2018, from http://www.tpc.org/tpce/

Tria, F. D., Lefons, E., & Tangorra, F. (2014). Design process for Big Data Warehouses. 2014
International Conference on Data Science and Advanced Analytics (DSAA), 512–518.
https://doi.org/10.1109/DSAA.2014.7058120

Tria, F. D., Lefons, E., & Tangorra, F. (2018). A Framework for Evaluating Design Methodologies for
Big Data Warehouses: Measurement of the Design Process. International Journal of Data
Warehousing and Mining, 14(1), 15–39. https://doi.org/10.4018/IJDWM.2018010102

240 | Advancing the Design and Implementation of Big Data Warehousing Systems

Tudorica, B. G., & Bucur, C. (2011). A comparison between several NoSQL databases with comments
and notes. Roedunet International Conference (RoEduNet), 2011 10th, 1–5. Retrieved from
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5993686

Vale Lima, F., Costa, C., & Santos, M. Y. (2019). Real-Time Big Data Warehousing. In D. Taniar (Ed.),
Emerging Perspectives in Big Data Warehousing. IGI Global. In press.

Vardarlier, P., & Silahtaroglu, G. (2016). Gossip Management at Universities Using Big Data
Warehouse Model Integrated with a Decision Support System. International Journal of Research
in Business and Social Science (2147-4478), 5(1), 1–14.

Vijayakumar, V., & Nedunchezhian, R. (2012). A study on video data mining. International Journal of
Multimedia Information Retrieval, 1(3), 153–172. https://doi.org/10.1007/s13735-012-0016-
2

Villars, R. L., Olofson, C. W., & Eastwood, M. (2011). Big data: What it is and why you should care
[Report]. Retrieved from IDC website:
http://www.tracemyflows.com/uploads/big_data/idc_amd_big_data_whitepaper.pdf

Wang, H., Qin, X., Zhang, Y., Wang, S., & Wang, Z. (2011). LinearDB: A Relational Approach to Make
Data Warehouse Scale Like MapReduce. In J. X. Yu, M. H. Kim, & R. Unland (Eds.), Database
Systems for Advanced Applications (pp. 306–320). https://doi.org/10.1007/978-3-642-20152-
3_23

Wang, H., Qin, X., Zhou, X., Li, F., Qin, Z., Zhu, Q., & Wang, S. (2015). Efficient query processing
framework for big data warehouse: an almost join-free approach. Frontiers of Computer Science,
9(2), 224–236.

Wang, S., Pandis, I., Wu, C., He, S., Johnson, D., Emam, I., … Guo, Y. (2014). High dimensional
biological data retrieval optimization with NoSQL technology. BMC Genomics, 15 Suppl 8, S3–
S3. https://doi.org/10.1186/1471-2164-15-S8-S3

Ward, J. S., & Barker, A. (2013). Undefined By Data: A Survey of Big Data Definitions.
ArXiv:1309.5821 [Cs.DB]. Retrieved from http://arxiv.org/abs/1309.5821

Weidner, M., Dees, J., & Sanders, P. (2013). Fast OLAP query execution in main memory on large
data in a cluster. 2013 IEEE International Conference on Big Data, 518–524.
https://doi.org/10.1109/BigData.2013.6691616

White, T. (2015). Hadoop: The Definitive Guide (4th ed.). O’Reilly Media.

Wigan, M. R., & Clarke, R. (2013). Big Data’s Big Unintended Consequences. Computer, 46(6), 46–
53. https://doi.org/10.1109/MC.2013.195

Xu, C., Chen, Y., Liu, Q., Rao, W., Min, H., & Su, G. (2015). A Unified Computation Engine for Big
Data Analytics. 2015 IEEE/ACM 2nd International Symposium on Big Data Computing (BDC),
73–77. https://doi.org/10.1109/BDC.2015.41

References | 241

Xu, W., Luo, W., & Woodward, N. (2012). Analysis and Optimization of Data Import with Hadoop.
2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops PhD
Forum, 1058–1066. https://doi.org/10.1109/IPDPSW.2012.129

Yang, F., Tschetter, E., Léauté, X., Ray, N., Merlino, G., & Ganguli, D. (2014). Druid: a real-time
analytical data store. 157–168. https://doi.org/10.1145/2588555.2595631

Yang, Q., & Helfert, M. (2017). Revisiting Arguments for a Three Layered Data Warehousing
Architecture in the Context of the Hadoop Platform. 6th International Conference on Cloud
Computing and Services Science, 329–334. Retrieved from
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220%2f0005912703290334

Zhang, J., Hsu, W., & Lee, M. L. (2001). Image Mining: Issues, Frameworks and Techniques.
Proceedings of the Second International Conference on Multimedia Data Mining, 13–20.
Retrieved from http://dl.acm.org/citation.cfm?id=3012377.3012378

Zikopoulos, P., & Eaton, C. (2011). Understanding Big Data: Analytics for Enterprise Class Hadoop
and Streaming Data (1st ed.). McGraw-Hill Osborne Media.

