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“Sometimes life hits you in the head with a brick. Don't lose faith. I'm
convinced that the only thing that kept me going was that | loved what | did.
You've got to find what you love. And that is as true for your work as it is for
your lovers. Your work is going to fill a large part of your life, and the only way
to be truly satisfied is to do what you believe is great work. And the only way
to do great work is to love what you do. If you haven't found it yet, keep
looking. Don't settle. As with all matters of the heart, you'll know when you
find it. And, like any great relationship, it just gets better and better as the

years roll on. So, keep looking. Don't settle.”

(Steve Jobs, 2005)
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Abstract

Current Information Technology advancements have led organizations to pursue high business value and
competitive advantages through the collection, storage, processing, and analysis of vast amounts of
heterogonous data, generated at ever-growing rates. Since a Data Warehouse (DW) is one of the most
remarkable and fundamental enterprise data assets, nowadays, a current research trend is the concept of Big
Data Warehouse (BDW), characterizing real-time, scalable, and high-performance systems with flexible storage
based on commodity hardware, which can overcome the limitations of traditional DWs to assure mixed and
complex Big Data analytics workloads. The state-of-the-art in Big Data Warehousing (BDWing) reflects the young
age of the concept, as well as the ambiguity and lack of integrated approaches for designing and implementing
these systems. Fulfilling this gap is of major relevance, reason why this work proposes an approach composed
of several models and methods for the design and implementation of BDWs, focusing on the logical
components, data flows, technological infrastructure, data modeling, and data Collection, Preparation, and
Enrichment (CPE). To demonstrate the usefulness, effectiveness, and efficiency of the proposed approach, this
work considers four demonstration cases: 1) the application of the proposed data modeling method in several
potential real-world applications, including retail, manufacturing, finance, software development, sensor-based
systems, and worldwide news and events; 2) the application of the CPE method to process batch and streaming
data arriving at the BDW from several source systems; 3) a custom-made extension of the Star Schema
Benchmark (SSB), named the SSB+, in which several workloads were developed to benchmark a BDW
implemented using the proposed approach, comparing its performance against a traditional dimensional DW:;
4) a realworld instantiation based on the development of a BDWing system in the context of smart cities. The
results of this research work reveal that the approach can be applied and generalized to support several
application contexts, providing adequate and flexible data models that can reduce the implementation time
between data collection and data analysis. Moreover, the proposed approach frequently presents faster query
execution times and more efficient resource usage than a traditional dimensional modeling approach.
Consequently, the proposed approach is able to provide general models and methods that can be used to
design and implement BDWs, advancing the state-of-the-art based on a systematic approach rather than an
ad hoc and use case driven one, which is seen as a valuable contribution to the technical and scientific

community related to this research topic.

Keywords - Big Data, Big Data Warehouse, Data Engineering, Data Science.



X | Advancing the Design and Implementation of Big Data Warehousing Systems

This page was intentionally left blank



Advancing the Design and Implementation of Big Data Warehousing Systems | Xi

Resumo

Os avancos atuais das Tecnologias da Informacao tém levado as organizagdes a procurar um elevado valor
do negocio e vantagens competitivas através da recolha, armazenamento, processamento, e analise de vastas
quantidades de dados heterogéneos, gerados a velocidades cada vez maiores. Dado que um DW é um
artefacto de dados fundamental nas organizagdes, uma linha de investigacao atual é o conceito de BDW,
caracterizando sistemas em tempo-real, escalaveis, de elevado desempenho, com armazenamento flexivel, e
baseados em commodity hardware, sendo capazes de ultrapassar as limitacoes dos DWs tradicionais de forma
a assegurar uma variedade de tarefas complexas de Bjg Data analytics. O estado da arte em BDWing reflete
o facto de ser um conceito emergente, bem como a ambiguidade e falta de abordagens integradas para a
concegao e implementacao destes sistemas. Preencher esta lacuna é significativamente relevante, razéo pela
qual este trabalho propée uma abordagem composta por modelos e métodos para conceber e implementar
BDWs, focando-se nos componentes légicos, fluxos de dados, infraestrutura tecnolégica, modelacéo de dados,
e na recolha, preparacao, e enriguecimento dos dados. Para demonstrar a utilidade, eficacia, e eficiéncia da
solucdo proposta, este trabalho considera quatro casos de demonstracédo: 1) a aplicacdo do método proposto
para a modelacao de dados em varias potenciais aplicacdes do mundo-real, incluindo retalho, producao,
financas, desenvolvimento de software, sistemas baseados em sensores, e noticias e eventos a nivel mundial;
2) a aplicacdo do método para recolher, preparar e enriquecer dados (bafch e streaming) provenientes de
varios sistemas-fonte; 3) uma extensao do SSB desenvolvida & medida (SSB+), na qual varias workioads foram
executadas de modo a avaliar o desempenho de um BDW implementado usando a abordagem proposta,
comparando-o com um DW dimensional tradicional; 4) uma instancia do mundo-real baseada no
desenvolvimento de um sistema de BDWing no contexto de smart cities. Os resultados deste trabalho revelam
que a abordagem pode ser aplicada e generalizada para suportar varios contextos de aplicacao,
disponibilizando modelos de dados adequados e flexiveis que conseguem reduzir o tempo de implementagao
entre a recolha de dados e a analise de dados. Além disso, a abordagem apresenta frequentemente tempos
mais rapidos na execucao de gueriese um uso de recursos mais eficiente do que uma abordagem dimensional
tradicional. Consequentemente, a abordagem proposta pode ser usada para a concecao e implementagao de
BDWs seguindo uma abordagem sistémica, em vez de uma abordagem ad fioc e use case driven, o que é

visto como um contributo valioso para a comunidade técnico-cientifica relacionada com este topico.

Palavras-chave - 5jg Data, Bjg Data Warehouse, Engenharia de Dados, Ciéncia de Dados.
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Chapter 1. Introduction

This chapter introduces the scope and motivation for this doctoral thesis, the research problem,
opportunity, and goal, as well as the expected results and the structure of this document. Moreover,
the methodology to carry out the research process is also presented in this chapter, including a
justification for its adoption, its several activities, and its relationship with the research work and

expected results.
1.1 Scope and Motivation

Our world is generating data at unprecedented rates, mainly due to the technological advancements
we face, namely in cloud computing, internet, mobile devices, and embedded sensors (Dumbill,
2013; Hashem et al., 2015; Villars, Olofson, & Eastwood, 2011). Collecting, storing, processing, and
analyzing all this data becomes increasingly challenging, but organizations who are able to surpass
these challenges and extract business value from it, will gain significant competitive advantages. They
will be able to better analyze and understand their products, stakeholders, and transactions. Big Data
is frequently seen as a buzzword for smarter and more insightful data analyses, but it can be argued
that it is more than that, it is about new challenging and more granular data sources, which require
the use of advanced analytics to create or improve products, processes, and services, as well as

adapting rapidly to business changes (Davenport, Barth, & Bean, 2012).

During the last years, there was an increased interest in Big Data (Google Trends, 2018), and it is
sometimes highlighted as fundamental for productivity growth, innovation, and customer relationship,
benefiting business areas like healthcare, public sector, retail, manufacturing, and modern cities, for
example (Manyika et al., 2011; M. Chen, Mao, & Liu, 2014). The definition of Big Data is ambiguous,
and it is difficult to quantify the level at which data becomes big (Ward & Barker, 2013). Therefore,
Big Data is frequently defined by its characteristics (e.g., volume, variety, and velocity) and the
consequent technological limitations it imposes in organizations, i.e., data that is “too big, too fast,

or too hard for existing tools to process” (Madden, 2012). It can be noticed that if Big Data is data
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that creates technological limitations, then it always existed and it always will. Currently, a paradigm
shift is happening in the way we collect, store, process, and analyze data. Organizations need to be
aware of these technological trends and strategies that may improve business value. Consequently,
Big Data as a research topic is of major relevance to assure that organizations have rigorously justified
proofs that emergent techniques and technologies can help them making progress in data-driven

business environments.

Moreover, Big Data faces innumerous research challenges mainly divided into four categories: general
dilemmas, such as the lack of consensus and rigor in the definition, models, and architectures, for
example; challenges related to the Big Data life cycle, from collection to analysis; challenges related
to security, privacy, and monitoring; and, finally, organizational change, such as new required skills
(e.g., data scientists) or changes in workflows to accommodate the data-driven mindset. Working with
Big Data implies knowledge from multiple disciplines and the term data science is frequently
highlighted to designate the area responsible for dealing with Big Data throughout the stages of its
life cycle, relying on the scientific method (defining hypothesis and validating conclusions) and on
knowledge related to areas like machine learning, programming, and databases, for example.
Therefore, in this document, data science is referred as the act of extracting patterns and trends from
data, using certain data-related techniques, regardless of its characteristics or challenges. These
insights can then be communicated or used to create data artifacts or to optimize existing ones,
improving business management and performance through data-driven decision-making (C. Costa &
Santos, 2017b). In this document, the term data science is used with the meaning afore presented,
and terms like data mining, for example, are seen as present in the knowledge of data scientists and,

therefore, referred as data science techniques (C. Costa & Santos, 2017b).

As the traditional DW is such a remarkable and fundamental enterprise asset, which leverages data
access, analysis, and presentation in appropriate forms to support fact-based decision-making in
organizations (Kimball & Ross, 2013), the community starts to question: what is its role in the current
era of Big Data? Which considerations for Big Data environments will lead to the redesign of traditional

DWs based on relational databases? Which are its main characteristics and how can a BDW be
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designed and implemented? These questions are of major relevance to understand the role of such
recognized data asset in current data-driven environments mainly dominated by volume, variety,
velocity, and advanced data analytics, which impose several difficulties to traditional techniques and
technologies (Russom, 2014, 2016). Organizations of today’s world need to understand if their
current DW is limited by the amount, structure, or velocity of data it can process, as well as consider
leveraging data science capabilities throughout their daily activities. The BDW is defined by its
characteristics, including parallel/distributed storage and processing, realtime capabilities,
scalability, elasticity, high performance, flexible storage, commodity hardware, interoperability, and
support for mixed and complex analytics. Being a recent concept, related research is emerging, and
it becomes critical to study and propose an integrated and validated approach to design and
implement both the logical layer (data models, data flows, and interoperability between components)
and physical layer (technological infrastructure) of a BDW, a critical gap identified in the literature.
The divergence regarding the concept of BDW is alarming, and a prescriptive approach in which
models, methods, and instantiations are tightly coupled is needed, providing a cohesive way to build

BDWs.

1.2 Research Problem, Opportunity, and Goal

Research related to the concept of BDW is scarce, due to the youth of this topic, and there is no
common approach to design and implement it, as the trend mainly consists in finding the best
technology to meet Big Data demands (use case driven approach), instead of a data modeling
approach (data-driven) (Clegg, 2015). Moreover, there are already some best practices, non-
structured guidelines, and implementations in specific contexts, but these do not cover many of the
characteristics of a BDW identified in the literature. As works related to the BDW concept are
multidisciplinary, certain approaches focus on general guidelines and best practices, while others
focus on the technological advancements in storage and analytics, for example. There is no integrated
approach focusing on both the logical layer and on the physical layer, in order to implement the

characteristics of a BDW with adequate evaluation (e.g., benchmarking, prototypes, and data
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modeling discussion), thus providing a general-purpose approach, and prescribing models and

methods to researchers and practitioners.

In order to identify a relevant research problem, one has conducted a literature review, whose process
is detailed in Table 1.1, highlighting the several search engines, keywords, time period, and relevance
criteria used throughout this work. The main problem identified in the literature is that there is a
significant gap between “this is what a BDW should be” and “this is how it must be designed and
implemented”, obviously leading to a use case driven approach primarily concerned with finding the
best technology to meet demands. The proposal of a prescriptive approach to design and implement
BDWs contributes to the development of new initiatives in a rigorously justified manner, wherein
models (representations of logical and infrastructural components), methods (structured practices),
and instantiations (prototypes or implemented systems) are tightly coupled and grounded on
evaluated practices. Such contribution aims to enrich data-driven approaches in Big Data
environments, in which the models and methods are so general that the context of the instantiations
becomes as irrelevant as possible, similarly to what usually happens in traditional DWs. Big Data
implies severe changes in the way one is used to build traditional DWs, including different techniques
and technologies, but this work assumes that it does not need to imply discarding the relevance of
data models and methods in favor of a use case driven approach. Consequently, the following

research goal is proposed:

“Propose a general-purpose approach for designing and implementing BDWs, wherein models

and methods are adequalely infegrated and validated.”

To fulfill the previously mentioned gap, and given the urgent need for extending the knowledge base
in BDWing, the proposed approach contains a set of models and methods to guide practitioners
working in this area, and also aims to foster future research related to BDWs, by inviting researchers
to further evaluate it in several implementation contexts. According to Hevner, March, Park, and Ram
(2004), models and methods are framed as Information Technology (IT) artifacts that can be
proposed in research processes related to the field of Information Systems (IS), to which this work

belongs. Models and methods are seen as relevant artifacts that can be used to extend the current
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Table 1.1. Literature review process.

Search Engines  Search Keywords Evaluation Time Period
ACM Digital [“Big Data"], to understand the
Library concept, relevance, challenges,

techniques and technologies. Papers
Google Scholar  or other documents are ordered by

relevance, and results are taken into 1. Titles and abstracts are
IEEE Xplore consideration until a series of titles analyzed. If the work is
suggest that they do not concern the relevant, then it is saved; From 01/2010 to
fundamentals of Big Data enumerated 09/2018
Scopus above. This decision is due to the 2. Among the saved
thousands of results retrieved from the literature, introductions ~ Note: Citations of works
Science Direct search engines. and conclusions are Zrt's(;tl‘; igi&gf;lgﬂfgn';er
read. If relevant for analysis, or if the work is a
[“Big Data” AND Warehouse(ing)], to discussion, further reference in the field.
Web of Science review works specifically related to the analysis occurs and the
BDW concept. Papers/documents are work is cited.
Google (for ordered by date. As each search
information engine retrieved only a few hundred
about certain articles, all the results are taken into
technologies) consideration.

knowledge base with new artifacts. In this research process, the Design Science Research
Methodology (DSRM) for IS is used to create these artifacts (Peffers, Tuunanen, Rothenberger, &
Chatterjee, 2007), being described in subsection 1.4.

1.3 Research Objectives

As seen in the previous section, the main goal of this doctoral thesis is the proposal of an approach
to design and implement BDWs, which should respect the characteristics of a BDW according to the
literature, in order to provide prescriptive models and methods for building these complex data assets
without ignoring any relevant aspects. Moreover, this doctoral thesis is not focused on “lift and shift”
strategies, therefore, the coexistence of the traditional DW with Big Data technologies is not considered
here. Consequently, one foresees the use of the proposed approach in the following scenarios: the
organization does not currently have a traditional DW and wants to implement a modern data asset,
namely a BDW; the organization has a traditional DW and wants to replace it (“rip and replace”

strategy): or, finally, the organization relies on a use case driven approach, maintaining a complex
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and not interoperable federation of different technologies, and wants a data-driven approach with high

interoperability between components, well-defined methods, data models, and data flows.

As there is a gap between the understanding of the BDW and the way to implement one, such artifacts
are of major relevance to the scientific community and to the practitioners in the area of data
engineering and data science, consequently leading to a contribution in which models, methods, and
instantiations are tightly coupled and scientifically evaluated. Such contribution provides a structured
guide to DW practitioners and promotes future research regarding the concept of BDW, without seeing
it as a use case driven approach. Taking this into consideration, the research objectives of this work

are defined as follows:

1. Proposal of models and methods:

a. A model of the logical components and their interoperability, using as general guidelines
the National Institute of Standards and technology (NIST) Big Data Reference Architecture
(NBDRA) (NBD-PWG, 2015), the Big Data Processing Flow (Krishnan, 2013), the Data
Highway Concept (Kimball & Ross, 2013), and the Lambda Architecture (Marz & Warren,
2015). This model also represents how data flows through the different components,
rigorously detailing how they interchange data according to the proposed data modeling
method;

b. A method for collecting, preparing, and enriching data flowing to the BDW, including
structured, semi-structured, and unstructured data. As previously mentioned, data
science techniques (e.g., data mining and text mining) should be taken into consideration,
in order to give structure to the data and deliver predictive capabilities. Such concern
should be included in the method to propose. This method should also include concerns
regarding batch data and streaming data (low latency and high frequency);

c. A technological infrastructure model, representing how the Big Data technologies can be
used, organized, and deployed in a shared-nothing architecture;

d. A data modeling method that is able to accommodate all types of data regardless of their

structure and subject. Obviously, unstructured data does not fit into predefined data
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models, therefore, in this case, data mining and text mining techniques are used to extract
value from data, giving structure to the relevant findings, and storing those in the BDW.
Consequently, the BDW will not only have historical data, but also realtime data and
predictive capabilities.

2. Application and evaluation of the models and methods using several demonstration cases:

a. Evaluate the suitability of the proposed data modeling method when applied to several
real-world problems (e.g., retail, manufacturing, finance, sensor-based analysis, and
digital media). This objective is focused on making available a set of BDW data models
and examples of data modeling guidelines, which practitioners can take into consideration
when building their own applications. These examples also complement the smart cities
BDW demonstration case presented below, by providing other BDWing contexts;

b. Design and implementation details regarding batch and streaming data CPE processes.
Batch processes do not aim for low latency and high frequency, unlike streaming
processes, in which each data point should be loaded into the BDW with a latency
between milliseconds and a few seconds. This demonstration case should also consider
how several data science techniques (e.g., data mining and text mining) can be efficiently
included in batch and streaming data CPE processes, as the approach aims to support
the design and implementation of both descriptive and predictive BDWs, as mentioned in
the previous objectives;

c. Benchmark of several workloads and scenarios, including different Scale Factors (SFs)
and dimensions size for batch data, use of data partitioning, use of nested attributes, drill
across, window and analytics functions, concurrent workloads, and stream processing.
This will allow for the evaluation of how a BDW created using the proposed approach
handles large scans needed for ad hoc analysis, reporting, and data visualization,
compared to a traditional dimensional DW, as well as how it handles streaming scenarios,
concurrent workloads, and semi-structured analytics (e.g., analysis using nested arrays,

key-value pairs, or geometry objects);
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d. Evaluate the suitability of the proposed approach for solving real-world BDWing problems,
by implementing a prototype of a BDWing system for smart cities that follows the proposed
models and methods. In this case, the SusCity research project will be used, which is
focused on the development and integration of new tools and services to improve the
efficiency of urban resources, reducing the environmental impact and promoting
economic development and reliability (SusCity, 2016). The main goal is to advance the
science of urban systems modeling and the data representation supported by the
collection and processing of Big Data. This allows the creation of new services that explore
economic opportunities and the sustainability of urban systems. The SusCity project has
a testbed in Lisbon that includes several data sources (e.g., sensors, census, buildings
characteristics, and geolocation data related to mobility), generating data at different
velocities (e.g., batch and streaming), with significant volume. Moreover, data science
techniques, such as data mining (e.g., clustering and time series forecasting) and data
visualization, are crucial to create new services to improve urban systems. Therefore, this
research project is used to instantiate the approach, discussing and evaluating the
proposed models and methods for collecting, storing, processing, and analyzing Big Data,

thus proving the suitability of the approach to solve real-world problems.

It is worth mentioning that throughout this doctoral thesis the invention, adaptation or customization
of any Big Data technology is not considered as a contribution. Moreover, this work does not aim to
study or focus on data quality mechanisms. Instead, the focus is on the proposal of a cohesive way
of building BDWs, a model-oriented and method-oriented approach to assure the adequate
interoperability between the different components of a BDW, and evaluate it through demonstration

cases that will use state-ofthe-art Big Data technologies already developed.

1.4 Research Methodology

Research on IS is mainly characterized by two paradigms: behavioral science, which is focused on
the development and verification of theories that explain or predict human or organizational behavior;

and design science, which seeks to extend the boundaries of human and organizational capabilities
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by creating new and innovative IT artifacts, broadly defined as constructs (vocabulary and symbols),
models (abstractions and representations), methods (algorithms and practices), and instantiations
(implemented systems and prototypes) (Hevner et al., 2004). As the proposed approach is a
collection of IT artifacts (models and methods), the use of the DSRM for IS from Peffers, Tuunanen,

Rothenberger, and Chatterjee (2007) is suitable to carry out this research process.

The DSRM for IS aims to provide a rigorous way of carrying out design science research and aid the
acceptance of this kind of research in the field of IS. Without the existence of a model, the community
was facing problems in the evaluation of design science research, and distinguish it from practice
activities was difficult. Therefore, the DSRM for IS is seen as a methodology to produce and present
design science research, helping researchers to ground their work by referencing a commonly
accepted methodology, rather than justifying the research process on an ad hoc basis (Peffers et al.,
2007). Figure 1.1 presents the DSRM for IS used in this work, in which the entry point of the research
process is considered to be problem-centered, after reviewing the literature and identifying the lack of

a prescriptive approach to design and implement BDWs. The research process is as follows:

1. Problem identification and motivation - this activity focuses on defining the research problem
and justifying the value of the solution, both already highlighted in this chapter. The problem

definition is used to motivate the proposal of an artifact that effectively provides a solution.

Identify Problem Define Objectives Design & Demonstration Evaluation Communication
& Motivate of a Solution Development
Inference Theory How to Metrics Disciplinary
Knowledge Analysis Knowledge
Knowledge

Problem-Centered
Initiation

Research Entry Point

Figure 1.1. Research methodology (DSRM for IS). Adapted from (Peffers et al., 2007).
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At this point, the lack of a prescriptive approach to design and implement BDWs covering
logical and physical aspects is the identified research problem, according to the literature,
and the main motivation, as already highlighted, is to address this gap and help researchers
and practitioners in the area. The inputs used in this activity are the state-of-the-art in Big
Data and BDW, as well as the relevance to provide a solution for the identified problem;

2. Define the objectives for a solution - this should be inferred from the problem definition. In
this doctoral thesis, these objectives are presented in section 1.3, encompassed by the main
goal of proposing the BDWing approach. Part of the research objectives are mainly centered
around efficiency, as several benchmarking metrics are used to assess the proposed
guidelines. In this context, a traditional dimensional DW is frequently used as baseline, and
thresholds like executing ad hoc queries in large datasets within a few seconds or tens of
seconds is expected, according to the current state-of-the-art regarding storage technologies
and analytical mechanisms for BDW implementation. Regarding the SusCity prototype, the
evaluation is mainly based on effectiveness, i.e., the artifact is applied to solve the problem,
and it either solves it completely, partially or does not solve it in any form, generating a
discussion of the results. Finally, there are other research objectives presented in section 1.3
aiming to clarify some of the guidelines provided to practitioners, namely the data CPE and
data modeling guidelines. Once there are no similar approaches to design and build BDWs,
the proposal cannot be directly compared to any related work;

3. Design and development - in this activity, the artifacts are created, including the models and
methods of the BDWing approach. They should comply with the characteristics of a BDW
identified in the literature, in order to provide the adequate functionalities. The inputs used
in this activity are the state-of-the-art in Big Data and BDW, mostly the knowledge related to
techniques and technologies suitable for BDWs, as well as some best practices and non-
structured guidelines already present in the literature;

4. Demonstration - the approach is instantiated to demonstrate its usefulness and effectiveness
for solving a real problem in the context of smart cities, namely in the SusCity research

project. In addition to that, as mentioned, a custom-made extension of the SSB benchmark
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(SSB+) is used to provide another demonstration case and to consolidate the evaluation of
the approach. Furthermore, two other demonstration cases related to data CPE and data
modeling are also developed to consolidate the work regarding some design and development
choices. Consequently, in this doctoral thesis, four demonstration cases are developed, in
order to apply the proposed artifacts in different contexts. Throughout this activity, it is crucial
the knowledge on how to use the artifact to solve the problem;

Evaluation - it will be observed and measured how well the approach supports the solution
of the problem, when compared to the research objectives. The evaluation of the
demonstration cases consists in assessing the proposed approach, mainly in terms of
effectiveness, complexity and latency, throughout different phases of the Big Data life cycle
(e.g., collection/loading, cleansing, integration, transformation, and analysis).
Considerations regarding storage, Random Access Memory (RAM), and Central Processing
Unit (CPU) requirements are also relevant for discussion whenever applicable. Finally, the
proposed approach should respect the characteristics of a BDW identified in the literature, in
order to be evaluated as a satisfactory prescriptive approach. The following points detail the
evaluation activity:

a. The proposed approach should be general-purpose, being suitable for BDWing
contexts and focusing on both the physical and logical layers. For its evaluation, an
extension of the SSB benchmark (SSB+) is developed and executed (streaming data
scenarios, drill across, window and analytics functions, dimensions size evaluation,
nested attributes, concurrent workloads, and data partitioning), in order to observe
several phenomena under controlled and general-purpose contexts, providing
adequate measures mainly regarding latency, CPU usage, and memory and storage
constraints. For queries based on large scans of batch and streaming data, the
optimal interactivity threshold is within a few seconds (maximum of 10 seconds),
based on literature related to the users’ tolerance regarding a computer’s response
time (Nah, 2004; Nielsen, 1993), while the satisfactory interactivity threshold is a

few tens of seconds (e.g., 20 or 30 seconds), depending on the business
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requirements, data volume, complexity of the queries, number of users, frequency
of inserts/updates, and configuration of the infrastructure;

b. In addition to that, the proposed approach is also evaluated using a real-world
instantiation that will show how the same can be applied to produce working systems
in real-world contexts, in this case, the SusCity research project (SusCity, 2016).
This evaluation will focus on the effectiveness of a BDW to support a Web-based
interactive data visualization platform providing intensive geospatial analytics and
simulations (e.g., buildings retrofitting measures and energy grid performance under
different scenarios). In the context of the SusCity project, interactivity requires less
than 10 seconds of response time, for the same reasons presented above (Nah,
2004; Nielsen, 1993);

c. Finally, this work also includes two additional evaluation contexts: the first one
focuses on the development of adequate data CPE processes following the proposed
approach; while the second one focuses on the data modeling aspect of BDWs
according to the method proposed in this work, presenting several BDW data models
that are suitable for real-world applications. In this case, evaluation will mainly focus
on effectiveness and complexity, i.e., assessing if the models and methods are able
to support several data CPE workloads and real-world BDW applications, while
avoiding some complexity typically found in traditional dimensional DWs (e.g.,
several types of dimensions, bridge tables, SCDs, and late arriving dimensions).

6. Communication - it mainly involves writing and publishing this doctoral thesis, scientific
publications in conferences and journals, books, or other communications to practitioners, if
applicable. This activity aims to make widely available the problem and its relevance, as well

as the artifact and its usefulness, novelty, rigor, effectiveness, and efficiency.

1.5 Document Structure

After this chapter with the scope, motivation, research goal, objectives, and methodology, this

document is structured as follows: Chapter 2 presents the relevance, definition, and challenges in Big
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Data contexts, and the techniques and technologies to design and implement Big Data solutions,
including relevant Big Data architectures; Chapter 3 describes works related to BDWing, including
requirements identification, design changes, guidelines, advancements and implementations in
specific contexts; Chapter 4 presents the proposed approach, providing the models and methods for
designing and implementing effective and efficient BDWs, which allows for the understanding of the
approach in its general form, i.e., without being instantiated in a specific context; Chapter 5 provides
several BDW data models and data modeling considerations that practitioners can follow to
implement BDW applications, being this chapter particularly useful for clarifying and applying the
general data modeling method, and to facilitate the transition from theory to practice; Chapter 6
presents several workloads for collecting, preparing and enriching the data according to the proposed
approach, facilitating the understanding of the adequate mechanisms to deal with the data throughout
these three stages; Chapter 7 evaluates the performance of BDWs, by benchmarking several design
decisions related to the approach proposed in this work, which serves to provide support for its models
and methods; Chapter 8 presents a real-world BDW application in the context of smart cities, namely
discussing the implementation of the SusCity project from data collection to data visualization,
finalizing the discussion of the demonstration cases developed in this work; Chapter 9 concludes with

some remarks about the undertaken work and some prospects for future work.



14 | Advancing the Design and Implementation of Big Data Warehousing Systems

This page was intentionally left blank



BigData | 15

Chapter 2. Big Data

The way people interact with organizations and the rate at which the transactions occur create
unprecedented challenges in data collection, storage, processing, and analysis. If organizations find
a way to extract business value from this data, they will most likely gain significant competitive
advantages (Villars et al., 2011). Big Data is often seen as a buzzword for smarter and more insightful
data analysis, but it is more than that, it is about new challenging data sources helping to understand
business at a more granular level, creating new products or services, and responding to business

changes as they occur (Davenport et al., 2012).

We live in a world constantly producing and consuming data, being a priority to understand the value
that can be extracted and analyzed from it. Organizations need to understand and analyze relevant
data flows, join data analytics with product/process development, and move it closer to the core
business (Davenport et al., 2012). This chapter presents the relevance of Big Data in today’s world,
several attempts to define it, the related challenges, and several techniques and technologies to

efficiently design and implement Big Data solutions (C. Costa & Santos, 2017a).
2.1 Big Data Relevance

Over the last years, the interest in Big Data has increased considerably (Google Trends, 2018),
particularly after 2012, as can be seen in Figure 2.1. In a McKinsey Global Institute’s report, Manyika
et al. (2011) argue that Big Data will become fundamental for productivity growth, innovation, and
customer relationship among organizations, highlighting its relevance in healthcare, public sector,
retail, manufacturing, and personal-location contexts, stating that value can be generated in each one
of them. Nowadays, data has a strong presence in the daily activities of almost every industry,
alongside labor and capital, as Manyika et al. (2011) demonstrated by estimating that, in 2009,

almost all economic sectors in the United States had, at least, nearly 200TB of stored data per
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Figure 2.1. Increased interest in Big Data. Reprinted from (Google Trends, 2018).

organization with more than 1,000 employees. Other statistics show that the amount of data available

in today’s world is growing exponentially (Chandarana & Vijayalakshmi, 2014).

Nevertheless, as human beings tend to resist to changes, there are still the ones who ask themselves:
“Why Big Data? Why Now?” (Krishnan, 2013). According to Krishnan (2013), the concept of Big Data
is about leveraging access to a vast volume of data, which can help retrieving value for organizations,
with minimal human intervention, due to the advancements made in data processing technologies.
The author claims that Big Data always existed in several industries, but the appearance of
autonomous, fast, flexible, and scalable processes created a new paradigm shift, often resulting in a

cost reduction when compared to traditional data processing approaches.

Organizations find themselves facing this new data-driven way to conduct business, and a paradigm
shift in their infrastructure and way of thinking is, understandably, a step to consider seriously.
However, they need to foresee the value that Big Data can bring to their business (Manyika et al.,

2011):

= The use of Big Data can make information more transparent and usable across the
organization;

= Business performance can be increased with more accurate and detailed facts, which is
possible by collecting and processing more transactional data;

= Better management decisions can be made through data analysis;

= The use of Big Data has the ability to refine and reinvent products and services.
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Even so, the evidence that using Big Data intelligently will improve business performance can still be
questioned, as McAfee, Brynjolfsson, Davenport, Patil, and Barton (2012) highlight by discussing the
inadequacy of business press to demonstrate the real value of being data-driven and testing the
hypothesis that data-driven organizations are better performers than traditional ones. The authors
interviewed executives in 330 organizations and also gathered performance data about their
respective organizations. McAfee et al. (2012) come to an interesting conclusion: organizations that
view themselves as data-driven achieved better performance regarding financial and operational goals.
The authors highlight more productivity and profitability for top organizations that used data-driven
decision-making, even taking into consideration other factors like labor and capital, for example. The
results achieved by McAfee et al. (2012) rigorously corroborate the current trend for Big Data value
within organizations. The use of Big Data will become inevitable for competitive advantages across
most of the industries, from electronic and information industries to finance, insurance, or
government. Big Data can leverage increasing productivity and better customer relationship (Manyika
et al., 2011), and can potentially be used in several business areas to generate significant value for
organizations (Chandarana & Vijayalakshmi, 2014; Manyika et al., 2011; Villars et al., 2011), as

Table 2.1 demonstrates.

According to Brown, Chui, and Manyika (2011), other business areas are worth mentioning, such as
finance, insurance, and real estate. The authors present an approach that analyzes several business
areas by the ease-of-capture Big Data and its potential to generate value. The apparent trend is for
organizations to perceive value in data-driven decision-making and start collecting more data,
contributing to the continuous growth in data volume. Big Data will have a significant impact in value
creation and competitive advantage for organizations, such as new ways to interact with customers
or to develop products, services, and strategies, consequently raising profitability. Another area where
the concept of Big Data is of major relevance is the Internet of Things (loT), seen as a network of
sensors embedded into several devices (e.g., appliances, smartphones, cars), which is a significant
source of Big Data, bringing many business environments (e.g., cities) into the era of Big Data (M.

Chenetal., 2014).
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Table 2.1. Big Data applied in several business areas.

Business Area Examples of Application

Healthcare = Personalize medication and understand causes of diseases, using techniques to extract
value from vast amounts of data about medical history, medication, and drug
manufacturing, for example;

= (Other Big Data sources can include exercise data or even more unstructured data like
medical images.

Environment = Find a correlation between the measured values and the implications for the environment
through the collection of data from multiple sensors (e.g., air and water quality, metrology,
and gas emissions).

Public sector = Use Big Data to prevent fraud and errors regarding taxes;
= Customize actions by segmenting population;
= Create more transparency through data availability.
Retail = Event forecasting and customer segmentation, creating personalized products or services;
= [ ocation based marketing, sentiment analysis, and cross-selling;
= |ogistics optimization.
Manufacturing = Demand forecasting for supply planning;
= Use of sensors in manufactured products to offer proactive maintenance.

Life sciences = Analyze genetic variations and the effectiveness of potential treatments, using vast
amounts of data.

As presented above, Big Data brings competitive advantages to organizations, but there are particular
characteristics that define it, although most of the time they are unquantifiable (Ward & Barker, 2013),
as will be discussed in the next section. Big Data creates a new paradigm shift in the way we collect,
store, process, and analyze data, but organizations can be data-driven and explore the potential of
data from innumerous sources without dealing with Big Data techniques and technologies. In this
case they are just dealing with new data, data that was not previously processed within the
organization, but does not impose severe difficulties in the capabilities of traditional techniques and
technologies. In the next section, the definition of Big Data will be discussed according to several

perspectives from different authors.

2.2 Big Data Characteristics

At this point, the notoriety and relevance of Big Data is understandable, potentially changing the way
organizations operate and create new opportunities based on data-driven approaches. Technological
advancements open the way for unprecedented amounts of data generated each day, at ever-

increasing rates. In 2011, around 1.8 zettabytes of data were produced in a couple of days, more
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than it was produced from the beginning of civilization until 2003 (M. Chen et al., 2014). Storage
capacity must increase, and new ways of dealing with such amounts of data emerge, but what actually

means Big Data?

First of all, there is no widely accepted threshold for classifying data as Big Data. Ward and Barker
(2013), in an attempt to clearly define Big Data, present several notorious definitions among the
community, highlighting that Big Data is predominantly and “anecdotally” associated with data
storage and data analysis, terms dating back to distant times, and also argue that the adjective “big”
implies significance, complexity, and challenge, but also makes it difficult to quantitatively define Big
Data. Ward and Barker (2013) present several definitions, some defining Big Data by its
characteristics, others based on the augmentation of traditional data with more unstructured data
sources, and some trying to quantify it. They also present definitions which rely on the inadequacy of
traditional technologies to deal with this new type of data, presenting several perspectives from the
industry, including Gartner, Oracle, Intel, Microsoft, and IBM, for example. In order to conclude about
the similarity among the definitions, Ward and Barker (2013) state that all definitions include at least
one of the following aspects: size, complexity, or techniques and technologies to process large and

complex datasets.

Dumbill (2013) attempts to provide a definition: “Big Data is data that exceeds the processing
capacity of conventional database systems. The data is too big moves foo fast or does not fit the
Strictures of your database architectures. 1o gain value from this data, you must choose an alfernative
way to process it”. M. Chen et al. (2014) corroborate this definition by focusing on the fact that
traditional software and hardware cannot recognize, collect, manage, or process this new type of data
in reasonable time. Krishnan (2013) also agrees with these perspectives, defining Big Data by its
complexity, creation speed, and several degrees of ambiguity, whose processing is inadequate for
traditional methods, algorithms, and technologies. Although Ward and Barker (2013) are slightly
critical both regarding the lack of quantification in Big Data’s definition and the use of data storage
and analysis in several attempts to define it, in reality, they conclude by stating that the concept of

Big Data includes storage and analysis of large and complex datasets, using a set of novel techniques.
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The origin of the concept is relatively unknown, and its definition evolved rapidly, thus raising
uncertainty. Gandomi and Haider (2015) state that size is the characteristic that first stands out, but
others became usual to define Big Data. In 2001, Doug Laney, from Gartner, presented the 3Vs
model (Figure 2.2) to characterize Big Data by its volume, variety, and velocity (Laney, 2001). IBM
and Microsoft based their definitions of Big Data on this model for at least another 10 years (M. Chen

etal., 2014).

According to Gandomi and Haider (2015), volume is a characteristic which indicates the magnitude
of data, mentioning that it is frequently reported between Terabytes and Petabytes, citing the survey
of Schroeck, Shockley, Janet, Romero-Morales, and Tufano (2012), wherein just over half of the
respondents consider datasets bigger than 1TB to be Big Data. However, the authors discuss that
data size is relative and varies according to the periodicity and the type of data. It is impractical to
define a specific threshold for Big Data volume, as different types of data require different technologies
to deal with it (e.g., tabular data and video data), as Gandomi and Haider (2015) exemplify. The

volume in the 3Vs model characterizes the amount of data that is continuously generated (Krishnan,
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Figure 2.2. The 3Vs model. Adapted from (Zikopoulos & Eaton, 2011).
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2013), and the main cause for the ever-increasing volume is the fact that we currently store all our

interactions with the majority of services available in our world (Zikopoulos & Eaton, 2011).

Regarding variety, Big Data can be classified as structured (e.g., transactional data, spreadsheets,
and relational databases), semi-structured (e.g., Web server logs, Extensible Markup Language - XML,
and JavaScript Object Notation - JSON), and unstructured (e.g., social media posts, audio, video, and
images) (Chandarana & Vijayalakshmi, 2014; Gandomi & Haider, 2015). Traditional technologies
can present significant difficulties to store and process Big Data, such as content from Web pages,
click-stream data, search indexes, social media posts, emails, documents, and sensor data, for
example. Most of this data does not fit well in traditional databases and there must be a paradigm
shift in the way organizations perform analyses to accommodate raw structured, semi-structured, and

unstructured data, in order to take advantage of the value in Big Data (Zikopoulos & Eaton, 2011).

The final characteristic in the 3Vs model is velocity, referring either to the rate at which data is
generated or to the speed of analysis and decision support (Gandomi & Haider, 2015). Data can be
generated at different rates, ranging from batch to realtime (streaming) (Chandarana &
Vijayalakshmi, 2014; Zikopoulos & Eaton, 2011). It is relevant to apply the definition of velocity to
data in motion, instead of the rate at which data is collected, stored, and retrieved from storage.
Continuous data streams can create competitive advantages in contexts where the identification of
trends must occur in short periods of time, as in financial markets, for example (Zikopoulos & Eaton,

2011).

Over time, two additional characteristics emerged: value and veracity. Value represents the expected
result of processing and analyzing Big Data (Chandarana & Vijayalakshmi, 2014), which usually has
low value in its raw state, as this is mainly extracted with an adequate analysis (Gandomi & Haider,
2015). According to Chandarana & Vijayalakshmi (2014), value can be obtained through the
integration of different data types to improve business and gain competitive advantages. On the other
hand, veracity draws attention to possible imprecise data, since, sometimes, the analysis is based on
datasets with several degrees of precision, authenticity, and trustworthiness (Chandarana &

Vijayalakshmi, 2014). Gandomi and Haider (2015) corroborate this definition, highlighting the



22 | Advancing the Design and Implementation of Big Data Warehousing Systems

unreliability of certain data sources (e.g., customer sentiments extracted from social media), although

recognizing that they can be valuable when adequate techniques and technologies are used.

Other characteristics, not so noticeable according to the literature, are the variability and complexity,
introduced by SAS (Gandomi & Haider, 2015). Variability is related to the different rates at which
data flows, according to different peaks and inconsistent data velocity. Complexity highlights the
challenge of dealing with multiple data sources, namely to connect, match, clean, and transform
them. Besides these, Krishnan (2013) also proposes three other characteristics: ambiguity, related
to the lack of appropriate metadata, resulting from the combination of volume and variety; viscosity,
when the volume and velocity of data causes resistance in data flows; virality, which measures the
time of data propagation among peers in a network. Figure 2.3 presents a summary of all these

characteristics identified in the literature.

At this point, it seems that trying to quantify any of these characteristics becomes an impossible task.
Big Data remains as an abstract concept (M. Chen et al., 2014). It must be accepted that it can be

a combination of several characteristics, or a strong presence of only one, but it must be recognized

Ambiguity

Virality

Viscosity

Figure 2.3. Main Big Data characteristics identified in the literature. Adapted from (C. Costa & Santos, 2017a).
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as data that makes changes in the way we think about techniques and technologies, if they are
inadequate to deal with it. It may be a database or a DW that cannot scale accordingly on a shared-
everything architecture (Krishnan, 2013), or data mining tasks that cannot be finished without parallel
computing. Again, data is “foo bjg foo fast, or too hard for existing tools to process”(Madden, 2012).
Defining Big Data by the inadequacy of traditional technologies is relatively dangerous, as
advancements are constantly being made (e.g. quantum computers), and such definition implies that
Big Data always existed and will continue to exist (Ward & Barker, 2013). The current definitions of
Big Data are relatively dependent on the techniques and technologies to collect, store, process, and
analyze it. These will evolve over time, and we need to learn to live with it. It will always be a matter
of analyzing new technological trends that may benefit business and reconsider new strategies related
to data. Currently, a new paradigm shift is happening. It does not need to be a change in all
organizations, but scientific progress related to Big Data will continue to exist, in order to assure that
organizations have rigorously justified proofs that emerging techniques and technologies can help
them making progresses in data-driven environments. The state-ofthe-art regarding Big Data
techniques and technologies will be presented later in this document. Next section presents the

challenges regarding Big Data and the adoption of such initiatives.

2.3 Big Data Challenges

This section presents several challenges regarding Big Data, including general dilemmas, challenges
in the Big Data life cycle, issues in security, privacy, and monitoring, as well as required changes in

organizations. These challenges also serve to identify relevant research topics across several fields.
2.3.1 Big Data General Dilemmas

General dilemmas may include challenges such as the lack of consensus and rigor in Big Data’s
definition, models, and architectures, for example. M. Chen et al. (2014) claim that the concept of
Big Data is often more commercial speculation than it is a scientific research topic. The authors also
mention the lack of standardization in Big Data, such as data quality evaluation and benchmarking.

In fact, the lack of standard benchmarks to compare different technologies is seriously aggravated by
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the constant technological evolution in Big Data environments (Baru, Bhandarkar, Nambiar, Poess,

& Rabl, 2013).

Even the ways to fully use Big Data remain an open subject to explore, such as applications in science,

engineering, medicine, finance, education, government, retail, transportation, or telecommunications,

for example (M. Chen et al., 2014). Discussions such as how to select the most appropriate data

within several sources or how to estimate their value remain as Big Data dilemmas (Chandarana &

Vijayalakshmi, 2014). Another commonly discussed pitfall is how Big Data helps representing the

population better than a small dataset (Fisher, DeLine, Czerwinski, & Drucker, 2012). This obviously

varies with the context, but the authors call our attention for not assuming that more data is always

better.

2.3.2 Challenges in the Big Data Life Cycle

These challenges are related to technical difficulties in tasks such as Big Data collection, integration,

cleansing, transformation, storage, processing, analysis, and governance:

The need to rethink storage devices, architectures, mechanisms, and networks, in order to
achieve more efficient input/output (1/0), data accessibility, and data transmission (C. L. P.
Chen & Zhang, 2014);

Scalability becomes crucial to store and analyze data. Handling increasing amounts of data
requires redesigning databases and algorithms to extract value from it (Hashem et al., 2015).
Distributed/Parallel computing becomes crucial to deal with Big Data, assuring availability,
cost efficiency, and elasticity (M. Chen et al., 2014);

Assuring data quality and adding value through data preparation becomes challenging in Big
Data environments (C. L. P. Chen & Zhang, 2014). Different data sources may have different
data quality problems (Hashem et al., 2015). These problems and vast amounts of
redundancy can also make data integration more difficult (M. Chen et al., 2014). The
heterogeneity resulting from multiple sources augment these challenges, as traditional

techniques for data analysis expect homogeneous data (Jagadish et al., 2014). Heterogeneity
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brings implications on data integration (Cuzzocrea, Song, & Davis, 2011) and consequences
in the analysis of Big Data, as the unstructured nature of data sources presents several
challenges regarding transformations to support adequate analytical tasks;

= Visualizing Big Data requires rethinking traditional approaches due to the volume of data,
thus combining appearance and functionality is crucial (C. L. P. Chen & Zhang, 2014).
Advanced data visualizations are needed to extract value from Big Data (Russom, 2011),
having the capability to scale to thousands or millions of data points, handle multiple data
types, and be easy to use, in order to satisfy several users. Krishnan (2013) argues that
manipulating Big Data is challenging due to its characteristics, namely executing drilldowns
or rollups. In these visualizations, data from multiple sources is typically integrated into a
single picture. The author indicates that technological evolutions would be made to address
the challenge of manipulating Big Data interactively, as discussed later in this document;

= Searching, mining, and analyzing Big Data is a challenging and relevant research trend,
including Big Data searching algorithms, recommendation systems, real-time Big Data
mining, image mining, text mining, among others (M. Chen et al., 2014). As Gandomi and
Haider (2015) claim, size is frequently the main concern in Big Data, but the unstructured
nature of data also deserves attention (e.g., text, audio, and video) and imposes significant
challenges in these tasks;

=  Big Data governance faces challenges regarding control and authority over massive amounts
of data from different sources (Hashem et al., 2015). Managing such heterogeneous
environment to plan access policies and assure traceability can quickly become almost

impossible without adequate governance tools.

Organizations face several challenges in the Big Data life cycle. New business problems require
technological innovations in the way data flows across the organization. Surpassing these challenges
will depend on the organization’s maturity, since legacy applications and the use of incompatible
formats can impose several difficulties to an adequate integration and extraction of value from Big

Data. Collecting data, namely gaining access to it, may also be a challenge, as integrating data from
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multiple sources, including external ones, raises questions about others’ intention to share it free of

charge (Manyika et al., 2011).

M. Chen et al. (2014) state that the efficiency in data flows is a key factor to assure an adequate Big
Data processing. The authors also highlight the challenge of building effective real-time computing
models and online applications to analyze Big Data. Other challenges related to processing Big Data
may include the reutilization and reorganization of data, which become laborious at scale. The
characteristics of Big Data require a paradigm shift in databases and analytical technologies, as
dealing with Big Data throughout its life cycle can potentially create severe bottlenecks in networks,
storage devices, and relational databases. Technology is evolving to execute these stages in distributed

environments, becoming dependent on high storage capacity and processing power.

Even relational databases are evolving to accommodate these trends, increasing query performance
and being able to deal with more data variety (Davenport et al., 2012). Combining the benefits of a
Relational Database Management System (RDBMS) and the database systems proposed from the
need to handle Big Data actually represents a research trend, as well as query optimization in Big
Data technologies (Cuzzocrea et al., 2011). Furthermore, advancements are constantly being made
in scalable storage and algorithms. Ji, Li, Qiu, Awada, and Li (2012) argue that processing queries in
Big Data may take significant time, as it is challenging to sequentially iterate through the whole dataset
in a short amount of time. Consequently, the authors highlight the relevance of designing indexes and
considering adequate preprocessing technologies. Hashem et al. (2015) identify the need to study
adequate models to store and retrieve data, a crucial factor to successfully implement Big Data
solutions. Models and algorithms for scalable data analysis also remain an open research issue, as
well as the integration and analysis of data arriving continuously from streams. Mining data streams
has been identified as an emergent research topic in Big Data analytics (H. Chen, Chiang, & Storey,

2012).
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2.3.3 Big Data in Secure, Private, and Monitored Environments

Nowadays, keeping data secure and private is one of the most concerning tasks for organizations (M.
Chen et al., 2014; Jagadish et al., 2014). Users want to rest assure that any leaks into the public
domain will not occur (Chandarana & Vijayalakshmi, 2014). Sagiroglu and Sinanc (2013), citing a
survey from Intel IT Center (2012), claim that security and privacy are frequently mentioned among
the Big Data concerns of IT managers. It is relevant to plan a Big Data driven security model for
organizations to accurately specify risks and prevent illegal activity or cyber threats. Several
considerations are mentioned, such as authentication, authorization, network traffic analysis, data
protection laws, and mining data related to security. M. Chen et al. (2014) also discuss the potential

for Big Data applications related to security concemns.

Due to the characteristics of Big Data, more risks arise, and traditional data protection methods must
be rethought. M. Chen et al. (2014) argue that Big Data applications face multiple challenges related
to security, privacy, and monitoring: protection of personal privacy during not only data collection, but
also in its subsequent storage and flows; Big Data quality and its influence on the appropriate and
secure use of data; the performance of security mechanisms like encryption is largely influenced by
the scale and variety of data; and other aspects related to secure communications, administration,
and monitoring in environments with multiple users and services. Other relevant challenge, as
highlighted by Hashem et al. (2015), is assuring Big Data integrity, i.e., data is only modified by the

owner or other authorized entities.

Policies related to data are also relevant today, at a time when there is a significant amount of sensitive
data about individuals, such as the one related to their health or finances (Manyika et al., 2011).
Legal issues are being raised regarding the easiness to copy, integrate, and recurrently use data by
different people. Intellectual property, data ownership, and responsibility regarding inaccurate data
deserve proper attention from policy makers (Manyika et al., 2011). Legal and regulatory issues also
deserve attention in several aspects (Ji et al., 2012), like analyzing the adequacy of current laws and

regulations to adequately protect data about individuals (Hashem et al., 2015). Even the constant
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tracking on employees within an organization can raise discussions regarding adequate work policies

(Michael & Miller, 2013).

Besides these issues, Brown et al. (2011) raise questions about the implications of having data widely
and transparently available. Organizations that rely on costly proprietary data to leverage their
competitive advantages will face challenges due to the promises of more accessible Big Data sources,
as they become widely available in some contexts. The authors also discuss the inherent difficulties
for organizations to share data between departments, forming a coherent view of the organization,
which is additionally aggravated with Big Data. Organizations need to integrate data from multiple
sources and promote collaboration, not only among departments, but also among suppliers and

customers (Brown et al., 2011).

Assuring privacy is both a technical and sociological problem (Jagadish et al., 2014). The inadequate
availability of location-based data allows the possibility to infer a person’s residence, office location,
and identity, for example. Moreover, many other data sources can contain personal identifiers, or
even if no personal identifiers exist, when data is rich enough, reasonable inferences can be drawn
from it (Wigan & Clarke, 2013). Currently, we tend to share more data online, most of the time without
knowing the implications. Another relevant topic, briefly mentioned above, is data ownership, due to
its value for certain organizations that are currently debating about ways of sharing or selling data
without losing control of it (Jagadish et al., 2014). Data ownership is often discussed regarding social
media Websites, since the users’ data is not owned by the organizations although they store it
(Chandarana & Vijayalakshmi, 2014). As Wigan & Clarke (2013) discuss, these organizations tend to
assume that they hold the rights of the data, and sometimes the current legislation benefits them,

allowing organizations to not permanently delete data, even when users ask for it.

Discussing Big Data security, privacy, and monitoring in cloud environments is also relevant.
Organizations frequently recognize that using Big Data technologies in cloud environments helps
reducing their IT costs (Ji et al., 2012), although raising concerns about Big Data storage and
processing infrastructures. Therefore, one of the challenges lies in assuring adequate monitoring and

security without exposing users’ data when processing it (Ji et al., 2012).
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2.3.4 Organizational Change

Surely Big Data may sound appealing to most organizations, but, frequently, organizational leaders
lack the understanding regarding its value and the means to extract it (Manyika et al., 2011).
Occasionally, the lack of knowledge on how to use analytics is mentioned as the leading obstacle to
become more data-driven (LaValle, Lesser, Shockley, Hopkins, & Kruschwitz, 2011). Within several
business areas, organizations need to monitor trends and gain advantages compared to their
competitors, but many of them lack the talent, the rigorous workflows structure, and the incentives
for adequate Big Data initiatives to better support decision-making (Manyika et al., 2011). Leaders
and policy makers must understand how Big Data can create value, as well as critically think about
IT capabilities, data strategies, analytical talent, and data-driven approaches. This paradigm shift in
organizations requires them to move analytics into the core business and operational functions
(Davenport et al., 2012), changing business processes, delivering insights related to customers,
products, services, and other transactions. McAfee et al. (2012) present five challenges that

organizations will face in management, caused by Big Data initiatives:

= Assure adequate leadership for a Big Data project;

= Find suitable data scientists (Provost & Fawcett, 2013), computer scientists, and other
professionals to deal with Big Data, design experiments, and overcome business challenges:

= Understand and adequately use Big Data technology;

= Combine problem-solving people with the right data for decision-making;

= (Change organizational culture and rethink how data-driven the organization really is.

Big Data initiatives require a multidisciplinary approach, demanding collaboration to deliver useful
results that must be properly understandable by the organization (Jagadish et al., 2014), but to

accomplish this, challenging organizational changes must occur.
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2.4 Techniques and Technologies for Big Data Solutions

As previously mentioned, the concept of Big Data is often used to sell something (Fan & Bifet, 2013),
denoting a lack of common understanding, and opening the way for an almost infinite set of
technologies. Unfortunately, this raises significant challenges to understand, adopt, or design
techniques to work with Big Data, since they are tightly coupled with a specific technology. The
opposite problem also occurs, since most of the time in conceptual models, it is not clear which
technology takes place in a certain component of the model. This is mainly due to Big Data’s variety,
but even discarding unstructured data (e.g., text, video, image, and audio), it seems that almost
everyone is trying to sell their solutions to do something with Big Data, without concerns regarding a

common way to design and implement solutions.

The era of Big Data can generate significant controversy. For example, Fan and Bifet (2013), citing
Boyd and Crawford (2012), claim that it is not necessary to distinguish Big Data analytics from data
analytics, as data volume will continue to grow and never decrease. The transition from traditional
techniques and technologies represent a radical paradigm shift, which can include abandoning
shared-everything architectures (Krishnan, 2013), RDBMSs, common Extraction, Transformation, and
Loading (ETL) mechanisms, or the Structured Query Language (SQL), for example. The ambiguity in
Big Data’s definition, the lack of formal and recognized techniques, and the vast set of available
technologies do not help in a peaceful acceptance. It can be argued that the Big Data analytics area
needs approaches like the widely accepted work from Kimball and Ross (2013) that focuses on how
to store and analyze data in a relational DW. Assuring that businesses do not refrain from progress

due to uncertainty or lack of resources is of major relevance.

In order to understand when it is appropriate to rethink traditional techniques and technologies,

according to a survey from Russom (2011), organizations tend to replace traditional platforms when:

= Massive performance and scalability are required, such as the need to scale to Big Data
contexts with a large volume of data, speed up data collection and queries, or assure

concurrent workloads;
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= Business users need advanced analytics (e.g., data mining, statistical analysis, text analytics,
and ad hoc SQL queries), and the current platform is Online Analytical Processing (OLAP)
only;

= QOrganizations need self-service and rich visualization tools for end users;

= The platform lacks modern capabilities, such as support for a Service-Oriented Architecture

(SOA), cloud infrastructures, or in-memory processing.

This section aims to present several technigues to understand and deal with Big Data throughout its
life cycle, from collection to analysis, including storage and mining. These techniques mainly
represent a collection of guidelines that helps designing Big Data solutions, namely their several
components, the relationship between them, and some necessary changes in traditional approaches
for dealing with data. Furthermore, in this section, several Big Data technologies are presented, as
well as a recent standardization proposal for Big Data architectures, published by the National Institute

of Standards and Technology (NIST).

2.4.1 Designing Big Data Solutions

This subsection presents techniques identified in the literature that are adequate to support the design
of Big Data solutions. According to C. L. P. Chen and Zhang (2014), citing Marz and Warren (2015)

and Garber (2012), a Big Data solution generally contemplates the following principles:

=  Present high-level architectures, addressing the distinct role of specific technologies;

Include a variety of data science tasks, such as data mining, statistical analysis, machine
learning, real-time visualization, and in-memory analysis;

= Combine the benefits of different tools for different tasks;

= Bring analysis closer to the data, in order to avoid moving data;

= Distribute processing and storage across different nodes in a cluster;

= Assure coordination between data and processing nodes to improve scalability, efficiency,

and faulttolerance.
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2.4.1.1 Big Data Life Cycle and Requirements

There are several considerations throughout the life cycle of Big Data, significantly different from
traditional environments. Dealing with Big Data requires new approaches, which are discussed in this

subsection.

2.4.1.1.1 General Steps to Process and Analyze Big Data

According to a survey including analysts at Microsoft (Fisher et al., 2012), Big Data analytics tasks
can be grouped into five steps: acquire data; choose the architecture based on cost and performance;
shape the data according to the architecture; write and edit code; and reflect and iterate on the
results. Processing Big Data for analysis typically differs from processing traditional transactional data.
As Krishnan (2013) claims, in traditional environments, data is explored, a model is designed, and a
database structure is created. However, in Big Data environments, data is first collected and loaded
into a certain storage system, a metadata layer is applied, and then a structure is created. There is
no need to start by transforming data to properly fit a relational model, as transformations only occur
after having everything stored in efficient storage systems. This represents a shift from a traditional
ETL approach to an Extraction, Loading, and Transformation (ELT) approach. Figure 2.4 presents the
Big Data Processing Flow according to Krishnan (2013).
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> Analytics Reporting
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Figure 2.4. An overview of the Big Data Processing Flow. Adapted from (Krishnan, 2013; C. Costa & Santos, 2017a).
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The Big Data Processing Flow starts by gathering data from multiple sources, such as Online

Transaction Processing (OLTP) systems, multiple files, sensors, and the Web. This data is then stored

in a landing zone capable of handling the volume, variety, and velocity of data, which is typically a

distributed file system. Data transformations must occur on data stored in the landing zone, fulfilling

the requirements of efficiency and scalability, and the subsequent results can then be integrated into

analytical tasks, operational reporting, databases, or raw data extracts. In this context, Kimball and

Ross (2013) mention relevant best practices regarding the Big Data life cycle:

Plan a “data highway” with multiple caches - raw source (immediate), realtime cache
(seconds), business activity cache (minutes), top line cache (24 hours), and DW or long time
series cache (daily, periodic, and annual). Data will flow through these different caches,
according to the business needs;

Use Big Data analytics to enrich data before moving it to the next cache. For example,
produce numeric sentiments from mining unstructured tweets. The opposite is also true, so
that earlier caches can benefit from the less granular ones. Kimball and Ross (2013) claim
that the performance implications of this enrichment should be further evaluated, as data
should be moved from the raw source to the real-time cache according to the established
time thresholds. Also, we can store multiple data sources, make them available for querying,
manipulate them, use them to serve business, and then archive them;

Adjust the data quality needs according to the latency requirements, i.e., complex data quality
jobs take more time to complete than simpler ones focusing on individual values. However,
Kimball and Ross (2013) also suggest that value should be added to data as soon as
possible, using data integration tasks and including results from data mining, for example.
There must be a balance between latency and business value;

Big Data streaming analytics can be relevant for certain data flows, analyzing data and taking
actions as it flows through continuous data streams (Kambatla, Kollias, Kumar, & Grama,
2014). In-database analytics can also be a relevant capability to exploit (Kimball & Ross,

2013).
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Begoli and Horey (2012) complement these perspectives, stating that several analytical mechanisms
should be included in Big Data solutions, ranging from statistical analysis to data mining and
visualization. Moreover, processed data and insights can be made available using open and
recognized standards, interfaces, and Web services. Regarding Big Data analytics, there is a vast set
of available techniques that can be used to extract value from data. Data mining techniques, such as
clustering, association rules, classification, and regression (Han, Pei, & Kamber, 2012) are still
present in Big Data environments (Manyika et al., 2011), now with the challenge of distributing them
to perform at scale (C. L. P. Chen & Zhang, 2014; Fan & Bifet, 2013). Achieving scalability in these
techniques is what makes Big Data analytics different from traditional data analytics. The range of
analytical mechanisms and the ambiguous terms to define them may lead to a completely new
buzzword: data science. Techniques such as sentiment analysis, time series analysis/forecasting,
spatial analysis, optimization, visualization, or unstructured analytics (e.g., text, audio, and video)
(Gandomi & Haider, 2015), can all be present in the knowledge base of a data scientist (C. Costa &

Santos, 2017b). These techniques are relevant in the Big Data life cycle to extract value from it.

2.4.1.1.2 Architectural and Infrastructural Requirements
The different steps to process Big Data, presented above, must be performed in Big Data

environments, according to several requirements identified by Krishnan (2013):

= Absence of fixed data models, to adequately accommodate the complexity and size of data,
regardless of its characteristics;

= Scalable and high-performance systems to collect and process data either in real-time or in
batches;

= The architecture should support data partitioning due to the volume of data;

= Data transformations use scalable, efficient, and fault-tolerant mechanisms. The results
should be stored in adequate systems, such as distributed file systems or non-relational
database systems. Data reads should be efficient;

= Data should be replicated and shared across multiple nodes, to support faulttolerance,

multistep processing, and multipartitioning.
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Kimball and Ross (2013) corroborate most of the requirements from Krishnan (2013), and add the
following capabilities expected from Big Data environments: possibility to implement User-Defined
Functions (UDFs) in several programming languages and to execute them over large datasets within
minutes; load and integrate data at high rates; execute queries on streaming data; schedule tasks on
large clusters; and support mixed workloads, including several ad hoc queries or strategic analysis

from multiple users, while loading data in batches or in a streaming fashion.

Big Data solutions should be supported by an adequate infrastructure. Regarding this requirement,
organizations can currently rely on cloud computing, either by using private, public, or hybrid clouds
(Tien, 2013), in order to provide the underlying resources for massive computations (Hashem et al.,
2015). Cloud models, such as Infrastructure-as-a-Service (laaS), become relevant to accomplish
several requirements in Big Data infrastructures, including scalability, commodity hardware, elasticity,
fault-tolerance, selfmanageability, high throughput, fast 1/0, and a high degree of parallelism
(Cuzzocrea et al., 2011; Krishnan, 2013). Commodity hardware also plays a relevant role in Big Data
infrastructures, namely due to the lower costs of building shared-nothing architectures (Figure 2.5).
Google's own papers about the Google File System (GFS) (Ghemawat, Gobioff, & Leung, 2003),
MapReduce (Dean & Ghemawat, 2008), and Bigtable (F. Chang et al., 2008) served as inspiration

for most of these requirements and for several Big Data technologies that will be presented later.

Kimball and Ross (2013) argue that traditional RDBMSs are not suitable for a wide range of Big Data

use cases due to the requirements identified above (e.g., search ranking, sensors, social customer
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Figure 2.5. A shared-nothing architecture. Adapted from (Krishnan, 2013).
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relationship management, document similarity testing, and loan risk analysis). Krishnan (2013) also
claims that DWs based on traditional RDBMSs have several design limitations that imply architectural
and infrastructural changes to process Big Data, since they cannot be distributed as efficiently as
non-relational systems due to Atomicity, Consistency, Isolation, and Durability (ACID) compliance
rules, and due to the fact that data partitioning in these systems often does not necessarily mean
more scalability or workload reduction. Furthermore, the author mentions the fact that in many of
these systems, the CPU and memory are often underused, and the way queries are designed typically
increases the workload, such as executing queries with a star schema pattern on a Third Normal
Form (3NF) database model, generating significant volume of 1/O and inadequate network
throughput. Kimball and Ross (2013) present the capabilities that existing RDBMSs vendors are
including to extend their solutions for Big Data environments. The authors compare these extended
versions with the most commonly recognized open source implementation of MapReduce, namely

Apache Hadoop. This comparison is presented in Table 2.2.
2.4.1.2 The Lambda Architecture

The main idea behind the Lambda Architecture (Marz & Warren, 2015) is to think of a Big Data
system as a series of layers that satisfy particular needs. As Figure 2.6 shows, the architecture is
divided into three main components: batch, serving, and speed layers. In the batch layer, a master
dataset stores all the data. As it is sometimes inefficient to read a dataset with possible Petabytes of
data every time a query is executed, the architecture contains batch views in the serving layer, which

are pre-computations of the master dataset. Instead of scanning the entire master dataset, the results

Table 2.2. Comparison between an extended RDBMS and Hadoop MapReduce. Adapted from (Kimball & Ross, 2013).

Characteristic Extended RDBMS Hadoop MapReduce
Proprietary Mostly Proprietary Open Source

Cost Expensive Less Expensive

Variety Data must be structured Does not require structure
Type of operations Adequate for fast indexed lookups Adequate for massive scans
Relational Semantics Deep support Indirect support (e.g., Hive)
Complex Data Structures Indirect support Deep Support

Transaction Processing Deep support Little or no support
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Figure 2.6. The Lambda Architecture. Adapted from (Marz & Warren, 2015; C. Costa & Santos, 2017a).

are returned from batch views with indexing support, thus random reads are possible. Therefore, the
batch layer is not only responsible for storing an immutable and constantly growing master dataset,
but also for computing functions on the same. As Marz and Warren (2015) highlight, creating the
batch views is an high latency operation and should be performed in scalable systems. Then, the
serving layer stores these batch views in a distributed database supporting batch updates and random

reads.

However, with only these two layers, batch views would be quickly outdated, as new data takes time
to propagate from the batch layer into the serving layer. This does not meet the requirements of low-
latency (realtime) environments. Consequently, the authors propose the speed layer, which aims to
compute functions on data in realtime. Rather than processing all the data at once, like the batch
layer, the speed layer only processes recent data. To achieve the smallest possible latency, it does
not even look at all the new data at once. Instead, it updates realtime views as new data becomes
available, which is described as incremental computation. In order to retrieve current results, queries
are answered by looking at the batch and real-time views, merging both results. Consequently, low-
latency updates are taken into consideration, and as batch views are updated, realtime views can be
discarded, since the authors claim that the speed layer is far more complex than the other two. Marz
and Warren (2015) describe how to develop Big Data systems according to the principles of the

Lambda Architecture, highlighting several technological aspects, as well as other guidelines:
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= Store the rawest data to answer as much questions as possible, obtaining different
summarizations and insights. Since Big Data technologies are scalable by nature, they can
handle this requirement;

= Store untransformed data, since data integration and quality algorithms can be improved in
the future;

= Make the master dataset immutable, i.e., only adding more data, without update or delete
operations. By doing this, Marz and Warren (2015) claim that human fault-tolerance and
simplicity are assured;

= Within the master dataset, store data as units called facts. They are atomic, timestamped,
and uniquely identifiable. The authors describe how to strengthen the fact-based model with
information about the types of facts and relationships between them through the use of a
graph schema. Moreover, Marz and Warren (2015) also give guidelines about a possible

folder and file structure for the master dataset, typically stored in a distributed file system.
2.4.1.3 Towards Standardization: the NIST Reference Architecture

The NIST Big Data Public Working Group (NBD-PWG), namely the Reference Architecture Subgroup,
has been working on an open reference architecture for Big Data (NBD-PWG, 2015), in order to create
a tool to facilitate the discussion of requirements, design structures, and operations for Big Data
environments. According to the authors, the NBDRA is not a system architecture, but rather a
common reference, which is not coupled with specific vendors, services, implementations, or any
specific solutions. The NBDRA is presented in Figure 2.7, and the proposed taxonomy for its

components is as follows:

= System orchestrator - provides requirements regarding policy, governance, architectural
design, resources, business requirements, monitoring, and auditing activities. The system
orchestrator may include actors such as business leadership, consultants, data scientists,

and architects related to information, software, security, privacy, and network;
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Data provider - makes data available through different interfaces, including several data
sources (e.g., raw data or previously transformed data). The data provider can be internal or
external to the organization;

Big Data application provider - executes the manipulations in the data life cycle to meet the
requirements established by the system orchestrator. In this component, several capabilities
are combined to create specific data solutions. While the general activities may remain similar
to traditional data processing contexts, Big Data methods and techniques are considerably
different due to scalability concerns;

Big Data framework provider - is composed of general resources or services to be used by
the Big Data application provider. This is the role whose changes are more noticeable
because of Big Data (NBD-PWG, 2015), due to the relevance of the infrastructure, data
platforms, and processing frameworks. Different technologies can be used and hybrid
approaches can emerge, providing flexibility and meeting the requirements of the Big Data

application provider;
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= Data consumer - benefits from the value of the Big Data system. The same type of interfaces
used by the data provider can also be exposed to the data consumer, after value has been

added to the original data sources.

The NBDRA has two fabrics encapsulating the aforementioned components: a security and privacy
fabric, which affects all the components of the NBDRA and interacts with the system orchestrator
(policy, requirements, and auditing), the Big Data application provider, and the Big Data framework
provider (development, deployment, and operation): and a management fabric responsible for tasks
such as provisioning, software management, or performance monitoring, which involves
considerations at scale about the system, data, security, and privacy, while maintaining a high level
of data quality and accessibility.

The NBDRA contains five components connected by interoperable interfaces (services) and enveloped
by the two fabrics mentioned above. It supports a variety of business environments and facilitates the
understanding of how Big Data solutions complement existing approaches and differ from them. To
develop this proposal, the authors analyzed a wide range of existing Big Data architectures from

industry, academy, and government (NBD-PWG, 2015).

2.4.2 Big Data Technologies

This subsection highlights several technologies related to Big Data, including Apache Hadoop and

related projects, several distributed databases, and other tools for Big Data analytics.
2.4.2.1 Hadoop and Related Projects

As already mentioned, Hadoop is an open source Apache project based on GFS and MapReduce
(Bakshi, 2012). Hadoop contains two main components: the Hadoop Distributed File System (HDFS)
and a distributed processing framework named Hadoop MapReduce. Hadoop can store and process
vast amounts of data by distributing storage and processing across a scalable cluster of multiple
nodes built with commodity hardware. In HDFS, files are divided into blocks distributed and replicated
across nodes. HDFS assures many requirements identified above, such as fault-tolerance and

availability, for example. Hadoop MapReduce is a programming model and an execution engine for
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processing large datasets stored in HDFS, based on the divide and conquer method, dividing a
complex problem into many simpler problems, and then combining each simpler solution into an
overall solution to the main problem. These are called the Map and Reduce steps (C. L. P. Chen &
Zhang, 2014). Regarding HDFS, there are two types of nodes in the cluster: a NameNode, which is
responsible for storing metadata about blocks and nodes; and a DataNode, which stores data blocks
(Bakshi, 2012). Regarding Hadoop MapReduce, there are also two types of nodes, namely a
JobTracker that schedules jobs and distributes tasks across slaves called TaskTrackers (C. L. P. Chen

& Zhang, 2014).

Over the years Hadoop has evolved considerably, including the transition from MapReduce to YARN
(Hashem et al., 2015). YARN rethinks the JobTracker and TaskTracker components, replacing them
with a ResourceManager, a NodeManager, and an ApplicationMaster, to solve some problems in
Hadoop MapReduce, such as scalability on large clusters or support for alternative programming
paradigms (Krishnan, 2013). Apart from that, Hadoop has several related projects, as Figure 2.8
demonstrates, also highlighting their main features (Apache Hadoop, 2018).

Other related projects not present in Figure 2.8 may include: Flume, a service to collect, aggregate,
and move large amounts of log data; Oozie, a workflow and coordination system for jobs in Hadoop;
HCatalog, a metadata layer for data stored in Hadoop, built on top of the Hive metastore; Sqoop, a
connector to integrate data from other existing platforms, such as the DW, metadata engines,
enterprise systems, and transactional systems (Krishnan, 2013). There are also more projects that
can interact with Hadoop’s interfaces or be co-located with it, such as projects for real-time stream
processing or interactive ad hoc analysis. Since realtime data processing is becoming increasingly
relevant to organizations (Chandarana & Vijayalakshmi, 2014), Storm is a realtime computation
system to process streams with high throughput and low latency. Kafka, on the other hand, is a
messaging/queuing system to produce and consume messages between processes, in an

asynchronous and fault-tolerant manner (Marz & Warren, 2015).
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Figure 2.8. The Apache Hadoop ecosystem. Adapted from (C. Costa & Santos, 2017a).

2.4.2.1.1 SQL-on-Hadoop and Interactive low-latency Queries

Interactive and low-latency ad hoc analysis over large datasets is a relevant scenario in organizations.
Occasionally, users do not know the queries in advance and need to execute ad hoc queries within
seconds, even at scale. There is a trend named SQL-on-Hadoop (Floratou, Minhas, & Ozcan, 2014)
that is related to the implementation of distributed SQL engines for interactive ad hoc analysis of large
datasets stored not only in Hadoop, but also in distributed databases (e.g., Not Only SQL - NoSQL).
Many SQL-on-Hadoop systems are available under open source licenses, including: Hive on Tez (Huai
et al., 2014); Presto (Presto, 2016); Impala (Kornacker et al., 2015); Drill (Hausenblas & Nadeau,
2013); and Spark SQL (Armbrust et al., 2015). These systems are able to combine data from multiple
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sources like HDFS files, NoSQL databases, SQL databases, Kafka, among many others, which means
that in a single query they can combine not only data from different systems, but also batch and
streaming data. Consequently, SQL-on-Hadoop systems play a relevant role in BDWing systems, as it
will be discussed later in this work. Moreover, besides SQL-on-Hadoop systems, there are other similar
technologies targeting interactive ad-hoc querying, such as Druid, a columnar store that provides real-

time aggregation and indexing at data ingestion time (F. Yang et al., 2014).

2.4.2.1.2 Hadoop Security

Still related to Hadoop, there are several security projects. Hortonworks (2016) establishes five pillars
for security in Hadoop: administration, authentication, authorization, auditing, and data protection.
Kerberos, Apache Knox, and Apache Ranger are highlighted as projects related to these five pillars,
in order to assure a secure Hadoop environment. Kerberos can be used to authenticate users and
resources within Hadoop clusters. Apache Knox complements Kerberos, by blocking services at the
perimeter of the cluster and hiding the cluster’s access points from end users, thus adding another
layer of protection for perimeter security. Finally, Ranger provides a centralized platform for policy

administration, authorization, auditing, and data protection (e.g., encrypted files in HDFS).
2.4.2.2 Distributed Databases

Database technology has evolved significantly towards handling datasets at different scales and
supporting several applications that may have high needs for random access to data (M. Chen et al.,
2014; Hashem et al., 2015). NoSQL databases have become popular mainly due to the lack of
scalability in RDBMSs, since this new type of databases provides mechanisms to store and retrieve a
large volume of distributed data (Hashem et al., 2015). The relevant factors that motivated the
appearance of NoSQL databases were the strictness of the relational model and the consequent
inadequacy to store Big Data. NoSQL databases are seen as distributed, scalable, elastic, and fault-
tolerant storage systems. They satisfy an application’s need for high availability even when nodes fail,
appropriately replicating data across multiple machines (Kambatla et al., 2014). Relational databases
will certainly evolve and some organizations (e.g., Facebook) are using mixed database architectures

(M. Chen et al., 2014). Combining the benefits of both storage systems is a current research trend,
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as already mentioned (Cuzzocrea et al., 2011). A recent term is emerging, NewSQL, which combines
the relational data model with the benefits of NoSQL systems, such as scalability (Grolinger,
Higashino, Tiwari, & Capretz, 2013). NoSQL and NewSQL databases are mainly designed to scale
OLTP-style workloads over several nodes, fulfilling the requirements of environments with millions of
simple operations (e.g., key lookups, reads,/writes of one record or a small number of records) (Cattell,

2011).

This phenomenon changed the way databases are currently designed. While a RDBMS complies to
ACID properties (Krishnan, 2013), a NoSQL database, as a distributed system, typically follows the
considerations of the Consistency, Availability, and Partition tolerance (CAP) theorem: “any networked
shared-data system can have at most two of three desirable properties” (Brewer, 2012). These
properties include: consistency, equivalent to a single up-to-date copy of the data; high availability of
that data; and tolerance to network partitions. As Brewer (2012) claims, the CAP theorem served the
purpose of leveraging the design of a wider range of systems and trade-offs, in which the NoSQL
movement is a clear example. The fact that two of the three properties should be chosen was always
misleading, states the author, since it tends to simplify the “tensions among properties”. These
properties are more continuous than binary and, therefore, they can have many levels. CAP only

prohibits perfect availability and perfect consistency in the presence of network partitions.

Consequently, the CAP theorem serves the purpose of considering combinations of consistency and
availability that fit in a certain scenario. The author highlights that choices between consistency and
availability can vary within a certain system and according to specific data or users, for example.
Brewer (2012) clarifies this misconception and discusses the relationship between ACID and CAP,
stating that choosing availability only affects some of the ACID’s guarantees. These design
considerations are intrinsic to NoSQL databases, and each may be designed differently regarding

these choices.

There are several NoSQL databases, so enumerating and evaluating all of them becomes a nearly
impossible task. Over 120 NoSQL databases were known in 2011 (Tudorica & Bucur, 2011).
Currently, it is estimated that the list of NoSQL databases has more than 225 elements (NoSQL,
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2018). Taking this into consideration, NoSQL databases are typically divided into four data models,

which are described as follows, along with several examples:

Key-value model - values are typically stored in key-value pairs. The key uniquely identifies a
value of an arbitrary type. These data models are known for being schema-free, but may lack
the capability to adequately represent relationships or structures, since queries and indexing
are assured through the key (Grolinger et al., 2013). Each key is unique and queries are
tightly coupled with keys (M. Chen et al., 2014).

- Examples: Redis; Memcached; BerkeleyDB: Voldemort; Riak; and Dynamo.
Column-oriented model - a columnar data model can be seen as an extension of the key-
value model, adding columns and column families, providing more powerful indexing and
querying due to this addition (Krishnan, 2013). This design was largely inspired by Bigtable
(M. Chen et al., 2014; Grolinger et al., 2013), but that does not mean that all column-
oriented databases are fully inspired by it (e.g., Cassandra adopts design aspects from both
Dynamo and Bigtable).

- Examples: Bigtable; HBase; Cassandra; and Hypertable.

Document model - suitable for representing data in document format. JSON is here frequently
used. It can contain complex structures, such as nested objects, and it also typically includes
secondary indexes, thus providing more query flexibility than the key-value data model
(Grolinger et al., 2013).

- Examples: MongoDB; CouchDB; and Couchbase.

Graph model - based on the graph theory, in which objects can be represented as nodes,
and relationships between them can be represented as edges (Krishnan, 2013). Graphs are
specialized in handling interconnected data with several relationships (Grolinger et al., 2013).

- Examples: Neo4j; InfiniteGraph; GraphDB; AllegroGraph; and HyperGraphDB.

Regarding NewSQL, as the name implies, these databases are based on the relational model

(Grolinger et al., 2013), offering either a pure relational view of the data (e.g., VoltDB, Clustrix, NuoDB,

MySQL Cluster, ScaleBase, and ScaleDB) or similar (e.g., Google Spanner). According to Grolinger et
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al. (2013), sometimes, interactions with these databases occur in terms of tables and relations, but
they might use different internal representations (e.g., Key-value store). Different NewSQL databases
support different SQL compatibility levels, such as unsupported clauses or other incompatibilities with
the standard. Similarly to NoSQL, NewSQL databases can scale accordingly by adding more nodes

to the cluster.
2.4.2.3 Other Technologies for Big Data Analytics

By describing Hadoop and its related projects, several technologies for Big Data analytics were already
inherently identified: streaming analytics (e.g., Spark Streaming and Storm); data mining and
machine learning (e.g., Spark and Mahout); DWing (e.g., Hive); interactive ad hoc analysis (e.g., Hive
on Tez, Impala, Presto, Drill, and Spark SQL) (Santos et al., 2017; Soliman, 2017); data flow (e.g.,

Pig). However, no data visualization tools were presented yet.

Regarding Big Data visualization, several mashup tools can be highlighted, such as Datameer, FICO
Big Data Analyzer (former Karmasphere), Tableau, and TIBCO Spotfire (Krishnan, 2013). These
mashup tools can integrate data from multiple sources into a single picture. As Krishnan (2013)
highlights, there is also the possibility of visualizing Big Data with statistical tools, like R or SAS, for
example, taking advantage of their capabilities. Other tools are also briefly mentioned in the literature,
such as Jaspersoft Business Intelligence (BI) Suite and Pentaho Business Analytics (C. L. P. Chen &
Zhang, 2014). Certainly, many other visualization tools exist and may be adequate for Big Data

visualization, such as Excel and Power B, JavaScript libraries, or Python’s plot capabilities.

Besides data visualization, there are other tools to extract, load, transform, and integrate data before
analytical tasks. Talend Open Studio for Big Data is an example of such tool (C. L. P. Chen & Zhang,
2014). Moreover, apart from the aforementioned tools related to Hadoop for data mining and
machine learning, other alternatives identified in the literature may include: MADLib and EMC
Greenplum (Begoli & Horey, 2012); R, MOA, WEKA, and Vowpal Wabbit (Fan & Bifet, 2013); data
mining tools from SAS or IBM (Krishnan, 2013); Rapidminer; and KNIME (M. Chen et al., 2014).

Some of these tools like R and WEKA are not scalable by default, and they are also used in traditional
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data mining and machine learning environments, where processing large training sets is not a
significant concern. Over time, these tools were extended with several connectors for scalable Big
Data stores and packages for distributed processing (e.g., SparkR, RHadoop, RHive,
distributedWekaBase, distributedWekaHadoop, and distributedWekaSpark), but by default, without
these extensions, they are better suited for small to moderate datasets. This does not mean that they
are not useful in Big Data mining, quite the opposite, but the volume of data that serves as training
and testing sets should be considered (preprocessing large datasets can be useful in these cases).
The same principle applies to other non-distributed algorithms implemented in any other language
like Python or Java, for example. It should be remembered that one of main challenges regarding the

Big Data life cycle is to scale the algorithms to extract value from data (Hashem et al., 2015).
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Chapter 3. Big Data Warehousing

The DW concept has a long history, and the need to access, analyze, and present data in appropriate
forms to support fact-based decision-making exists in organizations for a long time (Kimball & Ross,
2013). A DW is a repository that consolidates information about the organization, leveraging a vast
range of analyses developed by several users. Traditionally, it is a database that maintains an
historical record of the organization, which is periodically extracted from OLTP sources. The DW is
designed to access multiple records at a time and it is optimized to support analytical tasks (e.g.,
predefined or ad hoc queries, reports, OLAP, and data mining). OLAP is a common analytical task
associated with the DW, mainly consisting in multidimensional structures capable of executing several
tasks according to the desired view of the data (Santos & Ramos, 2009). Summarizing, the DW
concept is commonly defined as a “subjectoriented, integrated, non-volatile, and time-variant
collection of data in support of management’s decisions” (Inmon & Linstedt, 2014), as well as a

“single version of the truth” (Kimball & Ross, 2013).

Since the last decades, traditional DWs are recognized as the enterprise data asset, but the evolution
of advanced analytics (e.g., data mining, statistics, and complex queries), increasing data volume,
and realtime needs to analyze fresh data are driving changes in DW architectures (Russom, 2014).
Nowadays, the DW is evolving, being extended and modernized to support advancements in
technologies and business requirements, in order to prove its relevance in the era of Big Data. DW
modernization is on top of the priorities for professionals, and surveys show that DWs are evolving
dramatically and there are several opportunities to improve and modernize them, since organizations
view them as relevant to today's businesses (e.g., analytics, data-driven decision-making, operational

efficiency, and competitive advantages) (Russom, 2016).

However, in this modernization process, some challenges arise, such as inadequate governance of
data, lack of skills, cost of implementing new technologies, and difficulties in conceiving a modern
solution that can ingest and process the ever-increasing amounts or types of data. According to

Russom (2016), the average DW stores between 1TB and 3TB of data and it will store between 10TB
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and 100TB until 2018. Organizations need to consider the modernization of their DW architectures

when some of the following questions arise (Chowdhury, 2014):

= |s the current platform limited by the amount of data to process?

= |sthe DW a useful repository for all the data that is generated and acquired? Or is some data
being left unprocessed due to current restrictions?

= Do we want to analyze non-operational data and use new types of analytics?

= Do we need to ingest data quicker?

= Do we need to lower the overall cost for analytics?

Therefore, among the community, the concept of BDW is emerging. This chapter presents works
related to the concept of BDW, including: identification of characteristics, requirements, and
guidelines for design change and implementation; proposals of DWs on NoSQL databases;
advancements and benchmarks in storage technologies for BDWs; optimizations in OLAP, query
processing, and execution mechanisms for BDWs; and some implementations in specific contexts.
The following sections are organized by the main topics identified in the literature, and the content
within each section is sorted first by date then by author name, unless there are more than one

publication for the same author. In this case, they will appear together in the text.

3.1 Characteristics and Design Changes for Big Data Warehouses

This section presents several works related to the characteristics and the need for design changes in
DWs to fully support Big Data environments. Research in this topic is still in its infancy and there is
no common approach to design BDWs. Consequently, among the related work, there are authors
who discuss this need and the general changes that have to occur, giving non-structured guidelines
to design BDWs or to revisit traditional modeling techniques. There are also works that discuss logical

architectures or propose implementation of traditional DWs with Big Data extensions.

= Kearney (2012) states that organizations can create significant value by modernizing their

DWs with Big Data technologies to analyze data, but this demands Massively Parallel
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Processing (MPP) architectures. The author suggests IBM Netezza, a DW appliance
developed by IBM.

Kobielus (2012) shows the relevance of Hadoop for the next generation DW, due to its diverse
set of possible roles, such as ETL, data staging, or preprocessing of unstructured data. MPP,
in-database analytics, mixed workloads, and flexible storage are also mentioned as main
features in these DW architectures, which aim to provide a complete view of the truth about

structured and unstructured data.

Baboo and Kumar (2013) highlight the need to study storage options and use of Big Data in
DWSs. The authors state that when DWs can adequately handle a high volume of data and
real-time needs, organizations will be able to have further insights and make better business
decisions. The authors provide an overview of what is Big Data analytics and its advantages,

calling the attention for future research related to the DW.

Cuzzocrea, Bellatreche, and Song (2013) recognize DW and OLAP over Big Data as an
emerging research topic. Among several issues related to OLAP over Big Data, some concerns
associated with the design of DWs are highlighted, such as the size of the fact tables and
innovative ways to compute aggregations, which becomes even more relevant in Big Data
environments. Cuzzocrea and Moussa (2017) also discuss some challenges for
multidimensional database modeling in the age of Big Data, calling the reader’s attention to
several challenges such as: schema-less or dynamic schema data; dimensionality problems
(cubes with hundreds of high cardinality dimensions); the need for intelligent
recommendation systems for data partitioning and computation of summarized data (e.g.,

materialized views): realtime processing; and sophisticated data visualization.

Foo (2013) states that in the era of Big Data, organizations have available a set of techniques
and technologies such as Hadoop, stream processing, and high-performance analytics,

which can deliver fast insights. This leads to implementing a federation of multiple



oY | Advancing the Design and Implementation of Big Data Warehousing Systems

repositories and technologies to serve specific purposes. The traditional DW is complemented

with these new technologies and, therefore, interoperability between them becomes crucial.

= (Goss and Veeramuthu (2013) describe the current DW solution in a semiconductor
manufacturing organization, and highlight the need for new solutions based on Big Data
concepts for better data transparency across the organization, experimental and automated
data analysis, or advanced simulations. The authors consider different solutions, such as Big
Data appliances, Hadoop, or massive in-memory databases. They conclude by appealing to
vendors to work together, ditching proprietary infrastructures and offering plug-and-play

components.

= Kimball and Ross (2013), although mostly focused on traditional DW modeling, provide

relevant best practices to plan a DW in Big Data environments, such as follows:

- Consider complex analytics, not only reporting or ad hoc query; avoid legacy
environments, preventing possible technological changes as much as possible; and
promote the use of sandbox results, where data scientists can work freely;

- Plan data highways, i.e., different caches with different latency requirements, as
shown in the previous chapter; think about extracting facts, even from unstructured
content; be aware of data quality and value; and implement streaming mechanisms;

- Still approach a modeling problem as dimensions and facts, and integrate structured

and unstructured data.

= Krishnan (2013) study the need to redesign traditional DWs, in order to address significant
challenges (e.g., data types, data volume, performance, fault-tolerance, infrastructural cost,
and user requirements). The author states that these next generation DWs will include data
from several sources and will be a collection of multiple techniques and technologies, such
as RDBMSs, Hadoop, NoSQL, data mining, text mining, reporting, visualization, among other.
The author also discusses some real-world examples that used multiple techniques to

integrate Big Data, and concludes by claiming that there is no solution to fit all contexts.
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Examples of possible logical architectures are presented, as well as the advantages and

disadvantages of each one of them (Krishnan, 2013):

Architecture based on external integration, wherein traditional technologies are
maintained, and a new platform for processing Big Data is integrated with them
through a data bus. Tasks are executed in two distinct platforms, and when data is
being explored, the data bus assures adequate integration between them, through
appropriate metadata processing. Generally, this approach provides a modular and
heterogeneous design, but implementing the data bus and maintaining an adequate
integration between the two platforms may become complex;

Hadoop/NoSQL and RDBMS architecture: this approach is similar to the one
presented above, but instead of a complex data bus which integrates data at the
time of exploration, the RDBMS and Hadoop/NoSQL are integrated through a
connector that exchanges data between the two systems. However, if the connector
does not perform adequately, performance becomes severely affected;

Big Data appliances: these are black box solutions which handle rigorous and
complex workloads associated with Big Data and current RDBMSs. There are several
physical architectures according to each vendor (e.g., Teradata, IBM, and Oracle),
but the logical architecture typically consists in a group task between Hadoop,
NoSQL, and the RDBMS, in order to solve several challenges associated with Big
Data. These solutions are mainly configured according to the user's requirements
and making subsequent changes to the architecture can be difficult, as stated by
Krishnan (2013);

Data virtualization architecture: it hides the details about how data is stored, since
the same becomes available to users as if it was stored in a single location, hiding
implementation details. This approach can provide easier maintenance for analytical
workloads, but a lack of governance may occur in multiple data silos, as well as

decreases in performance.
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= Mohanty, Jagadeesh, and Srivatsa (2013) compare the BDW with a traditional DW,
highlighting some significant differences, such as the capability to perform exploratory
analysis (e.g., sandboxes), deliver fast insights, and prove business hypothesis based on
multiple sources of ever-increasing data, in a low-latency and scalable way. The authors
present a conceptual BDWing architecture, which mainly consists in the identification of
several techniques and technologies discussed in the literature (e.g., real-time and Hadoop),

illustrating their coexistence with the traditional enterprise DW.

= Sun, Hu, Ren, and Ren (2013) discuss mainstream implementations of different
architectures. First, the authors present the architecture dominated by MPP databases (e.g.,
Greenplum), which can use MapReduce capabilities in their database engines. Second, the
architecture dominated by MapReduce is presented, where Hive is given as an example,
providing a SQL interface on top of MapReduce. Finally, an integrated architecture is
discussed, wherein the advantages of the other two are fully harnessed (e.g., HadoopDB,
Vertica, and Teradata). The authors envisage future research, such as an adequate
integration between data models and query processing, and pre-computation or indexing of

multidimensional data.

= Chowdhury (2014) states that traditional infrastructures are not able to capture, manage,
and process Big Data within reasonable time. The author describes Big Data technologies
based on Hadoop, including IBM solutions, which can be used to augment existing DWs built
on top of traditional databases. Several examples of IBM solutions are mentioned, showing

their relevance to complement traditional DWs.

= T. K. Das and Mohapatro (2014) highlight the need to explore the capabilities of Hadoop, in
order to handle Big Data and then integrate it into an existing DW. Therefore, Hadoop is seen
as a mean to achieve efficient ETL processes for unstructured datasets with significant
volume. An interface between Hadoop and a DW is illustrated, and the authors also state

that the DW can be built on top of Hadoop, but there are no specific details about the
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interface or implementation, such as data flows, models, or proposed technologies. Specific

results are also not mentioned.

Golab and Johnson (2014) review recent research problems regarding data stream
warehousing, motivating the need for a DW that is updated in near real-time, rather than
during downtimes, also describing possible system architectures. The authors state that this
concept aims to deal with data volume and velocity, contemplating not only issues in
common DWs (e.g., storing and querying significant amounts of historical data), but also
dealing with stream processing issues, such as handling ordered data, consistency, and near
realtime response, as well as supporting alerts, materialized views, and complex analytics,

for example. Golab and Johnson (2014) present three types of approaches:

- Start with a Database Management System (DBMS) and extend it with the ability to
load and query data arriving in near real-time;
- Start with a data stream engine and then add persistent storage;

- Start with a technology such as Hadoop and add stream processing.

The authors highlight several optimizations needed in a data stream warehousing, such as
fast ETL, efficient data layouts, maintenance of materialized views (incremental or
recomputation), concurrency control, and scalability. According to them, several open
problems deserve attention, including the exploration of hybrid architectures, the use of data
mining and machine learning in a data stream warehouse, and managing the complexity of

having multiple sources.

Inmon and Linstedt (2014) extend the Data Vault methodology to design, manage, and
implement a DW. According to the authors, Data Vault 1.0 was mainly focused on data
modeling, while this second version extends it with agile techniques from software
development and minor changes to ensure that modeling techniques work with Big Data
requirements (e.g., unstructured data and NoSQL). They claim that in Data Vault's 2.0

architecture, platforms such as Hadoop currently fit in as an ingestion and staging area for
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any data that can proceed to the DW, or as a place to perform data mining and text mining,
storing their subsequent results into relational database engines. Inmon and Linstedt (2014)
state: “eventually, it will be a system capable of housing both relational and non-relational

data simply by design”.

In their approach, the authors show that they can provide platform integration between an
RDBMS and NoSQL platforms using hash keys, allowing for cross-system joins between
them. Consequently, their idea is to allow current organizations to augment their

infrastructure, maintaining current RDBMS engines.

= (Q'Leary (2014) discusses the concept of Big Data lake, comparing it with a traditional
enterprise DW. This concept is an analogy to a water lake, where data streams fill the lake
and several users examine it, diving in and taking samples, regardless of its lack of structure.
In contrast, O'Leary (2014) sees the DW as a costly add-on to the enterprise, typically based

on a single source to accommodate a particular set of queries, in a more structured manner.

The author also claims that some challenges arise in a Big Data lake, given that the lack of
structure causes problems to many statistical and machine learning packages, which
sometimes are not designed for distributed environments. Moreover, in a Big Data lake, data
duplication, redundancy, and inconsistency may raise significant problems. Finally, the
author also presents some examples where artificial intelligence can be applied to the Big
Data lake, such as follows: generate tags to facilitate data usage and definition; extract
additional information from different data sources (e.g., temporal patterns); give structure to
unstructured data (e.g., extracting sentiments from Twitter data); improve data quality; and

discover new business insights using machine learning.

= (’'Sullivan, Thompson, and Clifford (2014) present several data modeling considerations for
Big Data deployments, including BDWs. The authors focus on both transactional and
unstructured data, presenting some schema considerations for an adequate integration

between Hadoop and RDBMS-based DWs. The work also highlights an interesting set of future
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needs for BDWing, including the evolution of data models and modeling methods, and the

technologies in which these models are deployed.

Russom (2014) discusses the results of a survey from The Data Warehousing Institute (TDWI)
about the evolution of DW architectures. Many professionals from several industries answered
the survey. Russom (2014) identifies several priorities for DW architectures, including:
successful DW architectures should focus on both physical (e.g., server planning) and logical
layers (e.g., data models); analytics is the main driver to evolve traditional DWs, as well as
Big Data and real-time operations; an architecture can have a mix of approaches and
standards; and Hadoop or NoSQL are great additions to traditional DWs, but it is not expected

that these new technologies replace the old ones completely.

Russom (2016) presents a report of several practices and strategies for DW modernization,
resulting from a survey similar to Russom (2014). Several practices are discussed according
to the responses of organizations, including the modernization of DWs by augmenting or
replacing existing platforms. According to the survey, for some organizations, the adoption of
new data platforms through a cloud or Software-as-a-Service (SaaS) paradigm provides
another relevant feature: elasticity with lower costs. Furthermore, 32% of the 473
respondents state that they do not plan to replace their current DW primary platform, while
9% already replaced it, and 43% plan to replace it within 3 years. According to Russom
(2016), “rip and replace is real and will become more common”, such as migrating from a
traditional RDBMS to a newer one, to a new DBMS, or to Hadoop, although according to the
author, the latter was only found in a few rare cases, since Hadoop typically emerges as a
complementary DW platform. Furthermore, it is highlighted that RDBMSs were still preferred
among organizations. The survey concludes by highlighting several priorities to modernize

the DW:

- Add capacity for growing data, users, and analyses, satisfying the requirements

of scalability and velocity;
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- Deliver new and improved analytical capabilities, along with reporting and data
integration;

- Evaluate if the technology adequately satisfies the business requirements before
adopting it, taking performance and cost into consideration;

- Complement the traditional DW with other platforms, migrating data and
balancing workloads, which requires thinking about a large-scale architecture
and how data flows through different platforms;

- Consider Hadoop for several roles in a DW environment (e.g., data staging, ETL,
and massive parallel execution engine), in order to complement the traditional

DW, and not necessarily to replace it.

Clegg (2015) discusses the challenge that Big Data presents to DW architectures, stating
that it would be a mistake to discard decades of architectural best practices based on the
assumption that storage for Big Data is not driven by data modeling. The author argues that
a significant amount of data for analytics and reporting will remain relational. However,
building an adequate architecture has become complex, due to the variety of available
techniques and technologies (e.g., DW appliances, Hadoop, NoSQL, and real-time analytics).
Therefore, DW architectures are entering in a new phase, since Big Data has finally fractured
the traditional enterprise DW, states Clegg (2015), due to the use of Hadoop for data mining
and batch operations, data marts for domain-specific applications, or NoSQL for real-time
and time series data, most of the time with a combination of cloud and on-premises solutions.
Vendors typically claim to have the solution to an organization’s specific problem. Therefore,
organizations moved from an integrated DW to a federation of different technologies
addressing different use cases. According to Clegg (2015), Gartner called this the Logical
DW (Beyer, 2011). The author states that we moved away from a data-driven view of the DW
to a use case driven approach, and the danger of uncoordinated data silos emerge, meaning

that much of the analysis takes place outside the main data store.
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Consequently, replacing parts of the DW architecture with Hadoop and scalable databases
leads to a “lift and shift” replacement strategy. Previously, data modeling was the main
concern, but nowadays, the concern seems to be finding the right technology to meet
demands. The author highlights the need to design a grand architecture and plug
requirements into it, according to valuable use cases. This is a period of transition for DW
architectures, being unknown if stability will be reached soon, but use case driven approaches

seem to be the best strategy for now, states Clegg (2015).

Golov and Rénnback (2015, 2017) discuss the anchor modeling strategy for highly
normalized MPP databases in Big Data contexts, which allows for high-performance ad hoc
queries, as demonstrated using systems like HP Vertica. The authors also present the
limitations regarding single cluster uses and ETL issues, which can be overcome with some

guidelines provided by the authors.

P. Hu (2015) studies the cooperation between Hadoop and a traditional DW, in order to solve
the performance issues of the latter. The author uses Sqoop for data collection and
transmission, and relies on HDFS and Hive for storing data, although no detail is provided
regarding how data flows through the system or how it is stored. A logical architecture is
presented, where it can be seen that unstructured data should be stored in Hadoop, and
structured data should be stored in the traditional DW, assuring communication between
them. However, no explicit details are given regarding how this communication occurs, and
although the author states that a prototype proves the feasibility of the proposed architecture,
the evaluation method and results are not clearly presented. It would be interesting to discuss
the performance of an Hadoop and RDBMS architecture Krishnan (2013) based on a
connector between the two. The cooperation between Hadoop and a traditional DW,
specifically in ETL processes, is also a relevant research topic discussed in other contributions

(Houari, Rhanoui, & Asri, 2017).
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Jukic, Sharma, Nestorov, and Jukic (2015) also focus on how Big Data can augment and
enrich the analytical capabilities of traditional DWs. Big Data is seen as a source for the DW,

and Hadoop as a part of the ETL tools.

Jukic, Jukic, Sharma, Nestorov, and Arnold (2017) explore and evaluate the use of columnar
database technology and fully denormalized fact tables. Evaluating this approach using
Greenplum, an MPP database, the authors arrive to the conclusion that a fully denormalized
approach can bring considerable improvements to ETL processes and OLAP queries, namely
better performance due to the lack of join operations. ETL processes also become simpler,
since they avoid complex concepts like Slowly Changing Dimensions (SCDs). Although the
full denormalization of fact tables, i.e., completely flattening the dimensions and facts into a
single table, is arguably a well disseminated guideline in Big Data contexts, the reality is that
such approach is also discussed in traditional DWing contexts (J. P. Costa, Cecilio, Martins,
& Furtado, 2011), in order to avoid the processing costs of join algorithms and the additional
random and sequential |/O operations when joins cannot be processed in-memory, while
often assuring minimal network data exchange operations, which is relevant in distributed

systems like Hadoop and other related projects.

Tardio, Mate, and Trujillo (2015) present a methodology to avoid failure in Big Data projects,
in which they identify common problems, best practices, and methods, aiming to increase
the success of new initiatives. They propose a methodology to manage, analyze, and visualize
Big Data, validating the approach through a case study based on electricity consumption.
The proposed methodology consists of five phases: define data stages; acquire and manage
data sources; add value to data; select and implement a BDW; develop visualizations for Big
Data. Then, in order to apply it, the authors choose the technology to carry out the project.
In their case, Hadoop was chosen, since it was more flexible regarding the structure of data.

To conclude the five phases, (Tardio et al., 2015) take the following steps:

1. Define data stages using the concept of data highway (caches) from Kimball

and Ross (2013). In this phase, information requirements must be defined, as
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well as time constraints from collection to analysis, data quality requirements,
and query latency;

Collect raw data and load it into the Big Data file system (e.g., HDFS). According
to the requirements, one can choose batch load (e.g. HDFS commands and
MapReduce-based ETL) or streaming load. In the case of streaming load, the
data can be analyzed in realtime (e.g., Spark Streaming) or stored for later
processing. As the authors do not have the goal of real-time analysis, they just
store the data;

Define a multidimensional model to add value to the previously stored data,
identifying entities and relationships. The authors consider dividing the problem
into facts and dimensions, and implementing models such as the star schema
(Kimball & Ross, 2013). They also highlight the need to iteratively discover the
multidimensional data model by exploring the raw data, linking it with the
information requirements previously established. According to them, Pig or Hive
can be used to query raw data according to the multidimensional schema.
Tardio et al. (2015) highlight the need for a model which is flexible to further
changes and enrichment (e.g., adding new data sources or using data mining);
Implement a BDW that supports most Bl tools and query latency requirements.
First, a BDW repository is chosen according to latency requirements, which can
be high (e.g., Hive) or low (e.g., MPP databases like HP Vertica, or in-memory
tools like Power Pivot or Qlikview). Second, the multidimensional model is
implemented taking into consideration the features of the selected repository.
Finally, the data is loaded into the BDW. In their case, Hive was selected in a
combination with in-memory Bl tools to support OLAP and dashboard
applications. No details are given regarding the physical implementation of the
data model and its efficiency. Moreover, it is curious that the authors propose
Power Pivot or Qlikview as in-memory tools, since they are not frequently

mentioned as scalable solutions in Big Data environments;
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5. Develop visualizations for Big Data, using the BDW as the source. In this case,

the authors used Qlikview and Excel.

Tardio et al. (2015) acknowledge that the manual effort required to apply their methodology
remains high, despite all the advantages of having a systematic approach to conduct Big

Data projects.

= Q. Yang and Helfert (2017) discuss the suitability of a three-layered DWing architecture on
Hadoop, including: the realtime data layer built using Flume and HDFS, wherein log data is
dumped without too much concern regarding its structure; the reconciled data layer, being
responsible for data preparation and data storage, using Hive to deploy a star schema DW;
and finally, the derived data layer, including several pre-computations similar to OLAP cubes,

which are then stored in databases like HBase.

= Al (2018) presents a real-time BDWing and Analytics framework with a demonstration case
based on a communications service provider, which involved offloading the ETL from an
Enterprise DW to a Big Data platform. Despite the fact that some of the frameworks’
constructs and guidelines are specifically related to the context of a communications service
provider, there are some guidelines and design considerations that can be useful for the
design of BDWs. The framework proposed by the author allows for the ingestion of streaming
and offine data from RDBMSs, files, and other transaction systems in the
telecommunications context. It is divided into three main components: the realtime
persistent data hub, which consists of several integrators and connectors (JDBC, files
connector, Kafka, and Apache NiFi) to fetch data from multiple sources, which will eventually
land in the BDW; the BDW (implemented using Spark and HDFS), a key component of the
framework that manages raw data in a Hadoop data lake, mainly using JSON and
compressed Optimized Row Columnar (ORC) files as the main formats; and, finally, the active
data analysis platform (implemented using Apache lgnite, Spark Streaming, and Storm) is
considered by the author the core component of the framework, and it is further divided into

three layers that preprocess raw data, assure data modeling and visualization, respectively.
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The output of the active data analysis platform is stored back into the BDW, in order to be
consumed by reporting and campaign purposes, merging several insights and structured

attributes to target (new) subscribers with pertinent campaigns.

Golfarelli and Rizzi (2018) conduct a literature review to discuss more than 20 years of DWing
technigues, architectures, and methodologies, already calling the reader’s attention to some
emerging Big Data needs and systems, such as distributed architectures, data partitioning,
and data replication supported by proprietary Big Data appliances, Hadoop, Hive, Presto,
among many other technologies. Regarding some methodologies related to DWs in Big Data
contexts, the authors highlight some research focus being given to OLAP on NoSQL

databases.

Tria, Lefons, and Tangorra (2018) present a framework for evaluating methodologies to
design BDWs, defining a set of criteria like application, agility, ontological approach,
paradigm, and logical modeling. The authors also provide ways of dividing methodologies
into classes (e.g., automatic, incremental, and non-relational), as well as a way to define the

characteristics being addressed by the methodology (e.g., value, variety, and velocity).

3.2 Data Warehouses on NoSQL Databases

Although NoSQL databases are mainly designed to scale OLTP applications (Cattell, 2011), that did

not prevent the appearance of works that propose a DW supported by NoSQL systems and data

models, which are presented in this section.

Chai, Wu, and Zhao (2013) claim that scalability and efficiency have been key issues in
RDBMS-based DWs. Nowadays, the continuous data growth is seen as a bottleneck to these
systems, and the authors propose a DW based on document-oriented databases, wherein
the ETL process is conducted through MapReduce. The authors conclude that their approach
achieves better scalability, flexibility, and efficiency than an RDBMS-based DW.
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= Liu and Vitolo (2013) extend the capabilities of graph databases and develop a Graphical
User Interface (GUI) to visualize graphs. They propose the concept of “graph cube” to achieve
the fundamentals of a graph DW. The authors state that their work motivates for further

technical advancements.

= Qroger, Schwarz, and Mitschang (2014) propose a flexible integration between data typically
stored in a traditional DW and unstructured data, based on a graph structure to link these
two types of data. The authors evaluate multiple scenarios regarding volume and complexity,
in which the largest graph has 3,000,000 nodes, achieving less than 10s in the execution of
complex queries, which, for example, might be finding the name of all employees with several
links. They use 3 machines, each one running a specific storage system, since their prototype

was supported by three different storage systems.

= Tria, Lefons, and Tangorra (2014) claim that BDWs differ from traditional DWs, and their
data model should be based on a more flexible design. Therefore, they propose a design
methodology based on the key-value model, which considers entities and relationships. Tria
et al. (2014) propose a set of rules to transform data to the proposed key-value model,
instead of using star or snowflake schemas found in traditional DWs. Performance was not

evaluated, and the authors also envisage the use of document and column-oriented models.

= Chevalier, EI Malki, Kopliku, Teste, and Tournier (2015) study multidimensional DWs on
NoSQL models, in order to support OLAP, namely with column-oriented and document-
oriented models. HBase and MongoDB are used in their experiment. A set of rules to map
data to those models is proposed, and the authors evaluate loading and execution times to
pre-compute aggregates for different levels of detail. They use a 3-node cluster and 3 datasets
(1GB, 10GB, and 100GB) generated from the TPC Benchmark DS (TPC-DS), a decision
support benchmark proposed by the Transaction Processing Performance Council (TPC). The
loading times ranged from around 2m to 132m. According to Chevalier et al. (2015), HBase
computed all the aggregates in 1,700s, while MongoDB finished in 3,210s, so HBase has a

slight advantage, according to the authors, although no certain recommendations are given.
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Furthermore, several directions for future work are identified, such as the identification of

queries that benefit NoSQL models, and the comparison of relational and NoSQL models.

Dehdouh, Bentayeb, Boussaid, and Kabachi (2015) propose three approaches which allow
the implementation of BDWs on column-oriented databases, each one differing in the
structure of fact tables and dimensions (normalized, denormalized in a single table, and
denormalized in a single table using column families). The authors propose a set of rules to
map data from a multidimensional model to their data structures in a column-oriented
database. HBase was evaluated in a 25-node cluster, using a SQL interface called Apache
Phoenix. The dataset used in the experiment consists in 6 billion tuples retrieved from the
SSB benchmark. The queries consist in aggregating a measure based on different dimensions
and attributes. Depending on the query, the two experiments conducted by Dehdouh et al.
(2015) show execution times ranging from around 1,000s to over 2,000s for the normalized
model, and around 250s to 600s for the denormalized models, with a small advantage when

using column families.

3.3 Storage Technologies, Optimizations, and Benchmarking for Big Data

Warehouses

The way data is stored, either physically or logically, plays a relevant role on how users interact with

the BDW. Consequently, there are several works that propose optimizations to existing technologies

or new database systems adequate for the typical workloads in a BDW. In this section, Table 3.1

presents several approaches, including their research contribution, main characteristics, and

achieved results.

Table 3.1. Research on storage technologies, optimization, and benchmarking for BDWs.

Work Research contribution Main characteristics Evaluation and results
(Thusoo, Sarma,  Hive, an open source Supports SQL-like queries In 2010, at Facebook, Hive had stored
et al., 2010) DW solution built on (HiveQL) and UDFs; 700TB of data, and it was receiving
top of Hadoop. includes a metastore with 5TB daily. The cluster scaled
schemas and statistics. accordingly to the workloads, including

reporting and ad hoc analysis.
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Work Research contribution Main characteristics Evaluation and results
(H. Wang, Qin, LinearDB, which joins Modifies the traditional Cluster: 5 nodes.
Zhang, Wang, &  the efficiency of parallel ~ star/snowflake schema to )
Dataset: 120M 30GB).
Wang, 2011) databases and the achieve better scalability, arase rows { )
scalability and fault- and has a specific query Benchmark: SSB.
tolerance of mechanism to tgke Results: it was faster than PostgreSQL,
MapReduce. advantage from it. ranging from around 40s to just over
100s. LinearDB also achieved
adequate scalability.
(Guo, Xiong, Mastiff, a MapReduce-  Uses optimized table scans  Cluster: 20 nodes.
Wang, & Lee, basgd sygtem to . and. a column-based query Dataset: 200GB from the TPC
2012) achieve high loading engine.

(Qu, Rappold, &
Dessloch, 2013)

(Alsubaiee et al.,
2014)

(Bissiriou &
Chaoui, 2014)

speed and query
performance on time-
based data.

Surpass join
inefficiency in
MapReduce-based
DWs.

AsterixDB, a platform
suitable to use cases
related to Big Data
(e.g., Web DW and
social media).

Improve the
performance of
HadoopDB.

Frequently used dimension
columns are pre-joined with
fact tables.

Has a flexible NoSQL-style
data model and a specific
query language; it is
scalable and includes
several data types;
AsterixDB can query data
stored internally or
externally.

A fast and space-efficient
file format (RCFile) is
introduced, as well as a
new SQL-to-MapReduce
translator and a new
column-oriented database.

Benchmark H (TPC-H) and 30GB from
a network monitoring system.

Benchmark: TPC-H.

Results: it was able to load data and
perform queries faster than Hive,
HadoopDB and GridSQL.

Cluster: 6 nodes.
Benchmark: TPC-H.

Results: reduced the storage footprint,
since data was not fully denormalized,
but the performance improvements
were not stable as the data volume
increased.

AsterixDB performed well against Hive,
a commercial parallel DBMS, and
MongoDB, running some of the tested
queries in less time than the
aforementioned systems.

The authors did not benchmark their
approach.
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Work

Research contribution

Main characteristics

Evaluation and results

(Floratou et al.,
2014)

(S. Huetal,
2014)

(Huai et al.,
2014)

(Sureshrao &
Ambulgekar,
2014)

(Almeida,
Bernardino, &
Furtado, 2015)

(Arres, Kabachi,
Boussaid, &
Bentayeb, 2015)

Compare the
performance of Hive
and Impala as SQL-on-
Hadoop systems.

DualTable, which aims
to preserve Hive's
query performance
when data updates are
frequent.

Advance Hive's storage
and runtime
performance.

Study several
MapReduce-based
storage structures.

Evaluate storage
technologies for BDWs.

Improve MapReduce
performance through a
new approach to
allocate data blocks.

3 benchmarks are used,
and the comparison
includes the two systems
using recent file formats
(ORC and Parquet).

Combines the streaming
read efficiency of HDFS
and the random write
capabilities of HBase.

Update Hive's existing file
formats to ORC,
improving storage
capacity and data access;
optimize resource usage
through an efficient query
planner and execution
engine.

Row, column, and hybrid
structures are presented,
as well as RCFile, Mastiff,
and ORC.

MySQL Cluster and Hive
are compared.

Related data blocks are
collocated in a particular
form to improve query
performance.

Cluster: 21 nodes.

Benchmarks: TPC-H, TPC-DS, and
custom 1/0 tests.

Results: Impala delivered a significant
performance advantage over Hive (on
MapReduce and on Tez) when the
dataset fitted into memory, due to
Impala’s /0 and query efficiency.
Execution times ranged from around
10s to 1,000s on more intensive
queries.

Benchmarks: TPC-H and a workload
from a real application.

Results: successfully improved Hive's
performance. The authors did not
compare their approach with Hive's
ACID capabilities, since this feature was
not ready at the time.

Cluster: 11 nodes.

Benchmarks: TPC-H and TPC-DS.
Results: significant improvements in
storage and query efficiency.

Advantages and disadvantages were
presented, but performance was not
evaluated.

Cluster: 1, 2, and 4 nodes.
Dataset: ranging from 1GB to 24GB.
Benchmark: SSB.

Results: scalability issues were
identified in MySQL cluster, unlike Hive.
According to the authors, MySQL
cluster is best suitable to OLTP.

Cluster: 10 nodes.
Dataset: 920GB.
Benchmark: TPC-H.

Results: Query execution time was
reduced. For the presented queries, the
execution times ranged from around
7,000s to 8,000s.
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Work

Research contribution

Main characteristics

Evaluation and results

(Chao, Li, Liang,
Lu, & Xu, 2015)

(Barkhordari &
Niamanesh,
2017)

(Chou, Yang,
Jiang, & Chang,
2018)

DataMPI, an approach
to improve Hive's
performance.

Atrak, a MapReduce-
based DW.

Evaluation of a system
architecture for power
meter data analysis
with Hive, Impala, and
Spark SQL.

Uses a message passing
interface.

Improves data locality
with a unified data
format.

Besides presenting a
system architecture, most
of the work is focused on
comparing the
performance of Hive,
Impala, and Spark SQL.

Cluster: 8 nodes.

Dataset: up to 40GB.

Benchmarks: Intel HiBench and TPC-H.
Results: significantly improved Hive's
performance (30% to 32% on average).
Cluster: 50 nodes.

Dataset: 100TB.

Benchmark: TPC-DS.

Results: Atrak presented performance
improvements over systems like Hive
and Spark SQL.

Cluster: 8 nodes.

Dataset: 56,000,000 to 1,120,000,000
records.

Benchmark: custom-made.

Results: Impala presented better results
in query processing, followed by Spark
and Hive, respectively. Spark also
demonstrated performance benefits in
ETL processing when compared to
Hive.

3.4 Advancements in OLAP, Query, and Integration Mechanisms for Big Data

Warehouses

Research related to analytics on BDWs has become increasingly relevant. The community is focused

on aspects such as combining the benefits of RDBMSs and non-relational systems, proposing query

optimizations in HiveQL, as well as how to store and process multidimensional structures (e.g., OLAP

cubes) in these new systems (Cuzzocrea et al., 2011; Cuzzocrea, 2013, 2016). In the previous

section, research related to storage systems for BDWs was described. Some of the approaches also

propose query planners and executors to improve the performance of these storage systems.

However, in this section, the focus is not on the storage layer, but on OLAP, query, and integration

mechanisms to improve analytical tasks in BDWs, i.e., approaches which focus on advancing

analytical and integration mechanisms for improved interactions with BDWs.
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The community has been vastly contributing to the improvement of analytical tasks over BDWs, either
by embedding predictive models directly into the database using SQL UDFs in parallel database
architectures with high throughput (around 2M records per second) (K. K. Das, Fratkin, Gorajek,
Stathatos, & Gajjar, 2011), or by proposing low-latency query engines to process Hive's data as it
constantly increases with the number of users, which is the case at Facebook, supporting queries
that scan 5PB of compressed data (Murthy & Goel, 2012). Therefore, reducing latency becomes
critical for exploratory analysis, in cases where creating a vast set of pre-aggregation mechanisms is

significantly inconvenient. Consequently, efficient query processing, reaktime ETL mechanisms, and

scalable OLAP on Big Data are research trends related to BDWs, as shown in Table 3.2.

Table 3.2. Research on OLAP, query, and integration mechanisms for BDWs.

Work

Research contribution

Main characteristics and highlights

(Asif, Dobbie, & Weber,
2013)

(Weidner, Dees, &
Sanders, 2013)

(Cuzzocrea & Moussa,
2014)

(Cuzzocrea & Moussa,
2018; Cuzzocrea,
Moussa, & Vercelli,
2018)

(Dehdouh, Bentayeb,
Boussaid, & Kabachi,
2014)

(Ferrandez et al., 2014)

(Lebdaoui, Orhanou, &
Elhajji, 2014)

(Beheshti, Benatallah,
& Motahari-Nezhad,
2015)

Improve realtime data
integration.

Achieve sub-second query
execution times.

Study parallel OLAP cubes in
Big Data environments.

Support the DW maintenance
process for near real-time
OLAP, making use of big
summary data (e.g.,
materialized views).

Aggregation mechanism based
on OLAP cubes.

Extend the traditional query
mechanisms with question
answering capabilities.

Address the integration of Big
Data into the DW in shorter
time periods.

A framework to support scalable
graph-based OLAP Analytics.

Use of algorithms for efficient joins between a stream
and a vast volume of data stored on disk.

In-memory OLAP is used in environments with
Terabytes of data. Execution times are significantly
fast, usually less than 1s.

OLAP based on relational technology is used, namely
the Mondrian server.

Inspired by the Lambda Architecture, the authors
propose an approach for managing and refreshing big
summary data in near real-time OLAP contexts. To
evaluate the approach, the authors use the TPC-H
benchmark and create a set of materialized views on
top of the original dataset.

The authors propose a columnar NoSQL cube using
Apache Phoenix and HBase. Execution times are
around 20,000s for a 1TB dataset, in a 15-node
cluster.

A question answering framework that combines
external unstructured data with structured data stored
ina DW.

The volume of data changes is divided to increase the
rate of data integration and to refresh the DW more
often, while preserving data integrity.

Summarization and multiple granularity levels are
used to facilitate the analysis of graphs with significant
volume.
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Work Research contribution Main characteristics and highlights
(Li & Mao, 2015) A real-time ETL framework to An external dynamic storage area and a replication
avoid congestion between OLAP  mechanism are proposed to avoid blocking issues,
queries and OLTP updates. reducing OLAP response times and assuring adequate
real-time accuracy.
(Song et al., 2015) A Hadoop-based OLAP system Adopts a multidimensional model based on
to process Big Data. dimensions and measures. Shows performance

advantages in data loading and OLAP over other
evaluated systems.

(H. Wang et al., 2015) Improve BDWs through a new Join operations are partially pushed both to a
query processing framework. preprocessing phase and a postprocessing phase. Fact
tables are rearranged so that dimensions’ hierarchies
are compressed to eliminate the need for typical
star/snowflake joins in query processing.

(C. Xu et al., 2015) Octopus, a computation engine A SQL-like query language is used to integrate both
to bridge the gap between data  database queries and machine learning algorithms. It
scientists and the DW. can be used to interact with different data sources and

execute machine learning algorithms on that data;
Octopus optimizes the amount of data movement, and
it was able to outperform Spark 1.4 in an analytical
scenario using a 9-node cluster.

(Tian, Ozcan, Zou, A hybrid approach to join data Study of several algorithms to join data stored in HDFS
Goncalves, & Pirahesh,  stored in HDFS and a and a DW, in order to identify the most adequate
2016) traditional DW. hybrid warehouse architecture.

3.5 Implementations in Specific Contexts

Several business products rely on the value that can be extracted from the DW through analytical
techniques, such as ad hoc queries, dashboards, reports, or data mining, for example. Therefore,
among the literature, there are some approaches that present specific applications of a DW in Big
Data environments, often referred as a BDW. In this section, these approaches will be presented, as

well as their respective contributions to the topic of BDWing.

= Thusoo, Shao, et al. (2010) present the DW and analytics infrastructure at Facebook, which
includes Scribe, Hadoop, and Hive as the fundamental components of log collection, storage,
and analytics, which combined make available a DW that can handle 10TB of compressed

data every day. At Facebook, Hive is used for reporting, ad hoc queries, and analysis.
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Brulé¢ (2013) explores the use of Hadoop, NoSQL, MPP DWs, stream processing, and
predictive analytics in the energy and production industry, highlighting several potential use
cases for their application, in order to augment an industry which is typically based on

physics-based models and simulations, as the author claims.

S. Wang et al. (2014) aim to improve the performance of a DW about biological data,
conducting an experimental evaluation to compare a key-value model in HBase with a data
model in MySQL cluster and MongoDB. The authors demonstrate that the key-value model
outperformed the others, and can be used to retrieve results based on relevant biological

questions.

Bondarev and Zakirov (2015) present a demonstration case about student performance,
using Sqoop to import data from a relational DW to Hive, maintaining a snowflake schema
and using it to create visual analyses. There are also other BDW applications in the education
sector, such as the implementation case from Santoso and Yulia (2017) demonstrating the
use of Hadoop as a Big Data tool for the data ingestion/staging phase to enhance an RDBMS-

based system.

Chennamsetty, Chalasani, and Riley (2015) propose a system to provide insights from
historical data about patients, as the Healthcare industry can produce vast amounts of data.
Hive is used to store the data, supporting further analytics like data visualizations about
patients. This work highlights Hive's capabilities to support a BDW. Sebaa, Chikh, Nouicer,
and Tari (2018) also provide a Hive-based implementation to improve healthcare resources
distribution (optimal allocation of resources), presenting a constellation-based data model

and data partitioning considerations.

Ramos, Correia, Rodrigues, Martins, and Serra (2015) and Martins et al. (2015) propose an
augmentation of the traditional DW, namely using automatic techniques to collect data from
the Web, and store it in a NoSQL database (MongoDB), in order to complement the hotel’s

internal data stored in a traditional DW. Ramos et al. (2017) also propose a BDWing system
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for the hospital sector, whose main focus is related to other healthcare works previously

presented in this section.

= Vardarlier and Silahtaroglu (2016) propose a system to help universities in the decision-
making process, collecting data from several sources and storing it in a BDW, to further apply
machine learning algorithms. Although the authors defined the proposed system as a BDW,
they do not clearly discuss its characteristics, techniques, or technologies and, therefore, it
is not conclusive if it is an augmentation of the traditional DW or a solution that uses SQL-

on-Hadoop, for example.
3.6 Final Remarks

The research related to the BDW is mainly divided into five topics, as seen in previous sections: the
characteristics and design changes for DWs in Big Data environments; DWs on NoSQL databases;
storage technologies, optimizations, and benchmarking for BDWs; advancements in OLAP, query,
and integration mechanisms for BDWs; and implementations in specific contexts. Figure 3.1 presents
the distribution of the works related to BDWing discussed in this document, grouped by the main
topic. The results indicate that research regarding the characteristics and design of BDWs is more

predominant, discussing characteristics, design changes, guidelines, logical architectures,
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Figure 3.1. Number of works related to research on BDW, grouped by the main topic.
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techniques, and technologies. Works related to analytics and storage for BDWs are the second and
third more predominant topics, respectively, proposing and evaluating several approaches to improve
BDWs and their analytical capabilities. Moreover, some works also present implementations in specific

contexts, while others propose DWs supported by NoSQL databases.

Furthermore, according to the literature review, several characteristics can define a BDW:

= Parallel/distributed storage and processing of large amounts of data;

= Scalability (accommodate more data, users, and analyses);

= FElasticity to provide a more efficient way of scaling-out and scaling-in depending on the
organizational needs;

= Flexible storage, including semi-structured and unstructured data;

= Realtime capabilities (stream processing, low-latency, and high-frequency updates);

= High performance with near realtime response;

= Mixed and complex analytics (e.g., ad hoc or exploratory analysis, data mining, text mining,
statistics, machine learning, reporting, visualization, advanced simulations, and materialized
views);

= |nteroperability in a federation of multiple technologies;

= fault-tolerance, mainly achieved through data partitioning and replication;

= And the use of commodity hardware to reduce the costs of implementation, maintenance,

and scalability.

Moreover, Hadoop and NoSQL databases are mentioned either as a replacement of the traditional
DW or as a way to augment its capabilities (e.g., ETL, data staging, and preprocessing of unstructured
data), thus forming a federation of different technologies that enable the aforementioned
characteristics. Figure 3.2 presents a conceptual model of the BDW, which illustrates these

characteristics and strategies discussed above.

Designing a BDW should focus both on the physical layer (technological infrastructure) and on the

logical layer (data models, data flows, and interoperability between components). Augmenting the
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Figure 3.2. A conceptual model of the BDW.

capabilities of traditional DWs with new technology is a valid approach and, arguably, currently
preferred among organizations, strategy that is known as “lift and shift”. However, “rip and replace”
strategies will become more common, wherein traditional DWs are fully replaced due to their
limitations in Big Data environments (Russom, 2014, 2016). The “lift and shift” strategy creates a
federation of several technologies and may represent a change of perspective from a data-driven view
of the DW to a use case driven view (Clegg, 2015). Therefore, data modeling was previously the main
concern, being now replaced by finding the right technology to meet demands, leading to the risk of

uncoordinated data silos.

Current research, although of significant value, only contributes to specific characteristics of a BDW,
advancing some existent technology, proposing a new one, or developing a specific implementation
for a particular use case. The phenomenon among research on Big Data is noticeable: most are
concerned with “selling” their technique or technology. There is a lack of prescriptive research on
BDW, since there is no integrated approach to design BDWs, as formerly existed in traditional DWs,
like the well-known approaches from Kimball or Inmon. This is mainly the result of shifting from a
data-driven view of the DW to a use case driven view, and also due to the young age of Big Data as a

research topic. However, as Clegg (2015) claims, it would be a mistake to discard decades of
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architectural best practices based on the assumption that storage for Big Data is not relational nor

driven by data modeling principles or guidelines.

The fact that there is a significant number of works related to SQL-on-Hadoop proves that the data
structures known for many years are more relevant than ever, although modified and optimized for
Big Data contexts. Of course, there is unstructured data that does not adequately fit into these data
structures, but there are also techniques to extract value from that data, and then use it to fuel a
BDW (e.g., data mining, text mining, and machine learning). The problem identified in this literature
review is that there is a significant gap between “this is what a BDW should be” and “this is how one
designs and implements it”, which then leads to a use case driven approach, primarily concerned
with choosing the right technology to meet demands. As approaches are use case driven, the
knowledge and guidelines that can be retrieved from one implementation to the others are only
possible because the circumstances are the same, thus not creating gradual and iterative knowledge,

crucial for fundamental advancements in the area.

Among the works discussed in this chapter, there are already some best practices and general
guidelines of major relevance, but they do not focus on both the physical layer (technological
infrastructure) and the logical layer (data models, data flows, and interoperability between
components) to implement the characteristics of a BDW, with adequate and detailed demonstration,
discussion, and evaluation. This is of major relevance for the scientific and technical community
related to BDWing, since it consequently leads to a contribution in which models (representation of
data structures and components), methods (structured practices) and instantiations (prototypes and
implemented systems) are tightly coupled. Such approach can lead to a prescriptive contribution to
design and implement BDWs according to their characteristics of parallel/distributed storage and
processing, scalability, elasticity, real-time, high performance, mixed and complex analytics, flexible

storage, interoperability, fault-tolerance, and commodity hardware.
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Chapter 4. An Approach for the Design and Implementation of Big Data

Warehousing Systems

The approach proposed in this work is a prescriptive contribution that researchers and practitioners
can either use for building BDWs or for considering as background knowledge for future research. It
significantly extends the current scarce and scattered contributions regarding BDWing, as it includes
prescriptive models and methods that can be used as a guide for designing and implementing these
complex analytical systems. The approach is based on the “rip and replace” strategy (Russom, 2016),
discarding traditional RDBMS-based DWs and replacing them with state-of-the-art Big Data techniques
and technologies. It is an approach that aims to address the characteristics of a BDW (Figure 3.2),
focusing on both the logical and physical layers. This chapter describes the proposed approach,
presenting its prescriptive models and methods, namely: a model of logical components and data
flows; a method for data CPE processes; a model for the technological infrastructure; and a method

for data modeling focusing on data storage and analytics.
4.1 Model of Logical Components and Data Flows

The logical components included in the proposed approach (Figure 4.1) are defined according to the
components present in the NBDRA (NBD-PWG, 2015), since it aims to comply with current standards
and trends in the Big Data community. Obviously, the same presents some significant modifications
and also extends the NBDRA with new components, since the latter is a general architecture for Big
Data solutions and, therefore, not specifically designed towards BDWs. The approach here proposed
also takes into consideration relevant guidelines provided by previous published works, such as the
Big Data Processing Flow proposed by Krishnan (2013) and the Data Highway Concept proposed by
Kimball and Ross (2013). Furthermore, the approach often encourages compliance with three of the
main principles of the Lambda Architecture (Marz & Warren, 2015): first, one should store data at
the highest level of detail (e.g., raw data in the distributed file system component), since it may serve
future analytical purposes not previously planned; second, whenever possible, one should model data

structures to store a set of immutable events, avoiding updates to existing data, in order to simplify
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the BDWing system; finally, data at different speeds certainly has different requirements and,
therefore, different logical components for batch and streaming data must be taken into
consideration. The model of logical components and data flows (Figure 4.1) is divided into six main
components: data provider; data consumer; Big Data application provider; Big Data framework

provider; system orchestrator; and security, privacy, and management.
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Figure 4.1. Model of logical components and data flows.
Dashed components are seen as optional depending on the implementation goals.
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4.1.1 Data Provider and Data Consumer

The data provider component represents each actor introducing new data into the BDW (e.g., person,
sensor, computer, smartphone, and Web stream). Therefore, this component represents several data
sources, external or internal, online or offline, collected automatically or manually. Among the
responsibilities of the data provider, the following can be highlighted: assure adequate data privacy
and security; enforce access rights; make data available through suitable interfaces; and provide
adequate metadata. In contrast, a data consumer represents an end-user or an external system that
can perform the following actions: search and download data; analyze data (e.g., execute ad hoc
queries, and train/test data science models); construct or consume reports and other data
visualization mechanisms (e.g., dashboards); and include data in business processes. To access the
data available in the implemented BDWing system and protected by the security, privacy, and
management component (e.g., authentication and authorization mechanisms), the data consumer is
able to use the interfaces made available by the Big Data application provider through demand-based
interaction, where the data consumer initiates the interaction and waits for a response (NBD-PWG,

2015).

4.1.2 Big Data Application Provider

The Big Data application provider component is responsible for assuring three relevant stages in the

data that flows throughout the different BDW components:

1. Collection - in this stage, the data is collected from data providers, arriving at the BDWing
system at the rawest state possible. The data can arrive at the system through two different
velocities, batch or streaming. Data arriving in batches is immediately stored in a distributed
file system, since one of the main challenges in Big Data is variety (different structures, types,
and sources), and this file system is a component that allows the storage of any variety and
volume of data. This data will then be processed in the next stage. In contrast, if the data is
arriving in a streaming fashion, it does not need to be stored yet, and it flows to the

preparation and enrichment stage. However, an alternative route in the streaming flow can
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exist, storing streaming raw data in the distributed file system, as Figure 4.1 shows, being
this data available for further tasks, such as disaster recovery or training of data science

models on unmodified streaming data;

2. Preparation and enrichment - the batch data previously stored is extracted from the
distributed file system with the goal of being prepared and enriched to provide analytical
value. The same happens with the streaming data, although it arrives at this stage directly
from the collection stage, as previously explained. The preparation and enrichment of data
can include all sorts of cleansing, integration, transformation, and aggregation processes.
New attributes can also be created and derived from the raw data, without any limitation, as
well as the extraction of hidden patterns in unstructured data (e.g., image, video, and text).
These processes can not only take as input the new data arriving at the system, but also read
the data already stored in the BDW, establishing comparisons and trends, for example.
Besides finding patterns in unstructured data using data science techniques (e.g., text
mining), these processes can also include predictions from previously trained data science
models based on problems such as classification, regression, clustering, and time series
forecasting. It must be remembered that the goal of this stage is to prepare and enrich data
to serve the current business goals and expectations, whether they are based on facts or on
predictions made by previously trained data science models (flow marked with a dashed
circle in Figure 4.2). The way to implement these processes differs according to the velocity
of the data (batch or streaming), since different velocities typically require different paradigms
and technologies, but the essential steps are similar. In the proposed approach, batch and
streaming data follow different routes, but are prepared and enriched with the same goals in
mind: fuel the analytical objects to which the data belongs, structuring data according to
their granularity key, descriptive attributes, and analytical attributes, whether they are facts
or predictions extracted from the raw data being collected. The method for data modeling
detailed in section 4.3 explains these concepts, detailing how data should be modelled in
the BDW. After this stage, the data is stored in its corresponding indexed storage component:

batch data is stored in the batch storage; and streaming data is stored in the streaming
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storage. Figure 4.2 illustrates the proposed method for CPE processes, summarizing the

steps described above;

3. Access, analytics, and visualization - this is the third and final stage of the data in a BDWing
system. In this stage, the data consumers have access to the data in two fundamental ways:

batch and interactive access. A batch access can be typically used for complex visualization
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tasks (e.g., deep and complex reporting) or for training and testing data science models,
which typically require intensive computation. The data science sandbox (see Figure 4.1) is
a crucial component of the BDW, where data scientists can explore the data stored in the
distributed file system and indexed storage components, create models, extract useful
insights, and use the results to improve or create new analytical objects. Therefore,
preparation and enrichment processes can also start with batch jobs originated from the data
science sandbox, without the need for a collection stage, basically meaning that the data
science sandbox is just considered as another data provider in this context. These are tasks
that do not necessarily require an interactive response time and, therefore, can be seen as
batch-oriented tasks. In contrast, tasks such as ad hoc querying, OLAP, and exploratory data
visualization require an interactive behavior to keep the data consumer engaged in the current
analysis and exploration of data. The tasks enumerated previously are relatively similar to the
ones performed in a traditional DW (e.g., reporting, data visualization, and exporting data to
run data mining algorithms). Obviously, there are some particularities to take into
consideration in Big Data environments (volume, variety, and velocity), but there is no need
to propose a specific method to perform these tasks, since Figure 4.1 is already self-

explanatory.

4.1.3 Big Data Framework Provider

This logical component includes the several subcomponents related to the resources that are
necessary to provide an adequate distributed storage and processing platform for the BDW, as well
as an adequate communication with its external actors (e.g., data providers and data consumers).
Therefore, this component is mainly related to infrastructural concepts, such as
messaging/communications, resource management, infrastructures (physical or virtual), data
processing paradigms (batch, interactive, and streaming), and data organization and distribution

paradigms (distributed file system and indexed storage).
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4.1.3.1 Messaging/Communications, Resource Management, and Infrastructures

The messaging/communications component represents the need to assure reliable queuing and data
transmission between nodes in a cluster that scales horizontally (NBD-PWG, 2015). It must be
remembered that scalability is one of the main characteristics of BDWs. Messaging/communications
techniques must also assure adequate fault-tolerance when nodes fail. In the design and
implementation of BDWSs, this component is relatively transparent to the stakeholders involved in the
project, since it is directly related to the technologies chosen to implement the several logical
components of the BDWs (section 4.2). Each technology may implement different
messaging/communications techniques, and, depending on the application context, one may prefer
a specific technique that better meets the requirements of the project. This is something that
stakeholders should be aware, but it is often transparent to the team installing and configuring these

technologies.

Regarding the resource management component, it represents a relevant concern included in the
technologies that assure distributed storage and processing, which are an adequate way of achieving
scalability in a BDW. These technologies must efficiently manage the resources available in the cluster,
namely CPU and memory. The inadequate management of these resources may severely impact the
performance of the BDW. One of the main concepts regarding this component is data locality, since
data is too big to be moved from the storage nodes to the processing nodes through the network
(NBD-PWG, 2015). Therefore, the processing needs to be closer to the storage (C. L. P. Chen &
Zhang, 2014), typically co-locating the processing and storage nodes in the cluster. Similarly to the
messaging/communications component, the resource management component is directly related to
the technology chosen to implement a specific logical component. Each technology may use different

technigues to manage resources.

Finally, the logical component related to the infrastructures highlights all the physical and/or virtual
elements necessary to run the tasks assigned to each component of the BDW, including the network
to transfer data, the CPU and memory to provide adequate data processing, and the storage to

provide data persistence. Physical resources represent the hardware used across the different nodes
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in a horizontally scalable cluster. In contrast, virtual resources are frequently used to achieve an
elastic and flexible allocation of physical resources, typically referred to as laaS. Although Big Data
technologies can be deployed on virtualized environments, the majority of them are designed to run
directly on physical commodity resources (NBD-PWG, 2015), providing efficient 1/0 by distributing
multiple CPUs, memory units and disks across a cluster of commodity machines based on a shared-

nothing architecture.
4.1.3.2 Processing

In a BDW built using the proposed approach, there are three types of processing according to the
different levels of latency, namely batch, interactive, and stream processing. Generally, the boundaries
between these three types of processing are not clear. However, in this work, they are defined as

follows:

= Batch processing - this type of processing involves latencies ranging between several minutes
and hours. Examples of batch processing may include: the periodic CPE of vast amounts of
historical data from data providers; the processing of deep and complex reports or ad hoc
queries; and the training of data science models, which involves complex and processing-
intensive data mining and text mining algorithms. These tasks are ideal for running in the

background without the need for user intervention;

= |nteractive processing - this type of processing is used to provide query execution times
ranging from milliseconds to a few tens of seconds, depending on the infrastructure and data
volume. There are a few data organization, distribution, and modeling strategies used in this
work that allow for this level of latency even with ever-increasing amounts of data. Such
strategies include: data denormalization; data partitioning; and inter-storage and

materialization pipelines (see subsection 4.1.3.3 and section 4.3);

= Stream processing - in this work, this type of processing only concerns the latency in data
CPE processes, meaning that data consumers do not have direct access to the data being

streamed. Instead, streaming data is stored in the streaming storage component and it is
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immediately available to the data consumers through interactive processing supported by
this data storage component. Regarding the levels of latency, streaming data should arrive
at the streaming storage in milliseconds or a few seconds, in order to be immediately
available to data consumers. However, when preparing and enriching streaming data,
sometimes, it is useful to create micro batch jobs to perform specific operations, such as
small aggregations, window operations, application of data science models, and merging
streaming data with batch data to establish trends. Micro batches can be seen as a
significantly small batch of data records, instead of handling them individually. The size of a
micro batch job is often customizable in several streaming technologies. When this type of
operations is needed, the data arrives in a streaming fashion to the BDWing system, but may
only be available after a few tens of seconds or even minutes, depending on the size of the
micro batch. Micro batches can also help improving the throughput of the data flow, only
requesting an insert operation on the streaming storage component when a micro batch is

completed, instead of creating a request for each data record.
4,1.3.3 Storage: Data Organization and Distribution

Data organization and distribution is a crucial aspect in the proposed approach. It is designed with
the goal of providing a flexible and scalable data storage solution that is aware of data volume, variety,
and velocity, without necessarily discarding a data modeling method. In this context, the storage
design philosophy presented here is based on two relevant components: the distributed file system,
which is an unstructured data storage solution, wherein data does not necessarily need to have a
specific schema nor does it need to be modelled in a specific way; and the indexed storage
component, wherein the data must comply with specific structures, although they are based on a
flexible modeling technique suitable for BDWs, as detailed in section 4.3. These two components are
also related to the logical component that provides all the metadata for the data stored in the file
system and in the indexed storage components (e.g., file locations, data types, descriptions, and

relevant timestamps).
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4.1.3.3.1 Distributed File System

Making the analogy to the traditional DWs, the distributed file system can be seen as an empowered
staging area, wherein raw data can not only be stored for later preparation and enrichment, but also
for training data science models based on structured or unstructured data, since a file system
adequately supports schema-less data sources. Therefore, data scientists can use this file system as
a sandbox to explore the data and discover hidden patterns, providing useful insights to support the
decision-making process. Taking a closer look at Figure 4.1, it can be observed that data scientists
can also use this component to store the results of queries submitted to the indexed storage
component, and use these results to create or improve data science models based on several
techniques and algorithms. These models and insights can then be included in further data CPE
processes, combining them with data arriving at the BDW and storing the result in the analytical

objects (section 4.3) stored in the indexed storage component.

This approach provides adequate flexibility to freely explore the data in its raw state, to combine it
with previously stored data, if applicable, and to make sure that the sandbox findings flow to the
indexed storage component, which assures that the analytical requests from data consumers are
fulfilled. Take as an example a company that sells jewelry in several countries. This company collects
data from its point of sale systems using batch processing, as well as unstructured text from social
media using stream processing. Data scientists use the unstructured data stored in the distributed
file system to train a text mining model for extracting sentiments regarding the different types of
jewelry in several countries. In the indexed storage, the company stores an analytical object for the
sales data and an analytical object for the sentiments expressed regarding the different types of jewelry
in each country. Meanwhile, after days of querying the data stored in the indexed storage component
and saving the findings in the distributed file system, a certain data scientist can start to classify a
sale as “expected” or “unexpected”, which results from the comparison between the jewelry being
sold and the sentiments expressed for that product in the country in which the sale is being made.
This is an example of the usefulness and flexibility of the distributed file system in a BDWing system
built using the proposed approach, in order to complement or create analytical objects stored in the

indexed storage component.
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4.1.3.3.2 Indexed Storage

Contrasting with the distributed file system, the indexed storage is a component oriented towards
data modeling, i.e., data needs to be structured according to a specific data model. However, in this
work, the data model based on analytical objects offers significant flexibility, while maintaining a
structured schema suitable for querying and OLAP. This modeling method is further discussed in
section 4.3. In this subsection, the focus is on the logical components responsible for storing these
analytical objects. The indexed storage component is divided into two main storage types, namely the
batch storage and the streaming storage. Nevertheless, the data modeling approach is the same for
the two types of storage, storing all the data in analytical objects and their descriptive and analytical

attributes.

The batch storage component represents a repository of analytical objects that are refreshed less
frequently, since the data only arrives in a batch-oriented fashion and, therefore, the time interval
between updates is usually several minutes, hours, days, weeks, or months, for example. In contrast,
the streaming storage component stores analytical objects that are refreshed frequently, since the
data arrives through streaming mechanisms and, therefore, updates are usually happening with time
intervals of milliseconds, seconds, or a few minutes (for large micro batches). A relevant component
related to these two storage types is the inter-storage pipeline, which is responsible for transferring
data between the streaming storage and the batch storage. Consequently, the same analytical object
may exist simultaneously in these two storage components. This may happen if the technology being
used to support the streaming storage has fast random access to data, but it is not optimized for fast
sequential access. In contrast, if the technology is the same for both storage types, so either balanced
or more optimized for fast sequential access and not for fast random access, frequently, the inter-
storage pipeline may only need to execute background jobs to distribute data in a more efficient way,
such as, for example, merging many small files originated by the streaming process into one larger
file, since small files can become a problem in Hadoop (Mackey, Sehrish, & Wang, 2009). It must be
remembered that, internally, indexed storage systems also persist data as files. The inter-storage
pipeline is optional, depending on the infrastructure being deployed to support the BDW, since

technology is constantly evolving, and there is increasing interest in exploring storage systems that
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adequately support both fast sequential access and fast random access in Big Data environments,

as discussed in section 4.2.

Other optional subcomponents included in the indexed storage component are the materialization
pipeline and the materialized objects. A materialized object is an object that stores the results of a
query executed over one or more analytical objects. The materialization pipeline is the logical
component that assures this materialization process. Materialization can be significantly helpful for
improving execution times in contexts where the data consumer consistently submits similar queries
to the BDWing system. Moreover, materialization also helps storing the results of deep and complex
requests like long-running reports, which otherwise will take a significant amount of time to complete.
Materialization may typically represent a trade-off between data timeliness and response times, but
there are several contexts where the data consumers do not need the most recent data available in
the BDW. Nevertheless, materialized objects can be refreshed when a new batch of data arrives at
the system or when the inter-storage pipeline runs a background job (Figure 4.1). Consequently, the
materialization pipeline can either re-process the whole materialized object, or perform an incremental

change by reading it and complementing it with new data.

To conclude this subsection regarding the indexed storage component, it is relevant to highlight that
the analytical objects stored either in the batch storage or in the streaming storage can be organized
and distributed using two relevant concepts: partitioning and bucketing/clustering (Thusoo, Sarma,
et al., 2010). These two concepts can largely influence query performance in certain contexts. When
relying on an indexed storage that makes use of partitioning, all the data of an analytical object is
stored as many small pieces of data inside the storage system, dividing a large dataset into many
small and more manageable parts that can be accessed individually, without the need to search the
entire dataset. An example of partitioning is storing an analytical object like sales transactions using
a separate storage location for each year, month and/or day. If one needs to analyze the sales of the
last month, the indexed storage system only needs to scan the partition corresponding to the
respective month. Partitioning can be significantly helpful when data consumers have a well

standardized access to data, such as querying the data stored in analytical objects for a certain period
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of time (e.g., year, month, and day) or place (e.g., country, region, and city). Consequently,
partitioning improves the performance of queries when the typical filtering attributes are used to
partition the dataset. Partitioning can also be significantly useful when data is loaded in periodic
batches or in batches corresponding to certain places, since a partition can be assigned for each

batch.

Bucketing/clustering represents a technique to make sure that a range of records are stored in the
same group/bucket or sorted in a certain way, according to the attribute(s) used for
bucketing/clustering. The way it is physically implemented differs according to the technology, i.e.,
some storage technologies may group a range of values in the same file, while others can order the
values and make sure they are stored in a sorted fashion. Following the example of sales transactions,
if a certain organization has several sales employees, using a bucketing/clustering technique with the
identification of the employee, the indexed storage can store the transactions of the same employee
in the same bucket, or make sure the transactions are sorted according to the identification of the
employee. Partitioning and bucketing/clustering can be used together, and query performance can
be significantly impacted when adequate strategies are taken into consideration (E. Costa, Costa, &

Santos, 2018).

4.1.4 System Orchestrator and Security, Privacy, and Management

The system orchestrator is seen as an overarching role, including several actors (humans and/or
software) that manage and orchestrate the daily operations of the BDWing system. The system
orchestrator aims to configure and manage other components of the architecture, in order to sustain
the workloads that are being constantly executed. Its tasks include: assign/provision the Big Data
Framework Provider (subsection 4.1.3) to physical or virtual nodes; provide GUIs for the specification
and management of workloads; and monitor the system and its workloads through the security,
privacy, and management component, taking into account the requirements and constraints, such
as business requirements, policies, architectural design choices, and resources, for example (NBD-

PWG, 2015).



90 | Advancing the Design and Implementation of Big Data Warehousing Systems

In the proposed approach, the security, privacy, and management component represents an
overarching concern that is related to all other components in the BDWing system. Managing such
complex system typically involves several considerations at a massive scale, while the system
performs multiple tasks in a production cluster with several nodes. Among the tasks concerning this

component, the following can be highlighted (NBD-PWG, 2015):

= Policy, metadata, and access management (authentication and authorization);

= Provide adequate encryption capabilities at networking or storage levels (if needed);

= Provide adequate auditing capabilities;

= Disaster recovery in case of data loss;

=  Provide adequate monitoring mechanisms for the resources and performance of the system;

= Make available adequate platforms for resource allocation and provisioning, as automated
as possible;

= Configure and manage the installed software.

4.2 Model of Technological Infrastructure

While the model of logical components and data flows represents an artifact for the design of BDWing
systems, the model of the technological infrastructure represents an artifact for their implementation,
focusing on the technologies that can instantiate each logical component, as well as focusing on the
hardware that can be used to deploy the BDWing system. In this section, Figure 4.3 presents the
model of the technological infrastructure, including several state-of-the-art technologies for each
logical component of the BDW presented in Figure 4.1. Therefore, a direct association can be made
between the two figures, aiming to provide a coherent view and simplicity in the design and
implementation phases of BDWing initiatives. The colors (blue, orange, and green) are used according
to the types of processing depicted in Figure 4.1 (batch, interactive, and streaming, respectively). The
technologies presented in Figure 4.3 must be seen as suggestions made by this work, which is based
on several Hadoop-related projects, and not as a preference over any other technology that
researchers and practitioners may find suitable for implementation. This is the reason why the model

illustrates that there is space for other possibilities. For each logical component, several suitable
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technologies are presented, which must be seen as alternatives or complementary ones, and not as

mandatory in all implementations. Finally, Figure 4.3 also presents how these technologies are

Big Data Warehousing System Security,
Privacy &
Collection, Preparation, Enrichment & Pipeline Implementation Management
Collection Preparation, Enrichment & Pipeline Implementation
a * * ! e
@, | oo B st WP 5,
- 1 [oe=
Flume Slelele] Kafka [N Spark Storm 52 Ambari
| Flume | | Kafka ) Kl e - 3
& SScala | 0 * ™y * &q * | Se.
0 Java & python @ \ E g g
Talend BD Custom Collectors :( @
Kerberos
Storage: Data Organization & Distribution
Distributed Batch Storage Streaming Storage
File System
i 65 Knox

Data Science

| HOFS § NoSQL/NewsQL Apache

Sandbox Storage
Ranger
v
- S — Ranger
Access, Analytics & Visualization
Data Science Sandbox Querying & OLAP * Data Visualization

SPO#(Y ﬁ% BRiLL (} Spoﬁ‘(\'{ Hitobleoy == \«Sentru

@pﬁ 0 » presto ’% ' TIBC®
WEA Prosi | _rve | e

On the Cloud On-Premises

¢

: Management,
coordination, scheduling,
security & privacy - M

Collection - C

Storage - S

Node 2 Node4 G Node6 (S P, Node8 S

Virtual Resources

Processing - P

Physical Resources

Messaging/Communication & Resource Management |

\ Scale Out Infrastructure >

Figure 4.3. Model of the technological infrastructure.



92 | Advancing the Design and Implementation of Big Data Warehousing Systems

supported by a scale-out infrastructure, deployed on-premises or on the cloud, either using physical

or virtual resources.

Starting with data collection, Flume and Kafka are suitable technologies that can be used to collect
data in a streaming fashion. In contrast, Sqoop can be used to move batches of data from relational
databases into HDFS. There are also ETL tools oriented towards Big Data contexts (e.g., Talend Big
Data), which include components for both batch and streaming data collection. However, frequently,
these tools, in their open source versions at least, just provide an integrated GUI for submitting tasks
to systems such as Flume, Kafka, and Sqoop. Therefore, technically, the technologies mentioned
above still have to be deployed on the infrastructure. Furthermore, for specific data collection
scenarios, one may need to implement custom collectors developed using well-known programming

languages, such as Java, Python, and Scala, either for batch or streaming scenarios.

For data preparation and enrichment using batch processing, Hadoop-related projects like Pig, Hive,
and Spark are adequate technologies. Native MapReduce code, although complex, can also be used
for this purpose, as well as Talend Big Data. Regarding preparation and enrichment via streaming,
Storm, Spark Streaming, and Talend Big Data can be used. Nevertheless, as mentioned above,
Talend, in its open source version, typically makes use of the other components to assure adequate
distributed processing, since its native components may not be scalable. Since these tools include a
vast set of storage connectors and data processing components, some of them are also adequate to
support the implementation of the inter-storage and materialization pipelines (namely the technologies
marked with an asterisk in Figure 4.3). The technology to choose for this purpose will obviously

depend on the choice of the storage technologies.

Storage technologies are one of the crucial aspects of the BDWing system, and maybe one of the
most difficult to understand. In regard to the Big Data technologies for the distributed file system,
HDFS is a not-so-complicated choice, since it provides a way of storing all kinds of data, structured
or not. The dilemma relies on the indexed storage component, i.e., on the batch storage and on the
streaming storage. One may take one of the following approaches: the first being based on

infrastructural simplicity, which releases management burden for system orchestrators; the second
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being a hybrid approach, which can assure more efficient refresh processes, but can also impose

more challenges concerning the management of the infrastructure.

Assuming one aims for infrastructural simplicity, the same storage technology is reused as many
times as possible. Therefore, since HDFS is used as the distributed file system, it can also be used
both for historical and streaming storage. Hive uses HDFS to store the data, so, technically, using
Hive tables to store the analytical objects is as complex as using raw HDFS files. Consequently, using
HDFS with file formats oriented towards analytics like Parquet and ORC (Huai et al., 2014), or using
Hive tables stored in these formats, represent the approach with maximum infrastructural simplicity.
However, this approach may sacrifice data refresh rates, since streaming mechanisms will have to
group data records in larger micro batches, in order to avoid creating multiple small files, as these
can cause concerns in Hadoop (e.g., larger metadata footprint in RAM and unsatisfactory NameNode
performance) (Mackey et al., 2009), as briefly mentioned in section 4.1. This phenomenon occurs
because HDFS and Hive are currently oriented towards fast sequential access and not towards fast
random access (more details related to streaming scenarios are provided in section 7.3). The problem
is that increasing the micro batch size also increases the interval between data collection and its
availability for querying in the BDWing system. Despite this, there are many streaming contexts where

it is not an issue if data is only available a few minutes later after its collection.

Taking this into consideration, to achieve shorter time intervals between the collection of data and its
availability for querying, one can use storage systems oriented towards fast random access, such as
NoSQL databases. Another advantage of these systems is the capability to perform random reads or
updates on data, which can be useful for certain BDW applications. For instance, the use of these
systems enables efficient update operations on records, in cases where it is not feasible to model
data as a set of immutable events. However, since these databases are mainly used for OLTP-based
workloads (Cattell, 2011), they typically do not perform as well as the fast sequential access systems
for OLAP-based workloads. Consequently, choosing NoSQL databases solves the small files problem
in Hadoop, but may also bring more infrastructural complexity and slower query execution times for

OLAP-based workloads (results provided in section 7.3).
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Among NoSQL databases, one can also highlight the relevance and possible use of in-memory NoSQL
databases like Redis (Redis, 2018), or even NewSQL databases like Apache Ignite (Apache Ignite,
2018), if the chosen querying and OLAP system supports these technologies. In fact, some of these
technologies may provide faster query execution times, as they sometimes have more optimized in-
memory architectures. Again, the modularity of the approach allows for these flexible implementation
choices without changing any significant architectural construct or data modeling guideline. Another
adequate technology for streaming scenarios is Druid (F. Yang et al., 2014), a columnar store that
can be used to support interactive and concurrency-heavy applications focusing on slicing-and-dicing,
drilling down, and aggregating event data. Druid achieves this by aggregating and indexing time-based
data as soon as it arrives to the system, providing sub-second queries over vast amounts of streaming
data (Correia, Santos, Costa, & Andrade, 2018). Another adequate use case for Druid is the storage
of materialized objects due to its on-the-fly aggregation mechanisms. Although Druid can be used for
the batch storage component as well (Correia et al., 2018), this work highlights its use for streaming
and materialization scenarios containing aggregated data indexed by temporal attributes, as this can
be recognized as its main design focus. As many other Big Data technologies, Druid has its limitations
(e.g., lack of support for random access operations), and practitioners should perform a preliminary

analysis when choosing storage technologies, as the ecosystem is rapidly evolving.

Furthermore, there are other technologies aiming to provide a middle ground between fast sequential
access and fast random access, which is the example of Kudu, being able to support both scenarios
without the need for different storage systems (Lipcon et al., 2015). Kudu can be co-located with
other components of the Hadoop ecosystem and, therefore, can be used together with HDFS. Using
the same storage system for both batch data and streaming data can also reduce infrastructural
complexity, although HDFS should continue to be used as the distributed file system. Furthermore,
as previously stated, technology is evolving rapidly, and with the community advancing Hive
transactions and streaming support (Apache Hive, 2018), streaming scenarios and update operations
in Hive are becoming more streamlined. Currently, in the implementation of BDWing systems,

practitioners should spend some time studying how these systems work, as well as their advantages
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and disadvantages, in order to implement an adequate and stable storage system for the BDW, since

there is no optimal solution for all implementation contexts.

Regarding data access, analytics, and visualization, there are several technologies that can be used
for specific tasks. Spark MLIib and Mahout are two machine learning and data mining libraries that
make use of distributed processing to extract patterns from a large volume of data. R, Python, and
WEKA, for example, can also be used for this purpose, but one should be aware of their limitations
in Big Data environments, as previously discussed in section 2.4.2.3. However, during the last years,
these technologies began to include processing components that are able to establish connections to
distributed systems such as Spark and Hadoop. Technically, any machine learning and data mining
technology able to process large amounts of data and with adequate connectors to Hadoop-related
systems can be used in a BDW data science sandbox. Still in this context, technologies such as
Tableau, Microsoft Power BI, or TIBCO Spotfire can be used to visualize data. Moreover, more
customized visualizations can be created with custom-made JavaScript applications (e.g., intensive
geospatial analytics - see the SusCity data visualization platform in section 8.4). The data visualization
tool being implemented needs to provide adequate connectors for the querying and OLAP
technologies. However, in certain scenarios wherein direct access is required, bypassing the querying
and OLAP engine is acceptable through the use of native storage drivers (e.g., HDFS, Hive,
NoSQL/NewSQL, Kudu, and Druid), or through the development of custom-made Web services (e.g.,
REST Web services), in order to avoid some incompatibilities, or to assure higher concurrency and
efficiency for certain scenarios demanded by data consumers (e.g., concurrent custom-made Web

data visualizations).

The querying and OLAP systems are crucial for BDWing, since they provide an interactive SQL
interface to query the data stored in the batch storage and in the streaming storage. These systems
are frequently mentioned as SQL-on-Hadoop systems, although they also support other data sources
like NoSQL databases. There are several alternatives, some of which can be highlighted: Hive (on
Tez) (Huai et al., 2014); Drill (Hausenblas & Nadeau, 2013); Impala (Kornacker et al., 2015); Spark
SQL (Armbrust et al., 2015); Presto (Presto, 2016); and HAWQ (L. Chang et al., 2014). Benchmarking
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several SQL-on-Hadoop systems is an advisable step when implementing a BDWing system (Santos
et al.,, 2017), in order to evaluate if their response times, scalability, and SQL compatibility meet the
established requirements. Furthermore, evaluating their connectivity with the storage and data
visualization systems is of major relevance to implement an adequate and interoperable BDWing

system.

Such complex technological infrastructure needs to be secured and properly managed, assuring the
fulfillment of the security and privacy policies, as well as making available a set of mechanisms to
monitor the behavior of the infrastructure and act accordingly, if necessary. In this context, Ambari
can be used to provision, manage, and monitor a Hadoop cluster supporting the BDWing system.
Regarding security, there are several technologies that can be used depending on the specific
requirements: Kerberos can provide secure authentication for users and resources; Knox can provide
perimeter security, hiding the details of the cluster’s access points and blocking services; Sentry can
be used to define adequate authorization policies to access data; and Ranger, which is similar to
Sentry, provides a centralized platform for policy administration, authorization, auditing, and data
protection (HDFS encryption). There are other ways of assuring data security and privacy, such as

using specific encryption mechanisms or access control lists made available by different technologies.

To conclude this section, there are some relevant guidelines that should be taken into consideration

when deploying an adequate infrastructure for BDWing:

1. Plan the infrastructure to mainly scale horizontally (scale-out), in order to reduce costs and
leverage the full potential of emergent Big Data technologies like Hadoop. “Because Hadoop
uses industry-standard hardware, the cost per Terabyte of storage is, on average, ten times
cheaper than a traditional relational DW” (Krishnan, 2013);

2. Co-locate storage and processing nodes in the cluster, in order to avoid moving data from
one node to another, causing bottlenecks in the network (C. L. P. Chen & Zhang, 2014). As
can be seen in Figure 4.3, storage and processing nodes are always co-located. This means
that querying and OLAP technologies should be installed in all the storage nodes, thus data

is not moved across nodes when the data consumers submit a request;
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3. Implement a Just a Bunch of Disks (JBOD) configuration for each storage node. If a
Redundant Array of Independent Disks (RAID) configuration must be used, implement a RAID-
0 strategy (W. Xu, Luo, & Woodward, 2012);

4. Implement at least a 1-gigabit Ethernet network infrastructure (Shvachko, Kuang, Radia, &
Chansler, 2010).

4.3 Method for Data Modeling

This section presents the data modeling method to design the data structures stored in the indexed
storage component of the BDW. It discusses how data should be modelled according to specific data
structures denominated as analytical objects, which include descriptive and analytical attributes (and
families). Moreover, other concepts are also presented and discussed in this section, such as
materialized objects, granularity keys, atomic values, collections, partition keys and
bucketing/clustering keys. All these concepts are presented in the general data model (Figure 4.4).
Finally, this section also discusses the concept of complementary analytical object, proper ways of
joining and uniting batch and streaming analytical objects, strategies to handle dimensional data

(outsourced descriptive families), and some data modeling best practices.
4.3.1 Analytical Objects and their Related Concepts

In this work, an analytical object is defined as an isolated subject of interest for analytical purposes.
Analytical objects are highly denormalized and autonomous structures that are able to answer queries
without the constant need to join dimension and fact tables. The benefits of full denormalized
structures in terms of performance and ETL simplicity is a topic periodically discussed and evaluated
by the DWing community (Jukic et al., 2017; Santos et al., 2017; Santos & Costa, 2016; J. P. Costa
etal., 2011), as previously seen in section 3.1. Typical analytical objects found in organizations may
include: sales; purchases; inventory management; employee vacations; employee performance;
(potential) customer interactions; customer complaints; transactions during the manufacturing
process; among many others. In order to identify an analytical object, one just needs to identify a

subject of interest in a specific analytical context. They might be found in traditional business
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processes or in new organizational contexts, such as social media interactions and initiatives,
recommendation systems, or sensor-based decision-making, for example. An organization can identify
analytical objects by either looking at the data currently being produced (data-driven), or by looking

at its current goals and start collecting data to fuel these analytical objects (requirements-driven).
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An analytical object includes descriptive and analytical families, as well as descriptive and analytical
attributes, respectively. Families are just a logical representation to group related attributes, and there
is no need to physically implement them in the storage system. Descriptive attributes provide a way
of interpreting analytical attributes through different perspectives, using aggregation or filtering
operations, for example. One can associate them with the attributes found in the traditional
dimensions of a DW (Kimball & Ross, 2013). Natural keys (e.g., product code, employee code, and
customer code) can also be included as descriptive attributes, if the practitioner foresees an
application for these attributes (e.g., specific analyses or update operations on records). In contrast,
analytical attributes provide numeric values (sometimes embedded in complex/nested data
structures that also contain text data) that can be analyzed through the use of the different descriptive
attributes (e.g., grouped or filtered), including factual and predictive attributes. Factual attributes
represent numeric evidences of something that happened in a specific record of the analytical object,
and can be associated with facts in a traditional fact table (Kimball & Ross, 2013). Predictive
attributes provide insights retrieved from the application of data science models and, therefore, they
do not represent numeric evidences of something that happened, but rather an estimate of what
happened or a prediction of what can happen in a near future. Predictive attributes are a crucial
concept to adequately integrate predictive capabilities in the BDW, and can also store relevant

patterns extracted from unstructured data (e.g., text, images, and video).

A record of an analytical object stores all the values corresponding to an event associated with that
object, taking into consideration its different attributes. Descriptive and analytical attributes can
contain atomic values or collections. Atomic values are stored as simple data types, such as an
integer, float, double, string, or varchar. Collections store more complex structures like arrays, maps,
or JSON objects. These complex and nested data structures, together with a flexible denormalized
model without rigid relationships between tables, allow the exploration of the full potential provided

by Big Data storage systems.

The granularity key is a relevant concept associated with an analytical object. The granularity key is

tightly coupled with the analytical object, identifying the level of detail of the data that will be stored



100 | Advancing the Design and Implementation of Big Data Warehousing Systems

in each record. The granularity key of an object is defined by one or more descriptive attributes that
uniquely identify a record, although this constraint does not have to be physically implemented in the
storage system through a primary key, since some Big Data storage systems may not support such
concept. One only needs to assure that each record complies with the granularity key of the object,

which defines its level of detail.

Take as an example an analytical object “sa/es”. Its granularity key can be defined solely by the
unique identifier of the sales order. In this case, each record stores the general data about the sales
order. The data about products sold in this order can be stored in a collection, or not stored at all, if
for some reason there is no interest in that analysis. However, if the granularity key of the analytical
object “sales”is defined by the identifier of the sales order and the identifier of the product, one
record per product will be stored. There is no rigorous rule for preferring collections over redundant
data stored across records, and vice versa. System orchestrators should consider their current
preferences, skills, and technological or infrastructural constraints (e.g., some querying technology
may not support collections, or the size limitations in collections may not be suitable for that context).
This will depend on the implementation context. In the proposed approach, the granularity of the

analytical object is never considered a limitation, nor does one apply any specific rule or guideline.

As discussed in subsection 4.1.3.3.2, an analytical object can be partitioned and bucketed/ clustered
by specific descriptive attributes (technically, using analytical attributes is perfectly possible as well,
although not as usual). The attributes that are used to partition the analytical object form the partition
key, which fragments the analytical object into more manageable parts that can be accessed
individually. This work does not provide a rigorous rule to partition analytical objects, but encourages
system orchestrators to use time and/or geospatial attributes as the partition key (E. Costa et al.,
2018), since data can be typically loaded and filtered in hourly/daily/monthly batches for specific
places (e.g., cities, regions, and countries). This will obviously depend on the implementation context,
but this is typically an adequate strategy for several contexts. Another advantage of partitions can be
highlighted in scenarios wherein data should be updated (e.g., perform a batch update because some

records were modified or were previously incorrect), which allows practitioners to recompute just the
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required partitions instead of the entire analytical object. In contrast, the attributes used as
bucketing/ clustering key assure that a range of records are stored in the same group/bucket or sorted
in a certain way. However, system orchestrators need to plan this strategy according to frequent
access patterns requested by data consumers. The proposed approach highlights the relevance of
this concept, but does not aim to provide any rule in this area, due to the fact that it may vary

significantly according to the implementation context.

4.3.2 Joining, Uniting, and Materializing Analytical Objects

In the proposed approach, analytical objects can complement each other. Although there are no
physical relationships implemented in the storage system, Big Data querying technologies (e.g., SQL-
on-Hadoop systems) are able to join different datasets given specific attributes. Therefore, an
analytical object may contain, in its descriptive attributes, the attributes that correspond to the
granularity key (or part of it) of another object. In this case, an object is considered a complementary
analytical object if its granularity key (or part of it) is included in another analytical object (e.g., the
“customer account” object in section 5.2, whose part of the granularity key is referenced by another
object, and the “proauct” object in section 5.1, whose granularity key is fully referenced by another
object). Such integration allows for the association between two analytical objects through a join
operation. Another type of association can be made using descriptive attributes that do not correspond
to the granularity key of the analytical objects. In this case, analytical objects can be joined using
regular descriptive attributes, such as a simple date, for example. A date may not define the
granularity key of an analytical object, but it can be used as a join attribute between analytical objects.
If many to many associations are identified between analytical objects, one can use collections to
solve this issue, i.e., one analytical object contains a collection in its descriptive attributes that stores
the association with many records of another analytical object. Once again, it must be highlighted
that there is no physical relationship between analytical objects, neither it is mandatory to prepare
and enrich data to create these associations between analytical objects. Technically, analytical objects
can be joined by any attribute without practitioners being concerned with foreign key relationships

and indexes. Certainly, there are many contexts in which analytical objects are analyzed
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independently, without ever needing to join them. However, whenever necessary, the approach offers

support for it.

At this point, a question may begin to emerge: “/f a new denormalized approach is being proposed
fo solve the complexity in join-dependent data models, how can one perform efficient join operations
between analytical objects if they can potentially store Gigabyles, Terabytes, or Petabytes of data?”
To answer this question, Figure 4.5 presents the process of joining analytical objects, which highlights
the need to execute all the required operations in each analytical object through the use of subqueries,
or relying on efficient query optimizers to adequately and automatically process both sides of the join
operation before the join itself occurs. Then, and only then, the results of these subqueries (or pre-
join processing from query optimizers) are joined accordingly. This approach vastly reduces the
complexity of join operations, since each subquery on each side of the join is already as aggregated

(or filtered) as possible. Figure 4.5 provides an example SQL query showing how to perform this type

Read Analytical Read Analytical
Object 1 ¥ Object 2 3

A4 \ 4

Filter Filter
Aggregate Aggregate
Transform Transform

Select Select
Attributes Attributes
v 4 A4

) A Join Analytical Objects

WITH query_analytical_object1 AS (SELECT ...),
query_analytical_object2 AS (SELECT ...)

SELECT *

FROM query_analytical_object1

JOIN query_analytical_object2 ON ...

Example SQL Query

Figure 4.5. Process of joining analytical objects.
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of join operations. If the “W/7TH” keyword is not compatible with the current querying and OLAP
technology, one can also make use of subqueries in the “FROM” or “JOIN” clause. The same

concepts are also valid for union operations.

This process of joining analytical objects should be applied in each join operation, not only including
complementary analytical objects, but also materialized objects and analytical objects in different
storage systems (see Figure 4.4). Since analytical objects can have a significant number of records,
joining them can become a time-consuming task, even when using the join approach presented in
Figure 4.5. It is in this context that materialized objects are useful and efficient. Complex and long-
running queries can be materialized through the materialization pipeline (see Figure 4.4), giving origin
to the materialized objects, which can be further joined with other analytical objects. The
materialization pipeline also assures the update of materialized objects with new data. Materialized
objects can be stored either in the batch storage or in the streaming storage, depending on the access
patterns of data consumers (e.g., using NoSQL databases for the streaming storage can provide
adequate random access capabilities for specific analytical scenarios). Summarizing the concept of
materialized objects, it can be concluded that they are able to store the results of time-consuming
queries, increasing the performance of the BDWing system, since several data consumers can
consume this materialized object much faster than the original analytical objects. Consequently,
materialized objects may be analogous to OLAP cubes in traditional DW environments, containing

pre-aggregated data meant to be consumed in a faster and more efficient way.

Besides join operations, this work also considers the use of union operations, typically useful to
combine analytical objects stored in the batch storage with analytical objects stored in the streaming
storage. Uniting analytical objects in different storage systems enables the visualization of batch and
streaming data using a single query. Also relevant is the fact that queries can take advantage of union
operators while the inter-storage pipeline does not transfer the records from a streaming analytical

object to the corresponding batch analytical object.
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4.3.3 Dimensional Big Data with Outsourced Descriptive Families

In certain contexts, data still remains highly relational and dimensional, i.e., different analytical objects
will share common descriptive families. One adequate example is “safes transactions”, which can be
analyzed using several descriptive families like “customer”, “product”, and “supplier”, for example.
Besides that, these descriptive families can be included in several other analytical objects, such as

”ou ”oou

“customer complaints”, “purchases”, “inventory management”, among others.

As discussed previously in this section, the proposed approach allows the use of joins between
analytical objects. However, it does not include the concept of dimensions. Typically, flat structures
are preferred to avoid the cost of join operations and to achieve better performance, as demonstrated
in Chapter 7. However, completely flat structures vastly increase the storage size of the BDW when
compared to dimensional structures (e.g., star schema). The problem becomes really severe if
multiple analytical objects share the same descriptive families, because the increase in storage size
can get out of control, especially if these descriptive families have a significant number of attributes.
Obviously, one may be able to sacrifice storage space, which is cheaper than processing power, in
exchange for better performance. Taking into consideration the insights provided in Chapter 7, it may
be advantageous to use a flat analytical object that is 3 times bigger than the corresponding star
schema. However, if one considers contexts with several flat analytical objects that share the same
descriptive families, the BDW size can grow in a rate that the organization cannot sustain.
Furthermore, there are certain contexts in which star schemas can outperform flat analytical objects

(see subsection 7.2.3).

For these reasons, and supported by the results presented in Chapter 7, one promotes the following

guidelines for modeling dimensional Big Data using the concept of outsourced descriptive family:

1. A descriptive family should be outsourced to a complementary analytical object if one or a
combination of the following conditions is verified:
a. The descriptive family is frequently included in other analytical objects (phenomenon

that is relatively similar to the conformed dimensions concept in Kimball's
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approach), avoiding extreme redundancy in the BDW, especially if the descriptive
family has a considerable number of attributes. Otherwise, outsourcing frequently
reused descriptive families with few attributes may not be compelling;

b. The descriptive family has low cardinality, i.e., its distinct records will form a low-
volume complementary analytical object that easily fits into memory, enabling the
capability to perform map/broadcast joins in SQL-on-Hadoop engines (see
subsection 7.2.1 and 7.2.3);

c. The frequency of data ingestion of the complementary analytical object is equivalent
to the other analytical objects it is related to. For example, if one is using the BDW
to store and process streaming data from social networks, having a “user”
complementary analytical object is only practical if the users’ data is also streamed
to the BDW as soon as a customer signs up for the social network, otherwise the
BDW will suffer from problems such as the late arriving dimensions phenomenon in
dimensional DWs (Kimball & Ross, 2013). If such design requirement is not possible
to fulfil for some reason, then flat analytical objects are preferred in these contexts;

d. The descriptive family alone can provide considerable analytical value when analyzed
independently, forming a real analytical object. For example, “custorner” may serve
as a complementary analytical object when outsourced from a descriptive family of
another object, but it can also be used independently to measure customer
performance if it contains analytical attributes related to average sales, average
returns, current reviews, among other factual or predictive data.

2. Complementary analytical objects resulting from the outsourcing of descriptive families
should use natural granularity keys, as maintaining surrogate keys is not practical in most of
the BDW storage technologies, both for batch and streaming scenarios (e.g., lack of proper
support for auto-increments). Searching for the surrogate keys corresponding to the natural
keys flowing through CPE workloads also becomes very inefficient and unpractical, especially

in streaming workloads;
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3. The records of complementary analytical objects resulting from the outsourcing of descriptive
families should also be designed to be immutable, whenever possible, similarly to the records
of regular analytical objects. If such is not possible or applicable for the requirement being
fulfilled, these complementary analytical objects should at least be either efficient to update
or easy to recompute using a CPE workload (fully or partially using partitions), in order to
avoid dealing with complex SCD-like scenarios. Despite this guideline, practitioners should
feel free to create mutable complementary analytical objects (as well as regular analytical
objects) whenever the technologies storing the batch/streaming object support proper
updates. Again, BDWing technology is evolving in this matter, and this guideline must not be
seen as absolutely mandatory if performance is not severely compromised (see subsection
5.2.1 for further discussion on this topic);

4. By simply outsourcing descriptive families to complementary analytical objects, only
descriptive attributes are considered. This means that the resulting complementary analytical
objects do not hold any analytical families and attributes, and, therefore, any analytical value.
Although this is possible in the proposed approach, it somehow violates the principle that
analytical objects should be autonomous structures that can answer some queries without
the need for any join operations. This principle will not be true for a complementary analytical
object “custorner”that will only be used to complement other analytical objects, for example,
as previously exemplified in this section. Consequently, one encourages practitioners to use
the concept of “aggregated facts as dimension attributes” in Kimball's approach (Kimball &
Ross, 2013). Although not mandatory, this technique allows practitioners to include analytical
attributes (facts or predictions) in these complementary analytical objects, meaning that
these attributes can not only be used for filtering or labelling records, but also to perform
calculations, as one is modeling an analytical object after all, and not only a traditional
dimension. Using this strategy, the “custormer” analytical object can be used to
independently answer specific queries, such as “what is the average revenue generated by
certain customers?”, without needing to query both the “sa/es” analytical object and the

“customer” analytical object. Following this example, the “cusformer” analytical object can
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even include predictive attributes, such as a cluster label based on the customer’s value to
the organization (see subsection 6.5.1). Obviously, similarly to what Kimball and Ross (2013)
state, these pre-aggregations create more burden in the processes that make data flow to the
system, but also provide more analytical value and, sometimes, eliminate the need for

complex and costly queries. Such trade-offs still hold true in the proposed approach.

4.3.4 Data Modeling Best Practices

This subsection presents several best practices that can be applied to a BDW data model, in order to
clarify some questions that may arise in its design and implementation, including the use of null
values, the preparation of spatial and temporal attributes, and the modeling of records as immutable

events.
4.3.4.1 Using Null Values

The use of null values in the BDW is not forbidden, and for certain cases is even advisable. However,
there are some relevant practices that must be taken into consideration. Regarding analytical
attributes, one advises the use of 7w/ to indicate the absence of a value, since null values are often
ignored in querying, OLAP, and visualization technologies, which do not take them into account when
performing aggregations on data. If numbers like 0 or -999, for example, are used to indicate the
absence of a value, every time an aggregation is performed, filters need to be applied first to ignore

these values, since they affect an average/sum calculation.

In contrast, regarding descriptive attributes with a text data type, the use of “Unknown” or “Not
Applicable”is more user-friendly and appropriate when using these attributes to aggregate analytical
attributes. However, there are certain data types in which the use of null values is still preferable (or
the only solution) to indicate the lack of values in descriptive attributes, namely types such as boolean,

arrays, or maps.
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4.3.4.2 Date, Time, and Spatial Objects vs. Separate Temporal and Spatial Attributes

The date and time objects presented in Figure 4.4 include several temporal attributes that
complement the analytical objects stored in the BDW. Including these attributes (e.g., “s holiday”,
“Is weekend”. “month”. and “year”) in the analytical objects can severely increase their storage size
and consequently affect the stability and performance of the BDWing system. These objects are
considerably small and will not significantly affect the performance of the BDW by requiring a join

operation, as seen in Chapter 7.

One encourages the use of the date and time objects to store a vast set of temporal attributes that
can be used by the analytical objects. An adequate practice would be the use of standard dates (e.g.,
“wyy-mm-dd”) and standard time representations (e.g., “#4.mm”) in all analytical objects, which

would then allow to join them with the date and time objects.

Moreover, with this approach, practitioners can also use several UDFs to interact with the single date
or time attributes stored in the analytical objects, in order to create new attributes not present in the
date and time objects. Extracting attributes at runtime may not significantly impact the query
execution time, sometimes just showing insignificant increases. Nevertheless, one does not
discourage the use of separate temporal attributes (e.g., “day” “month”, “year”, ‘“hour”, and
“minutes”), quite the contrary, since they are still significantly useful in certain contexts. One
particular example is the specification of partition keys, given that, frequently, only simple data types
like strings or integers can be used in the partition key. Therefore, if one needs to use “m0onth” as the
partition key, there may be the need to have a separate temporal attribute “770n#/”. Concluding, the
use of the date and time objects or the use of separate temporal attributes depends on the

implementation context, and system orchestrators should evaluate the most adequate solution for

the context.

Regarding the use of spatial objects, they prove to be significantly useful for standardizing spatial
attributes across the analytical objects of the BDW, such as assuring that a city and a country have

the same exact meaning (and characteristics) throughout the entire data model. However,
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practitioners should be careful with large and detailed spatial objects (e.g., “building number”, “street
name”, and ‘coordinates”), because join operations can certainly create performance bottlenecks in
Big Data contexts. Therefore, one should prefer maintaining these highly detailed characteristics (e.g.,
“building number”and “coordinates”) in the analytical object in a denormalized form, while creating
less granular spatial objects like “city” for example, which can also include the corresponding
countries in a denormalized form (see subsection 5.3.2). However, highly detailed spatial objects are
acceptable in scenarios wherein one can predict their growth, because the number of records they

can have is already known or expected a priori.
4.3.4.3 Inmutable vs. Mutable Records

As previously discussed, one encourages practitioners to model analytical objects as a set of
immutable events. As Marz and Warren (2015) discuss, simpler implementations can be achieved by
eliminating the complexity associated with update operations, which can sometimes raise
concurrency issues. This modeling style will probably suite most of the analytical scenarios in
organizations, since the granularity of each analytical object can be rethought to treat each record as

an immutable event.

Take as an example an analytical object to store customer complaints (Figure 4.6). A certain
organization knows that a customer complaint has several states over time. A possible approach,
which allows the records to be updated, is to have one analytical object that stores a customer
complaint in each record. When a recently opened customer complaint arrives at the BDW, it is stored
in a record with the status “open”, not having a due date yet. In the meanwhile, this record will have
to be updated when the customer complaint is “#inished”. In contrast, another approach is to model
the analytical objects according to a set of events related to customer complaints. When a recently
opened customer complaint arrives at the BDW, a record is created containing the status and the
date associated with that status. When the status of the customer complaint changes, new data
arrives at the BDW, and a new record for each state change is stored. This second approach assures

that each record is immutable, eliminating the need for update operations.
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> Mutable Customer Complaints
Descriptive Atributes Analytical Atributes
Mutable Customer Complaint Description Quantities
Complaint Customer ID ‘ Complaint ID | Status | Creation Date | Due Date Claimed Quantity
111 | 1 | ‘Open’| 1992-10-02 | NULL | 20
| A A
:

—e Granularity Key

Values to

Immutable Event Update

Customer Related to the

Complaint ~ Complaint
Immutable Customer Complaints
Descriptive Atributes Analytical Atributes
Customer Complaint Description Quantities
Customer ID ‘ Complaint ID Status | Status Date Claimed Quantity

1111 | 1 | ‘Open’ | 1992-10-02 | 20
I

1111 | 1 | ‘Finished’ | 1992-12-02 | 20
|

—e Granularity Key «—

Figure 4.6. Example of immutable and mutable records.

Despite the fact that queries need to be structured in different ways, the two analytical objects
presented in Figure 4.6 are able to answer the same analytical questions. Furthermore, one can argue
that the immutable analytical object is more oriented towards ad hoc querying, wherein data
consumers can discover relevant patterns and delays among processes related to customer
complaints. However, the proposed approach does not forbid the use of mutable analytical objects,
considering that practitioners plan the BDW technological infrastructure according to the random
access trade-offs and limitations of the several technologies presented in section 4.2. Modeling
analytical objects as a set of immutable events is a suggestion, not a rigorous rule, since updates can
be performed on storage systems that adequately support random access operations, as previously
discussed in subsection 4.1.3.3.2 and further explored in subsections 5.1.3, 5.2.1 and 5.2.4. As
previously discussed, technology is constantly evolving, and these trade-offs or limitations may not be
an issue in certain implementation contexts. The proposed approach does not aim to restrict any use
of specific functionalities, giving practitioners an adequate flexibility regarding data modeling.
However, one highlights the need to assure that the logical components, data flows, infrastructure,

and data model are all properly integrated and aligned to serve the business goals.
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4.3.5 Data Modeling Advantages and Disadvantages

This modeling approach based on denormalized and nested data is seen as a crucial step to achieve
a flexible storage in the BDW. When compared to the relational data modeling approaches found in

traditional DWs, this work trades less redundancy and smaller DW sizes for the following advantages:

1. Assures better performance in query execution, due to the lack of constant join operations
between dimensions and fact tables imposed by traditional dimensional and 3NF data
models;

2. Provides a flexible denormalized model without the need to perform complex surrogate key
maintenance and lookups for each insert, allowing for simpler and more efficient batch and
streaming CPE processes, by avoiding known-problems such as SCDs and late arriving
dimensions (especially in streaming scenarios);

3. Preferably focuses on modeling analytical objects as a set of immutable events and,
therefore, there is no need to frequently deal with concepts such as SCDs (Kimball & Ross,
2013). However, as explored in subsection 5.2.1, this does not mean that mutable objects
are forbidden, and when using them, some of the SCDs considerations still hold true;

4. Avoids other traditional dimensional data modeling, ETL, and DW maintenance problems like
having to consider several types of dimensions (e.g., mini dimensions, junk dimensions,
shrunken dimensions, and bridge tables), which in Big Data contexts are arguably
unnecessary, as saving some storage space and achieving less-redundant data models, may
come at the cost of spending a considerable amount of time in data modeling, implementing
ETL processes, and maintaining the DW (not to mention performance costs), which may be
a compelling reason why, nowadays, practitioners pursue more flexible analytical contexts.
Consequently, despite some data redundancy, in several contexts, the proposed approach
provides simpler data models than a dimensional or 3NF DW, reducing the time needed from
collection to analytics;

5. Highlights nested structures as relevant constructs in certain BDW data models and

applications, which can be significantly useful in certain contexts (see Chapter 5 and Chapter
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8), such as storing geospatial objects for intensive geospatial analysis, and solving many to
many relationship issues typically found in relational databases (e.g., a customer complaint
may have several responsible employees, which are also responsible for several customer

complaints).

Nevertheless, the proposed data modeling method has some characteristics that may be considered

as disadvantages when compared to the aforementioned methods to design DWs, which include:

1. The total size of certain BDWs (typically the ones whose data sources are highly dimensional
with frequently reused dimensions) may increase drastically due to extreme denormalization,
reason why the approach introduces the concept of date/time objects, spatial objects,
complementary analytical objects, and outsourced descriptive families. Consequently,
practitioners should take into consideration the guidelines provided in subsections 4.3.4.2
and 4.3.3, as well as the data models explored in Chapter 5, mainly in section 5.1 and 5.3,
as the original data sources tend to be highly dimensional, being the same dimensions reused
frequently by different business processes/analytical subjects. Without these strategies, the
resulting BDWs would be significantly larger than the DWs based on star schemas or 3NF
data models. Nowadays, storage size is cheap, but may often lead to unnecessary concerns
and costs regarding systems administration, which can be avoided by using the constructs
discussed above, whenever practical and applicable;

2. If the data source fueling an analytical object is based on a relational database, the CPE
workloads for that object may need to include a considerable amount of join operations,
either being performed in the source (as a SQL query for example), or being performed in
the technology supporting the workloads. However, in Big Data contexts, many of the data
sources are non-relational (e.g., sensor data, NoSQL databases, spreadsheets, XML files,
and JSON files), making the proposed method for data modeling significantly more

compelling and simpler for BDWs.
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Chapter 5. Big Data Warehouses Modeling: From Theory to Practice

After the presentation of the general data modeling method in section 4.3, this chapter explores its
use in several BDWing contexts, since more practical examples and realworld applications may be
required for practitioners to master some of the proposed data modeling guidelines. Consequently,
this chapter aims to provide several examples of BDWing applications using the proposed data
modeling method, in order to clarify some of the guidelines provided previously, and to evaluate their
suitability in a broader scope of analytical applications focused on: traditional enterprise setups with
human resource management, purchases, sales, promotions, goods returns, inventory management,
and production process; financial market; retail; code version control systems; media events

(broadcast, printed and Web news): and air quality measurement systems.
5.1 Multinational Bicycle Wholesale and Manufacturing

As already seen, Big Data can be defined as data whose characteristics impose severe difficulties to
traditional DWing platforms. Frequently, there may be a misconception regarding the need to satisfy
all Big Data characteristics to deploy a BDW, such as the need to process vast amounts of
unstructured data arriving at theoretically unlimited velocities. However, in this section, one will
present how a BDW can be modelled to encompass traditional business processes like human

resources management, sales, purchases, production, among others.

Obviously, traditional DWs have long been the backbone for analytics over traditional and structured
business processes, but this section provides a way of modeling such complex scenario in a BDW
created using the proposed approach, in order to provide more data modeling simplicity, less ETL
effort without complex dimension maintenance and surrogate key lookups, and more processing
efficiency by reducing the constant need to join several tables, while being fully compliant with a
shared-nothing and open source vision of what a BDW should be. Such benefits can attract

organizations that are starting their analytical platforms based on open source Big Data technologies,
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as well as organizations looking to replace their expensive DW appliances or limited relational

databases.

For this example, one uses the Adventure Works database, a relational OLTP database from a fictitious
company that manufactures and sells bicycles, included as part of the Microsoft SQL Server samples
(Microsoft, 2018). This database has a relatively complex schema that covers a wide spectrum of
business processes and entities (e.g., employees, vendors, customers, stores, departments, products,
work/production orders, purchases, sales, and inventories). The complete representation of the

Adventure Works database is available in (Dataedo, 2017).

After applying the data modeling method, the resulting BDW data model can be seen in Figure 5.1,

”o U ”oou, ”oou,

containing 7 analytical objects (“employee history”, “sales line”, “product review”, “product vendor

”oou ”oou,

history”, “purchase line”, “product inventory”, and “work order”), 3 complementary analytical objects
(“product”. “vendor”, and “special offer”), 1 date object, 1 time object, and 2 spatial objects (“city”
and “territory”). Descriptive attributes are divided into descriptive families, while analytical attributes
are divided into analytical families, when applicable. Analytical objects can also contain outsourced
descriptive families that are linked to a complementary analytical object through a unique identifier
(granularity key) of that object, identifying a specific record. Several of these constructs and design

guidelines, already discussed in section 4.3, are detailed and exemplified here, not only for this

specific example, but also for the other BDW examples in the following sections.

The data model presented in Figure 5.1 sometimes omits certain attributes of the original Adventure
Works database, in order to simplify its presentation in this work, such as the omission of the attributes
in the “header” analytical family of the “sales /ine” analytical object due to its similarity with the
“ourchase /ine" analytical object or, for example, the omission of the attributes from the “customer”
and “sales person” descriptive families of the “sales /ine”analytical object, due to the wide spectrum
of available attributes (different practitioners may choose to incorporate different attributes).
Therefore, the main idea is to exemplify the modeling approach and not to extensively enumerate the

attributes.
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Figure 5.1. Adventure Works BDW data model.
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5.1.1 Fully Flat or Fully Dimensional Data Models

The example in Figure 5.1 demonstrates the use of outsourced descriptive families and

complementary analytical objects (subsection 4.3.3), using them to overcome extreme redundancy

and storage size increase. By revisiting the arguments for the use of these concepts in subsection

4.3.3, one can highlight the following:

L.

“Product” is an adequate candidate for a complementary analytical object because its
attributes would otherwise appear repeated in several analytical objects, as a product is a
core business entity in this context. A “product” object allows for the standardization of the
products information across the BDW, and since new products are not added rapidly in this
context, this is an adequate design choice, because it will not severely affect join
performance, as broadcast/map joins will still be efficient as time goes by. The “product”
object by itself holds a significant analytical value, which distinguishes itself from a traditional
dimension just to avoid redundancy, as one can be interested in analyzing several metrics
regarding products, without needing any additional analytical objects. This is therefore a
valuable construct in the approach, and it resembles the concept of “aggregated facts for
dimensions” from Kimball and Ross (2013). In subsection 5.1.3, one will detail how this
concept can be implemented,

For the same reasons, “vendor”is also an adequate complementary analytical object that
serves two outsourced descriptive families from the “product vendor history” and the
“burchase line” analytical objects. However, in contrast to “product”, “vendor”does not have
any evident analytical attributes, although “is preferred vendor”and “credit rating” could be
considered analytical attributes as well, as the proposed approach offers this flexibility due to
the denormalization process, allowing the execution of aggregate functions over any attribute
present in the analytical object without involving any kind of join operation. Moreover, as
explained above, other analytical attributes can be created (e.g., average monthly purchases).
Another relevant consideration is the fact that “vendor”is also related to the spatial objects,

so one can conclude that, as there is no need to define foreign keys in BDWs created using
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the proposed approach, objects in the data model can be flexibly joined, as long as there are
common unique identifiers among them (simple or composed);

3. “Special offer”is considered a complementary analytical object, although it is only related to
the “sales /ine”analytical object and, therefore, it does not necessarily serve the purpose of
avoiding extreme redundancy. However, theoretically, it represents a standard analytical
object that happens to be joinable with the sales information by a unique identifier.
Consequently, as seen in subsection 4.3.2, two analytical objects can be joined together,
being the designation of complementary analytical object assigned to the object whose
granularity key (or part of it) is included in other objects, which in this case makes “specia/
offer”a complementary analytical object of “safes /ine”:

4. Other potential candidates for complementary analytical objects could be the ‘employee”
and ‘“customer” objects. Regarding a possible “employee” complementary analytical object,
there is employee information in the “employee history” and “sales /ine” objects but, in this
model, one can consider that only a subset of the employee attributes are relevant for each
analytical object, thus denormalization and redundancy is appropriate and, therefore, there
is no need for a complementary analytical object integrating the employee information. In
the case of the “custorner”analytical object, since customer information only appears in the
“sales line”analytical object, there is no apparent need for a complementary analytical object
that can be shared by other analytical objects, being the level of denormalization presented
in Figure 5.1 appropriate for this context. However, the creation of a “custormer” analytical
object is possible and sometimes encouraged, as can be seen in the data model depicted in

section 5.3.

5.1.2 Nested Attributes

Nested attributes are a valuable construct in the proposed modeling method, as they provide a
considerable amount of flexibility and a new set of analytical possibilities. As can be seen in Figure
5.1, considering the “work order” analytical object, one can observe that although this object stores

information at the work order level, the routing attribute stores more granular information at the work
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order route level, detailing the several production steps of a specific order. This allows for a broader
range of ad hoc queries to inspect routing information, without the need for heavy drill across
operations. As mentioned in subsection 7.2.4, lambda or explode functions can be used to explore
nested data. Nested attributes are also used in the ‘product” complementary analytical object to
store the history of prices and costs of the products. These attributes are arrays of structs/rows (or
similar data structures), and can serve to analyze price/cost history of a specific product, again,
without the need to join tables. These constructs are powerful for ad hoc exploration of data, but
require some attention when performing heavy aggregations or filtering operations based on nested
values, as seen in subsection 7.2.4. Another relevant aspect to consider is the size of the collections,
as they are not meant to grow rapidly, due to the fact that some Big Data technologies may present
limitations when performing insert, read, or update operations on large nested attributes.
Consequently, they are preferred in scenarios wherein practitioners can estimate their initial size and

potential growth.

5.1.3 Streaming and Random Access on Mutable Analytical Objects

As stated in Chapter 4, one promotes the storage of immutable events, not only due to the fact that
some of the core concepts of the approach take inspiration from the Lambda Architecture, but also
due to some current limitations of Big Data storage technologies when performing update operations
(e.g., HDFS/Hive). However, this guideline does not prevent practitioners from modeling and
implementing mutable (complementary) analytical objects. In this subsection, one will discuss how
mutable objects can be incorporated in a BDW, considering “product”and “product vendor history”

as examples.

As stated previously, some of the analytical attributes of the “product” complementary analytical
object resemble the concept of aggregated facts for dimensions (Kimball & Ross, 2013) (e.g., “avg
month sales” and “avg month sold qty” attributes). However, without proper support for update
operations, each month, this analytical object would have to be completely reconstructed to store the
new monthly values. In contrast, if needed, as discussed in section 4.2, practitioners may opt for

storage systems that are suitable for random reads and writes. When choosing a NoSQL database,
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for example, one does not need to recompute the “product”object, just to update the average monthly

metrics for each product.

The proposed approach assumes that this type of design choice follows the streaming data flow in
Figure 4.1, because this work only suggests NoSQL databases for the streaming storage component,
not the batch storage component. However, it is evident that, in this case, the updates happen in
relatively large batch intervals, which may or may not be supported by streaming technologies
depending on the CPE workload execution frequency (e.g., every time a customer purchases
something, each day, or each month). Such assumption forces these analytical objects to be stored
in the streaming storage component, regardless of the CPE workload being based on batch or stream
processing. This is a design choice of the proposed approach, as the batch data flows still remain
considerably similar to constantly inserting/updating values on a streaming analytical object stored

in a NoSQL database.

Nevertheless, with the rapidly evolving Big Data technological landscape, support for update
operations and ACID transactions is a concern of several storage technologies, and Hive is no
exception. Therefore, if practitioners choose a Hive transactional table to store products data, this
scenario can be adequately supported by the batch storage component, without the need to store the
“product” analytical object in a NoSQL database (streaming storage). Transactional tables are
significantly optimized in Hive version 3 (Apache Hive, 2018), thus being a relevant feature to explore
in future prototypes and production systems. Consequently, nowadays, practitioners do not
necessarily have to choose NoSQL databases to adequately perform random insert/update

operations with moderate frequency.

The context for the “product vendor history” is almost identical to the previous one. In contrast to
these two examples, ‘employee history” is an example of how a potentially mutable object can be
transformed into an immutable object, as each time some employee data changes (e.g., personal
information, department, shift, or salary), a new record is created, which allows for analyzing

employee history in significantly flexible ways.
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5.2 Brokerage Firm

The financial sector has been increasingly considering the adoption of Big Data techniques and
technologies as part of the Fintech phenomena (Gai, Qiu, & Sun, 2018). A brokerage firm, facilitating
the trading of financial securities, can represent an appealing application context for a BDW, as it
stores and processes vast amounts of daily market and news data, as well as trading and watching
data of several securities related to multiple brokers and customer accounts. Consequently, in this
section, one models a BDW for a fictional brokerage firm depicted in the TPC Benchmark E (TPC-E)
(TPC, 2018), which thoroughly details a concurrent transactional database system for financial

brokerage contexts.

In this work, one transforms the TPC-E data model into a BDW data model using the proposed
approach (Figure 5.2). The brokerage firm BDW data model is presented in a simplified manner, in
order to avoid repeated constructs already detailed in this chapter and, therefore, some

(complementary) analytical objects are not detailed at the family or attribute level.
5.2.1 Unnecessary Complementary Analytical Objects and Update Problems

In the BDW data model depicted in Figure 5.2, there are 3 complementary analytical objects:
“customer account”, “broker”, and “security”. |n this example, “custorner” and ‘company” could
theoretically be included as complementary analytical objects, but due to their lack of isolated
analytical value for this specific context, as well as the frequency in which they appear related to other
objects, both were not considered as complementary analytical objects, preferring some

denormalization steps: “custorner” data appears denormalized in the “custormer account” object;

‘company” data appears denormalized in the “news”and “security” objects.

However, this design decision also means that the “wafch /ist” analytical object, which in the original
TPC-E model is related to the “cusformer”table and not to the “custormer account”table, needs to be
indirectly joined with the “custormer account”. In this case, in order to retrieve customer information

associated with specific watch list data, one needs to, for example, perform a left outer join retrieving
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Figure 5.2. Brokerage firm BDW data model.

the customer information from its last customer account. Moreover, if there is a change in some

attribute related to the customer, not the customer account, one needs to choose an update strategy:

1. Replace the values in all the related customer accounts by scanning the entire analytical

object or several partitions (similarly to SCD type 1);

2. Update only the last customer account;
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3. Only update customer accounts when a new account is inserted, as the customer created
the accounts before this update, and such information is somehow valuable for business
analysis (immutable events strategy):

4. Insert a new record for each customer account with the updated values (similarly to SCD

type 2).

If practitioners find this design approach suitable for their use cases, the same can be implemented
to provide more simplicity in CPE workloads, otherwise a new complementary analytical object
“customer” can also be created, as the approach provides this flexibility by delegating some design
decisions to practitioners according to their implementation’s specificities. Regarding update
operations on complementary analytical objects, design choices are often influenced by the adoption
of a specific technology (see 4.2 and 4.3.4.3), due to their random access or batch update
capabilities. However, some of these choices and challenges are also somehow related to the concept
of SCDs (Kimball & Ross, 2013), as some of the underlying challenges of updating denormalized
dimensions resemble the challenges of updating complementary analytical objects, due to data

redundancy (scanning vast amounts of data to update certain values) and history maintenance.

Several strategies from multiple SCD types (e.g., SCD type 1, 2, and 3) can also be applied to
complementary analytical objects, but one needs to consider that the proposed approach does not
have the concept of surrogate key and, therefore, practitioners should rely on the originally defined
granularity key, as well as modification dates and flags to indicate the current/active records, when
needed, in order to appropriately join analytical objects, which creates a slightly more complex
granularity key (granularity key information on subsection 4.3.1). In this example, “customer account”
would not have a simple “custorner account id” as granularity key, but a complex granularity key like

”oou ”ou

‘customer account id”, “insert date”, “expiration date”, and “is current”.

5.2.2 Joining Complementary Analytical Objects

As already dissected throughout this work, the approach considers every table as an analytical object,

which can be complementary, or not, depending if they contain descriptive attributes that are
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outsourced from other objects, or not. Frequently, as seen in this brokerage firm, complementary
analytical objects may resemble traditional dimensions, despite the fact that one encourages
practitioners to provide analytical attributes for these complementary objects. This is the case for the
“broker” and “security” objects in this example. Considering the guidelines provided in subsection
4.3.3, for BDW data models with significantly large complementary analytical objects created with the
purpose of supporting outsourced descriptive families, if interactive query execution is a priority, one
should consider denormalizing data even further, by including attributes from the “security” object in
the “frade” object for example, taking into consideration the data model of this brokerage firm. This
may be the case for the “security” complementary analytical object, which can become significantly

large depending on the securities being traded in this context.

5.2.3 Data Science Models and Insights as a Core Value

One of the main design concerns of the proposed approach is to close the gap between data science
models/results and the BDW data structures that store the data for later use. Throughout this work,
one already discussed this topic several times (see subsection 4.1.2 and section 6.5). For this
brokerage firm, one can apply the concept of predictive attributes to make data science results
available to other analytical applications (e.g., dashboards, ad hoc querying, custom-made
applications, and simulations). Such examples may include: the “recommended securities” and the
“list cluster”in the “walch /ist” object, which can be derived from a recommendation engine and a
clustering algorithm respectively; and the ‘po/arity” attribute from the “news ifern” object, which may
be the result of a sentiment analysis process that classifies a news item as being positive or negative,

in order to enrich the decision-making processes that the BDW can support.

In contexts where custom-made applications may need to access the data stored in the BDW, such
as a brokerage firm Web site that recommends securities to millions of customers based on the
“walch list” recommendations, the “wafch /ist” analytical object becomes an adequate candidate for
a streaming analytical object that is stored in a NoSQL database to provide adequate random access
to millions of concurrent users, a use case wherein NoSQL databases thrive (strategy already

discussed in subsection 4.1.3.3.2, section 4.2, and subsection 5.1.3).
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5.2.4 Partition Keys for Streaming and Batch Analytical Objects

Considering this financial brokerage context, the “frade” object is noticeably the analytical object in
which most of the decision-making process will be centered in. Analyzing a stream of trading data
can provide significant business value, accelerating the decision-making process in several forms.
However, a trade follows different stages (e.g., request, cash transaction, and settlement), and as
modelled in Figure 5.2, it may have different attributes filled in depending on its type (e.g., cash or

margin trade).

One of constructs that can be used in this context is the partition key. By using this construct,
practitioners can easily use the same analytical object to store both batch and streaming records, in
this case, trading data. For example, if one partitions the “frade” object using the “status” attribute
(or any other attribute available in the transactional system indicating different states of the trade),
both batch and streaming data can be stored in the same analytical object and in the same storage
technology (e.g., Hive), wherein the trade can be constantly updated until it reaches a state of
completion. By using different Hive partitions to divide batch and streaming records of the same table,
one can have different schemas for each partition, which means that some attributes of the “#rade”
analytical object may only be included in specific partitions, depending on the state of the trade (e.g.,
requested or settled). This is possible for storage technologies that can have schemas defined at the

partition level, which is the case when using Hive.

This capability also means that the frequent use of update operations (e.g., Hive transactions) can
be restricted to streaming partitions, as once the trade reaches completion, the chances of it being
updated are rather reduced. This demonstrates the flexibility of the proposed approach, which allows
for a seamless integration between batch and streaming data, and efficient ways of conducting update
operations, despite the fact that it encourages the modeling of immutable objects whenever possible.
However, in this case, in order to provide a timely and interactive analysis, the “frade” analytical
object can be made mutable without significantly sacrificing efficiency, due to technological evolutions

like Hive transactions (Apache Hive, 2018).



5.3 Retail

In this section, one provides an example of a BDW that supports a retail organization derived from
the TPC-DS benchmark (TPC, 2017a), with store, catalog, and Web sales. This section provides some
specific details regarding retail contexts that may be useful for practitioners, and that were possibly
overlooked in the Adventure Works BDW (section 5.1), since it represents a broader organizational
context. The retail BDW data model presented in Figure 5.3 presents several analytical objects

(including complementary) in a highly dimensional model, focusing on sales, returns, promotions,

customers, items, and warehouses.
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Figure 5.3. Retail BDW data model.
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5.3.1 Simpler Data Models: Dynamic Partitioning Schemas

Similarly to the concepts demonstrated in subsection 5.2.4, the retail BDW data model presented in
Figure 5.3 also makes use of the partition key to provide simplicity and agility when collecting,
preparing, and enriching the data that flows to the BDW. However, considering this example, one
does not use the partition key and dynamic partition schemas to simplify batch and streaming
analytics in the same analytical object, but rather to provide simpler data models. By making use of
different schemas for different partitions, using Hive for example, one can efficiently store what would
possibly be three separate analytical objects into just one, i.e., store, catalog, and Web sales into the
“sale” analytical object partitioned by “sa/es fype”. Each partition can have different attributes, which
provides a centralized and efficient way of storing each type of sales. This phenomenon also happens
for the “return” object as it is almost identical in structure when compared to the “sa/e” object,
according to this specific retail context. Furthermore, in this example, “sak”is considered as a
complementary analytical object, since the “refurn”object includes the granularity key of the “sake”
object in its descriptive families, due to the fact that a return is related to a “sale order/ticket number”
and an “fem”. Such relationship may resemble scenarios in which practitioners use degenerate
dimensions for drilling across fact tables, first aggregating the two result sets, as much as possible,

and then combining the results, as also discussed in subsection 4.3.2.

5.3.2 Considerations for Spatial Objects

According to the proposed approach, a prior designed spatial objects are not mandatory. However,
as seen in the previous data models, they are encouraged in predictable scenarios. Considering this
retail context, despite the fact that customers have specific addresses, it frequently happens that sales
are not billed nor shipped to the default customer address and, therefore, they end up being also
attached to the sale itself, not only to the customer. It is possible, and perfectly plausible to include
a spatial object (e.g., city) in the data model depicted in Figure 5.3, but, for this example, one shows
that it is not mandatory to have one, as one may choose to perform the analysis at the city and

country level only, i.e., without other standardized spatial attributes across the BDW (e.g., county,
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region, and continent), which makes the effort of having to join the “salke”or “customer” analytical

objects with a “c/fy” spatial object with more attributes almost useless.

Choosing the adequate attributes that are suitable for the analyses should always be a relevant
consideration (Figure 5.3), and it will influence the use of wide spatial objects with several attributes
or a few denormalized attributes in the analytical objects. Both possibilities are suitable for this
context, but this example only serves the purpose of highlighting that, for specific contexts, spatial
objects may not be particularly useful. Furthermore, one aspect that practitioners should take into
consideration is to avoid significantly large spatial objects (e.g., denormalized hierarchies ranging from
building numbers to country names). In this case, some of the more granular geospatial information
can be contained within a descriptive family of the analytical object (e.g., building number and
building type), and the less granular information can be stored in the spatial object (e.g., city and

country).

5.3.3 Analyzing Non-Existing Events

Considering a traditional DW, if one uses a ‘custormer” transactional table to directly load a
“customer” dimension, the DW will be able to answer queries like the following: “which customers
have not returned a single iferm?”. However, considering a BDW with a fully denormalized analytical
object “refurn”, such analysis would not be possible, reason why practitioners have the option of
using complementary analytical objects like “custormer”. The same consideration holds true for spatial
objects, as one may want to analyze the cities in which the organization did not sell any item.
Consequently, for such analytical use cases, practitioners should definitely consider complementary
analytical objects, as well as date, time, and spatial objects, since fully denormalized analytical objects

only store the events (records) that actually occur.

5.3.4 Wide Descriptive Families

Previously, in subsection 5.3.2, one has highlighted the relevance of adequately choosing the
attributes that are relevant for the expected analyses. Such statement does not imply that there is the

need to know each query that will be submitted to the system. Nevertheless, frequently, there are
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certain attributes that are considered as irrelevant for the analytical use cases of the BDW being
implemented. In these cases, adequately choosing the attributes allows for smaller descriptive
families, which is a relevant aspect when using fully denormalized structures, since, with larger
descriptive families, more redundant data would be stored throughout several records, instead of just

one or few attributes that allow for join operations with complementary analytical objects.

Taking into consideration the retail context illustrated in this section, the “store” descriptive family
from the “sale” object can theoretically hold a considerable number of attributes. However, certain
attributes may be considered as irrelevant depending on the analytical use cases, such as the store’s
“GMT offset”or “tax percentage”, if the decision-making process of the organization does not consider
such information. Consequently, narrow descriptive families should be preferred whenever possible,
without sacrificing analytical value. Despite this guideline, if wide descriptive families are mandatory
for a specific case, columnar file formats (e.g., ORC and PARQUET) with compression techniques can

provide an efficient way of storing analytical objects with hundreds or thousands of columns.

Furthermore, if needed, one can create a “store performance” complementary analytical object
related to sales, outsourcing the “sfore” descriptive family, as such object would provide significant
analytical value at the store level, including several ratios between number of workers, floor space,
and sales numbers, for example. The flexibility of the approach regarding dimensional data allows the
delegation of some design decisions to practitioners, depending on the intended analysis and data

characteristics.

5.3.5 The Need for Joins in Data CPE Workloads

Considering the TPC-DS data model (TPC, 2017a), information like customer demographics,
customer household demographics, customer income, and customer address appears related using
foreign key relationships between the several dimensions that contain this information and the
“customer”dimension. In the BDW presented in Figure 5.3, all this information is denormalized into
the “custormer” complementary analytical object. Again, if one needs to answer queries like “s there

any customer demographic class in which the organization does not have any customer?”, this design
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choice is not appropriate, and the “customer demographics” descriptive family inside the “customer”
object will need to be outsourced to a complementary analytical object. However, one assumes that

this is not the case in this retail context.

Considering this denormalization process, with a “customer” complementary analytical object that
includes demographics, household, address, and income information, at first glance, one may find
the data CPE process to be somehow simpler than maintaining several separate dimensions, which,
in fact, can be partially true. However, the degree of simplicity depends on the transactional source

that fuels the “customer” object:

= |f the transactional source is a relational database in which this information comes from
several tables, then the data CPE workload corresponding to the loading and refreshment of
the “customer” object will need to perform several joins to provide a fully denormalized
structure;

= |n contrast, considering the large-scale retail scenarios using NoSQL databases to support
the vast amount of transactions being generated, this data may arrive at the BDW already
denormalized (e.g., column-oriented and document-oriented NoSQL databases),
representing the opposite situation and providing a high degree of simplicity without the need

to perform join operations, which considerably simplifies the data CPE workload.

5.4 Code Version Control System

The software industry is under constant evolution, and open source or subscription-based remote
version control systems like GitHub have been a core pillar of current software management and
dissemination. GitHub is one of the main platforms for collaboration in software projects, whose
activity has the potential to generate vast amounts of data. In this section, one explores the GitHub
public dataset available on Google BigQuery (Google, 2018) regarding 2.9 million public software
repositories, in order to model a BDW that supports the decision-making process regarding the activity

and metrics of these repositories’ commits and content in large-scale environments. The BDW data
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model illustrated in Figure 5.4 includes the “commit”and “repository” analytical objects, being the

latter a complement to the first, and it also includes the date and time objects.

The “commit”analytical object stores data regarding the commits that have been made to the several
repositories, including information regarding the author and the committer. This analytical object does
not contain any relevant analytical attribute and, therefore, count operations will be the primary focus
of analysis. The “reposifory” complementary analytical object stores information regarding the current
state of the 2.9 million public repositories, including the license, an array containing the information
of several files for each branch, an array containing the code (in bytes) of each programming language
in the repository, and the number of issues classified by type (possibly extracted by scrapping and

mining the text from the issues page of each repository, for example).

Both the “commit”and the “repository” objects can be implemented as streaming analytical objects,
in which they are updated as soon as each commit or any other file activity takes place. However,

due to the chosen data model, the streaming implementation may differ, as the “commit” object is
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Figure 5.4. BDW data model for code version control systems.
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an immutable append-only object, in which each commit originates a new record, while the
“reposifory” object is a mutable object, because the nested analytical attributes should be updated
(e.g., code in bytes and number of files) instead of originating a new record. Consequently, the
“repository” object can be implemented using a NoSQL database with adequate support for fast
random-access to nested objects or, depending on the specific implementation details (e.g., update
frequency, latency requirements, and update throughput), as already seen, Hive transaction tables

can also be an option.

5.5 A Global Database of Society — The GDELT Project

The GDELT project makes available an open database that monitors worldwide broadcast, print, and
Web news, identifying the people, locations, organizations, topics, sources, emotions, among many
other information regarding news (GDELT, 2018). The data model presented in Figure 5.5 represents
a BDW to support decision-making processes using worldwide event data from the GDELT project,
which is composed by date and time objects, a “c/fy” spatial object (including denormalized data
regarding the countries corresponding to the cities), and an “event”analytical object. This analytical

object is responsible for storing news/events, with data regarding the event and the actors involved

Global Database of SocietyJ

<<Analytical Object>>
event

E(Zi(;rrl1$i\$0':amllles ): <<Date Object>>
event_id (GK) T date
event_date (GK)
classification
action

____________ + actors
<<Spatial Object>> L ___________ actor_1 { name, city, group, ethnic, religions [ ],

city 1 types [ ], geo_lat, geo_long }

! actor_2{}

Analytical Families
+ event_info
is_root_event
impact T mmmmmmmmmam==
num_mentions Ten <<Time Object>>
num_sources time .
Legend: num_artcles | @ e emmm e mmeeaaa
avg_tone

GK - Granularity Key

Figure 5.5. BDW data model for the GDELT project.
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in it. The actors’ data regarding name, city (attribute related to the spatial object “city”), group (e.g.,
United Nations or World Bank), ethnic and religion information, geocoordinates, among others, is
stored in a complex data type (e.g., Row or Struct) for organization purposes, which can also contain
other complex data types (e.g., “religions” and “types” arrays). Consequently, the “event” object

allows for several analytical applications to process and analyze worldwide news/events.
5.6 Air Quality

The final BDW example of this chapter is focused on air quality analysis through sensors spread
across different locations. The example presented in this section is based on the open air quality
platform (OpenAQ, 2018). The BDW data model depicted in Figure 5.6 integrates a spatial object
“city”, date and time objects, and a “measurement” analytical object corresponding to the measured
value of a specific parameter from a specific location, date, and time. The “measurement”analytical
object has geospatial coordinates which are not present in the spatial object. This is a design choice
that is always encouraged, due to the high cardinality of geospatial coordinates. Consequently, space
is broken down into levels of detail, and the lower levels are typically stored in spatial objects, while

the higher levels of detail are stored in the analytical object, as already explored in subsection 5.3.2.

Air Quality ,

<<Analytical Object>>
measurement

Descriptive Families @~ | = 0 0======-=-=-=--
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———————————— unit 1 time 1

+ date_time
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time (GK)

Analytical Families
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value Legend:
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Figure 5.6. BDW data model for air quality analysis.
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Realtime aggregations on sensor data are a really adequate use case for specific technologies like
Druid (Correia et al., 2018), a columnar storage that provides aggregations and indexing at ingestion
time. Such design and implementation choice can fuel a “measurement” analytical object modelled
at a higher level of detail, as, for example, the “va/ue” attribute can be an average of each minute,
instead of the raw sensor readings produced each second. Besides the use of Druid, this scenario
can also be supported by a Spark Streaming CPE workload using window operations or micro batch

aggregations, for example, storing the resulting data in the streaming storage system of the BDW.

Nevertheless, when using Druid (or similar technologies), one should pay attention to the specificities
of the data models that these technologies require, because, for example, Druid currently handles
descriptive and analytical attributes in fully denormalized structures, which does not completely
correspond to the data model presented in Figure 5.6. However, as seen in this work, the proposed
approach for BDWing is relatively flexible and, if that is the case, practitioners can adopt a fully
denormalized “measurement” analytical object without spatial, date, or time objects. After these
considerations, this section can be seen as a collection of insights that practitioners can use to design
streaming analytics on sensor data, specifically for air quality analysis in this case, but with further

applications for other sensor-based analytical workloads.



134 | Advancing the Design and Implementation of Big Data Warehousing Systems

This page was intentionally left blank



Fueling Analytical Objects in Big Data Warehouses | 135

Chapter 6. Fueling Analytical Objects in Big Data Warehouses

One of the most laborious stages in the implementation of DWs, whether they are traditional or
oriented for Big Data environments, is the development of ETL processes. As seen in the previous
chapter, one does not use this terminology, in order to avoid confusion between ETL and ELT
processes, which can cause several unnecessary discussions. Thus, this approach prefers the
friendlier NIST terminology (collection and preparation), extending it with the term “enrichment”, due
to the relevance of derived attributes (feature engineering) for more impactful and actionable insights.
As previously discussed, in the proposed approach, these processes are known as CPE
processes/workloads. This chapter presents several examples of relevant CPE workloads that
practitioners may find useful when implementing BDWs. In these examples, Spark and Talend Open
Studio for Big Data are used for demonstration purposes. Designing and developing CPE workloads
for BDWs can be considered one of the most time-consuming and difficult tasks in BDWing. For that
reason, structuring several examples that demonstrate typical tasks in these environments is seen as
a relevant contribution, mainly to the practitioners’ community. Such examples are part of the

demonstration activity in the DSRM for IS methodology used in this research process.
6.1 From Traditional Data Warehouses

Migrations from traditional DWs to BDWs will typically become more common (Russom, 2016). In
BDWing implementations, one of the potential workloads will be the migration of the organization’s
current relational DW to a BDW. This section presents how this task can be achieved using Sqoop,
HDFS, Spark, and Hive, four technologies depicted in Figure 4.3. In fact, the guidelines here provided
are also useful for CPE workloads that read data from relational OLTP databases to fuel the BDW.
Sqoop is used to transfer data from relational databases to HDFS, and Spark is used to prepare and

enrich the data before storing it in the batch storage component (Hive in this example).
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Figure 6.1 illustrates the data flow between the components of a possible technological infrastructure.
The first step of this process consists in transferring the data from the RDBMS that currently supports
the DW to HDFS. This task can be done using Sqoop’s import functionality:

sqoop import --connect <db_connection_string> {authentication_details} --table

<table_name> --target-dir <path_to_data_folder>

In this example, the data from a traditional sales DW modelled according to the SSB benchmark is

”oou

supplier”,

”oou,

used, containing one fact table (“/ineorder”) and four dimensions: “customer”, part”,

and “gate dim” (O'Neil, O'Neil, & Chen, 2009). After transferring the data and storing it in the
distributed file system (HDFS), one can start the preparation and enrichment of this data according
to the desired analytical object. In this case, the analytical object is a fully denormalized structure
containing all the resulting attributes from the join between the fact table and each dimension, despite
the fact that, as seen in section 4.3, analytical objects represent flexible and efficient structures that

can be more than just a full denormalization of fact tables. The following Spark 2 Python code

illustrates a typical script to perform this task:

1. Import Spark packages and classes.

from pyspark.sql import SparkSession, Row
from pyspark.sql.types import *

2. Define two variables: “AdfsPath” and “hiveDbName”

| hdfsPath = “hdfs://<servername>:8020/<path_to_data_folder>/”

hiveDbName = “ssb”

i | Data Preparation |
i &Enrichment

@@m@ﬂ'@w@&"

Relgt\ll:/)nal Sqoop HDFS : Spark 5 Hive

Figure 6.1. CPE workload for traditional DW migration.
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3. Create Spark session.

spark = SparkSession \
.builder \
.appName(“Create SSB Analytical Object”) \
.config(“spark.sqgl.warehouse.dir”, “/apps/hive/warehouse/”) \
.enableHiveSupport() \
.getOrCreate()

4. Create the Hive database for the BDW.

spark.sql(“DROP DATABASE IF EXISTS “ + hiveDbName + “ CASCADE”)
spark.sql(“CREATE DATABASE “ + hiveDbName)

5. Create a Spark DataFrame and a Spark Temporary View for each table imported from Sqgoop.
This will allow the execution of SQL-based instructions on top of the data that has been stored

on HDFS.

dfSchema = StructType([
StructField(“custkey”, IntegerType(), True),
StructField(“name”, StringType(), True),
StructField(“address”, StringType(), True),
StructField(“city”, StringType(), True),
StructField(“nation”, StringType(), True),
StructField(“region”, StringType(), True),
StructField(“phone”, StringType(), True),
StructField(“mktsegment”, StringType(), True)l)
customerDF = spark.read \
.csv(hdfsPath + “customer”, header=False, schema=dfSchema)

customerDF.createGlobalTempView(“customer”)

6. Create the Hive table to store the analytical object. In this example, the table uses the ORC
file format, which is an optimized columnar format that considerably improves Hive's
performance (Huai et al., 2014). The Parquet file format can also be used for Hive tables, in

order to achieve adequate performance (Parquet, 2018).
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spark.sql(“CREATE TABLE ssb.analytical_obj (c_custkey int, c_name varchar(25), ...)
STORED AS ORC”)

7. Join the five tables (one fact table and four dimensions) and store the result in the previously
created Hive table. If the Hive table is partitioned, the insert statement should reflect the
partition scheme, and the adequate HiveQL constructs should be used. This example
illustrates a table without partitions.

spark.sql(“INSERT INTO ssb.analytical_obj SELECT ... FROM global_temp.lineorder LEFT
OUTER JOIN global_temp.customer ON ...”)

8. Depending on the total size of the resulting table and the number of partitions in the
DataFrame, Spark can generate several small ORC files, which can interfere with the
performance and adequate operation of Hive and Hadoop. Consequently, the following Hive
Data Definition Language (DDL) statement may be useful, in order to concatenate these
small ORC files into larger ones. Practitioners may consider this statement in their CPE
workloads. Note: there are other ways of manipulating the number of output files, including

some Spark configurations and functions (e.g., coalesce and repartition).
| ALTER TABLE ssb.analytical_obj CONCATENATE

9. Finally, it is relevant to highlight the need to assure that after every CPE workload, the table
and column statistics in Hive are adequately computed and refreshed, taking the maximum
advantage of this query optimization mechanism. Therefore, the following Hive DDL is also
significantly relevant in these scenarios.

ANALYZE TABLE ssb.analytical_obj COMPUTE STATISTICS
ANALYZE TABLE ssb.analytical_obj COMPUTE STATISTICS FOR COLUMNS

6.2 From OLTP NoSQL Databases

In Big Data environments, NoSQL databases are typically the main driver for OLTP workloads,

assuring adequate scalability in intensive random access scenarios (Cattell, 2011). Organizations are
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currently using NoSQL databases for several applications, for example: massive online sales services

(e.g., Amazon); loT applications; search engines (e.g., Google); and mobile applications.

This section presents a workload to collect, prepare and enrich data from Cassandra, which is used
to store millions of records from sensors. The sensors send a record to Cassandra every 15 minutes,
including the following attributes: “sensor id”; “date” - a timestamp containing the date and time of
the record, “building id” - the building in which the sensor is located; “Aw/1”- the energy consumption
recorded at that moment. The goal of this workload is to collect Cassandra’s data for a specific month
and store it in the BDW'’s batch storage (Hive). The Hive analytical object used for this purpose will
be partitioned by year and month. Throughout the workload, the data will be aggregated to match an
hourly aggregation level, instead of the original “quarter of an hour” aggregation level. This workload

can be coded using the following Spark Java code:

1. Import Spark packages and classes. In this example, one will use the DataStax open source

Spark Cassandra connector.

import org.apache.spark.sqgl.Dataset;
import org.apache.spark.sqgl.Row;

import org.apache.spark.sqgl.SaveMode;
import org.apache.spark.sqgl.SparkSession;

import static org.apache.spark.sqgl.functions.col;

2. Create the main Java class and method that will be used to include the several tasks for this

workload. As already known, the first task is the definition of the Spark Session.

SparkSession spark = SparkSession
.builder()
.appName (“Read sensor records from Cassandra”)
.config(“spark.cassandra.connection.host”, <hostname(s)>)
.config(“spark.cassandra.auth.username”, <username>)
.config(“spark.cassandra.auth.password”, "<password>")
.config(“spark.sql.warehouse.dir”, “/apps/hive/warehouse/”)
.config(“hive.exec.dynamic.partition.mode”, “nonstrict”)
.enableHiveSupport()
.getOrCreate();
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3. Create a Spark Dataset that reads data from the Cassandra table. Spark Datasets are an
abstraction introduced in Spark 1.6, which combines the benefits of Spark DataFrames
(Spark SQL’s optimized execution engine) with the benefits of Resilient Distributed Datasets
(RDDs), namely strong typing and the ability to use powerful lambda functions (Spark, 2017).

Dataset<Row> ds = spark.read().format(“org.apache.spark.sql.cassandra”)
.option(“keyspace”, <keyspace_name>)
.option(“table”, <table_name>)
.load();
4. Filter the Dataset to select a specific month (January), and aggregate the Dataset to match

an hourly aggregation level.
Dataset<Row> dsFiltered = ds.filter(month(col(“date”)).equalTo(1));

Dataset<Row> dsGrouped = dsFiltered
.groupBy (
col(“sensor_id”),
date_format(col(“date”), “YYYY-MM-DD HH:00:00”).as(“moment”),
col(“building_id”))
.sum(“kwh”);

5. Store the Dataset into the corresponding Hive table and partition. Since dynamic partitioning
is enabled in the Spark Session configurations, Spark will figure out the partitioning scheme
automatically. One needs to be aware that using the method presented below, the columns
of the Dataset must be ordered according to the columns of the Hive table, being the
partitioning columns the last ones. Similarly to the previous section, after this task, one can

concatenate small files and recompute table and column statistics.

dsGrouped. select(
col(“sensor_id”),
col(“moment”),
col(“building_id”),
col(“sum(kwh)”),
year(col (“moment”)),
month(col (“moment”)))

.write().mode(SaveMode.Overwrite).insertInto(<hive_database.table>);
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6.3 From Semi-Structured Data Sources

The variety of data is one of the major characteristics for defining Big Data. As already highlighted,
data may be more or less structured depending on the underlying source. The previous CPE workloads
focused on relatively structured data, namely relational and column-oriented schemas. In this section,
the focus is on semi-structured data sources, which can typically produce data in formats that are
not completely detached from a schema, but are significantly flexible or nested, such as server logs,

JSON, or XML files, for example.

Take as an example the following GeoJSON file, which is basically a JSON file that, among other

attributes, holds geospatial information about buildings in Lisbon:

“features”: [
{“type”: “Feature”,
“properties”: {
“Shape_Leng”: 68.663877,
“Shape_Area”: 276.535056,
“L_HtRf”: 21,
“Building_Occupation”: 3, ...
3,
“geometry”: {
“type”: “MultiPolygon”,
“coordinates”: [ [ [
[ -9.095283006673773, 38.75460513863176, 0.0 1,
[ -9.095298222128497, 38.754405797462653, 0.0 1, ...1 1 1]
}
3, ...

In the proposed approach, one highlights the use of analytical objects that can contain nested
structures. Extracting useful attributes for analysis and implementing an analytical object that
adequately deals with semi-structured data is the key in this specific scenario. In order to handle
semi-structured data, one needs to assure two relevant aspects: the technology used to implement
the CPE workload must be able to process these data structures; and the technology used to store
the results of the workload should also be able to handle semi-structured data. Regarding the first

aspect, in this section, Talend Open Studio for Big Data is used to build the CPE workload. However,
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there are many other technologies that are suitable for this purpose (Spark inclusively). Regarding the
second aspect, Hive is used again as the batch storage of the BDW, since it can adequately handle
flexible and nested data structures like arrays and maps, not only providing ways of storing them, but

also providing ways of querying and performing analytics on these structures.

Figure 6.2 presents a Talend job used to collect the aforementioned GeoJSON file from HDFS,
preparing and enriching it with supplementary GeoJSON files. This job is responsible for fueling a
previously created analytical object storing several buildings indicators in Lisbon, including not only
their geospatial information, but also their associated services (e.g., gyms and restaurants),

occupation, and construction characteristics, for example.
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Figure 6.2. CPE workload for semi-structured data.
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This job starts by reading the content of the GeoJSON file, and Talend Open Studio for Big Data is
able to automatically deduce its schema by inspecting a sample of the records within the file. Then,
one is able to join the buildings file with other supplementary files, like parishes, neighborhoods
(subsections), and services inside the building or near it. The service list can be extracted from the
Google Maps Application Programming Interface (API), and afterwards, one can use several Talend
components (e.g., list aggregations and custom java code) to create a list of services associated with

each building and make it available in the appropriate format.

Finally, after all the previous tasks are completed, the data is sent to HDFS and a temporary Hive
table is created to store that data in text format. As previously highlighted, Hive tables in ORC or
Parquet format are more suitable for analytical purposes, so one needs to move the data from this
temporary table to the table using the ORC format. This procedure of using a temporary table is
common in Hive-based DWs. However, practitioners may find other ways to directly move the data to
ORC tables without the need for a temporary table, for example, using the ORC API. The final result
is an analytical object stored as a Hive table, which is able to handle a variety of structures, including

arrays and maps.

6.4 From Streaming Data Sources

Until now, only the use of the BDW's batch storage component was demonstrated. When a source
generates data through streaming mechanisms, one needs to rely on the streaming storage of the
BDW. Data velocity is another relevant characteristic in Big Data environments, and in this section,
one will be discussing the development of a streaming CPE workload to fuel the BDW. Kafka is used
for data collection, Spark Streaming is used for data preparation and enrichment, and Cassandra is
used as the NoSQL database responsible for the BDW's streaming storage. Figure 6.3 summarizes

this CPE workload.

1. The first step is the development of a Kafka producer. In this example, this producer generates
a record each five seconds, corresponding to a random product sale in a simulated e-

commerce environment. Each record contains a key ( “safes id”) and a value ( “URL " of the
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3

Kafka Record
Key: “1568754896”
Value: “http://mywebstore.com/?
product=pc4&redirected=false”

cassandra

Kafka
Producer

Streaming

Kafka P
% Brokers Spark

BDW’s Streaming

Storage

Cassandra Table
o~ id: “1568754896” | product: “pc4” | redirected: false

Figure 6.3. Streaming CPE workload using Kafka, Spark Streaming, and Cassandra.

Web page wherein the product was purchased). The following Java code snippets

demonstrate this scenario, and can be used as a guide for other Kafka producers.

a. Import the Java packages and classes. For this producer, the Apache Kafka APl is

used.

import
import
import
import
import

import

org.
org.

org.

org

org

org.

apache
apache

apache

.apache

.apache

apache

.kafka.
.kafka.
.kafka.
.kafka.
.kafka.
.kafka.

clients.producer.KafkaProducer;
clients.producer.ProducerRecord;
clients.CommonClientConfigs;
clients.producer.Callback;
clients.producer.ProducerConfig;

clients.producer.RecordMetadata;

b. Create the Java class and its variables. Generally, this class needs the topic in which

the producer will publish the records, the producer object, and several properties

that reflect the infrastructure in use and the application requirements (e.g.,

secure/unsecure cluster and the number of acknowledgments to consider a request

as being completed). In this example, there is also one variable containing random

products used to generate random online sales URLs.
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public class DummyProducer extends Thread {
private final String topic;
private final KafkaProducer<String, String> producer;
private final Properties props;

private final String[] products;

Create the constructor that initializes the variables enumerated above.

public DummyProducer(String topic, String kafkaServerUrl, int kafkaServerPort)

{
this.products = new String[] {

“smartphonex7”, “pc4”, “keyboardy”, “monitorpro”

3

this.props = new Properties();
this.props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,
kafkaServerUrl + “:” + kafkaServerPort);
this.props.put(ProducerConfig.CLIENT_ID_CONFIG, “DummyProducer”);
this.props.put(CommonClientConfigs.SECURITY_PROTOCOL_CONFIG,
“SASL_PLAINTEXT”);
this.props.put(ProducerConfig.ACKS_CONFIG, “all”);
this.props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
“org.apache.kafka.common.serialization.StringSerializer”);
this.props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,

“org.apache.kafka.common.serialization.StringSerializer”);

this.producer = new KafkaProducer<>(props);

this.topic = topic;

Create the run method that is responsible for the execution of the main task, i.e.,
generating an URL of a random online sale each five seconds for an infinite period
of time. In this example, a random product is selected between a set of four available
products (see code snippet above). Each sale also contains a random flag indicating
if the sale was the result of a recommendation based on a previous visualized
product ( “redirected” attribute).

@verride

public void run() {
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Random random = new Random();

String message;

while(true) {
String salesID = “” + random.nextInt() + System.currentTimeMillis();
message = String.format(
“N”http://mywebstore.com/?product=%s&redirected=%s\"”,

this.products[random.nextInt(4)], random.nextBoolean()

s

ProducerRecord<String, String> data = new ProducerRecord<>(

this.topic, salesID, message

s

this.producer.send(data);

try {
Thread.sleep(5000);

} catch (InterruptedException ex) {
System.err.println(ex.getMessage());

e. Finally, create the main method of the “DummyProducer” class, which will simply
run the Kafka producer given a Kafka topic, broker, and port.
public static void main(String args[]) {

DummyProducer producer = new DummyProducer(<topic>, <kafka_broker>, <port>);

producer.start();

2. Having a streaming producer is just part of the CPE workload, namely it represents the
collection step of the workload. Consequently, in BDWing environments, one typically needs
to prepare and enrich the data before making it available for analytical purposes. One way
of achieving this goal is to use the powerful and stable Spark Streaming API, which allows
the relatively easy use of multiple functions (e.g., filter, join, count, and map) on streaming
sources like Kafka, assuring adequate scalability and fault-tolerance. The following Java code
snippets demonstrate a Spark Streaming application that uses regular expressions to extract

information from the Kafka messages and to store the results in the BDW's streaming storage
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component. In this example, Cassandra is used to store a streaming analytical object

containing the “sales id”, the “product’, and the ‘redirected” attributes.

a. Import the required packages for this Spark Streaming application. The crucial APls
are the Spark Core API, the Spark Streaming API, the Spark Streaming Kafka API,

and the DataStax Cassandra connector.

import static com.datastax.spark.connector. japi.CassandraJavaUtil.
javaFunctions;

import static com.datastax.spark.connector. japi.CassandraJavaUtil.mapToRow;
import org.apache. spark.SparkConf;

import org.apache.spark.streaming.api. java.x*;

import org.apache.spark.streaming.kafka010.x*;

import org.apache.kafka.clients.consumer.ConsumerRecord;

import org.apache.kafka.common.serialization.StringDeserializer;

import org.apache.spark.api. java.JavaRDD;

import org.apache.spark.streaming.Durations;

b. After creating the main class and the main method of the Spark Streaming
application, configure the Kafka connector appropriately, including the consumer
configurations and the list of topics to consume. The following code snippet
illustrates the configuration for a Kerberized cluster, in which the Spark consumer
informs Kafka when it has finished consuming a certain offset, that is why one
disables Kafka auto commits and uses the “offsefRanges” variable. This assures
that the Spark consumer only acknowledges the processing of certain offsets when
the records were already stored in Cassandra. One will clarify this functionality later
in this subsection.

Map<String, Object> kafkaParams = new HashMap<>();
kafkaParams.put (“bootstrap.servers”, <kafka_broker>:<port>);
kafkaParams.put(“key.deserializer”, StringDeserializer.class);
kafkaParams.put(“value.deserializer”, StringDeserializer.class);
kafkaParams.put(“group.id”, “spark.events”);

kafkaParams.put(“auto.offset.reset”, “latest”);

kafkaParams.put(“enable.auto.commit”, false);
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s

s

d.

kafkaParams.put(“security.protocol”, “SASL_PLAINTEXT”);

Collection<String> topics = Arrays.asList(<topic(s)>);
final AtomicReference<OffsetRange[]> offsetRanges = new AtomicReference<>();

Create the Spark configuration and the Spark Streaming object. Since one is storing
the results in Cassandra, the Cassandra connection properties are also needed,
similarly to the previous OLTP NoSQL-based CPE workload. In this example, the
streaming application processes data arriving from Kafka in 10 seconds micro batch
intervals. As highlighted in subsection 4.1.3.2, micro batches are configurable, and

they are often a trade-off between latency, throughput, and flexibility.

SparkConf conf = new SparkConf ()

.setAppName (“StreamingCPEWorkload”)
.set(“spark.cassandra.connection.host”, <host(s)>)
.set("spark.cassandra.auth.username", <username>)

.set("spark.cassandra.auth.password", <password>);

JavaStreamingContext jssc = new JavaStreamingContext(

conf, Durations.seconds(10)

JavalnputDStream<ConsumerRecord<Integer, String>> stream =

KafkaUtils.createDirectStream(
jssc,
LocationStrategies.PreferConsistent(),

ConsumerStrategies.Subscribe(topics, kafkaParams)

As previously stated, this application is using manual Kafka commits and, therefore,
one needs to inform Kafka when the data has been processed. Consequently, the
first step after creating the stream is to store the Kafka offset range in the Spark
application, in order to commit the offsets already processed after the data has been
successfully stored in Cassandra. The following function needs to be the first function
called after the creation of the stream, since it does not work after the application of

transformations to the “sfrearm” object. This assures that the application has
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“exactly-once” semantics instead of “atleast-once” semantics, which assures that

data arriving from Kafka does not get processed and stored twice.

stream. foreachRDD((JavaRDD<ConsumerRecord<Integer, String>> rdd) -> {
OffsetRange[] offsets = ((HasOffsetRanges) rdd.rdd()).offsetRanges();
offsetRanges.set(offsets);

s

e. Toextractthe “product”and “redirected” attributes arriving from Kafka's messages,
one can use regular expressions applied to the URL. The “map” transformation can
be used to extract these attributes. Spark Streaming offers several transformations,
window, join, and output functions that can be used for streaming contexts. For
example, joining a stream with an historical dataset can be significantly useful for

BDWing purposes, in order to prepare and enrich data for certain analytical objects.

JavaDStream<DummySale> transformedStream = stream
.map((ConsumerRecord<Integer, String> event) -> {

String[] fields = event.value().split(“\”;\””);

Matcher m = Pattern
.compile("product=(.*)&redirected=(.*)").matcher(fields[1]);

m.find();

return new DummySale(
fields[@], m.group(1), Boolean.parseBoolean(m.group(2))

);

1

f. Since all the processing tasks for this example are already completed, the results
can be stored in Cassandra, and the Spark Streaming application can then commit
the offsets to Kafka, acknowledging that it already processed and stored that specific
records. It should be noted that, in this example, “DummySale” is a typical Java
Bean containing the same attributes as the analytical object stored in Cassandra. It
is used to apply a schema to each row in the Spark RDD.

transformedStream. foreachRDD((JavaRDD<DummySale> rdd) -> {

javaFunctions(rdd).writerBuilder(

<topic>, <cassandra_database>, mapToRow(DummySale.class)
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).saveToCassandra();
((CanCommitOffsets) stream.inputDStream()).commitAsync(offsetRanges.get());
s

g. Finally, the last task consists in simply starting the application and waiting for its

termination.

try {
jssc.start();
jssc.awaitTermination();
} catch (InterruptedException ex) {
System.err.printf("The application '%s' has stopped! ", conf.getAppId());

}

6.5 Using Data Science Models

One of the main aspects in the proposed approach (previously described in Chapter 4) is the inclusion
of data science models in CPE workloads fueling the BDW. This work considers data science as an
umbrella for several related and more specific subareas, including: data mining/machine learning;
text mining; image mining; and video mining. Regarding data mining, traditional DWs are frequently
considered a relevant data source for the algorithms used in this area, since they typically contain an
extensive record of historical data regarding the organization. Since these algorithms need a vast
training set to extract patterns, traditional DWs are natural sources of data for feeding these
algorithms, and can be considered “clients of the DW” (Kimball & Ross, 2013). This is also true for
a BDW (Figure 4.1), wherein it can be queried by data scientists that are “playing” with the data in
the data science sandbox. However, this work extends this ideology by inviting practitioners to include
data mining/machine learning algorithms in CPE workloads, in order to create new predictive

attributes and include them in the analytical objects stored in the BDW (Figure 4.2).

The same strategy stays valid for unstructured data science techniques like text mining, image mining,
or video mining. These techniques are not frequently seen in traditional DWing environments. One
can argue that raw unstructured data holds almost no value for analytical purposes. Patterns should
be extracted using data science techniques and then, since these results are already relatively

structured, they can follow their path to an OLAP-oriented system like the BDW. Another argument
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that can be made is that the rigid structure of relational DWs can be seen as a significant barrier in
these scenarios, since most of the time it becomes unnatural, time-consuming, and inefficient to

model dimensions, fact tables, and relationships for this type of analytical workloads.

For example, when an organization is collecting images in reakime and instantaneously using an
algorithm to predict an occurrence of a certain pattern in that image (e.g., template matching for
manufacturing quality control), it becomes really inefficient to fuel a relational DW via streaming
mechanisms. For each image being analyzed, a typical ETL process has to scan the several
dimensions for any changes since the last DW refresh (e.g., new rows to add/update in dimension
tables), or to retrieve each dimension’s surrogate key for matching the foreign key of each new row
in the fact table, for example. In these contexts, relational DWs are not the most adequate solution,
and fully denormalized structures (analytical objects), are arguably more efficient and simpler to
implement, since their corresponding CPE workloads are considerably easier to develop and maintain

when compared to traditional ETL processes.

In Big Data environments, there is the need to integrate both structured and unstructured sources
(Kimball & Ross, 2013). As previously discussed, predictive analytics is also a relevant use case that
BDWs must consider among their set of mixed and complex analytical workloads. This is the reason
why including structured and unstructured data science models in the CPE workloads can be seen
as a way of extracting the value hidden in Big Data, which can then be used to make predictions of
future events and to fuel the analytical objects stored in the BDW. This section discusses two types
of CPE workloads including data science models, using data mining/machine learning models for

structured data and using text mining, image mining, and video mining models for unstructured data.

6.5.1 Data Mining/Machine Learning Models for Structured Data

Predictive attributes are the key for predictive analytics inside BDWs. One highlights the use of data
science models to create these attributes. The data stored either in the file system or in the indexed
storage of the BDW can be used to train these predictive models, which can then be used to enrich

data arriving at the system with new predictive attributes. In these contexts, data mining/machine
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learning models can be significantly useful for CPE workloads dealing with structured data. This

subsection uses the Spark MLIib APl to demonstrate one of many data mining techniques that can

be used in BDWing systems, namely clustering.

Clustering can be used when the training dataset is not previously labeled with the attribute one wants

to predict, which can also be mentioned as unsupervised learning. There are many other techniques

available in Spark MLIib, either unsupervised (e.g., association rules) or supervised (e.g., classification

and regression), assuring a scalable way of training, testing, and applying data mining/machine

learning models. The following Java code snippets demonstrate the use of clustering algorithms in

Spark, namely the very broadly used K-means algorithm. Figure 6.4 presents an overview of the CPE

workload being implemented in this subsection.

1. Import the java packages needed for the application.

import
import
import
import
import
import
import
import

import

import

org
org

org

org.
org.
org.
org.
org.
org.

org.

.apache.
.apache.
.apache.
apache.
apache.
apache.
apache.
apache.
apache.

apache.

spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.

spark.

sql.SparkSession;
ml.clustering.KMeansModel;
ml.clustering.KMeans;
ml.feature.MinMaxScaler;
ml.feature.MinMaxScalerModel;
ml.feature.VectorAssembler;
ml.linalg.Vector;
sql.Dataset;

sql.Encoders;

sql.Row;

2. Create the main class and the main method, which starts by initiating the Spark Session. In

this example, one will be segmenting customers according to their buying behavior (following

the example context of section 6.1): how many orders do they place? How much revenue do

they generate to the company? Are they regular monthly customers?

SparkSession spark = SparkSession
.builder()

.appName (“Segmenting Customers using K-means”)

.config(“spark.sql.warehouse.dir”, “/apps/hive/warehouse/”)

.config(“hive.exec.dynamic.partition.mode”, “nonstrict”)
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.enableHiveSupport()
.getOrCreate();

3. To accomplish this goal, the analytical object created in subsection 6.1 can be used, which,
as already seen, is based on the SSB dataset (O'Neil et al., 2009). Since the analytical object
corresponds to data that is already stored in the BDW, this workload does not include a data
collection stage from an external data provider. This represents a workload that uses the
models, insights, and results derived from the data science sandbox component of the BDW
and, therefore, the data science sandbox can be considered the data provider. In this
example, using Spark SQL, one can submit a query to the Hive batch storage component, in

order to retrieve the training set needed to segment customers, as mentioned above.

—y

IVE

Hive Analytical
Object

| Feature Engineering |

Spor’(: Feature Extraction Vector Assembler Min/Max Scaler
<<Spark SQL>> <<Spark MLlib>> <<Spark MLlib>>
| |
| Apply Model | ‘ Build Model ‘
Select Input Dataset .
<<Spark SQL>> Train Model
. Test & Evaluate ‘I\z
Model.predict() Model SprK
MLlib
| l A

results | SaveModel !

Hive Analytical
Object

Figure 6.4. Example of using data mining/machine learning algorithms in CPE workloads.
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Dataset<Row> customerSales = spark.sqgl(“
WITH

customerSales AS (

SELECT c_custkey, c_name, c_city, c_nation, c_region, c_mktsegment, od_monthnuminyear,
sum(quantity) as monthly_quantity, sum(revenue) as monthly_revenue, count(1) as
monthly_orders

FROM ssb_analytical_objects.analytical_obj10

GROUP BY c_custkey, c_name, c_city, c_nation, c_region, c_mktsegment, od_monthnuminyear

)Y

minmax AS (

SELECT c_custkey, MIN(monthly_revenue) min_monthly_revenue, MAX(monthly_revenue)
max_monthly_revenue

FROM customerSales

GROUP BY c_custkey)

SELECT customerSales.c_custkey, c_name, c_city, c_nation, c_region, c_mktsegment,
stddev((monthly_revenue - min_monthly_revenue)/(max_monthly_revenue -
min_monthly_revenue)) revenue_monthly_stddev, sum(monthly_revenue) revenue,
sum(monthly_orders) total_orders, sum(monthly_quantity) quantity

FROM customerSales

LEFT OUTER JOIN minmax ON customerSales.c_custkey = minmax.c_custkey

GROUP BY customerSales.c_custkey, c_name, c_city, c_nation, c_region, c_mktsegment

u).
’

4. One of the main tasks in data mining/machine learning processes is feature engineering. In
this example, the previous query already did part of the job by creating a training set with
customers and their respective orders, revenue, and standard deviation regarding monthly
revenue. However, one way to improve the efficiency of learning algorithms is feature scaling,
i.e., providing a standard scale for all features. Moreover, in Spark MLIib 2, all features must
be contained in a Vector object and, therefore, one can use the VectorAssembler to transform
the original data from Hive, while at the same time replacing null values with zeros, so that
the VectorAssembler can be properly used. The following code snippet illustrates these simple
feature engineering tasks used in this workload. Spark offers several other functions for these

PUIPOSES.
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VectorAssembler assembler = new VectorAssembler()
.setInputCols(new String[J{“revenue_monthly_stddev”, “revenue”, “total_orders”})
.setOutputCol (“vectors”);
Dataset<Row> vectorizedData = assembler.transform(customerSales.na().fill(0));
MinMaxScaler scaler = new MinMaxScaler()
.setInputCol(“vectors”)
.setOutputCol(“features”);

MinMaxScalerModel scalerModel = scaler.fit(vectorizedData);

5. The next step consists in training and testing the K-means model with the previously prepared
features. After training the model, data scientists can evaluate its performance, by changing
the number of clusters to be created and analyzing the behavior of the within cluster sum of
squared errors, and by manually inspecting the clusters’ centers, for example. This evaluation
allows the understanding of what each cluster means. For example: one cluster may
represent customers with less orders, but generating more revenue for the company and at
constant monthly rates; in contrast, another cluster may represent irregular customers with
several orders, but generating low income for the company. In this workload, for
demonstration purposes, the selected number of clusters is 2.

KMeans kmeans = new KMeans().setK(2).setSeed(1L);

KMeansModel model = kmeans.fit(trainingSet);

double wssse = model.computeCost(trainingSet);

System.out.println(“Within Set Sum of Squared Errors = ” + wssse);

Vector[] centers = model.clusterCenters();
System.out.println(“Clusters Centers: ”);
for (Vector center : centers) {

System.out.println(center);

6. Despite the fact that in this workload one trains, tests, and applies the model in the same
Spark application, both the feature engineering models and the K-means model can be
permanently saved and used later in future executions of this or other workloads. This means

that the models do not need to be trained each time that they are applied.
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try {
model .write().save(“<path_in_hdfs>");
} catch (IOException ex) {

System.err.println(“Error saving the model!”);

7. The last step is storing the results into the new Hive analytical object. The inclusion of data
science models in CPE workloads does not always need to generate new analytical objects.
Sometimes, the workload simply refreshes the analytical object with new data. Other times,
existing analytical objects can be updated with new attributes (e.g., Hive supports different
schemas for different partitions in a table). In this workload, since one is training, testing,
and applying the learning model using a single application, each time the workload is
executed the analytical object is created/overwritten. This analytical object contains attributes
similar to those of the “custormerSales” Spark Dataset used to train the K-means model, but
with the addition of the cluster to which the customer belongs, along with a user-friendly
description of the cluster according to its centroid. This is possible by applying the predict
method of the K-means model. Having an analytical object containing the customers’ buying
behavior allows for interesting analyses, even allowing the join between this analytical object
and the original one containing all sales transactions. It should be noted that, in this example,
“customerSale”is a typical Java Bean containing the same attributes as the analytical object
stored in Hive.

Dataset<CustomerSale> analyticalObject = trainingSet.map((Row r) -> {
int cluster = model.predict((Vector) r.get(11));

String levConstantIncome;

String levRevenueGenerated;

String levTotalOrders;

switch (cluster) {

case 0:

levConstantIncome = “Buys more frequently”;
levRevenueGenerated = “Low”;
levTotalOrders = “Low”;
break;

case 1:

levConstantIncome = “Buys less frequently”;
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levRevenueGenerated = “Average-Higher”;
levTotalOrders = “Average-Higher”;
break;

default:
levConstantIncome = “NA”;
levRevenueGenerated = “NA”;
levTotalOrders = “NA”;
break;

}

CustomerSale c = new CustomerSale();
c.setC_custkey(r.getInt(0));
c.setC_name(r.getString(1));
c.setC_city(r.getString(2));
c.setC_nation(r.getString(3));
c.setC_region(r.getString(4));
c.setC_mktsegment(r.getString(5));
c.setRevenue_monthly_stddev((int) r.getDouble(6));
c.setRevenue((int) r.getDouble(7));
c.setTotal_orders(r.getLong(8));
c.setCluster(“cluster” + cluster);
c.setlev_constant_income(levConstantIncome);
c.setlLev_revenue_generated(levRevenueGenerated);
c.setlev_total_orders(levTotalOrders);

return c;

}, Encoders.bean(CustomerSale.class));

analyticalObject.write().mode(SaveMode.Overwrite).insertInto(“<hive table>”);

6.5.2 Text Mining, Image Mining, and Video Mining Models

Although unstructured data mining is relatively different from structured data mining, the general
steps presented in the previous subsection can still be applied. For that reason, as Figure 4.2
demonstrates, the proposed method for CPE is fairly similar both for structured and unstructured
data. Obviously, while one can use classification, regression, clustering, association rules, or time
series forecasting for extracting patterns and making predictions in structured environments (Pujari,
2001), regarding unstructured contexts, the techniques may be severely different (although
sometimes they overlap). Regarding the technologies to be used in these contexts, they depend on

the specific use case. For example, Spark MLIib does not have an extensive set of text mining
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algorithms, but it offers some text-based feature extraction and clustering algorithms (e.g., TF-IDF,
Word2Vec, and LDA). However, currently, Spark does not offer adequate support for image or video
mining algorithms. In these contexts, choosing complementary technologies for the data science
sandbox is appropriate, such as Python, for example, which offers some interesting libraries oriented

towards image mining.

In BDWing environments, the inclusion of unstructured data science models in CPE workloads has
the goal of extracting structured predictive attributes, which are structured findings extracted from
unstructured sources. These attributes can be considered the structured value that can be extracted
from unstructured data, which by itself in its raw state would not be significantly relevant for BDWing
purposes. The data has to be prepared and enriched using adequate techniques and technologies
capable of mining the value from these sources. Only then, the results of these tasks provide analytical

value.

Figure 6.5 presents a workflow based on Figure 4.2, including several techniques useful in these
scenarios. As can be seen, despite the challenges and complexity of unstructured data mining, the
general tasks remain similar to a CPE workload that includes data mining/machine learning
algorithms for structured data. First, the data is collected using batch or streaming mechanisms. For
a specific source and a specific technique, a previously trained model is used to extract structured
patterns from text, images, or video, depending on the use case. Complementary datasets can also
be used for data enrichment, if applicable. After all the attributes of the analytical object are created
(descriptive, factual, and predictive), the analytical object is ready to be used. So far, there is no

difference compared to the CPE workload of the previous subsection.

That being said, the difference solely relies on the use of new and challenging techniques: for text
mining, techniques such as information extraction and sentiment analysis can be significantly useful
for extracting entities (e.g., people and dates), relationships (e.g., events), and sentiments from raw
text (Gandomi & Haider, 2015). This will make possible the fueling of analytical objects which can be
significantly useful for several organizations; for image mining purposes, techniques like object

recognition (e.g., template matching) and image classification can also be significantly useful (Zhang,
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Figure 6.5. Including unstructured data science models in CPE workloads.

Hsu, & Lee, 2001); finally, for video mining, video classification and video clustering can be used
(Vijayakumar & Nedunchezhian, 2012), which have similar goals as their structured data mining
counterparts, although, of course, with different specifications. These are just some examples of
possible techniques, since the list can be considerably extended. However, for demonstrating their
role in BDWing environments, these techniques provide adequate examples of the capabilities of

unstructured analytics in BDWs.
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Chapter 7. Evaluating the Performance of Big Data Warehouses

This chapter discusses the evaluation of BDWs built using the proposed approach. In order to evaluate
the performance of a BDW, several related benchmarks can be used, such as the TPC-DS benchmark
(TPC, 2017a) or the SSB benchmark (O'Neil et al., 2009), for example. In this work, an extension of
the SSB benchmark, named SSB+ (C. Costa & Santos, 2018), was specifically created for BDWing
contexts, combining batch and streaming data. An extension of the original SSB benchmark was
needed due to the lack of workloads that combine volume, variety, and velocity of data, with adequate
customization capabilities and integration with current versions of different Big Data technologies.
Moreover, one needs to evaluate different modeling strategies (e.g., flat structures, nested structures,
and star schemas) and different workload considerations (e.g., partitioned analytical objects and
dimensions’ size in star schema-based BDWs) and, therefore, an adaptation of the SSB benchmark
is required. This chapter presents the SSB+ Benchmark, discussing the performance, advantages,
and disadvantages of several design and implementation choices in the proposed approach,
extending and integrating previously published scientific works (C. Costa & Santos, 2018: E. Costa,
Costa, & Santos, 2017).

7.1 The SSB+ Benchmark

This section details the SSB+ Benchmark, namely the data model, queries, system architecture, and
infrastructure. Besides serving as a proof-of-concept validation, presenting several insights related to
relevant design decisions for BDWs, the SSB+ Benchmark is useful for practitioners to evaluate the

performance of their own implementations.
7.1.1 Data Model and Queries

The SSB+ Benchmark data model (C. Costa & Santos, 2018), presented in Figure 7.1, is based on
the original SSB benchmark (O'Neil et al., 2009), so all the original tables remain the same

(“lineorder”, “part”. “supplier”, and “customer”), with the exception of the “dafe ”dimension, which

has been streamlined to remove the several temporal attributes that are not used in the 13 original
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Figure 7.1. SSB+ data model. Adapted from (O'Neil et al., 2009; C. Costa & Santos, 2018) with extended content.

SSB queries. These 13 queries do not suffer any modification besides the replacement of “where
clause” joins for ANSI SQL joins with an explicit join operator. This measure is taken to assure an

optimal execution plan in the optimizers of the query engines.

Since the original SSB benchmark only takes into consideration a star schema-based DW, the SSB+
also includes jobs for transforming the “/ineorder” star into a flat “lineorder” analytical object.
Obviously, the original 13 SSB queries are also modified to match the new flat analytical object. These
changes allow us to compare the advantages and disadvantages of star schemas and flat structures
for BDWs. Moreover, the SSB+ also considers two different dimensions’ sizes: the original TPC-H sizes
(TPC, 2017b) (benchmark in which the original SSB is based), which includes larger ‘“part’,
‘customer”, and “supplier” tables; and the original SSB sizes, in which these tables are smaller to
represent more traditional dimensions in the retail context. This SSB+ feature allow us to understand
the impact of the dimensions’ size in star schema-based BDWs. Furthermore, the SSB+ also includes
a ‘returns "table (flat analytical object and star schema fact table) and 4 new queries to evaluate the

performance of drill across operations and window and analytics functions.

Regarding the streaming workloads of the SSB+ Benchmark, a new “Zime” dimension table is

included, as the data stream has a “minute” granularity. This new dimension can then be joined with
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the new “social part popularity”fact table, as well as other existing dimensions like “part”and “date”.
A flat version of this fact table is also available for performance comparison purposes. The “social
part popularity” table contains data from a simulated social network, where users express their
sentiments regarding the parts sold by the organization represented in the SSB and SSB+ Benchmark.
Along with these new tables, 3 new streaming queries were developed for both the star schema-based
BDW and the flat-based BDW, performing several aggregation, filtering, union, and join operations on
streaming data. All the applications, scripts, and queries for the SSB+ Benchmark can be found in

(C. Costa, 2017).

7.1.2 System Architecture and Infrastructure

The SSB+ Benchmark takes into consideration several technologies to accomplish different goals,
from data CPE workloads to querying and OLAP tasks. These technologies are presented in Figure
7.2. Starting with the CPE workloads, for batch data, the SSB+ considers a Hive script with several
beeline commands that load the data from HDFS to the Hive tables stored in the ORC format, an
efficient columnar file format for data analytics. Several SFs can be generated using the original SSB
generator. This work considers the SF=30, SF=100, and SF=300 for the batch performance
evaluation. Regarding streaming data, a Kafka producer generates simulated data at configurable
rates, and this data is processed by a Spark Streaming application that finally stores it in Hive and
Cassandra. Streaming data is stored both in Hive and Cassandra for benchmarking purposes (see

section 7.3).

For querying and OLAP, this work considers both Hive on Tez and Presto, which are two robust and
efficient SQL-on-Hadoop engines (Santos et al., 2017). Obviously, practitioners can run the SSB+
Benchmark with any SQL-on-Hadoop engine of their choice, as long as they develop the adequate
scripts to run the workloads. Currently, the repository pointed in the previous subsection contains only
applications and scripts supporting the technologies mentioned in Figure 7.2. However, all the content
of the repository is open to the public, in order to facilitate any change or extension. Hive and Presto
are used to provide insights from different SQL-on-Hadoop engines, in order to see if the conclusions

hold true for more than one engine, since one of them may perform better with certain data modeling
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Figure 7.2. SSB+ architecture. Adapted from (C. Costa & Santos, 2018).

strategies, for example. However, in the streaming workloads, only Presto is used, since it targets
interactive SQL queries over different data sources, including NoSQL databases, which is not a very
proclaimed feature in Hive, although it can also be used for this purpose. Moreover, despite TeZ'
tremendous improvements to Hive's performance, Hive on Tez may not be considered a low-latency

engine, as the results presented in this chapter may suggest.

The infrastructure used in this work is a 5-node Hadoop cluster with 1 HDFS NameNode (YARN
ResourceManager) and 4 HDFS DataNodes (YARN NodeManagers). The hardware used in each node

includes:

= 1 Intel core ib, quad core, with a clock speed ranging between 3.1GHz and 3.3 GHz;
= 32GB of 1333MHz DDR3 RAM, with 24GB available for query processing;
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= 1 Samsung 850 EVO 500GB Solid State Drive (SSD) with up to 540 MB/s read speed and
up to 520 MB/s write speed;
= 1 gigabit Ethernet card connected through Catbe Ethernet cables and a gigabit Ethernet

switch.

The operative system in use is CentOS 7 with an XFS file system, and the Hadoop distribution is the
Hortonworks Data Platform (HDP) 2.6. Besides Hadoop, a Presto coordinator is also installed on the
NameNode, as well as 4 Presto workers on the 4 remaining DataNodes. All configurations are left
unchanged, apart from the HDFS replication factor, which is set to 2, as well as Presto’s memory
configuration, which is set to use 24GB of the 32GB available in each worker (identical to the memory

available for YARN applications in each NodeManager).

7.2 Batch OLAP

Batch OLAP queries are seen as queries that take as input vast amounts of data stored in the batch
storage component of the BDW. This section discusses the performance of batch OLAP queries for
BDWs using two modeling approaches: star schemas and flat analytical objects. Moreover, this
section also addresses the impact of the dimensions’ size in star schemas, the use of nested
structures in analytical objects, the improvement of the BDW'’s performance by using adequate data

partitioning, and the performance of drill across queries and window and analytics functions.

7.2.1 Comparing Flat Analytical Objects with Star Schemas

This first evaluation consists in analyzing the performance, storage size, CPU usage, and memory
requirements of flat analytical objects and star schemas, using the 13 SSB+ batch queries. Regarding
the star schema, all the workloads depicted in this subsection use the larger dimensions instead of

the smaller ones, which will only be discussed in subsection 7.2.3.

Analyzing the small to medium SFs, illustrated in Figure 7.3, it can be concluded that the performance

advantage of having flat analytical objects is quite noticeable. For the majority of the queries, the flat
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Figure 7.3. Small to medium batch SSB+ workloads.
Star schema (SS); analytical object (AO). Hive's results are based on (E. Costa et al., 2017).

object is able to considerably outperform the star schema, especially in the SF=100 workload, wherein

the performance of a star schema with a high number of rows starts to degrade. Interestingly, such
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phenomenon does not hold true for Hive's Q2.2, and the star schema presents better performance
in this scenario, possibly due to some performance problems in Hive's ability to process string range
comparisons (“p_brandl between MFGR#EZZ21" and 'MFGR#2228) in significantly larger amounts
of data (see Figure 7.4 to understand the storage size impact of the flat analytical object). The same

phenomenon does not occur in the Presto SQL-on-Hadoop engine.

Moreover, looking into Hive's Q1.1, Q1.2, and Q1.3, the flat analytical object and the star schema
performance is fairly similar, which is comprehensible, since for these queries, the star schema only
needs to join the fact table “Jneorder” with the dimension “dafe” As the flat analytical object is
around 2.5 times bigger than the corresponding dimensional DW stored in the ORC format (see Figure
7.4), it balances out the cost of the join operation. However, in Presto’s SF=100 workload, despite
this fact, the flat analytical object still outperforms the star schema. At this point, Presto started to

present very satisfactory performance when using completely flat structures.

Regarding the large-scale batch workload (SF=300), depicted in Figure 7.5, the trend continues,
namely the overall performance advantage of using flat structures. The performance of a Hive star
schema for most of the queries is not satisfactory for interactive scenarios, often being more than 3
or 4 times slower than a flat structure. There are some exceptions (Hive/Presto’s Q1.1, Q1.2, and
Q1.3; and Hive's Q4.3), mainly due to the aforementioned reasons, i.e., the storage size of the flat

structure causes a significant overhead in the |/0 tasks of the queries, which mainly makes them /0

Storage Size

@ Star Schema DW (TextFile)
O Star Schema DW (ORC)
@ Flat Analytical Object (ORC)

O Nested Analytical Object
(ORC)

Figure 7.4. Storage size for the SF=300 using different modeling approaches.
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bound queries, and causes the flat analytical object to perform worse than the star schema.
Consequently, despite the fact that flat structures tend to perform significantly better than star
schemas in these environments, there are certain queries wherein joining a fact table with a small
dimension (e.g., ‘“date” dimension) is faster than executing the same queries on flat structures.
However, one also needs to consider the storage size of these two data sources. Looking at Figure
7.4, the entire star schema DW using the ORC file format has around 51GB, while its flat counterpart
has around 139GB. Considering the infrastructure used in this work and previously described in
subsection 7.1.2, the entire star fits into memory, while the flat analytical object far surpasses the

total amount of memory available for querying.

Smaller dimensions allow for a very efficient type of join, known as broadcast join (or map join in
Hive) (Floratou et al., 2014). When using broadcast joins, the smaller tables involved in the join
operation are broadcasted to the memory of the nodes involved in the computation, which means
that the large table (traditionally a fact table) is joined with all these structures in memory, while it is
being processed throughout the nodes. The effects of using broadcast joins can be seen in Figure
7.5, in which Presto reveals a significant decrease in query execution times, comparing to the more
conventional distributed join. However, despite this advantage, Presto is even faster when using flat
structures that do not need any join at all. Such results do not favor the dimensional approach for

DWs in Big Data environments.

Moreover, doing broadcast joins is not always possible, since this technique requires that the
dimensions fit into a fraction of the memory available for query processing, which is not always the
case if the dimensions are naturally large or become larger through the application of type 2 SCD
techniques (Jukic et al., 2017; Kimball & Ross, 2013). Certain query optimizers do not automatically
select the most appropriate join technique according to the size of the tables, which is the case of
Presto’s optimizer in version 0.180. In this work, the two join techniques (distributed and broadcast)
were manually selected. When enforcing broadcast joins, one must be aware that if the broadcasted
input is too large, “out of memory” errors can occur, due to the lack of memory to process all inputs.

Hive 1.2.1, included in the Hortonworks Data Platform used in this work, automatically selects the
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most appropriate type of join. Nevertheless, since all configurations are left to their default values,
Hive does not trigger a map join in the SF=300 workload (and for certain SF=100 queries as well),
since the threshold regarding the fraction of memory dedicated for map join is probably surpassed.

This leads to a severe performance degradation for the star schema implemented in Hive. Such
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phenomenon raises a relevant discussion regarding the effect of the dimensions’ size in the star

schema modeling approach, which will be further discussed in subsection 7.2.3.

Besides these memory requirements, during the benchmark, one analyzed the cumulative and peak
memory for each query running in Presto, and it was observed that the star schema tends to achieve
a higher peak memory when processing queries. The total amount of memory used for star schema-
based queries is also substantially higher than flat-based queries in Presto’s workloads. Regarding
CPU usage, Figure 7.6 shows that despite being slower, the star schema tends to have a significantly
higher CPU usage than a flat analytical object. On average, in Presto’s workloads, the star schema
uses considerably more CPU time. Consequently, significantly higher CPU usage can also be seen as

a drawback of star schema-based BDWs.
7.2.2 Improving Performance with Adequate Data Partitioning

Data partitioning can significantly impact the performance of storage systems. DWs are typically
partitioned by date, or parts of a date (e.g., year, month, and day). However, there are other relevant

attributes that can be typically used for partitioning, which are related to specific implementation
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Figure 7.6. Presto CPU time for the star schema and the flat analytical object.
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contexts. Depending on the attributes frequently used in the where clause of the queries, data
partitioning can considerably reduce query execution times, since the amount of data that needs to
be processed will be much smaller. Another benefit of this technique is the simplification of CPE
workloads, due to the fact that one can make specific changes to previously loaded partitions, without
affecting the entire dataset. For example, if CPE workloads for sales data are executed each day, and
there was a mistake in the data that was loaded yesterday, today’s workloads can correct these
mistakes by completely overwriting yesterday’'s partition without affecting the entire dataset.
Sometimes, especially in Big Data environments, completely overwriting partitions becomes more
efficient than updating multiple records. Furthermore, frequently, Big Data storage systems do not

provide adequate updating capabilities (e.g., HDFS/Hive without ACID transactions enabled).

The workloads presented in the previous subsection do not make use of partitioning strategies, which
is not very typical in realworld contexts. However, it allows the evaluation of queries over large
amounts of data. In certain organizations and contexts, even daily batches of data are significantly
large and, therefore, it becomes relevant to understand how well flat analytical objects and star
schemas can handle a large volume of data for certain infrastructures. In contrast, the workloads
presented in this subsection use the SSB+ dataset partitioned by “order year”, which is the attribute

that appears more frequently in the where clause of the 13 SSB+ batch queries.

Figure 7.7 presents the results of the SF=300 workload using data partitioning, including a flat
analytical object and a star schema, and comparing them with the results achieved in the SF=300
workload of the previous subsection. Obviously, the performance advantage of using partitions is
noticeable when the queries include the “order year” attribute as a filter. This is the main reason why
the dataset was partitioned in the first place. This is true both for Presto and Hive. However, while
Presto typically presents the expected behavior when the query does not benefit from the partition
scheme, i.e., there is an increase in query execution or any difference is negligible, Hive presents an
odd and unexpected behavior at first glance. The Q2 and Q3 variants are not supposed to benefit
from this partitioned scheme, since they do not take advantage of any relevant “order year”filtering

operations in the where clause. The Q3 variants tend to filter “order year” using a range of values,
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but the range is so wide that it is almost equivalent as scanning the entire dataset. Despite this, Hive's
execution times for Q2 and Q3 variants (except Q2.2) drop drastically for the star schema using

partitions, which is not expected at all.

After inspecting the execution of the queries more closely, one observes that, using data partitioning,

generally, some of the query plans for the Q2 and Q3 variants changed, and more mappers and
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reducers were produced. This number is affected by the organization of the ORC files in the system,
as the partitioned Hive table may contain a different number of files with different sizes. Since the
number of mappers and reducers is automatically derived in this work, this new number seems to
drastically affect the query performance, resulting in a massive drop in query execution times for the
star schema. These benefits are also present in the flat analytical object, but with much less
predominance, since the query execution times for the Q2 and Q3 variants did not drop as significantly

as in the star schema workload.

Presto does not behave like Hive for the star schema Q2 and Q3 variants, presenting expected results,
i.e., results similar to the workload without partitions, even demonstrating small increases in execution
times, which is to be expected, since there is the overhead of scanning multiple partitions when the
query does not take advantage of the data partitioning scheme. In contrast, there is a significant
performance advantage when running the Q2 and Q3 variants over the flat analytical object with

partitions, which again is an unexpected behavior.

Investigating more in depth on this issue, one could argue that there are certain scenarios where
natural hierarchies between attributes can cause ORC files to distribute data in such a way that it
unintentionally improves query performance. This phenomenon happens because of a feature known
as predicate pushdown at the ORC file/stripe level, together with file/stripe level statistics. For
example, if one partitions a table by “supplier region”, the queries that filter the data by “supplier
nation” will also significantly benefit from this partitioning scheme. The attributes “supplier region”
and “supplier nation”form a natural hierarchy, and a specific partition will only contain countries that
belong to the corresponding region. Consequently, the ORC files/stripes within this partition will
provide statistics regarding the countries contained in them, and the query execution engine (e.g.,
Presto or Hive) can completely ignore files/stripes that do not contain the countries being filtered in
the query, which makes query processing much faster, since it scans less data. However, this does
not happen in the partitioning scheme used in this benchmark, as the Q2 variants do not filter the
data by any attribute hierarchically related to “order year”, and Q3.1, Q3.2, and Q3.3 only discard 1

in 8 years of data. Therefore, as previously explained, one can only conclude that the different
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organization of ORC files when using partitions may also affect stages, tasks, and drivers that are
planned in Presto’s queries, resulting in a performance boost, similarly to the one caused by having

different numbers of mappers and reducers in Hive, but with less predominance.

Overall, data partitioning is a mechanism that BDWing practitioners need to seriously take into
consideration, as the performance advantage it brings is significantly noticeable. One needs to
understand recurrent query patterns, namely the attributes that appear more frequently in where
clauses, as well as specific needs for CPE workloads, in which data partitioning can be helpful, as

previously explained.

7.2.3 The Impact of Dimensions’ Size in Star Schemas

Large dimensions can have a considerable impact in star schema-based DWs, as they require more
time to compute the join operations between the fact tables and the dimension tables. In previous
workloads, one used larger dimensions’ sizes. Although this may not be the usual scenario for many
traditional contexts, such as store sales analysis, for example, larger dimensions are typically found
in several Big Data contexts. Let us take into consideration a very large Web sales company like
Amazon, which has hundreds of millions of customers and products. In these contexts, dimensions’
size may be very similar to the ones evaluated in subsection 7.2.1. In Big Data environments, there
may be many other use cases that rely on very large dimensions, such as the set of Facebook users,

which easily surpasses the 1 billion mark nowadays.

Nevertheless, there are also several contexts wherein dimensions can have a small size, because
many organizations can generate several sales transactions only based on a small set of products,
customers, and suppliers, for example. For this reason, it becomes interesting to analyze the
performance impact caused by dimensions with different sizes. Figure 7.8 illustrates the results of

the SF=300 workload for large and small dimensions.

The workloads for the flat analytical object were executed again, since smaller dimensions in the star
schema also imply less cardinality in the descriptive attributes of a fully denormalized structure, e.g.,

if there are less rows in the customer dimension, there are also less distinct values in the “custorner
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Hive SF=300 Workload: Large vs. Small Dimensions
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name” attribute. The cardinality of the attributes can also affect the performance of “group by” and

“order by” operators and, therefore, the flat analytical object was reconstructed and evaluated again.

At first glance, looking at Hive's workloads, the result was relatively unexpected. The flat analytical

object, which until now was the modeling approach with better performance in almost every query
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and workload, was surpassed by the star schema with small dimensions. This shows that when using
Hive as the SQL-on-Hadoop engine, practitioners may sometimes benefit from modeling the BDW
using dimensional structures, which not only saves a considerably amount of storage size, but as
Figure 7.8 demonstrates, it can also bring considerable performance advantages. In this scenario,
one concludes that if Hive is able to perform a map join, having a larger denormalized structure may
not be appropriate for highly dimensional data, such as sales data. The overhead caused by a storage
size that is around 2.5 times bigger (see Figure 7.4) leads to a performance drop, and may become
a bottleneck for the Hive query engine. Consequently, in these cases, practitioners may consider the
strategy presented in subsection 4.3.3, discussing the modeling of traditional dimensions as

complementary analytical objects for dimensional BDWing contexts.

Considering only Hive's results in a small dimensions scenario, they would benefit the dimensional
approach for modeling BDWs, namely: in the context of traditional DWing, structuring data as fact
tables and dimension tables (Kimball & Ross, 2013); and in the context of the proposed approach,
structuring data as analytical objects and complementary analytical objects. Consequently, one saw
that considering Hive's results, it sometimes makes sense to model parts of the BDW's data that way.
However, frequently, Big Data does not adequately fit into the strictures of dimensional and relational
approaches (e.g., high volume/velocity sensor data or social media data). Moreover, taking a closer
look at Presto’s workloads, which are typically much faster than Hive's workloads, it can be observed
that, generally, the star schema with smaller dimensions is significantly slower than the corresponding
flat table. Furthermore, the star schema with smaller dimensions is frequently slower than the flat
table with the higher attributes’ cardinality (corresponding to larger dimensions). Overall, the star
schema with smaller dimensions takes 61% more time to complete the workload when compared to
the equivalent flat table. The discussion in this subsection is an adequate example why one uses two
SQL-on-Hadoop systems in each workload, as the insights retrieved from these specific tests

sometimes differ according to the system.

Summarizing the conclusions, there is no hard rule. In certain BDWing contexts, practitioners need

to consider their limitations regarding storage size and the characteristics of a particular dataset: is
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data highly dimensional? Do the dimensions have a high number of rows or a large storage footprint
and, therefore, not enabling map/broadcast joins? Are these dimensions frequently reused by other
analytical contexts? In this work, these concerns are discussed in subsection 4.3.3, which is the result
of relevant insights provided by this evaluation. Furthermore, practitioners may need to perform some
preliminary benchmarks with sample data before fully committing to either the extensive use of
complementary analytical objects or the use of flat analytical objects without any complementary

joins.

7.2.4 The Impact of Nested Structures in Analytical Objects

Nested structures like maps, arrays, and JSON objects can be significantly helpful in certain contexts.
For example, Chapter 8 discusses one of these contexts, describing the implementation of a BDW for
smart cities, wherein geospatial analytics is a priority, including several geometry attributes that are
typically complex and nested. There are many contexts where the use of nested structures can be
adequately integrated in the data modeling approach. As exemplified in subsection 4.3.1, sales
analysis is another context where practitioners may find appealing the application of nested
structures, namely using a less granular analytical object “orders” with the granularity key ‘order
key”, and using a nested structure to store the data about the products sold in a particular order
(e.g., ‘product name”, “quantity”, and “revenue”). The proposed approach fosters the use of nested

structures when feasible, but is it really the most efficient solution every time? Do the processing of

less rows and the smaller storage footprint always create tangible advantages?

To answer these questions, let us consider Figure 7.4, which compares the storage size (SF=300) of
the different modeling approaches used in this work. Considering the nested analytical object created
for this evaluation, one can conclude that it represents 68% of the equivalent flat analytical object’s
storage size, and roughly 186% of the equivalent star schema’s size. Moreover, this new modeling
approach is able to reduce the number of rows from 1.8 billion to just 450 million, since the
granularity of this analytical object is “order”, instead of “line order”. The data regarding the lines of
the order is stored in a nested structure, namely an array of Struct values named “/ines” (similarly to

the Row datatype in certain SQL-on-Hadoop systems).
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Figure 7.9. Performance of a nested analytical object in the SSB+ context.
Star schema with small dimensions (SS-SD); star schema with large dimensions (SS-LD); analytical object with large dimensions (AO-
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At first glance, these numbers look promising, but Figure 7.9 shows a different perspective with the
results of executing the SF=300 Q4.1 in all modeling approaches. Q4.1 was chosen because it
involves all the dimensions, representing a scenario wherein practitioners will need to aggregate and
filter data that is stored in the nested attribute “nes”. This allows the evaluation of applying different
operators to nested attributes, like the array of Structs used in this context. To achieve the same
results as the other modeling approaches, since one is dealing with nested structures, other SQL
operators must be used, such as lambda expressions, as the following modification of the Q4.1 SQL
query demonstrates:
SELECT od_year, c_nation, SUM(profit) AS profit
FROM (SELECT od_date, c_custkey,
REDUCE(1lines,

CAST(0.0 AS real),

(s, x) => IF(x.s_region = '"AMERICA' AND (x.p_mfgr = 'MFGR#1' OR x.p_mfgr =

'MFGR#2'), s + (x.revenue - x.supplycost), s),

s -> s) AS profit

FROM <db_name>.<table_name>)
WHERE c_region = 'AMERICA' GROUP BY od_year, c_nation ORDER BY od_year, c_nation;

Despite saving storage space and having much less rows, the nested analytical object is the modeling
approach with the lowest performance. It can be concluded that storing a large number of attributes

in a complex structure may result in a large overhead regarding query processing times. After all, one
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is storing all the attributes of the “part”and “supplier” dimension in this array of Structs, along with
the several facts regarding the lines of the order. Such data modeling choice requires the use of
lambda expressions or lateral views to answer Q4.1. In this particular test, looking into the query
execution, Presto uses the majority of the time computing the lambda expression, which results in a

significant increase in query execution time.

These results do not mean that processing nested structures is always detrimental for performance.
It depends on the complexity of the structure and what kind of operators will be applied. As shown in
this evaluation, highly complex nested structures that will be accessed sequentially to answer most
of the queries may not be an adequate design pattern. However, as will be shown in Chapter 8,
nested structures offer great flexibility, can be really efficient for certain access patterns, and allow
the introduction of new analytical workloads in the BDW, such as intensive geospatial simulations

and visualizations.

7.2.5 Drill Across Queries and Window and Analytics Functions

In a traditional DWing context, submitting queries to combine data from multiple fact tables is a
frequent phenomenon, which can also be described as drilling across fact tables. On the other hand,
window and analytics functions (e.g., over clause, partition by, and rank) also play a relevant role in
the ad hoc exploration of the data. Consequently, this subsection explores the performance of BDWs
when using drill across and window and analytics functions, following the same strategies already
presented above, i.e., using a flat analytical object and a star schema with Hive and Presto (with
broadcast joins) as SQL-on-Hadoop engines. Figure 7.10 summarizes the results for the 4 queries in
this SF=300 workload, which are available in (C. Costa, 2017). The first 3 queries focus on drill across

operations and the last one focuses on window and analytics functions, using the following questions:

= (Q5) Sum of the quantities ordered from the top 20 suppliers that had complaints from

American customers in the last 4 years;
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Figure 7.10. Performance of an analytical object (AO) and a star schema (SS) in a workload based on drill across queries and
window and analytics functions.

= (06.1) Number of times the company have sold parts from the manufacturer ‘MFGR#3’,
provided by Asian suppliers, with an average selling price over 1000$ in America, which have
been returned more than one time;

= (06.2) Top 10 parts with an average selling price over 1000$ that were returned more than
one time;

= (Q7) Top 5 parts of every market segment according to the generated revenue.

The results of this workload revealed that, overall, the performance of a completely flat analytical
object is more satisfactory than a star schema, although Q6.1-Hive is an exception to this trend.
Considering Presto’s results, which was the SQL-on-Hadoop engine that revealed greater differences,
one can observe that, frequently, the flat analytical object completes the query in approximately half
the time needed for the star schema. Considering Hive's results, the star schema is faster in one of
the four queries, although with less significance than Presto’s results (only 10 seconds). In contrast,
considering Q6.2-Hive, one of the queries in which the star schema is slower than the flat analytical
object, the difference in performance is considerable, which shows that certain queries using

subqueries with large (less filtered) intermediate results may significantly impact the performance
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when drilling across fact tables of a star schema. Consequently, it can be concluded that, based on
overall performance, flat analytical objects are able to provide significantly lower execution times than

star schemas in scenarios with drill across queries and window and analytics functions.
7.3 Streaming OLAP

Streaming scenarios are common in BDWing contexts. The BDW must be able to adequately deal
with the high velocity and frequency of the CPE workloads. Daily or hourly batch CPE workloads may
not always be the most effective or efficient solution to solve specific problems, and streaming CPE
workloads can be significantly useful in these cases. This section evaluates the performance of BDWs
created using the proposed approach in streaming scenarios, while discussing several concerns that

practitioners must take into consideration.

Using the SSB+ Benchmark, one can observe the performance of the streaming storage of the BDW.
As illustrated in Figure 4.3, there are several technologies that can be used to implement this storage
component, being responsible for storing data that flows continuously to the BDW with low-latency
requirements. In section 4.2, the trade-offs between these different technologies were also discussed.
For example, Hive adequately deals with sequential access workloads, typically found in OLAP
queries, but it is not adequate for random access, which is often suitable for storing streaming data.
In contrast, NoSQL databases like Cassandra are efficient in random access scenarios, but typically
fall short in sequential access workloads required for analytical contexts. Consequently, this
subsection evaluates the performance of these two technologies using the two main data modeling
strategies previously explored: a flat analytical object and a traditional star schema approach, as

detailed in section 7.1. The data flow is as follows:

1. A Kafka producer generates 10 000 records each 5 seconds;

2. A Spark Streaming application with a 10 seconds micro batch interval consumes the data
for that interval and stores it in Hive and Cassandra;

3. Presto is used to query both streaming storage systems, every hour, over a period of ten

hours.
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7.3.1 The Impact of Data Volume in the Streaming Storage Component

The performance of the streaming storage system of a BDW typically starts to degrade as the amount
of stored data increases. This is the main reason why the proposed approach includes an inter-storage
pipeline to move the data from the streaming storage system to the batch storage system.
Consequently, in this subsection, one is interested in analyzing how the data volume affects the

performance of the streaming storage component of the BDW.

Figure 7.11 illustrates the total execution time for all streaming queries (Q8, Q9, and Q10) during a
ten-hour workload with roughly constantly increasing data volume. Each hour, all the queries are
executed using Presto, both for the flat analytical object and the star schema, and both for Hive and

Cassandra. The queries Q8, Q9, and Q10 are focused on the following analytical questions:

= (Q8) The 2 countries that have the most positive average sentiment polarity united with the

2 countries that have the most negative average sentiment polarity;
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Figure 7.11. Cassandra and Hive SSB+ streaming results.
Star schema (SS); analytical object (AO). Adapted from (C. Costa & Santos, 2018).
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= (Q9) The count of sentiments that were expressed by females in Portugal or Spain, grouped

by product (part) category and period of the day (e.g., dawn, morning, afternoon, and night);

= (Q10) The groups of product (part) categories and genders having an average sentiment

polarity greater than the total average sentiment polarity.

There are several relevant insights that emerge from this evaluation. The first one is regarding the
overall effect of data volume on both systems. Looking into the trend present in this ten-hour workload,
one can conclude that both Hive and Cassandra are affected in a linear fashion, i.e., as hours pass
by (as well as data volume), the increase in the execution time of the workload can be modelled as
a linear function. A significant drop in performance as the data volume increases is to be expected in
Cassandra, since as previously argued, sequential access over large amounts of data is not one of its
strong points. However, this is not expected in Hive, since as the batch workloads demonstrate, when
using Presto to query Hive, one is able to achieve much faster execution times than the ones obtained

in this streaming workload, even with significantly higher SFs (e.g., SF=30 with 180 000 000 rows).

Despite this observation, detailed afterwards, it can also be concluded that Hive is always much faster
than Cassandra, until the mark of 50 million rows is reached. After this moment, it becomes clear
that the Spark Streaming micro batch interval is too short for the demand, and the application is also
generating thousands of small files in HDFS (storage backend for Hive). Therefore, after the 50 million
rows mark, hundreds of micro batches are being delayed, which makes the results for Hive
inconclusive, as the number of stored rows does not match those of Cassandra. Overall, it can be
concluded that having small micro batch intervals when using Hive may severely deteriorate the
performance of the system, complementing the conclusion made before regarding the overhead of

having many small files stored in HDFS.

Cassandra also shows some delay in write operations when being queried by Presto, which causes
the Spark Streaming application to queue a few micro batch jobs. However, this phenomenon is
significantly less concerning than the one in Hive's scenario, and the streaming system is able to

control the load without too much delay. Moreover, this is not caused by an increase in data volume,
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but rather a concurrency issue and resource starvation while Presto queries are running. One can
always sacrifice data timeliness by increasing the micro batch interval, but to compare the results
between Cassandra and Hive, the write latency and throughput should be identical. In this case,
Cassandra adequately handles 20 000 rows each 10 seconds without significant delays, despite
being slower, while Hive fails to do so, despite being faster for all workloads under the 58 million rows
mark. This efficiency problem is discussed in more detail in the next subsection, among other relevant

considerations for streaming scenarios in BDWing systems.

In this analysis, it is also interesting to evaluate the performance of a flat analytical object and a star
schema. In this streaming context, the performance is considerably similar in both cases. The star
schema is typically faster when using Cassandra, while the flat analytical object is typically faster
when using Hive. In the SSB+ Benchmark, the star schema for the streaming scenario is not very
extensive or complex, which in this case favors this modeling approach, since queries do not have to
join an extensive set of tables. Despite this, it can be concluded that both modeling strategies are
feasible, without any significant performance drawback. In the star schema'’s case, as the dimension
tables are stored in Hive, it can also be concluded that using a SQL-on-Hadoop system like Presto is
also feasible to combine complementary analytical objects stored in Hive (e.g., ‘part” and “time”)
with streaming analytical objects stored in Cassandra. It must be remembered that the proposed
approach uses the concept of complementary analytical objects to model dimensions, when

practitioners prefer the use of dimensional structures for certain contexts (see subsection 4.3.3).

7.3.2 Considerations for Effective and Efficient Streaming OLAP

A successful streaming application can be seen as an adequate balance between data timeliness and
resource capacity. To explain these trade-offs, this subsection is divided into three main problems
that emerged from the evaluation of the SSB+ Benchmark, presenting possible solutions to overcome

these issues:

1. High concurrency in multi-tenant clusters (multiple users and multiple technologies) can

cause severe resource starvation;
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2. Storage systems oriented towards sequential access (e.g., Hive) may present some problems
when using small micro batch intervals;
3. Inter-storage pipeline operations and CPE workloads should be properly planned, and the

adequate amount of resources should be reserved.

Starting with the first problem, the proposed approach promotes a shared-nothing and scale-out
infrastructure that is typically capable of multi-tenancy, i.e., it adequately handles the storage and
processing needs of multiple BDWing technologies and users. Streaming applications, like the one
discussed in the previous section, typically require a nearly constant amount of CPU and memory for
long periods of time. Data arrives at the system continuously, thus it needs to assure that the workload

has the adequate amount of resources.

A common setup, like the one evaluated in this chapter, would be a producer (e.g., Kafka), a
consumer (e.g., Spark Streaming), a storage system (e.g., Cassandra and Hive), and a query and
OLAP engine (e.g., Presto). At first glance, the first three components of this setup may seem to work
perfectly fine. However, once one adds the query and OLAP engine, resource consumption can get
significantly high, and the performance of the streaming application may suffer, because one did not
choose the adequate trade-off between data timeliness and resource capacity. Take as an example
Figure 7.12. If carefully observed, in certain periods of time coinciding with the time interval when
Presto queries are running, there is a significant increase in the processing time of the micro batches,

which consequently causes an increase in the scheduling time of further micro batches.

In this case, this happens because there is not enough resource capacity in the current infrastructure
to handle the processing demands of Spark Streaming, Cassandra, and Presto running
simultaneously. In these periods of time, these technologies are mainly racing for CPU usage, and
the initial micro batch interval of 10 seconds is not enough to maintain the demands of the streaming
application. Again, these insights bring us back to the previously discussed trade-off: either resource
capacity is increased, in this case more CPU cores, or the micro batch time interval is raised, which

inevitably affects data timeliness. In this benchmark, the queries are only executed each hour, thus
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Figure 7.12. Spark Streaming monitoring GUI showing resource starvation when using Cassandra and Presto simultaneously.
Adapted from (C. Costa & Santos, 2018).

the system is only affected during these periods. However, in real-world applications, users are

constantly submitting queries, which makes this consideration hard to ignore.

Regarding the use of storage systems like Hive for streaming scenarios, as seen in the previous
subsection, it has its advantages, namely reduced query execution times, since it can be considerably
faster than Cassandra. Nevertheless, this performance advantage comes at a cost: as data volume
increases, the number of small files stored in HDFS rises considerably, generating a significant load
on the infrastructure. One small file is created for each RDD partition, in this case each 10 seconds,
due to the chosen micro batch interval. In a matter of hours, the Hive table has stored thousands of
small files (see Figure 7.13). The problem is that, as the number of files increases, HDFS metadata
operations take more time, thus affecting the time it takes for Spark Streaming to save the data in
the Hive table. A write operation in HDFS includes steps like searching for the existence of the file

and checking user permissions (White, 2015), which with thousands of files can take longer than
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Figure 7.13. Thousands of small files created in HDFS (Hive's storage backend) when using Spark Streaming.

usual. Nevertheless, one needs to highlight that this problem can be solved by applying an adequate
partition scheme to streaming Hive tables, e.g., partitioning by “date” and “hour”, which creates a
folder structure containing fewer files in each folder and, therefore, reducing the time to execute

metadata operations (Vale Lima, Costa, & Santos, 2019).

At this point, the system can be under intensive load and the Spark Streaming application queues
hundreds of micro batches. Micro batches are queued when the Spark application cannot process
them before the defined micro batch interval, in this case 10 seconds. Again, this predefined micro
batch interval is not able to assure that the data gets processed before the next micro batch, and the
performance of the streaming application is compromised. In Hive's case, this is much more severe
than the concurrency issue shown by running Cassandra and Presto simultaneously. In Hive's case,
even increasing resource capacity is not the best solution, and one should prefer higher micro batch
intervals, which will consequently create bigger files. Moreover, the inter-storage pipeline is
significantly relevant to periodically consolidate these small files into bigger files, or moving them into
another analytical object which contains historical data. It must be remembered that Hadoop prefers

large files, which are then partitioned, distributed, and replicated as blocks.
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Finally, and taking into consideration the phenomena discussed above, the inter-storage pipeline and
CPE workloads should also be carefully planned when streaming applications are using the cluster’s
resources. These operations can be really heavy on CPU and memory, and can unexpectedly cause
resource starvation, as seen with Presto and Cassandra running simultaneously. Practitioners should
not take this lightly, and Linux Cgroups, YARN queues, and YARN CPU isolation can be extremely
useful to assure that the current infrastructure is able to properly assure a rich, complex, and multi-
tenant environment such as a BDW. These techniques assure that resources are adequately shared
by multiple applications, by assigning portions of the resources according to the expected workloads.
Moreover, practitioners should evaluate their requirements regarding data timeliness, and avoid small
micro batch intervals for streaming applications when they are not needed, as well as avoiding the
execution of really complex inter-storage pipelines or CPE workloads when business users are
intensively using the BDW. More resource capacity may not always be the most efficient solution to
the problem, since even in commodity hardware environments, buying hardware always comes at a

cost, while making some of these changes may increase efficiency without any relevant implication.

7.4 SQL-on-Hadoop Systems Under Multi-User Environments

In real-world environments, the BDW will not be queried by a single business user. The system may
have to support several decision-makers at different organizational levels. Single-user benchmarks
allow us to understand the raw performance of a certain system without considering concurrency.
However, one should expect to design and implement a BDW with the goal of supporting several users

simultaneously.

Since the proposed approach promotes the use of SQL-on-Hadoop engines as the frontend for
querying and OLAP, the way these systems handle concurrency is a key factor for a BDW that
adequately supports several users. Consequently, this section discusses the performance of Hive and
Presto in a SF=30 concurrent workload, wherein four users execute the 13 SSB+ batch queries
simultaneously. In this case, the smaller SF=30 was used to create an adequate balance between
the concurrency requirements, the size of the dataset, and the available infrastructure (subsection

7.1.2). In this evaluation, the SQL-on-Hadoop systems were left to their default configurations.
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Looking at Table 7.1, Presto emerges as the fastest engine. However, since one is looking into multi-
user efficiency, execution time may not be the only metric to take into consideration. Obviously, if
Presto is the fastest engine to retrieve the results to the concurrent users submitting the queries, it
can perfectly be considered the most adequate system. The problem is that, in single-user workloads,
Presto already tends to be significantly faster than Hive, which gives it a severe advantage in this
multi-user test. Taking a closer look at Table 7.1, one of the most interesting insights is Hive's increase
in execution time from single-user to multi-user queries. Despite its inferior performance in single-user
workloads when compared to Presto, Hive is the system that gets less affected by having multiple
users submitting queries simultaneously. An increase below the 3x mark means that, in a concurrent
environment with four users, the system is able to execute the query faster than executing the same

query four times in a single-user environment.

These results aim to provide an overview regarding the performance of SQL-on-Hadoop systems under
concurrent environments. Generally, it can be concluded that SQL-on-Hadoop systems are able to

handle concurrent queries on relatively modest hardware, such as the one used in this work.

Table 7.1. Multi-user SSB+ workload SF=30.
Multi-user execution (M - in seconds); single-user execution (S - in seconds).

Queries Hive (S) Hive (M) Presto (S) Presto (M)
Q1.1 23 42 4 20
Q1.2 24 45 5 20
Q1.3 24 43 4 18
Q2.1 26 66 3 18
Q2.2 36 99 3 13
Q2.3 24 80 4 13
Q3.1 28 63 4 17
Q3.2 28 64 3 16
Q3.3 25 57 4 14
Q3.4 25 63 5 17
Q4.1 28 85 5 20
Q4.2 28 69 5 20
Q4.3 28 64 5 19

Total 347 839 (Increase: 1.4x) 52 225 (Increase: 3,3x)
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Obviously, all of the configurations were not changed, which does not always represent the best setup
for these systems, especially since concurrency configurations are one of the aspects that may need
some tuning to achieve optimal performance in production systems. However, performing a
benchmark using the vanilla version of the systems also means that any kind of overfitting does not
occur and they are on the same level, without any misconfigurations. Depending on the SQL-on-
Hadoop system practitioners end up choosing for their BDWs, it is advisable and necessary to read
the documentation and adjust any relevant configuration. It must also be remembered that each
version of the systems brings a number of improvements, and if concurrency performance is a critical
factor to choose the SQL-on-Hadoop system, then an on-site benchmark may be needed before

making any decision.
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Chapter 8. Big Data Warehousing in Smart Cities

This chapter discusses the implementation of the SusCity BDW in the context of smart cities (C. Costa
& Santos, 2017¢; Monteiro, Costa, Pina, Santos, & Ferrdo, 2018; SusCity, 2016), which is built upon
the proposed models and methods as a demonstration case. In the context of smart cities, vast
amounts of heterogeneous data are constantly being produced by an extensive network of
interconnected things, including smartphones, smart meters, temperature sensors, noise sensors,
smart appliances, location sensors, among many others. Moreover, there are also other data sources
like the cities’ transactional database systems, geospatial files, census data, and data provided by
private companies responsible for certain city services. This phenomenon is typically associated with
the concepts of loT and Big Data (Jara, Bocchi, & Genoud, 2013). Consequently, smart cities are
seen as rich BDWing contexts, given these extensive set of data sources and their relevance in the

cities’ decision-making process.
8.1 Logical Components, Data Flows, and Technological Infrastructure

In the context of smart cities, an adequate BDWing approach is crucial to support the decision-making
process at scale, complying with the characteristics of a BDW. Figure 8.1 presents the SusCity BDWing
architecture, following the proposed approach. The logical layer helps researchers and practitioners
understanding the logical components of the system and how data flows throughout these
components. It uses the taxonomy of the proposed approach, partially inherited from the NBDRA
(NBD-PWG, 2015), since the lack of concepts standardization can be an issue in Big Data research,
as discussed in Chapter 2 and Chapter 3. The technological infrastructure focuses on the technologies
used for instantiating the logical components and on the infrastructure in which these technologies

are deployed (detailed later in subsection 8.1.2).
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8.1.1 SusCity Architecture

Regarding the logical layer, the first component is the data provider, making data available for further
storage and processing. In a typical smart cities context, which is the case of the SusCity research

project (SusCity, 2016), the data provider component can include several actors:

= Municipality - the municipality itself is able to make available several data sources relevant
for analytical tasks, including buildings information or geospatial representations of the city's
infrastructures, for example. The city's transactional systems are also valuable data sources;

= ol infrastructure - includes different kinds of sensors reporting electricity consumption,
temperature, noise, and mobility patterns, for example. This data is significantly relevant to
understand events and real-time patterns in the city;

= Private companies - the city’s infrastructures are not always public and, therefore,
interactions with private companies are of major relevance in smart cities, in order to collect
historical energy consumption, buildings certificates, water consumption, census data,
among many other data sources;

= Researchers and citizens - research projects being conducted in the city are a relevant data
source for the BDW, including simulation data regarding different phenomena in the city (e.g.,
buildings’ energy efficiency and mobility patterns), or any other relevant insights
corresponding to scientific studies impacting the city. Moreover, citizens engaged in the
initiatives promoted by researchers or by the municipality can provide useful data for the
decision-making process, such as personal energy consumptions, mobility patterns, and

service consumption habits.

Taking into consideration the data sources presented in Figure 8.1 and discussed above, data may
arrive at the BDW via batch or streaming mechanisms. For data arriving in batches, one uses Talend
Open Studio for Big Data (Talend, 2017) and a HDFS client to upload it to the distributed file system.
Before any preparation and enrichment process, data is first uploaded to HDFS, since raw data may
serve further analytical purposes (e.g., training and testing data mining models) or may be useful for

disaster recovery, in case some problems occur in the storage component. HDFS is capable of
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handling large amounts of structured, semi-structured, and unstructured data, distributing them
across several nodes in the cluster for further preparation and enrichment. For data arriving in a
streaming fashion, Kafka (Kafka, 2018) is used to assure highly scalable and robust data collection.
Periodically, one can optionally move data from Kafka to HDFS, using systems such as LinkedIn’s

Gobblin (Qiao et al., 2015), in cases where streaming raw data is also useful for further purposes.

To prepare and enrich batch data, the SusCity BDWing architecture takes into consideration the
volume of data. If the dataset being processed fits in the constraints of non-distributed technologies,
Talend Open Studio for Big Data is used to prepare and enrich data, since it offers a wide set of
processing components (e.g., filtering, aggregation, joins, and type parsing) in a user-friendly graphical
interface. However, when the volume of the dataset requires distributed processing, Spark (Shanahan
& Dai, 2015) is used to accomplish the preparation and enrichment tasks. In streaming scenarios,
one can use Spark Streaming to process data as it arrives at the BDWing system. Previously trained
data mining models can also be applied in this phase, using WEKA (Hall et al., 2009) for small-scale
algorithms (e.g., classification/regression of previously aggregated data or time series forecasting
problems) and Spark MLIib for large-scale algorithms, i.e., when the training set contains vast
amounts of very detailed data, not previously aggregated. Relevant data mining use cases in smart
cities contexts may include forecasting and segmenting energy consumption (C. Costa & Santos,
2015); predicting attendance at the city’s events; or segmenting buildings according to their
characteristics and energy efficiency. The same logic applies to unstructured data, since text mining
algorithms, for example, can also be applied using WEKA, Spark or any other suitable technology, in

order to extract structured patterns to be further stored in the BDW.

Once the data is prepared and enriched, it is stored in the storage component. The storage component
consists of three subcomponents. The distributed file system (HDFS) acts as a staging area and
sandbox, storing raw batch and streaming data, and temporary files needed in the data science
sandbox component. It is a crucial component to assure a flexible storage capable of handling data
variety from several sources. HDFS is also the underlying storage system for Hive, the technology

used in the batch storage component of the proposed architecture. Hive is a DWing system on
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Hadoop, frequently mentioned as the de-facto SQL-on-Hadoop solution. In the SusCity BDWing
architecture, Hive tables stored as ORC files (Huai et al., 2014) are used to store large amounts of
structured data, using the proposed data modeling method (the SusCity data model is presented in
section 8.2). In this work, Hive only stores data arriving in batches, since it is mainly designed for fast
sequential access to data. For fast random access, Cassandra is used as the NoSQL database
supporting the streaming storage component, since one can assure hundreds or thousands of
concurrent writes frequently required by typical streaming applications. Previous benchmarks reveal
that Cassandra is a suitable distributed database for intensive random read and random write
scenarios (C. Costa & Santos, 2016b). Moreover, Cassandra tables are also modelled according to

the data modeling method proposed in this work (section 8.2).

Regarding the use of Hive as a streaming storage system, without several concerns (e.g., efficient
compaction techniques), Hive tends to generate several small files in HDFS, which can become a
bottleneck in the system. Despite the current advancements regarding Hive's transactions (Apache
Hive, 2018), Hive's suitability for a large number of concurrent and continuous writes needs to be
tested in prototype or production systems. As mentioned, Hive is a DWing system on Hadoop mainly
used to scale OLAP applications. Since NoSQL databases are mainly designed to scale OLTP
applications (Cattell, 2011), they are not as effective and efficient as Hive in sequential access
scenarios, typically required in OLAP applications, as can be further seen in section 8.3. Therefore,
the SusCity BDWing system considers these trade-offs and maintains two separate storage
technologies for batch and streaming data. As techniques and technologies evolve and stabilize, the

same technology may be able to adequately support both scenarios, as discussed in section 4.2.

The goal of the BDW is to support analytical tasks. Consequently, the access, analytics, and
visualization component is crucial to deliver adequate insights for data-driven decision-making
processes. The querying and OLAP component, using Presto, assures the communication between
the batch storage, the streaming storage, and the data visualization component. Presto was open
sourced by Facebook, and it is seen as a SQL-on-Hadoop system providing low-latency query

execution over large amounts of data (Presto, 2016). In fact, it is more than a SQL-on-Hadoop system,
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since it can provide a SQL interface to a vast set of storage technologies besides Hive (Hadoop),
including NoSQL databases like Cassandra and MongoDB. Therefore, in the proposed architecture,
Presto is used to query Hive tables and Cassandra tables. As previously discussed, since Cassandra
is less efficient than Hive for fast sequential access (section 8.3), one also uses Presto to transfer
data between Cassandra and Hive, avoiding the accumulation of vast amounts of historical data in
the Cassandra tables. For more complex queries that surpass the interactivity threshold defined for
the SusCity data visualization component (10 seconds), Presto is also used to create materialized

views stored in Hive tables.

Although several improvements have been made in Hive, such as the Tez execution engine (Floratou
et al., 2014; Huai et al., 2014), Presto achieves significantly faster execution times when querying
Hive tables (as can be seen in Chapter 7), reason why it is used as the querying and OLAP engine in
the proposed architecture. Interactive query execution is one of the main requirements of the SusCity
data visualization component, in order to engage users through a responsive interface. Therefore, the
data visualization component (discussed in section 8.4) uses Presto to submit SQL queries to the
batch and streaming storage systems. Presto is also able to combine data from these two components
using a single query (e.g., joins and unions), which is of major relevance to combine historical and

streaming data into a unified view of the data.

Although some benchmarks demonstrated that interactive SQL-on-Hadoop systems similar to Presto
(e.g., Impala) may struggle with datasets that do not fit into memory (Floratou et al., 2014), one did
not feel the need to use the Hive execution engine in the SusCity project, since Presto was able to
execute all the workloads requested by the SusCity testbed, processing several Gigabytes of data from
energy grid simulations, buildings information, geospatial files, historical energy consumption data,
and more than one hundred smart meters. However, if certain scalability issues arise, the Hive
execution engine is always available for more demanding workloads. Scalability will certainly not be
an issue, since Presto is being used at Facebook to perform queries over its Petabyte-scale Hive DW,

thus it is possible to scale the cluster to accommodate growing data in a smart cities context.
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Still concerning analytical tasks, the application of data science models (e.g., data mining and text
mining models) is only possible with an adequate sandbox where data scientists can explore the data,
training and testing models to support their hypotheses (C. Costa & Santos, 2017b). Therefore, the
proposed architecture includes a dedicated component, named data science sandbox, which
interacts with HDFS. Since raw batch and streaming data can be stored in HDFS, data scientists can
interact with this data to produce models capable of extracting patterns and making predictions when
new data arrives at the preparation and enrichment component. WEKA and Spark are the driving

forces for this purpose, as previously discussed.

Security, privacy, and management is a relevant component in the SusCity BDWing architecture.
There are certain Hadoop-related technologies that can be used to assure a secure environment that
is properly managed. In this work, Kerberos is used to provide a secure authentication protocol in
Hadoop. To assure an extra-layer of security and privacy, Ranger can be used to deploy rigorous
authorization policies, defining which users have access to certain files or tables (Hortonworks, 2016).
Regarding Cassandra’s security, TLS/SSL encryption can be used for client-to-node or node-to-node
communications. Cassandra also makes available simple password authentication and an internal
authorization model. In a smart cities context, data privacy is a main concern and, therefore, whenever
possible, one encourages the anonymization of sensitive data before storing it in the BDW (C. Costa
& Santos, 2016a). Finally, Ambari can be used to manage and monitor the Hadoop components

deployed in the cluster (Apache Hadoop, 2018).

8.1.2 SusCity Infrastructure

All the components and technologies discussed in the previous subsection are deployed in 5
commodity hardware machines installed on-premises, which have been capable of supporting the
workloads demanded by the SusCity testbed. In this demonstration case, each machine has 16GB
of RAM, Intel i5 quad-core CPUs, and 500GB 7200rpm hard disks (except node 1, which has an Intel
i7 quad-core CPU and a 256GB SSD drive). All the machines are connected using a 1 Gigabit Ethernet
switch and 5 Ethernet CAT6 cables, as Hadoop clusters should be deployed using at least a 1 Gigabit
Ethernet network (Shvachko et al., 2010). The use of Big Data technologies like Hadoop, Spark, and
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Cassandra, which rely on commodity hardware and shared-nothing infrastructures, allows scaling the

cluster as data volume increases and workloads become more demanding.

Due to resource limitations, Hadoop and Cassandra nodes are co-located (node 3, node 4, and node
5). Presto and Spark are also deployed in these nodes for co-located processing. Distributed
processing technologies should be co-located with storage nodes, since in Big Data environments the
processing should be brought closer to the storage, in order to avoid moving large amounts of data
through the network (C. L. P. Chen & Zhang, 2014). The collection technologies (Kafka, Talend Open
Studio, and HDFS client), non-distributed processing technologies (Talend Open Studio and WEKA),
and the Web Server making available dashboards with Chart.js (Chart.js, 2017) and the Google Maps
APl (Google Maps, 2017) are all deployed within node 1, again due to resource limitations. Ideally,
in a production environment, these should have dedicated nodes and Kafka should be distributed
across several nodes in the cluster. Node 2, besides being the Hadoop NameNode, assures several
tasks related to the security, privacy, and management of the cluster, containing the Kerberos Key

Distribution Center and Ambari.

8.2 SusCity Data Model

As seen in section 4.3, the main concept in the proposed data modeling method is the analytical
object, representing a subject of interest to be analyzed. Typical analytical objects in smart cities may
include: general indicators about buildings; buildings energy consumption; losses in the energy grid;

indicators about the nodes in the energy grid; and the energy consumption recorded by smart meters.

Making the analogy to traditional DWs, analytical objects have the same capabilities of fact tables. In
contrast to fact tables, they typically are fully denormalized structures, in which all the attributes
needed for analyzing the subject of interest are included in one single analytical object, without the
need for dimension tables, avoiding constant and demanding join operations. Join operations in Big
Data environments are costly (Floratou et al., 2014; Marz & Warren, 2015; NBD-PWG, 2015; H. Wang
et al., 2011), since tables may store vast amounts of data. Joining several dimensions with fact tables

for each query can be significantly resource-demanding (see subsections 4.3.2 and 4.3.3 for concepts
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focusing on efficient dimensional patterns and join operations, and subsection 8.2.1 for their specific

application in the SusCity BDW).

Guided by the approach proposed in this work, each analytical object of the SusCity data model
contains two types of attributes: descriptive attributes (top half of the analytical objects in Figure 8.2)
and analytical attributes (bottom half of the analytical objects in Figure 8.2). Moreover, outsourced
descriptive families (see subsection 4.3.3) for each analytical object are also presented in Figure 8.2.
Descriptive attributes support typical OLAP tasks by providing different perspectives for aggregations
and filtering operations. These are analogous to the attributes of the dimension tables in traditional
DWs, and allow the interpretation of the analytical attributes through different perspectives. Analytical
attributes are an analogy to the facts in a traditional fact table, but with the particularity that they can
not only contain facts (historical indicators), but also predictions derived from the application of data
science models. Take as an example the analytical object “buildings energy consumption”in Figure
8.2, which contains a cluster defining the consumption behavior of each building and a forecast of
its energy consumption (kWh) for the following days, information obtained using the WEKA's clustering

and time series forecasting algorithms, as proposed by C. Costa and Santos (2015).

Descriptive and analytical attributes can store simple data types (e.g., integer, float, and varchar) or
complex types (e.g., arrays, maps, and GeoJSON objects). The use of complex types to extend the
capabilities of BDWs is detailed in subsection 8.2.2. Descriptive attributes are also relevant to define
partition keys (PKs in Figure 8.2) and granularity keys (GKs in Figure 8.2). Certain descriptive
attributes can be used to control certain aspects of data locality. In Hive, a partition key distributes
the data throughout different folders according to the value of the attribute. In Cassandra, the partition
key helps determining which node should be used to store/read the data, since it tries to evenly
spread the data across different nodes in the cluster. There is no rigorous rule for defining partition
keys, and one should evaluate the patterns of the queries and/or the refreshing rates of the analytical
objects. For example, in the SusCity BDW, one uses the “simulation scenario” attribute for the
partition key in the “energy grid losses” and “energy grid nodes indicators” Hive tables, since one

loads the data in batches corresponding to yearly simulations for each stress scenario in the energy
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grid. Moreover, the “Simulation scenario”is an attribute frequently used in the where clause of the
queries referring these analytical objects. Regarding the “smart mefers records” Cassandra table, it
is possible to use “sm id” as the partition key, balancing the data throughout the nodes in the cluster
according to the identifier of the smart meter. In Cassandra, the partition key is the first part of the

primary key, which in this case is a compound key using “sm id” and ‘record date”. In Hive, one

does not need to define primary keys.
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Figure 8.2. The SusCity BDW data model. Adapted from (C. Costa & Santos, 2017c) with extended content.
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As can be seen in Figure 8.2, analytical objects can be joined together to answer certain queries.
These join operations are optional, due to the fact that analytical objects can be modeled without any
external references to other objects, which is the case for most of the analytical objects in the SusCity
BDW. There is no need for declaring foreign keys at object creation, and analytical objects can be

joined using all the attributes whose values match. This approach is detailed in subsection 8.2.1.

Complementing what was already mentioned regarding querying and OLAP, it is possible to use Presto
to perform joins and unions between batch analytical objects (Hive tables) and streaming analytical
objects (Cassandra tables), providing useful insights extracted from historical and real-time data, as
can be seen in Figure 8.2. The size of the datasets being joined is of major relevance for an adequate
query performance, and it should be taken into consideration. This is the reason why analytical objects
should almost never be joined in their raw format. First, one needs to aggregate and filter (as much
as possible) each analytical object involved in the join operation. The larger the inputs on each side
of the join operation, the more complex and slower the query becomes. In this case, materialized
views stored in Hive tables are significantly helpful for maintaining interactive response times in query
execution and the responsiveness of the data visualization platform (see section 4.3.2 for more details

on join operations and materialization processes).

Summarizing the main strategies for this modeling approach, one can highlight three major strategies:
mainly use fully denormalized structures to avoid the cost of join operations in Big Data environments;
the use of nested structures, which are not typically found in traditional modeling techniques, can
provide more flexibility and performance advantages in specific scenarios; divide data flows and
storage components into batch and streaming, as discussed and explored by Marz and Warren
(2015), but that does not need to imply different data modeling strategies, as the proposed data

modeling method demonstrates, since it can be used both for batch and streaming contexts.

8.2.1 Buildings Characteristics as an Outsourced Descriptive Family

Looking at Figure 8.2, it can be seen that the Hive table “buildings general indicators” can be joined

with the “buildings energy consumption” table, for example. This capability is useful to understand
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relationships between the characteristics of buildings and their energy consumption, such as: to what

degree does the number of occupants influence the building’s energy consumption?

These join operations are severely different from the join operations required between fact tables and
dimension tables, since one only uses them in queries that relate different analytical objects, which
is much less frequent than joining fact tables and dimensions for each query. Considering the SusCity
BDW, the “building id” attribute is present in three analytical objects: “buildings general indicators”;
“buildings energy consumption”; and “smart meters records”. Instead of replicating the information
about buildings in these three objects and creating unnecessary redundancy, taking into consideration
that the “buildings general indicators " object is relatively small (around 60 000 records for the city of
Lisbon), it can be easily joined with the other two objects, in order to answer specific questions.
Consequently, one can outsource the buildings characteristics to the “buildings general indicators”
complementary analytical object, and only place the “building id” in the “buildings energy
consumption”and “smart meters records” analytical objects, as a link to the outsourced descriptive

family (similarly to a foreign key in traditional DWs).

Nevertheless, when there is no need to relate energy consumption with buildings characteristics, all
three objects are completely independent and are capable of answering different queries without
relying on any join operations. Such flexibility is one of the strongest points of the proposed approach,
which provides constructs and structured guidelines that practitioners can follow to solve specific

problems, depending on the considerations and trade-offs previously discussed in section 4.3.

8.2.2 Nested Structures in Analytical Objects

In the SusCity BDW, complex types are used to store nested structures that will be interpreted
afterwards by the data visualization component. For example, a large building can be associated with
more than one service (e.g., laundry, supermarket, restaurant, and gym). Using a nested complex
type like a map (e.g., HashMap), one can store this data using a single record associated with that
building. Saving geometry objects in GeoJSON strings is also relevant for geospatial analysis in a

smart cities context. Figure 8.3 exemplifies this data modeling technique, showing how the “services”
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building_id geometry services

PN1002_BId1006  {"coordinates":[[[[-9.095774715532317,38.75531748705829,0.0], {"Closest":{"bus_station":1,"
[-9.09581794753689,38.754789659895685,0.0],[-9.09645431644,38.75508346464763,0.0], restaurant":1,"
[-9.096450674839106,38.75512791869151,0.0],[-9.095863311171968,38.75485673974815,0.0], transit_station":1}}

[-9.09582372031163,38.755340111999075,0.0],
[-9.095774715532317,38.75531748705829,0.0]]]], "type":"MultiPolygon"}

PN1017_BId1014  {"coordinates":[[[[-9.097215529256525,38.75555230452945,0.0], {"Intersect":{"pharmacy":1,"
[-9.097043511328877,38.75554367148119,0.0],[-9.097049142417907,38.7554749032351,0.0], electronics_store":1,"
[-9.097229969051648,38.75548398426785,0.0],[-9.09725216370908,38.75548509831462,0.0], store":2}}

[-9.097274238654201,38.75548620703925,0.0], [-9.09726356044447,38.75547028727257,0.0],
[-9.09734857452456,38.755359804547815,0.0],[-9.097422656424303,38.75539441765938,0.0],
[-9.097316956110943,38.75553312604815,0.0],[-9.097299143785282,38.75555650063938,0.0],
[-9.097215529256525,38.75555230452945,0.0]]]],"type": "MultiPolygon"}

PN1005_BId1020  {"coordinates":[[[[-9.097635848103682,38.75565135861262,0.0], {"Intersect":{"school":1}}
[-9.09772348462946,38.75553497185145,0.0],[-9.098142617521873,38.75572847040772,0.0],
[-9.09805498145341,38.75584485747365,0.0],

[-9.097635848103682,38.75565135861262,0.0]]]],"type": "MultiPolygon"}

PN1005_BId1024  {"coordinates":[[[[-9.098588536159713,38.75593433195039,0.0], {"Closest":{"school":1}}
[-9.098610737448173,38.75590484691583,0.0], [-9.098832011608275,38.756006999134215,0.0],
[-9.098809810380983,38.75603648420953,0.0],

[-9.098588536159713,38.75593433195039,0.0]]]],"type": "MultiPolygon"}

Figure 8.3. SusCity nested structures (example).

map and the “geometry” GeoJSON are stored. As can be seen in Figure 8.3, following the proposed
approach, one can place the number of services by distance and type nested in the “buildings general
indicators” analytical object, avoiding the need to create a new object to store the services for each
building. This provides significant flexibility when building custom-made data visualizations (see

subsection 8.4), avoiding the need to perform complex queries to join different tables.

8.3 The Inter-storage Pipeline

The need to transfer the data between storage components was already highlighted in section 8.1,
but it will be quantitatively evaluated in this section. As mentioned, NoSQL databases are OLTP-
oriented (Cattell, 2011), unlike Hive, which is an OLAP-oriented technology. Typically, OLTP systems
relax sequential access efficiency for random access efficiency. Therefore, systems like Cassandra
are adequate for the constant random write operations frequently demanded by the realtime
collection of data from thousands of smart meters. However, these systems lack the efficiency to
process (e.g., aggregate) large amounts of historical data, which is frequently demanded by OLAP
queries. Table 8.1 presents the results from an experiment conducted in the infrastructure and testbed

of the SusCity research project, evaluating the response times when submitting Presto queries to Hive
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Table 8.1. Performance comparison between analytical objects stored in Hive and Cassandra. Based on (C. Costa & Santos, 2017c).

Query Input Rows Output Rows Hive Cassandra
Show the last 10 smart meters records. ~2.8 million 10 0.56s 3.08s
Calculate the average of kWh grouped by ~5 8 million 014 0.565 496
smart meter.

Count how many records a certain smart

. ~2.8 million 1 0.74s 0.98s
meter contains.

tables and Cassandra tables. As demonstrated in Table 8.1, given the same analytical object and the
same amount of data, Presto OLAP queries on Hive Tables (ORC file format) perform significantly
faster than the queries on Cassandra tables. This corroborates the statements previously mentioned
and the decision of periodically moving historical data from Cassandra to Hive, maintaining only the
most recent data in Cassandra. The periodicity of this data transfer depends on the specific
requirements regarding interactivity in response times, the volume of data being stored, and the
available infrastructure. Data can be transferred on an hourly, daily, weekly or monthly basis, for

example.

8.4 The SusCity Data Visualization Platform

Throughout this chapter, one focused on the logical and physical layers of the BDW. In this section,
one highlights some relevant use cases in which the data visualization platform can help the city's
stakeholders in the decision-making process. As previously presented, the SusCity data visualization
platform was developed using modern JavaScript libraries like the Google Maps API V3 and Chart.js.
Obviously, since it is a Web-based platform, core languages are also present (HTML, CSS, and pure
JavaScript), as well as other supporting JavaScript libraries like jQuery (jQuery, 2017). Itis a platform
purely based on a service-oriented architecture, using Java REST Web services to establish the
communication between the JavaScript components of the platform and the querying and OLAP
engine instantiated by Presto. Each query submitted to the BDW goes to this REST backend for an
adequate modularity of the platform. Using this service-oriented and modular approach, it becomes

easier to update or replace components and technologies, if that need arises in the future.
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In this section, one will briefly present several dashboards developed in the SusCity research project,
which can also be interesting applications for other smart cities initiatives. The following dashboards
are just a few examples of the SusCity data visualization platform’s capabilities, and the SusCity
demonstration case itself considers other data sources and experiments (e.g., data mining and
machine learning insights) that were not fully developed and implemented in the visualization
platform. Furthermore, due to security and privacy issues, the visualizations illustrated in this section
are built upon incomplete, omitted and/or changed testbed data and, therefore, results are not

conclusive for any realworld based decision-making process.
8.4.1 City’s Energy Consumption

The first dashboard (Figure 8.4) is based on the energy consumption of each parish in the city (2
parishes in the SusCity testbed). Decision-makers are able to understand the energy consumption in
each parish and analyze the city's consumption by hour, time period (e.g., morning or afternoon) or
by quarter. Users can interact with multiple parishes by clicking on them, revealing the energy
consumption for specific parishes, and comparing it with the overall consumption of the city, with the

goal of extracting insights regarding critical zones in the city, for example.
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Figure 8.4. SusCity data visualization platform - energy consumption dashboard. Adapted from (C. Costa & Santos, 2017c).
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Other dashboards in the SusCity platform (e.g., Figure 8.6) focus on the analysis of the buildings in
the city, including information about their cooling/heating systems, energy consumption and
efficiency, and envelope properties (e.g., window glass type and window materials). In the SusCity
data visualization platform, one can also make available the predictive capabilities of the SusCity
BDW, such as the segmentation (clustering) of buildings according to their energy consumption, and
the respective energy forecasting for the next days or weeks, as conceptually explored in this work

(section 8.2) and as also presented by C. Costa and Santos (2015).
8.4.2 City’s Energy Grid Simulations

A dashboard to simulate and analyze stress scenarios in the energy grid can be significantly useful in
the context of smart cities, as depicted in Figure 8.5. Each scenario corresponds to a set of input
parameters (e.g., number of electrical vehicles, photovoltaic area, and number of charging stations)
that may affect the behavior of the energy grid, such as energy losses, load, and maximum peak
power. In the SusCity BDW, the results of the simulations for these scenarios are stored in analytical

objects, as presented in section 8.2, and the data visualization platform can use the querying and
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Figure 8.5. SusCity data visualization platform - energy grid simulation dashboard. Adapted from (C. Costa & Santos, 2017c).
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OLAP engine to extract and provide useful insights for stakeholders interested in the impact that
certain initiatives have on the energy grid. Due to the modular and service-oriented nature of the
SusCity data visualization platform, and the flexible and scalable SusCity BDW, one is able to provide
dashboards for decision-makers, regardless of data volume, variety, and velocity, without being hold

back by rigid data modeling techniques and complex data CPE pipelines.

8.4.3 Buildings’ Performance Analysis and Simulation

Understanding the buildings’ efficiency is a crucial aspect for a smart and sustainable city. One of
the SusCity platform main focuses is the geospatial analysis of the buildings in Lisbon, based on an
extensive set of characteristics, such as: geometry; construction; energy consumption and efficiency;
envelope properties (e.g., type of window and type of window frame); heating and cooling systems in

use; and occupation schedule.

The flexible data model and storage components of the SusCity BDW, i.e., the lack of a strict relational
data model and the efficient use of GeoJSON objects, together with a rich API for geospatial analytics
like the Google Maps API, provide an extensive set of analytical capabilities for the city’s government.
As can be seen in Figure 8.6, stakeholders can visualize the general distribution of the energy classes
across Lisbon, the thermal inertia of the buildings, type of window and window frame, among other
metrics georeferenced by building. Each chart is interactive and can be used as a filter to analyze
how buildings are related to a certain property (e.g., metal window frame, double glass window, and
low thermal inertia). As a consequence, the dashboard in Figure 8.6 is not only useful for the city’s
government, but it is also useful for private companies interested in promoting retrofitting initiatives

to modernize buildings.

Similarly to the energy grid simulations (subsection 8.4.2), the SusCity BDW can also support
simulations at the building level. Figure 8.7 demonstrates the use of simulation data to evaluate the
impact of specific retrofitting initiatives (e.g., change the windows in 25% of the buildings in Lisbon).
Besides analyzing the impact of retrofitting initiatives, decision-makers can also use the dashboard in

Figure 8.7 to analyze the archetype of a specific building, among many other characteristics previously
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mentioned: geometry; construction; heating and cooling systems; and occupation schedule.

Consequently, having a BDW whose data model facilitates the integration of a vast set of data sources,

without rigid structures, is one of the main aspects that allows the development of these Big Data

analyses in the context of smart cities.
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Figure 8.7. SusCity data visualization platform - buildings simulation dashboard. Adapted from (Monteiro et al., 2018).
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8.4.4 Mobility Patterns Analysis

Studying mobility is a crucial aspect in a smart city. Understanding how people or goods travel within
the city, or how citizens tend to use private or public transports, for example, is an interesting subject
for several decision-makers, including the city’s government and public/private transportation
companies. Another interesting scenario is the footprint analysis of the city's streets, according to

several indicators, such as CO? emissions or average speed.

Figure 8.8 focuses on the analysis of the city’s mobility patterns, in order to foresee future initiatives
to facilitate the use of either private or public transportation. The analysis goes according to the

following steps:

1. The city is modelled as a grid with several sections;

2. Every section is colored in the map according to one of three indicators: number of daily
trips; job transport accessibility; and average travel time;

3. By clicking in one section of the grid, decision-makers can understand how that section

performs regarding the three indicators mentioned above.
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Figure 8.8. SusCity data visualization platform - mobility grid dashboard.
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Analyzing the data at the grid level is interesting to understand the mobility behavior within different
sections of the city. However, the flexible data model of the SusCity BDW and the geospatial
capabilities of the SusCity data visualization platform also make possible the analysis of several
indicators at the street level. To demonstrate these capabilities, Figure 8.9 presents several streets
colored according to the ratio between average speed and maximum allowed speed, so that
stakeholders can understand in which streets citizens tend to frequently overcome the speed limit.
The analysis in Figure 8.9 focuses on the security concern within mobility patterns, but there are
several other potential use cases for this kind of analysis, such as the identification of the busiest or

more polluting streets, for example.
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Figure 8.9. SusCity data visualization platform - mobility dashboard at street level.
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Chapter 9. Conclusion

Throughout this work, Big Data was seen as a concept of major relevance in today's world, whose
popularity has increased considerably during the last years. Areas like smart cities, manufacturing,
retail, finance, software development, environment, digital media, among others, can benefit from the
collection, storage, processing, and analysis of Big Data, leveraging unprecedented data-driven
workflows, and considerably improving the decision-making processes. This new type of data is being
defined not only by its characteristics (e.g., volume, variety, and velocity), but also by the limitations
it imposes on traditional storage and processing technologies. Organizations seeking Big Data
initiatives are facing many challenges, such as the lack of consensus in definitions, models, and

architectures, and the difficulties regarding the Big Data life cycle design and implementation.

Since the DW concept has a long history as one of the most valuable enterprise data assets, in this
work, it became relevant to study its role, design and implementation in Big Data environments. The
concept of BDW is emerging as either an augmentation or a replacement of the traditional DW.
Research in this topic is still in its infancy, and as Big Data is often synonymous of ambiguity, the
same happens for the concept of BDW. After the literature review process, this work identified that

the BDW can be defined using the following characteristics:

= Parallel/distributed storage and processing of large amounts of data, including fault-
tolerance concerns;

= Scalability (accommodate more data, users, and analyses) and elasticity, using commodity
hardware to lower the costs of implementation and maintenance;

= Flexible storage, including unstructured data;

= Realtime capabilities (stream processing, low-latency, and high-frequency updates);

= High performance with near realtime response;

= |nteroperability in a federation of multiple technologies;
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= Mixed and complex analytics (e.g., ad hoc or exploratory analysis, data mining, text mining,
statistics, machine learning, reporting, visualization, geospatial analytics, advanced

simulations, and materialized views).

Considering the state-of-the-art in BDWing, it can be concluded that there is no common approach to
build BDWs, and there are innumerous Big Data technologies to choose from, each trying to stand
out, which creates barriers in the design and implementation of Big Data solutions like BDWing
systems, since most of the time these technologies’ role is misunderstood, eventually overlapping
each other. Current logical architectures and non-structured contributions only solve part of the
problem by providing some general and relatively unstructured constructs and guidelines, but
ambiguity regarding the BDW techniques and technologies that are more adequate for several
contexts still prevails, mainly due to the lack of general-purpose, detailed, integrated, and adequately

evaluated approaches.

Currently, the design and implementation of BDWs is mainly seen as a use case driven approach,
instead of a data-driven one, which used to be the case for traditional DWs. Previously, data modeling
was the primary concern, but, nowadays, practitioners are mainly concerned with trying to find the
right technology to meet the demands of Big Data, leading to possible uncoordinated data silos. It
would be a mistake to discard years of architectural best practices based on the assumption that
storage for Big Data is not driven by data modeling (Clegg, 2015). Works related to the SQL-on-
Hadoop movement are a suitable proof that the data structures known for a long time are still relevant,
although modified and optimized. Obviously, unstructured data does not adequately fit into these
structures, but, as this work demonstrated, there are data science techniques to extract value from it
and subsequently fuel the BDW (e.g., data mining and text mining). Complex systems like BDWs
require changes in different logical and technological components, data flows, and data structures,
but this does not imply discarding the relevance of models and methods in favor of a use case driven

approach.

Until now, there was no structured and general-purpose approach describing how to design and

implement BDWs, with adequately evaluated models (representations of logical and technological
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components, data flows, and data structures), methods (structured practices), and instantiations
(e.g., demonstration cases through prototyping and benchmarking). This scientific and technical gap
served as the main motivation for this work, as, in one’s modest opinion, the existing logical
architectures, non-structured guidelines, best practices, and implementations in specific contexts,
although relevant, did not provide a complete, general-purpose, detailed, and thoroughly evaluated
approach that practitioners needed to design and implement BDWs according to their characteristics.
The obvious gap between “#his is what a BDW should be”and “this is how you design and implement
/t” motivated the proposal of this approach, an integrated, detailed, and general-purpose prescriptive
contribution to design and implement BDWSs, using models and methods that were adequately
evaluated through different demonstration cases. That being said, one recognizes that the proposal
of this approach was, at first glance, a possibly ambitious goal, but one also considers that the same
was achieved, as practitioners and researchers have currently available a set of artifacts that can be
used to build BDWs and to foster future research as techniques and technologies evolve. The following
sections describe the undertaken work and achieved results, the main contributions to extend the

existing knowledge barriers, and some prospects of future work.

9.1 Undertaken Work and Achieved Results

Considering the research goal and objectives of this doctoral thesis, one can state that the undertaken
work and achieved results are divided into five main work fronts, namely the proposed approach for
BDWing and the four demonstration cases: SSB+ Benchmark; SusCity BDWing system:; data CPE
workloads experimentation; and the demonstration of real-world BDW data models. Furthermore,
these five work fronts took place on different activities of the research methodology (DSRM for 1S),

including design and development, demonstration, and evaluation.

The design and development of the proposed approach consisted in the creation of several models
and methods to build BDWs. These models and methods were submitted to a continuous refinement
process, wherein the several demonstration cases helped to not only facilitate the evaluation of the
approach, but also to iteratively improve it. Finished this doctoral thesis, it can be highlighted that the

following models and methods were developed:
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1. Amodel of logical components and data flows (section 4.1), which can be used to understand
the components that should be considered in the design of a BDW, how they interoperate,
and how data flows through the system. The model is composed of several components
related to BDW storage, processing, access, analytics, system administration and
management, and security and privacy, detailing how they form a BDWing system that follows
the constructs of Big Data standards like the NBDRA;

2. A method for collecting, preparing, and enriching batch and streaming data (subsection
4.1.2), so that practitioners can understand the different steps involved from data collection
to data storage in BDWing contexts. The method not only clarifies batch and streaming data
flows, but also details how data science models and insights can be incorporated into data
CPE workloads, enabling predictive capabilities and allowing for the extraction of value from
unstructured data (e.g., text, video, image);

3. A model of the technological infrastructure (section 4.2), resulting from an extensive research
and development process that took place in this doctoral thesis, in order to identify and test
several technologies suitable to instantiate the different components proposed in the model
of logical components and data flows. The technological infrastructure model presents
several alternatives that can be used to implement a BDWing system, including data CPE
workloads, storage, querying and OLAP, data mining/machine learning, and data
visualization technologies. Moreover, this model also provides some guidelines on how to
deploy BDWing systems on cloud environments or on-premises;

4. A method for BDW data modeling (section 4.3), which, together with the aforementioned
contributions, represents a relevant artifact to fulfil one of the main challenges in Big Data
environments, i.e., the lack of standard data modeling contributions. The method presents
several constructs, such as analytical objects; descriptive and analytical families; descriptive,
factual, and predictive attributes (resulting from data science models and insights); nested
attributes; granularity key; partition key; bucketing/clustering key: date, time, and spatial
objects; materialized objects; complementary analytical objects; and outsourced descriptive

families. The data modeling method provides a way of structuring batch and streaming data
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using the same constructs regardless of the underlying technology supporting the storage
system, providing an abstraction layer that practitioners can rely on to model BDWs
supported by HDFS/Hive, NoSQL/NewSQL databases, Kudu, Druid, among other systems

(see section 4.2).

The models and methods proposed in this work form a set of artifacts for the design and
implementation of BDWing systems, and consider both structured, semi-structured, and unstructured
batch and streaming data, providing adequate ways of collecting, storing, processing, and analyzing
this data. Taking this into consideration, the proposed approach can be used by practitioners and
researchers as a structured, integrated, and general-purpose approach that can be prescribed to solve
several realworld BDWing problem, aiming to support structured analytics on Big Data environments
while taking advantage of the several BDW characteristics. Furthermore, the approach was evaluated
and refined using the several demonstration cases applied in this doctoral thesis, which provides a

solid scientific and technical basis.

The first demonstration case consisted in the modeling of 6 BDW data models to solve potential real-
world problems. In this demonstration case, one used several artificial datasets (e.g., Adventure
Works, TPC-DS, and TPC-E), as well as other publicly available datasets, including the GitHub
repositories dataset, the GDELT event database, and the open air quality API. For each dataset, one
modelled a BDW data model using the proposed approach, which was significantly useful to
thoroughly explain the several proposed models and methods. The approach by itself was developed
to be relatively simple to follow, but one should take into consideration that a “rip and replace”
approach like the one proposed in this work can be significantly disruptive and potentially confusing
when designing and implementing specific parts of a BDWing system. Consequently, this
demonstration case was performed in this doctoral thesis, in order to clarify when to apply specific
guidelines, trying to provide different contexts and design decisions that practitioners may face in the
future. Furthermore, this demonstration case, together with the considerations from the following data
CPE demonstration case, the SSB+ Benchmark, and the SusCity demonstration case, was relevant

to demonstrate the effectiveness and simplicity of the proposed approach, generating several BDW
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data models that, by avoiding some complexity related to traditional dimensional DWs (e.g., different
types of dimensions, bridge tables, surrogate keys, SCDs, and late arriving dimensions), take less
time to structure, fuel, maintain, and extend with new batch and streaming data (structured, semi-
structured, and unstructured), which inevitably provides more storage flexibility and generally more
performance, and accelerates the time from data collection to analysis. Consequently, these insights

represent compelling reasons for the adoption of a BDWing strategy in organizations.

The second demonstration case was based on designing and implementing several data CPE
processes focused on structured, semi-structured, and unstructured batch and streaming data, in
order to cover different challenges related to collecting, preparing, and enriching data flowing to a
BDW. Different data characteristics require different strategies, reason why this demonstration case
was crucial to provide adequate examples to practitioners, showing the effectiveness of the proposed
data CPE method. This demonstration case also highlighted the complexity differences between

traditional ETL processes and data CPE workloads based on the proposed approach, namely:

= The use of denormalized structures allow for much simpler processes when the underlying
data source is already flat or nested, such as sensor readings, NoSQL databases, Excel/CSV
files, XML/JSON files, Web APIs, among many others sources frequently seen in Big Data
environments. Not having to develop and maintain complex workloads to fuel several types
of dimension tables/concepts (e.g., mini dimensions, shrunken dimensions, junk
dimensions, bridge tables, late arriving dimensions), as well as avoiding the need to perform
constant surrogate key lookups while loading a fact table is definitely a compelling
advantage, especially in Big Data environments wherein one is focusing on accelerating the
time to insight, instead of spending a significant amount of time trying to model and maintain
the BDW. Nevertheless, if the underlying source is already relational, the contrasting
phenomenon occurs, i.e., one may need to perform several join operations to fuel a certain
denormalized analytical object;

= The lack of dimension tables also means that streaming scenarios are possible without

complex operations like surrogate key lookups, or complex concepts such as SCDs or late
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arriving dimensions. The descriptive attributes of an immutable analytical object behave like
an SCD type 2 scenario, in which each record is associated with the current values of the
descriptive attributes. When using outsourced descriptive families and complementary
analytical objects, practitioners can consider different updating approaches, as discussed in
subsections 4.3.3 and 5.2.1, in order to overcome some challenges that may be relatively

similar to SCDs and late arriving dimensions.

The third demonstration case consisted in developing and executing an extension of the SSB
benchmark (O'Neil et al., 2009), the SSB+. This benchmark served the purpose of evaluating several
design and implementation guidelines of the proposed approach, in terms of effectiveness and
efficiency (e.g., latency and resource usage), using as baseline, when appropriate, a star schema DW.
The results provided in this work demonstrated that, generally, a fully denormalized analytical object
is able to outperform a star schema throughout different SFs (some of them exceeding the amount
of available memory), different SQL-on-Hadoop engines, and different descriptive attributes cardinality
(dimension tables size), which means that even in contexts wherein dimension tables were relatively
small to fit into memory (allowing efficient map/broadcast joins), a fully denormalized analytical
object was more efficient (faster execution times and less CPU usage and memory dependability),
surpassing the need for constant join operations between the fact table and the corresponding
dimension tables. Analytical objects were also generally faster in drill-across and window analytics
scenarios. Nevertheless, this demonstration case also shown that there is space for relational
structures (see subsections 4.3.3 and 4.3.4.2), which can be beneficial for reducing the storage
footprint of a BDW created using the proposed approach, avoiding extreme and unnecessary
redundancy and, in certain contexts, consequently increasing processing efficiency (see subsection
7.2.3). This last insight enabled the refinement of the approach through the creation of spatial, date,

and time objects, and the creation of outsourced descriptive families.

Generally, the results achieved by flat analytical objects accomplished the optimal threshold in small
to medium SFs (queries executed within a few seconds) and the satisfactory threshold in large SFs

(queries executed within a few tens of seconds). Considering the evaluated SFs and the available
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infrastructure, one can conclude that the proposed approach can be used to provide interactive query
execution in BDWing contexts. Moreover, there are other strategies considered in the proposed
approach that are able to provide even faster results than the ones seen in this SSB+ Benchmark,
such as materialized objects. One can conclude that despite the limitations of the available
infrastructure, the SSB+ Benchmark revealed adequate results, which proves that the proposed
approach can be used to design and implement BDWs not only when the expected BDW size fits into
memory, but also when the same exceeds it, resulting in effective and efficient BDWs capable of
assuring complex ad hoc querying and OLAP on commodity hardware and shared-nothing

infrastructures.

Still in this demonstration case, other workloads were also evaluated in terms of query latency,
including nested attributes, data partitioning, and concurrent workloads, which provided several
guidelines that practitioners can take into consideration. Furthermore, the SSB+ Benchmark also
served the purpose of evaluating the streaming performance of a BDW, corroborating that the
proposed approach to store, process, and combine batch and streaming data is feasible, since using
a single query submitted through the querying and OLAP engine, one can combine batch and
streaming data into a “unified picture”. The streaming workload was significantly relevant to
understand the limitations of technologies like HDFS/Hive (e.g., random access disadvantages and
small files problem) and NoSQL databases (e.g., Cassandra’s sequential access disadvantages) when
storing and retrieving vast amounts of data, and the implications that they can have on query
performance. These insights were used to not only corroborate previous assumptions, but also to

complement them with further guidelines to practitioners, which are depicted throughout Chapter 4.

Finally, the fourth demonstration case consisted in applying the proposed approach in a smart cities
context, namely the SusCity research project (C. Costa & Santos, 2017c¢; SusCity, 2016). The SusCity
BDWing system was a prototype developed in the aforementioned project, in which one followed the
proposed models and methods, proving the suitability of the approach to solve real-world problems.
The architecture of the system follows the proposed logical components and data flows, the

supporting technologies are compliant with the proposed technological infrastructure model, and the
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SusCity data model is guided by the proposed data modeling method. The SusCity BDW was able to
support an interactive Web-based data visualization platform focusing on several smart cities
concerns, such as energy, buildings efficiency, and mobility, providing adequate response times,
ranging from milliseconds to a few seconds over millions of records. The SusCity data visualization
platform made available several geospatial and simulation capabilities in smart cities contexts (e.g.,
buildings retrofitting measures and energy grid stress scenarios), proving that using the proposed
guidelines, BDWs are able to support new mixed and complex analytical workloads. Moreover, to
complement the insights provided by the SSB+ Benchmark, the SusCity demonstration case also
shown the relevance of clearly defining batch and streaming data CPE, storage and querying
guidelines, as well as the relevance of complementary analytical objects (e.g., “buildings indicators”

in subsection 8.2.1).

9.2 Contributions to the State-of-the-art

According to the undertaken work and achieved results presented above, to the best of one’s
knowledge, it can be concluded that this approach represents a relevant contribution to the scientific
and technical community, making available a set of artifacts for BDW design and implementation that
not only can foster future research, but above all, can help practitioners build these complex systems,
which otherwise would typically fall into a use case and ad hoc driven process. The models and
methods proposed in this work were scientifically backed up by a DSRM for IS research process using
4 demonstration cases that allowed the evaluation of the approach mainly in terms of effectiveness,
complexity, latency, and, when applicable, resource considerations (CPU usage, memory constraints,
and storage footprint). Consequently, one can conclude that this approach successfully fulfills the
scientific gap previously identified, i.e., the lack of a prescriptive and integrated contribution for the

design and implementation of BDWs, with adequately evaluated models and methods.

Despite the relative novelty of the topic, one tried to take into consideration previously existing
contributions, reason why this approach is built upon some general constructs and guidelines
provided by the Lambda Architecture (Marz & Warren, 2015), the NBDRA (NBD-PWG, 2015), the Big
Data Processing Flow (Krishnan, 2013), the Data Highway Concept (Kimball & Ross, 2013), and even
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some data denormalization encouragements discussed in previous works (Jukic et al., 2017; Santos
etal., 2017; Santos & Costa, 2016; Dehdouh et al., 2015; J. P. Costa et al., 2011). Scientific progress
is often made by disruptive approaches, but it is also relevant to try to build something with a solid
foundation, which was relatively difficult in this work, considering the lack of maturity and
contributions related to BDWing. However, this work’s contribution to the state-of-the-art in BDWing
was only possible due to previously explored paths and the relevant contributions of several related
works, including the vast amounts of scientific and technical works related to traditional DWing
systems, shaping several academic and professional formations, whose absence would otherwise

make unfeasible the advancements regarding DWs in Big Data environments.

Taking this into consideration, and now focusing on the communication activity of the DSRM for IS
methodology, several scientific publications related to this research work have been positively reviewed
and accepted by the scientific community, which allowed the dissemination of several results.
Moreover, technical content related to the work proposed here was also presented in practice-oriented
forums, and a future opportunity for the dissemination of the approach through a book publication is
already taking place. The following publications (summarized in Table 9.1) represent the

communication activity associated with this doctoral thesis:

= Journal Publications

- Costa, C., & Santos, M. Y. (2017). Big Data: State-of-the-art concepts, techniques,
technologies, modeling approaches and research challenges. IAENG International
Journal of Computer Science, 44, 285-301;

- Costa, C., & Santos, M. Y. (2017). The data scientist profile and its
representativeness in the European e-Competence framework and the skills
framework for the information age. International Journal of Information
Management, 37(6), 726-734. https://doi.org/10.1016/].ijinfomgt.2017.07.010;

- Santos, M. Y., Martinho, B., & Costa, C. (2017). Modeling and implementing big
data warehouses for decision support. Journal of Management Analytics, 4(2), 111-

129;
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Table 9.1. Scientific publications.

Type Numbers Detail
Scimago Q1 3 publications (2) Journal of Information Management (1JIM)
Journals (1) Energy and Buildings

1 submitted for publication (1) Journal of Big Data
CORE Ranking A 1 publication (1) International Conference on Advanced Information
Conferences Systems Engineering (CAISE)
Scimago Q2 1 publication (1) International Journal of Computer Science (1JCS)
Journals
CORE Ranking B 3 publications (2) International Database Engineering & Applications
Conferences Symposium (IDEAS)

(1) European, Mediterranean, and Middle Eastern Conference
on Information Systems (EMCIS)

Book Chapters 1 publication (1) Encyclopedia of Big Data Technologies
1in press (1) Emerging Perspectives in Big Data Warehousing
Books 1in press (1) Big Data: Concepts, Warehousing and Analytics. FCA -

Ediifora de Informaética

Other conferences 7 publications (1) International Conference on Computer Science & Software

and journals of Engineering

international (1) International Conference on Data Mining and Big Data

scientific circulation (DMBD)

and review (3) World Conference on Information Systems and
Technologies (WorldCIST)

(1) International Conference on Intelligent Systems
(1) Journal of Management Analytics

- Santos, M. Y., Oliveira e Sa, J., Andrade, C., Vale Lima, F., Costa, E., Costa, C., ...
Galvao, J. (2017). A Big Data system supporting Bosch Braga Industry 4.0 strategy.
International Journal of Information Management. https://doi.org/10.1016/
jdjinfomgt.2017.07.012;

- Monteiro, C. S., Costa, C., Pina, A., Santos, M. Y., & Ferrao, P. (2018). An urban
building database (UBD) supporting a smart city information system. Energy and
Buildings, 158, 244-260. https://doi.org/10.1016/].enbuild.2017.10.009;

- Costa, E., Costa, C., & Santos, M. Y. (2019). Evaluating Partitioning and Bucketing
Strategies for Hive-based Big Data Warehousing Systems. Journal of Big Data.

Manuscript submitted for publication.
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Conference Proceedings

Santos, M. Y., & Costa, C. (2016). Data Warehousing in Big Data: From
Multidimensional to Tabular Data Models. In Proceedings of the Ninth International
C* Conference on Computer Science & Software Engineering (pp. 51-60). ACM.
https://doi.org/10.1145/2948992.2949024;

Santos, M. Y., & Costa, C. (2016). Data Models in NoSQL Databases for Big Data
Contexts. In 2016 International Conference of Data Mining and Big Data (DMBD)
(pp. 1-11). Springer-Verlag, LNCS 9714. http://doi.org/10.1007/978-3-319-
40973-3_48;

Santos, M. Y., Oliveira e Sa, J., Costa, C., Galvao, J., Andrade, C., Martinho, B., ...
Costa, E. (2017). A Big Data Analytics Architecture for Industry 4.0. In A. Rocha, A.
M. Correia, H. Adeli, L. P. Reis, & S. Costanzo (Eds.), Recent Advances in Information
Systems and Technologies. WorldCIST 2017 (pp. 175-184). Springer International
Publishing. https://doi.org/10.1007/978-3-319-56538-5_19;

Costa, C., & Santos, M. Y. (2017). A Conceptual Model for the Professional Profile
of a Data Scientist. In A. Rocha, A. M. Correia, H. Adeli, L. P. Reis, & S. Costanzo
(Eds.), Recent Advances in Information Systems and Technologies. WorldCIST 2017
(pp. 453-463). Springer International Publishing. https://doi.org/10.1007/978-3-
319-56538-5_46;

Costa, C., & Santos, M. Y. (2017). The SusCity Big Data Warehousing Approach for
Smart Cities. In Proceedings of International Database Engineering & Applications
Symposium. IDEAS 2017 (p. 10). https://doi.org/10.1145/3105831.3105841;
Costa, E., Costa, C., & Santos, M. Y. (2017). Efficient Big Data Modeling and
Organization for Hadoop Hive-Based Data Warehouses. In Information Systems.
EMCIS 2017 (pp. 3-16). Springer, Cham. https://doi.org/10.1007/978-3-319-
65930-5_1;

Santos, M. Y., Costa, C., Galvao, J., Andrade, C., Martinho, B. A., Lima, F. V., &
Costa, E. (2017). Evaluating SQL-on-Hadoop for Big Data Warehousing on Not-So-
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Good Hardware. In Proceedings of the 21st International Database Engineering &
Applications ~ Symposium. IDEAS 2017 (pp. 242-252).  ACM.
https://doi.org/10.1145/3105831.3105842;

Costa, C., & Santos, M. Y. (2018). Evaluating Several Design Patterns and Trends in
Big Data Warehousing Systems. In J. Krogstie & H. A. Reijers (Eds.), Advanced
Information Systems Engineering. CAISE 2018 (pp. 459-473). Springer, Cham.
https://doi.org/10.1007/978-3-319-91563-0_28;

Costa, E., Costa, C., & Santos, M. Y. (2018). Partitioning and Bucketing in Hive-
Based Big Data Warehouses. In A. Rocha, A. Hojjat, L. P. Reis, & S. Costanzo (Eds.),
Trends and Advances in Information Systems and Technologies. WorldCIST 2018
(pp. 764-774). Springer, Cham. https://doi.org/10.1007/978-3-319-77712-2_72;
Correia, J., Santos, M. Y., Costa, C., & Andrade, C. (2018). Fast Online Analytical
Processing for Big Data Warehousing. In International Conference on Intelligent

Systems.

Book Chapters

Books

Costa, C., Andrade, C., & Santos, M. Y. (2018). Big Data Warehouses for Smart
Industries. In' S. Sakr & A. Zomaya (Eds.), Encyclopedia of Big Data Technologies.
Springer, Cham. Retrieved from https://link.springer.com/referenceworkentry/
10.1007/978-3-319-63962-8_204-1;

Vale Lima, F., Costa, C., & Santos, M. Y. (2019). Real-Time Big Data Warehousing.
In D. Taniar (Ed.), Emerging Perspectives in Big Data Warehousing. IGI Global. In

press.

Santos, M. Y., & Costa, C. (2019). Big Data: Concepts, Warehousing and Analytics.

FCA - Editora de Informatica. In press.
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9.3 Future Work

Regarding future work, there is space for further exploration and contributions, not only related to the
proposed approach, but also to other BDWing contexts. Regarding the need to detail some claims
and results presented in this doctoral thesis, one can start by highlighting the need to further evaluate
other storage technologies suitable for BDWs, meaning that more specific implementation guidelines
can be given to practitioners if one further understands the sequential and random access capabilities
of other storage technologies like Hive transaction tables (especially in Hive 3), Druid, Kudu, NewSQL
databases (e.g., Apache Ignite), and other NoSQL databases (e.g., Redis, HBase, and MongoDB).
Although they should adequately fit in the general approach proposed in this work, since the logical
components, data flows, and data modeling method can be generalized to different storage
technologies, having other insights regarding the advantages and disadvantages of certain storage
systems for batch and streaming data helps providing more implementation details (e.g., mutable
analytical objects problems, inter-storage pipeline considerations, and streaming inefficiencies), and
helps clarifying some uncertainty related to the technologies that were not thoroughly tested through

benchmarking, prototyping, or production systems.

Still related to this question, another argument that may be raised is related to the efficiency of
NewSQL systems in assuring highly scalable batch and streaming storage and processing of vast
amounts of data for both transactional and analytical purposes, using traditional relational data
modeling techniques, which again may not necessarily hold true for every scenario related to BDWing,
just like there is a severe misconception regarding the NoSQL databases’ suitability for fast sequential
access to data required for BDWing scenarios. Executing a more extensive SSB+ Benchmark with
more technologies would definitely serve to clarify these doubts, and understand the advantages and
disadvantages of certain promising technologies. Moreover, other storage technologies could also
reveal interesting and more interactive results in streaming workloads, being adequate alternatives to
the evaluated ones (Hive and Cassandra). Certain technologies were already explored in recently
published works, namely the benchmarking of Druid for analytical purposes (Correia et al., 2018),

revealing very satisfactory performance with sub-second queries over large amounts of data, while
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other technologies like Kudu are still under evaluation. Access to more powerful infrastructures will
allow the replication of the SSB+ Benchmark with more technologies, and, maybe more relevant,
fragmenting the cluster in a more efficient way, e.g., deploying streaming and batch technologies in
separate nodes, which avoids the resource starvation sometimes observed in the SSB+ streaming

workloads performed in this work.

Furthermore, there are a few other implementation details that may need more attention in future
works, namely how update and data movement operations really affect the performance and
maintenance of the BDW, evaluating the scenarios where it is not feasible or preferable to model
some analytical objects as immutable, as well as evaluating scenarios wherein the data has to be
constantly moved between storage systems, or small files have to be merged together, for example.
A relevant factor to consider is that, in contexts with more data redundancy, updating specific values
may require scanning vast amounts of records in denormalized analytical objects, or recomputing
entire partitions and, therefore, it may become interesting to rigorously evaluate the BDW's
performance while executing update operations. The same applies for data movement operations,
such as periodically moving data from the streaming storage to the batch storage, or compacting
small files generated in Hive streaming scenarios. Other concerns related to the configuration and
infrastructure of BDWs may also be relevant to explore in the future, such as providing further details
on efficient deployments for BDWs in highly concurrent environments, with optimal implementation
guidelines for contexts wherein hundreds or thousands of users and applications are concurrently

submitting queries to support analytical applications.

Finally, one considers that the approach proposed in this work covers a wide range of BDW
applications. However, by the end of this doctoral thesis, one raised interest in studying how the BDW
can interact with other applications in the Big Data landscape (e.g., transactional workloads on NoSQL
databases, and complex event processing with predictions and immediate actions). Consequently,
the proactivity characteristic in BDWs can be considered a relevant trending topic for a near future,
making sure that the analytical results and insights (e.g., aggregated measures and KPIs) can be

taken into consideration in a realtime environment, wherein historical data, streaming events, and
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predictions lead to a set of immediate actions (sometimes automatic) that should take place
according to a set of complex rules predefined in a certain organizational context like manufacturing.
Consequently, studying the relationship between Big Data, BDWing, business rules, and complex

event processing is certainly a research path to contemplate in the following years.
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