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Resumo 

 O constante avanço científico-tecnológico permitiu que, ao longo do último século, as técnicas 

de análise química extraíssem cada vez mais conhecimento das amostras analisadas. Nos últimos anos, 

a quantidade de dados que as mais recentes técnicas analíticas produzem possui uma dimensão tão 

elevada que a sua análise é denominada de análise megavariacional. Recentemente, a aplicação de 

ferramentas de machine learning em análises de dados químicos tem permitido extrair informação 

relevante das amostras analisadas que até recentemente não era possível. 

 Com isto em mente, o objetivo deste trabalho consiste em classificar condições de manufatura 

de placas de circuito impresso tendo por base dados provenientes de análise por cromatografia líquida 

acoplada a espetrometria de massa com extração sólido-líquido. Desta forma, esta dissertação está 

dividida em duas partes: a primeira sintetiza o trabalho efetuado para garantir que o método de análise 

produz dados com qualidade adequada para que na segunda parte esses dados sejam usados para 

construir modelos preditivos. Paralelamente, foi desenvolvida uma técnica de aumento de dados que, 

até onde o nosso conhecimento vai, constitui a primeira técnica de aumento de dados desenvolvida para 

problemas de classificação com dados provenientes de análises cromatográficas. 

 Os resultados dos melhores modelos mostram precisões superiores a 94% para a previsão de 

todas as condições de manufatura. Adicionalmente, a técnica de aumento de dados desenvolvida mostra 

desempenhos superiores comparativamente a outras técnicas de aumento de dados. 

 Em síntese, os resultados obtidos indicam que, para além de distinguir classes com 

composições químicas diferentes, é possível adquirir informação sobre quais são os compostos químicos 

que distinguem as classes em estudo. Esta informação pode vir a ter uma importância significativa em 

áreas como controlo de qualidade, química alimentar e indústria fito-farmacêutica. 

 

PALAVRAS-CHAVE: controlo de qualidade, cromatografia, machine learning, quimiometria. 
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Abstract 

 Scientific and technological advances allowed the extraction of a growing quantity of knowledge 

from the analysed samples by means of analytical techniques. Over the last few years, the dimensionality 

of data that the most recent analytical techniques produce is so high, that its analysis is now called 

megavariate analysis. Recently, the usage of machine learning tools in chemical data analysis have 

allowed the extraction of relevant information from samples at a level which, until then, would just not 

be possible. 

 The objective of this work consists in classifying manufacturing conditions of printed circuit 

boards based on data acquired by SLE-HPLC-ESI-MS. As such, this dissertation is divided in two parts: 

the first synthesizes the work taken to assure the analytical method produces data with adequate quality 

in such a way the second part shows the development of predictive model using the previous acquired 

data. At the same time, a data augmentation technique which, to the best of our knowledge, constitutes 

the first time a data augmentation technique for classification problems using chromatographic data, has 

been developed. 

 Best models’ results show precisions above 94% for all manufacturing conditions prediction. 

Moreover, the developed data augmentation technique reports superior performances when compared 

to three other data augmentation techniques. 

 In summary, the results show that, besides distinguishing classes with different chemical 

compositions, it is possible to obtain information about which are the chemical compounds that 

differentiate the classes. This information might be of significant importance for areas such as quality 

control, food chemistry, botany and pharmaceutical industry. 

 

 

KEYWORDS: chemometrics, chromatography, food chemistry, machine learning, quality control. 
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Chapter 1 – Introduction 

1.1. Motivation for this Master Thesis 

 Analytical chemistry is one of the several chemistry fields with deep implications across almost 

all branches of science and even more importantly, our society. As such, the working methodology is 

well-defined where five main steps can be identified as defined by Elving back in 19501.  

 Every work starts with the problem definition and method selection. It is supposed to define the 

motivation of the work, how it will be tackled and by what means. Typically, a vast search across reliable 

sources - such as peer-reviewed journals and specialty bibliography - comprises its core. 

 After a proper definition on how the challenge will be tackled, the next two steps concern the 

sampling process and sample pre-treatment. They are considered crucial to the analytical process since 

the results obtained from chemical analyses will be as good as the sampling and sample pre-treatment 

performance. These steps are often tedious and time-consuming requiring high consistency across all 

samples and days which makes automation a tempting solution massively applied both by industry and 

academia. 

 The next stage is the core of the analytical process in which the data necessary to answer the 

previously stated question is acquired. With the evolution of analytical techniques and equipment, the 

labour part traditionally done by analytical chemists is being rapidly and steadily replaced by automation.

 The last step of the analytical process - data interpretation - is the key point of the analytical 

process. It is often performed by a skilled operator where a series of complex approaches are executed 

to achieve the so wanted answer to the stated question. In contrast with the other stages, data 

Interpretation is falling behind in terms of automation since it requires an intuitive intelligent approach 

compared to the easy programmable tasks which is somehow related with both sampling/sample 

preparation and chemical analyses procedures. Recently, machine learning methods have been 
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successfully applied in several science fields, allowing both automation and - even more importantly - the 

discovery of underlying patterns in data that could hardly be found by other means. 

 In this context, the aim of this master’s thesis consists in combining machine learning methods 

with chemical analyses focusing in two points: 

 - Development of models which are able to classify samples according to different relevant 

parameters (i.e., manufacturing conditions). 

 - Exploitation of model decision in order to extract new knowledge from sample nature. 

 

1.2. Document structure 

 The developed work presented in this dissertation focused in the application of machine learning 

in analytical chemistry. More precisely, the development of machine learning models to classify samples 

according to chemical data. The first part of the project consists of generating chemical data by selecting, 

extracting and analysing samples whilst the second relates to all the data mining work carried on to 

extract knowledge out of the chemical data.  

 The project work is presented in five chapters. The first serves as guide for orientation purposes 

to the whole the document. 

 The aim of Chapter 2 is to bridge analytical chemistry and machine leaning by approaching both 

analytical chemists to machine learning as well as machine learning researchers to analytical chemistry. 

This way, the first part focus on a chronological introduction of the methodology carried on by analytical 

chemists whereas the second aims to introduce basic notions of machine learning for analytical chemists. 

Chapter 2 is concluded with a brief overview of recent works on the interface between these two areas 

with a special focus on chromatography techniques. 

 Chapter 3 presents the technical descriptions of the developed work, both regarding analytical 

chemistry and data mining. 
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 Chapter 4 reports the discussion of results obtained during work development while Chapter 5 

includes the major conclusions drawn as well as suggestions for future work regarding this interface 

between machine learning and analytical chemistry. 
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Chapter 2 – Background 

2.1. From problem definition to data interpretation: stages of the Analytical Chemistry 

Process 

 Analytical chemistry can be defined as the study of substances in a matter of separation, 

identification and quantification2. It has a crucial role across different areas such as environment3–7  (e.g. 

analysis of environmental microplastics), medicine8–14 (e.g. clinical diagnosis), agriculture15–21  (e.g. 

pesticide analysis) and even some more broad areas such as biology22–26  (e.g. microbiological analysis of 

food) and geology27–32 (e.g. mineral inorganic content). Even though these application areas developed 

internal analytical processes aiming to increase their work performance according to domain specificities, 

a common work pipeline can be identified where five main steps are stated: problem definition and 

method selection, sampling, sample pre-treatment, chemical analysis and data interpretation1. Along this 

section, the first four subsections will be briefly discussed with a special focus on data interpretation.  

 

2.1.1. Problem Definition and Method Selection 

 Intuitively, every work starts with the definition of what question will be subject of study. The goal 

of this initial stage is to translate broad, domain-free, general questions into well-defined, specific 

questions whose answers can be achieved using chemical measurements (i.e. “how can printed circuit 

boards’ (PCBs) manufacturing conditions be related with its chemical composition?” should be translated 

to something like “how can PCBs’ chemical composition be analysed?”). What type of sample has to be 

collected/analysed? What kind of sample preparation has to be performed? Which analytical 

techniques/setups are most suitable for this end?  

 After proper definition, the operator is taken into domain-specific questions regarding the method 

selection. What is the budget and time available to achieve desired results? How will samples be 

collected? Which sample preparation technique should be applied in order to fulfil the pre-stated needs? 



 5 

What performance requirements threshold should be guaranteed for the analysis (specificity, selectivity, 

accuracy, precision, etc.)? How will the acquired data address the ultimate question (keep this one in 

mind!)? 

 For this end, the operator usually combines experience with published works in peer-reviewed 

journals and specific bibliography since all of these questions must be well-stated before diving deep into 

the lab work.  

 

2.1.2. Sampling 

 ‘Sample’ can be defined in several different ways according to the work stage the analyst is 

referring to, which led to define ‘sample’ according to the stage the analyst is mentioning33. Due to its 

ubiquitous mentions across all stages - when considering sampling - a more specific sample definition 

can be used as “a portion of material selected from a larger quantity of material”33,34. 

 The objective of sampling consists in obtaining a small, representative and homogenous sample. 

A schematic sampling process is depicted in Figure 135.  

  

The sampling process starts with getting a bulk sample from a lot. A lot represents the total amount of 

material you have access to regarding your study object (e.g. several PCBs manufactured under different 

conditions). A bulk sample is still a large sample that it is taken from a lot (e.g. get an adequate number 

of PCBs produce under the same conditions). This bulk sample must be representative of the lot, i.e., 

Lot
Bulk 

sample
Laboratory 

sample
Aliquot

Fig. 1 – Sampling pipeline represented as a flow chart: from lot to aliquot. 
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must gather chemical properties which illustrate the typical behaviour observed in the lot. The laboratory 

sample is obtained after the bulk sample has been properly prepared (e.g. cut PCBs in halves and shuffle 

samples produced under the same manufacturing conditions). The extension/number of stages the 

sample is exposed during sampling must be kept minimal in order to minimize the sampling error36.  

 Then, the aliquot is achieved once a small portion is taken from the bulk sample and ready to 

be submitted to sample pre-treatment.  

 

2.1.3. Sample Pre-treatment 

 In case the sample is not in a suitable shape to be analysed directly, a middle step between 

sampling and chemical analysis has to be performed. This stage can have multiple purposes like clean-

up, concentration, interference elimination, speciation or extraction. The extension of this stage is mostly 

dependent on the sample nature, matrix, concentration level of the chemical compounds which are going 

to be evaluated during the analysis and the employed analytical technique37. This information can be 

summarized as in Table 1 where it shows that the pre-treatments a sample is submitted to can be 

related to the analyte nature. 

 

 

Analyte Sample pre-treatment 

Organics Extraction, concentration, clean-up, derivatization 

Volatile organics Transfer to vapor phase, concentration 

Metals Extraction, concentration, speciation 

Metals Extraction, concentration, speciation 

Ions Extraction, concentration, derivatization 

Amino acids, fats carbohydrates Extraction, clean-up 

Microstructures Etching, reactive ion techniques, etc. 

Table 1 - Sample pre-treatment according to different analytes168. 
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 Since it is not a matter of subject for this dissertation to discuss each of them, a brief overview 

of sample pre-treatment concerning organic/organic volatiles will be carried on with a special focus on 

solid-liquid extraction (SLE). 

 There are four widely used techniques for extraction of organic/organic volatile compounds: 

solid/liquid-liquid extraction (SLE/LLE), solid-phase extraction (SPE), solid-phase microextraction (SPME) 

and stir bar sorptive extraction (SBSE). Every extraction technique takes advantage of chemical properties 

which are used to influence the distribution of the analyte between phases. These properties include 

hydrophobicity, solubility, vapor pressure, molecular weight and dissociation constants of acids and 

bases. To understand how an extraction can be optimized one must be aware of the chemical equilibrium 

which is undergoing in the system as 

XA ⇌	XB (eq. 1) 

and equilibrium constant, 

KD = 
[X]B
[X]A

 (eq. 2) 

where equation 1 denotes the chemical equilibrium between phase A and phase B at a given 

temperature and equation 2 represents the equilibrium constant, KD, where [X] represents the 

concentration of X at a given temperature. The extraction conditions must be defined in order to increase 

the analyte concentration in phase B, i. e., to maximize the equilibrium constant. 

 In SLE, the objective is to extract as much analyte as possible from phase A (solid) to phase B 

(liquid) using a limited amount of solvent aiming to obtain an extract as concentrated as possible38. In 

most cases a single-stage extraction is not enough to fulfil the desired specifications and a multi-stage 

extraction is required. They differ in the number of times phase A is submitted to fresh solvent (phase B). 

Different modifications can be applied in order to steer different chemical properties such as solubility 

and vapor pressure39–41. Although more recent techniques such as SBSE or headspace solid extraction 
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(HSSE) are preferred, recent developments in SLE techniques show great efficiency improvements and 

greener alternatives when compared with state-of-the-art techniques42. 

 Apart from the employed methodologies, by the end of the pre-treatment, samples must be in a 

suitable form to maximize the efficiency of the essential step of the analytical chemistry process: the 

chemical analysis. 

 

2.1.4. Chemical Analysis 

“Chemical analysis began on the 8th day. Adam, recovering after cooperating with god, in creating Eve, 

felt first pangs of hunger. He went around and harvested different kinds of colorful berries [eyes as 

detector] and set down for dinner with Eve. Eve rejected some berries due to foul smell (nose as detector). 

The bitter tasting ones were rejected next (taste as detector), and the delicious ones were consumed. 

Thus, first chemical detectors were nose, tongue, and eye; the five senses were used as chemical 

detectors for a long time.” 43 

  

 Albeit not even close to the objective truth science looks after, this excerpt exceptionally captures 

the inquisitive nature of human beings and how it is used to understand the world. In fact, humanity has 

been using their five senses as detectors for a long time. However, it was not until Dutch scientists 

discovered how to attach two lenses in line with one another to improve their visual ability that modern 

analytical science came to be44,45. 

  Chemical analysis consists in the determination of the chemical composition of substances. “In 

other words, it is the art and science of determining what matter is it and how much of it exists”46. It can 

be divided in two branches: qualitative and quantitative chemical analysis. Qualitative chemical analysis 

studies what matter is it, whilst quantitative chemical analysis is responsible for answering how much of 

it there is. Additionally, when considering the employed technology two more subdivisions come along: 
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classical, wet chemical methods and modern, instrumental methods47. These differ mainly on the used 

technology and subsequently the magnitude of results one can accomplish48. Most classical analytical 

methods rely on chemical reactions to obtain results (e.g. acid-base titration) whereas modern analytical 

methods typically measure a certain physical property of the analyte (e.g. UV—Vis spectrophotometry). 

Obviously, modern methods yield better results (higher sensitivity, specificity, precision, accuracy, low 

time, ease-of-use, etc.) but they also carry some drawbacks (high cost, higher uncertainties, black box 

syndrome, etc.) when compared to classical methods49,50. 

 Modern methods comprise a broad range of different methodologies to quantitively address the 

pre-stated question. The vast different analytical techniques can be subdivided according to the measured 

physical property which in turn can be divided in five different families as shown in Table 22. It 

summarizes a wide range of different analytical techniques usually applied in this stage. 

 

Table 2 - Different analytical techniques subdivided by chemistry branches 

Branch Analytical techniques 

Atomic Spectroscopy AAS, AES, XRS, etc. 

Molecular Spectroscopy UV-Vis AS, IR, NMR, MS, etc. 

Electroanalytical methods Potentiometry, Coulometry, Voltammetry 

Separation methods GC, LC, IC, CE, etc. 

Miscellaneous methods TGA, DSC, FIA, DLS, etc. 

 

 These techniques are often combined in order to maximize the chemical information the analyst 

can get. From all of them, separation methods are one of the most developed branches. Back in 2013, 

its value market was $7 billion USD with a prospection for 2018 of $10 billion USD51. Within this industry, 

liquid chromatography (LC) represents the large segment due to its massive use in areas such as 

pharmaceutical, biotechnology and food chemistry52. 
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 Chromatography came a long way since 1903 when a Russian botanist named Mikhail Tsvet 

discussed his recent research on leaf pigments and a novel way to separate them53,54. Although it was 

generally well accepted by the community (with even some scientists referring the crucial role Tsevt’s 

research had in the work of Nobel Prize laureates from that epoch55) it was not until the Second World 

War, the Manhattan Project and the urge to find a way to purify rare-earth metals that chromatography 

gained its momentum, starting with ion chromatography56. Gas-liquid chromatography (GC) was 

developed faster than high pressure liquid chromatography (HPLC) where the first paper by James and 

Martin on GLC was published in 195257. Fifteen years later the first paper describing an HPLC apparatus 

was published giving rise to the massive chromatography market we have today58. Nowadays, HPLC and 

Ultra HPLC (UHPLC) coupled with mass spectrometry detectors (MS) have been widely applied in a huge 

array of works ranging from clinical to beverage industry59–64. The evolution of MS gave rise to a panoply 

of mass analysers where quadrupole time-of-flight (Q-ToF) and triple quadrupole (QqQ) are currently 

considered top choices regarding both quantification and structure identification, respectively65,66. The 

combination of MS with more conventional detectors such as fluorescence or diode array exponentially 

increased the amount of data the analytical chemist can now acquire regarding its experiments which in 

turn increased the need to improve his/her arsenal of data interpretation tools in order to tackle these 

challenges. 

 

2.1.5. Data Interpretation 

 The last step of the analytical chemistry process consists in understanding what the acquired 

chemical data allows to conclude about the problem definition. This need led to the employment of 

statistical tools to study how chemical data relates with the pre-defined question. The first paper 

describing the use of multivariate regression methods and design of experiment (DoE), in analytical 

chemistry goes back to 1949 with Mendel67. As a consequence of the rise of chemical data’s high-
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dimensionality associated with areas as spectrophotometric analysis or proteomic, multivariate analysis 

(MVA) started to be applied in the sixties68–71. In its core, MVA consists in simultaneously analysing many 

variables in order to understand how these variables correlate with each other72. Table 3 shows how 

data dimensionality relates with the statistical type. 

 

Table 3 - Relationship between dimensionality and statistics type. 

Dimension Sample set Statistics 

1-D Vector Univariate 

2-D Matrix Bivariate 

 n-D* n-D array Multivariate 

* n ≥ 3   

  

 MVA allowed interesting breakthroughs back then due to its ability to analyse high dimensionality 

data (a difficult task for humans when n > 3) and to allow the analytical chemist to get insights from that. 

 Although great achievements were performed with MVA’s application in data interpretation, its 

application were mostly based on multivariate regression methods, response surface’s and pattern 

recognition. With the ever-increasing amount of data acquired with novel technology and the rise of 

artificial intelligence (AI) and machine learning (ML) methods powered by works as Samuel’s AI system 

which was capable to learn how to play checkers, it was a matter of time until ML methods started to be 

employed in analytical chemistry73,74. Samuel also defined ML as “the field of study that gives computers 

the ability to learn without being explicitly programmed”73. In fact, an important catalyst in bridging ML 

and chemistry were NASA’s moon missions and their need for organic chemists to develop AI systems 

for structure elucidation70,75. By the eighties, chemometrics took off as a research field of analytical 

chemistry with its early applications in high-dimensionality areas such as LC and spectrophotometry76–81. 

“Chemometrics” literally means performing calculations on chemical data82. Its wide application not only 
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allowed a better understanding of high-dimensional chemical data but also generated good practices in 

the sampling step with the common use of DoE. 

 In the beginning of this decade, a series of fortunate events led to another revolution concerning 

data interpretation: the rapid growth of the technology around graphics processing units83,84, powerful 

cloud-computing systems85 and a society where more data is generated in one year than in the entire 

history of mankind86 substantially contributed to major breakthroughs in AI and ML. In turn, the 

widespread application of these tools led to the development of easy-to-use, open-source software87 and 

a strong community which allowed researchers from fields other than computer science to embrace ML 

in their works. Analytical chemistry is no exception and the application of these novel tools permitted that 

the insights hidden in chemical data (often called megavariate data) acquired by several different 

methods could be strongly scrutinized. In what concerns the analytical chemistry process, this came to 

be its last big update in a long time. 

 

2.2. Towards the fully exploitation of Chemical Data 

 After exploring the Analytical Chemistry Process step by step, it became clear how can one 

benefit from the application of ML tools in the process itself. Along this second section of the chapter, a 

special focus will be given to the introduction of non-technical, relevant topics of ML for analytical 

chemists with little to null experience in this area. 

 The first subsection gives a brief overview on the history of ML from Dartmouth to present days, 

following the presentation of the most important steps regarding ML workflow, ending with the 

introduction of the intuition behind ML algorithms which were used in the development of this 

dissertation. 
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2.2.1. Brief overview on the history of Machine Learning 

 The history of ML is deeply connected with AI. One possible definition of intelligence would be 

“the ability to achieve complex goals”, therefore, AI could be defined as “non-human intelligence”88. 

 It is generally accepted that the term “artificial intelligence” was officially coined in Dartmouth in 

1956 by a group of scientists whose question was: “can a machine be capable of thinking?”89. To do so, 

first approaches involved having programmers using their skills to handcraft a series of long and explicit 

rules. This is known as symbolic AI and it was the dominant paradigm of AI during many years90. Of 

course, symbolic AI (or good old-fashioned AI, GOFAI) proved to be an adequate approach in logical, well-

defined problems whose ruling principles are known and, for that reason, easy to instruct a machine to 

do (e.g. having a GOFAI beat the world chess champion91). However, when considering more complex 

and intractable problems like image recognition, speech recognition or language translation, GOFAI 

turned not to be a suitable approach. As a result, a new approach arose in order to surpass these 

obstacles. Instead of having brilliant programmers instructing a machine, they would give the machine a 

significant amount of data and its labels (e.g. photos of cats and dogs and its proper labels) and let the 

machine figure out all of those rules by itself. This approach came to be known as machine learning and 

has ultimately revolutionize our society. 

 Nowadays, humanity relies on ML for a panoply of human-level tasks in domains such as 

communication, healthcare, energy, finance, transportation or manufacturing, to name a few. In fact, ML 

is so pervasive that we are constantly being exposed to its outputs and (most of the time) not even aware 

of it. Such controversies gave rise to voices from both sides: some envision a world where AI has a 

detrimental yet well-oriented role in our society whereas others fear its consequences. A recent example 

of the latter is whether the ultimate goal of Neuralink of merging humans and AI by developing 

implantable brain-machine interfaces will be beneficial to humanity and by what means92.  
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 Although these questions are, at least, decades away, the need to regulate how these systems 

will work should be faced in the near future in order to be primed by the time it comes. 

 

2.2.2. Learning paradigms in Machine Learning 

 Most authors define three paradigms concerning the process of having a machine learning which 

are schematically depicted in Figure 293. 

 

Supervised and unsupervised learning mainly differ in whether labels are given to the algorithm or not. 

Supervised learning’s tasks come down to classification (e.g. predict if a given sample is 

forgery/contaminated – discrete output) and regression (e.g. predict the concentration of a solution 

based on an analytical technique signal’s response – continuous output)94. In unsupervised learning 

common tasks involve clustering (e.g. group samples according to chemical composition’s similarity) or 

dimensionality reduction (e.g. using less descriptors to explain how data relates)94. Figure 395 illustrates 

how learning algorithms (also called learners) from these two paradigms perform.  

Figure 2 - The three learning paradigms: supervised, 
unsupervised and reinforcement learning. (adapted from ref 93) 



 15 

 

While supervised learners output a prediction, unsupervised learners aggregate samples according to a 

pre-specified metric. In chemometrics, the latter have been used for a long time to find hidden structures 

related to chemical data96. Currently, unsupervised learning is widely used in exploratory data analysis 

precisely due to its ability to aggregate samples into clusters that are somehow chemically related, which 

in turn allows the analyst to understand unknown patterns regarding the analysed samples97. Other 

applications consist in data dimensionality reduction which decreases the number of descriptors needed 

to describe how samples relate with its variables98. Synergies between these two paradigms integrate the 

typical ML workflow in several fields, including analytical chemistry. 

 Despite these differences, the aforementioned paradigms have a specificity in common: the 

output they produce is based on their input data, i. e., they both learn from previous knowledge.  

This constraint is not applied in reinforcement learning where the agent learns by experience as shown 

in Figure 4. 

Figure 3 – Main differences between supervised and unsupervised learning. (adapted from ref 95) 

action reward 

Agent 

Environment 

Figure 4 - Reinforcement learning process. 
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 Although reinforcement learning is mostly applied in robotics99,100, text mining101,102 and 

healthcare103,104, several science fields have embraced its application and conducted interesting studies. 

In organic chemistry, a recent study showed that it is possible to optimize the experimental conditions 

of chemical reactions by applying this methodology105.  

 

2.2.3. Machine Learning Workflow 

 To understand how ML can be a valuable resource in analytical chemistry, it is important to 

comprehend the basics behind a ML workflow. To do so, this subsection introduces important steps that 

comprise a supervised learning workflow where Figure 5 shows a simplistic schematic representation 

of it. Some steps (e.g. data preparation, data splitting, feature engineering, hyperparameter optimization 

evaluation, etc.) which would require further explanations were removed for interpretation purposes.  
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ready to deploy! 

Figure 5 – Schematic representation of the principal steps regarding a supervised learning workflow. 
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 ML model development simplistically consists in feeding the learner an adequate amount of data 

so it can learn the function which maps how data relates and, ultimately, provide as output an accurate 

prediction – 5(a). The accuracy of the predictions must also be evaluated – 5(b). To do so, it is 

important to use a metric which concisely evaluates the model. Classification tasks typically use 

confusion matrixes, precision-recall, accuracy and area under the curve metrics whilst root mean square 

error and root mean absolute error are preferred for regression tasks106–108. Once a metric is applied model 

performance can be assessed. 

 The next step is to apply the same methodology to several algorithms – some of them will be 

introduced in the next subsection – and measure each performance – 5(c). It is important to test 

different algorithms since distinctive learners will perform better depending on the input data it receives 

(no free lunch theorem)109.  

 Every algorithm has parameters which cannot be learnt by itself and therefore must be defined 

before training (the process in which the algorithm is learning the mapping function, i. e., where it figures 

out the rules needed to explain how data is related). These are called hyperparameters and fine tuning 

them allows the algorithm to more easily capture data patterns, thus, increasing its performance – 5(d)94.  

 Once the best model (function which best describes how the label is related to its input variables) 

is obtained and properly evaluated the model is ready to be applied with new data. 

 Despite the simplistic representation, Figure 5 allows a quick overview on how most ML models 

are built. 

 Another way to increase model performance consists in feeding the learner with more high-

quality data. By having more data to train on, the applied learner will be able to capture complex data 

trends. This can be done by acquiring more data however, sometimes, this is not possible. In these 

cases, the analyst must resort to synthetic ways to expand the size of his(er) dataset, often called data 

augmentation techniques. Under an analytical chemist perspective this must be perceived as a means 
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of increasing the number of events (analysed samples) without further experiments (chemical analysis). 

Its application in ML research, is responsible for interesting achievements such as top performances in 

ML competitions. In computer vision (e.g. classifying pictures of dogs and cats) it can be done by applying 

rotations of the original pictures, changing colours, mirror effects, etc. By doing this, the analyst is feeding 

the learner with more data so it can find the best model. In chemistry, data augmentation techniques 

are now applied by adding drifts to the original data110,111. This approach has been successfully applied 

with NIR and molecular descriptors using public datasets.  

 

2.2.4. Introduction to Learning Algorithms 

 The last subsection introduced how a supervised ML model can be built. This subsection will 

introduce the intuition behind the ML algorithms which were used during the elaboration of this 

dissertation. The intention here is not to present the reader with all the algorithm’s mathematical 

formalism but rather to give an intuition on how they perform the task. If interested in the mathematics 

behind it, please refer to this book112. 
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 To properly introduce ML algorithms, it is important to acknowledge what it is first. In practice, 

an algorithm is a step-by-step way to solve a problem. As previously stated, ML algorithms are usually 

called learners. In contrast with common algorithms where a list of rules to follow is instructed to a 

machine, the conception of learners allow them to infer those rules by analysing a considerable amount 

of data. The plethora of academic and corporate research gave rise to a large variety of learners as stated 

in Figure 6113. 

 

 This large representation intends to group learners according to operational similarity. Different 

families will typically perform better with distinctive datasets hence the popular no free lunch theorem 

applied in this domain. From this large number of learners, six of them will be covered here, particularly: 

principal component analysis, logistic regression, decision tree, random forest, gradient boosting 

machine and support vector machines. 

 

Figure 6 - Machine learning algorithms representation. (adapted from ref 113) 
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Principal Component Analysis 

 Principal component analysis (PCA) is an unsupervised learner whose goals involve reducing 

data’s dimensionality and cluster samples according to its similarity. Widely considered the building block 

of chemometrics, PCA is commonly found in most chemical data analysis mainly due to its ease of 

interpretability which can be stated in Figure 7114,115.  

 

 

 This methodology consists in the application of algebraic operations which enable dataset’s 

rotation in such a way that the rotated features are statistically uncorrelated. Another definition says “PCA 

simplifies the complexity in high-dimensionality data while retaining trends and patterns”116. 

 Applications in analytical chemistry usually tend to plot the first and second/third component in 

order to explore how samples and features correlate with one another117. PCA’s main limitation concerns 

the fact that the applied rotations are linear transformations of the original data. When looking for more 

complex data patterns, different algorithms capable of non-linear projections should be taken into account 

(e.g. t-SNE)118. 

 

Logistic Regression 

 The first supervised learner to be introduced is logistic regression (LR). Its conception goes back 

to the first half of the eighteenth century119. For anyone who understands linear regression, LR is just an 

Figure 7 - PCA dataset rotation. (adapted from ref 115) 
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upgrade of it. Multiple linear regression can be expressed as in equation 3 where y denotes the 

dependent variable (e.g. concentration of Na+ in a solution), b are the coefficients and X are the 

dependent variables (e.g. intensity of a measured signal). 

 

y = β
0
+	β

1
Χ1 + … +	β

n
Χn (eq. 3) 

 

 Linear regression enabled analytical chemists to calculate different properties for a long time. 

However, linear regression has two main limitations: it assumes the relationship between y and X is linear 

and it outputs a continuous value from -¥ to +¥. This second limitation becomes particularly important 

if instead of y being a continuous variable (like in the aforementioned problem), y is a categorical value 

(e.g. given a series of relevant parameters, will a reaction occur or not). This is the kind of problem where 

LR becomes a valuable tool. As can be seen in Figure 8120 and explained by equation 4, LR has the 

advantage of outputting a value between two pre-stated values.  

 

y = 
1

1+ e-(β
0
+ β

1
Χ1 + … + β

n
Χn)

 (eq. 4) 

 

Figure 8 - Logistic regression's advantage over linear regression. (adapted from ref 120) 
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This small improvement allowed its wide use in biological sciences back in the early twentieth century 

and its later application in social sciences119. Despite its simplicity, a recent review showed that the 

application of more complex learners over LR had no performance benefit concerning clinical prediction 

models121. Nevertheless, nature provides endless situations where the problem demands more flexible 

learners capable of better generalization. The next four learners will address this. 

 

Decision Tree 

 A decision tree (DT) is no more than a disjunction of conjunctions. In fact, humanity applies DTs 

in a panoply of different problems. In order to classify rocks, high school students are given a series of 

rules they have to follow to reach an accurate classification. The intention is to, with each rule the student 

follows, increase the subset purity, i. e., decrease the number of rock possibilities’, until he reaches a 

subset where only one rock class can fulfil all those specifications – Figure 9122. 

 

 

Figure 9 – Schematic representation of a decision tree criteria rules for rock classification task. 

(adapted from ref 122) 
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To do so, the student follows a set of rules concerning important features regarding the rock. Some 

features include its color, particle size, visible crystals, reactivity with certain substances, smell and even 

its taste. Different features will have distinct importance concerning rock classification. What high school 

teachers do, is to use their knowledge about geology to write that set of rules. In practice, what a DT 

learner does is to figure out all of those rules according to the input data it is given. 

 This same methodology is extensively applied in different areas including analytical chemistry. 

DT’s applications not only involve classification tasks like predicting different types of wines123 but also 

regression problems like predicting the relationship between structure-activity (QSAR) for a compound124. 

One of the main advantages behind DT comes from the fact that the set of rules it infers enables the 

analyst to acquire more knowledge about the sample nature. Albeit it looks a normal requirement, state-

of-the-art algorithms like deep neural networks (DNN) don’t allow such easy intuitions hence DTs 

widespread use in more simplistic problems. 

 

Random Forest and Gradient Boosting Machines 

 One of DT’s main limitations is its ability to generalize extremely well on the training data. It 

typically happens when the depth of the tree and/or the number of applied splits is too large which leads 

to one of the trickiest obstacles in ML called overfitting. Overfitting happens when the learner exceptionally 

captures data trends during its training – Figure 10125. 

  

 

 

 

Figure 10 - Overfitting in binary classification. (adapted from ref 125) 
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While the black line sets an adequate decision boundary, the green line shows what happens when a 

model over-generalizes during its training. In real world applications, the green line model will tend to 

perform worse than the black line one. In a certain way, the model is suffering from “hallucinations” 

since it is capturing trends that don’t really exist which can be attributed to a panoply of sources of error 

such as noise, mislabelling, detector’s malfunctioning, among others. 

 In 2001, Breiman126 introduced the concept of random forest (RF) which, as the name implies, 

consists of a large number of DTs that operate as an ensemble – Figure 11127.  

 

 

Figure 11 - Random forests are composed by individual decision trees that act together as an 

ensemble. (adapted from ref 127) 

 

RFs tend to reduce model overfitting. By using a large number of uncorrelated trees operating as a 

committee, RFs are capable of outperforming any of the individual guesses from the committee. The 

learner is instructed to apply cut sections on data in order to create distinctive sectors in a 

hyperdimensional space. RFs are used in analytical chemistry both in classification128–130 and regression128 

problems. 
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 Gradient boosting machines (GBM) introduces the concept of boosting, but in its core they have 

similarities with RFs. In fact, they also act as an ensemble. The term boosting  is related to its major 

advantage over RFs due to the fact that each tree (classifier) is trained on the last tree’s errors – Figure 

12131. Datapoints which were mislabelled by the prior classifier are attributed a higher weight in the next 

classifier’s training so the model will be more penalized when mislabelling these instances. This process 

is done iteratively which will eventually lead to a final model being trained in each classifier’s error. GBMs 

have gained a lot of attention in the last few years, being responsible for a large number of winnings in 

Kaggle competitions132. In analytical chemistry, GBMs are mostly applied in classification problems 

regarding high-dimension data133–135. 

 

 

Figure 12 - Training of a gradient boosting machine. (adapted from ref 131) 

 

Support Vector Machines  

 Support vector machine (SVM) is a supervised learner proposed by Vapnik in the nineties136. 

Although it can be applied in both regression and classification problems it is mainly applied in the latter. 

In classification tasks, the intuition behind it consist in defining a decision boundary that maximizes the 

distance between different classes – Figure 13.  
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Figure 13 - Intuition behind SVM hyperplane definition. (adapted from ref 136) 

 

 Since an infinite number of hyperplanes can be defined (Figure 13, left) SVMs take advantage 

of the closest datapoints from different classes to define the optimal decision boundary by using them to 

define support vectors to set the optimal hyperplane (Figure 13, right), i.e., the hyperplane which 

maximizes the distance between closest datapoints from different classes. When data is linearly 

separated without any mislabelled datapoints it consists in a hard margin SVM, the opposite constitutes 

a soft margin SVM137.  

 SVM became popular in the nineties due to the cheap computation cost and the good 

performance it implied being broadly applied in topics as QSAR and drug design. Despite the fact that 

they are now outperformed by more flexible models, they are still applied in analytical chemistry mainly 

in classification tasks138,139. 

 

2.3. Bridging Analytical Chemistry and Machine Learning 

 While the first section of this chapter intended to present each step of the analytical chemistry 

process with a special focus on data interpretation and ML’s role in it, the second explored basic concepts 

regarding ML aiming to understand what it is and how it works. This third and last one aims to bridge 
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the first two. Its goal is to summarize how ML can be a valuable tool in analytical chemistry and to cover 

some recent applications regarding this interface. 

 

2.3.1. Motivation and applications of Machine Learning in Analytical Chemistry 

 Analytical chemistry came a long way since 1860 when Bunsen and Kirchhoff developed the 

first flame emissive spectrometer which allowed the discovery of the alkali metals rubidium and cesium140. 

 In the first half of the twentieth century occurred a revolution in the analytical instrumentation 

which widened the answers an analyst could gather from those analysis. With novel, upgraded, 

sophisticated techniques more and more information could be attained which required more complex 

ways in order to interpret what that information meant. Nowadays, modern analytical instrumentation 

generates so much data that it is now called megavariate data. All this chemical data brought up the 

need to implement new ways of examining it. 

 Simultaneously, social and technological advancements allowed the ordinary application of ML 

in several science fields including analytical chemistry. This interface where ML is applied in domains 

such as particle physics141 and biology142 had already revealed very useful enabling several breakthroughs. 

In chemistry, numerous areas have benefited from its application ranging from catalysis143,144, drug 

discovery105,145,146 to material science147,148. Some AI experts even claim chemistry should be the next grand 

challenge for AI149. Among other things the authors argue the knowledge acquired in conventional AI 

studies such as two-player board games and human-mimicking tasks as nature language processing or 

computer vision, places AI community in a good position to tackle chemical challenges with incredible 

benefits for humanity. In fact, complex chemical tasks as retrosynthesis are now capable of AI automation 

with a performance at least as good as a skilled chemist150. In this study, Segler et. al used Monte Carlo 

tree search and symbolic AI to propose retrosynthetic routes. By training DNNs on more than 12 million 

single-step reactions the authors developed an AI system capable of understanding the underlying rules 
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of retrosynthesis in such a way that in double-blind AB test, chemists considered the AI-generated routes 

to be equivalent to those reported in literature.  

 An increasing number of works have been done in the interface between chromatography 

and ML. Cao et. al proposed an approach called quantitative structure-retention relationship (QSRR) to 

predict the retention time of a compound given a chromatographic setup151. To attain this, the authors 

used a dataset of 93 molecules where molecular descriptors were used as features and its respective 

retention times. In contrast with Segler et. al where DNNs were used, this work relies on RFs to build the 

predictive model.   

 Recently, another interesting approach called quantitative pattern-pattern relationship (QPPR) 

was developed to predict the effect that firing a gun has in the chemical composition of the ammunition 

constituents152. In forensic sciences, the association of the gunshot residue (GSR) to the person who took 

the shot constitutes a challenge for forensic experts. Traditional methodologies involve analysing the 

ammunition content, fire a gun and then analyse GSR from spent cases in order to establish a relationship 

between GSR and the original content. With QPPR, authors showed it was possible to relate GSR with the 

initial content without having to fire a gun using ML models. After testing 14 different learners, top 

performances were obtained with RFs and SVMs. 

 Considering quality control, ML has been successfully applied in egg authenticity153, adulteration 

of vegetable oils117,154 and citrus fruits’ quality155. 

 The ever-increasing number of works in this interface strongly indicates that, in the near future, 

having a basic understanding on how ML can be applied in analytical chemistry will be a valuable skill 

every analytical chemist should have156. 
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Chapter 3 – Experimental 

3.1. Implemented Methodology 

 In this chapter the employed methodologies as well as materials and software used in the 

development of this dissertation will be described. 

 The purpose of this project was to study how chemical data acquired from HPLC-MS can be 

used to attain useful insights regarding sample nature by applying ML tools. More specifically, the goal 

was to develop ML models able to classify PCBs according to four manufacturing conditions (MCs) by 

analysing the end product using HPLC-MS. Since ML models need significant amounts of data to train 

on, a novel data augmentation technique was developed alongside. The used analytical method was 

performed according to IPC-TM-650 2.3.27.1157 whose objective is to analyse the chemical composition 

of PCB’s surface. 

 

3.2. Samples 

 The selected samples for this study consisted in 180 PCBs manufactured under four distinctive 

conditions (A, B, C and D). There are 18 different combinations of PCB’s MCs – Figure 15. For each 

of those 18 different MCs there are 10 replicate samples produced under those same conditions with 

the exception of A1B3C1D1 and A1B3C1D2 which have 15 and five replicate samples, respectively. 

These 18 different groups are named according to the MCs that were used in their production (e.g.: a 

class can be represented as A2B1C2D2. This means conditions A2, B1, C2 and D2 were used during 

PCB production). For each MC there are two different possibilities except for condition B which has three 

possibilities (A1/A2, B1/B2/B3, C1/C2, D1/D2). 
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Figure 15 - Diagram of the different manufacturing conditions used in PCB production as 

well as the manufacturing conditions employed in the 18 different combinations. 
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3.3. Reagents 

 Acetonitrile was obtained from Fisher (Loughborough, UK); isopropyl alcohol (IPA) was 

purchased from Honewywell (Seelze, Germany).  Both solvents were HPLC grade. Ultrapure water 

(18 MW.cm) was prepared using a Milli-Q Gradient A10 (Darmstad, Germany). Glacial acetic acid was 

purchased from Panreac (Barcelona, Spain). 

 

3.4. Preparation of solutions 

 Extraction solution for SLE (IPA/water, 75:25 (v/v)) was prepared according to IPC-TM-650 in 

1 L batches and kept in PTFE gallons in the dark at -4ºC. HPLC solvents were prepared individually by 

adding 500 mL of acetonitrile/water, sonicated in ultrasound bath for 30 min and added 0.1% (v/v) 

glacial acetic acid in the water shot. 

 

3.5. Sample Preparation 

 SLE was performed according to IPC-TM-650 2.3.27.1 where PCBs samples were, additionally, 

cut in halves using a steel blade cutting machine, placed inside a KAPPAK SEALPAK #503 (VWR, USA) 

extraction bag, added 60 mL of the IPA/water extraction solution, heat-sealed the bag and placed inside 

a water bath at 75ºC for 60 min. After, the extraction bag was allowed to cool down to room temperature 

before opened, its extracted solution was transferred to 10 mL glass vials after filtered with a 0.2 mm 

PTFE filter. Extracted solutions were kept in the dark at -4ºC prior to analysis. 
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3.6. Instrumentation 

 Chromatographic separation was performed on an Kinetex RP-C18 (100x4.6mm, 2.6 µm) 

analytical column (Phenomenex, Torrance, CA). An Edwards E2M30 pump (Edwards, West Sussex, UK) 

was used for gradient elution at a constant flow of 0.3 mL/min. 

 HPLC solvents were: A (water, 0.1% acetic acid) and B (acetonitrile). The mobile phase was 

programmed as follows: original conditions 60% A, linear gradient to 10% A in 20 min, linear gradient to 

60% A in 5 min. Re-equilibration time was 5 min. 

 Mass spectrometric measurements were performed on an LXQ (Finnigan, San Jose, CA) linear 

ion trap mass spectrometer equipped with an electrospray ionisation source (ESI) working in positive ion 

mode acquisition in a range from 50 to 1000 Da. The ESI parameters were: capillary temperature 250ºC, 

sheath gas flow 50 arbitrary units (a.u.), auxiliary gas flow 10 a.u., sweep gas flow 10 a.u., source voltage 

5 kV, source current 100 µA, capillary voltage 10 V, tube lens 15 V, sheath gas nitrogen (Praxair, PT), 

auxiliary gas nitrogen (Praxair, PT). 

 

3.7. Software and hardware 

 HPLC-MS files (chromatograms, MS spectra) were acquired and manipulated with the built-in 

software version of the equipment XCalibur Quant (version 2.7). Each analysis file is predefined exported 

in a RAW extension by the built-in software and converted to csv extension with a multi-group internally 

developed software. All data manipulation was performed with the following software: python v.3.6.8, 

imbalanced-learn v.0.5.0, matplotlib v.3.1.0, numpy v.1.16.4, pandas v.0.24.2, scikit-learn v.0.21.2, 

scipy v.1.3.0, seaborn v.0.8.1, xgboost v.0.90. Hardware specifications include: 2.3 GHz dual core Intel 

Core i5 CPU and 8 GB 2133 MHz LPDDR3 memory. 
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3.8. Data mining methodologies 

 Standard scaling was applied before data splitting. Training and test data were divided in 80/20 

with class stratification. PCA, in the context of model development, was applied in preprocessing after 

scaling. The used features allowed to explain 95% of system’s variance which corresponds to 11 and 

133 features regarding time and mass approach, respectively. Classifiers’ performances are measured 

by precision calculated according to equation 5. 

 

Precision = 
True Positive

True Positive + False Positive
 (eq. 5) 

 

All fifteen different classifiers were submitted to a 5-fold cross validation intending to evaluate model 

stability to data splitting. This is done by training five different ML models with different training sets and 

testing them in also five different test sets in an iterative process. 
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Chapter 4 – Results and Discussion 

4.1. Overview 

 The role of data interpretation in the analytical chemistry process, currently constitutes one of 

the greatest challenges an analyst has to face. It involves understanding novel, advanced technology and 

concepts which until recently weren’t associated with analytical chemistry. In the past few years, ML 

have become such a valuable tool regarding this step that numerous works in this interface are now 

tackling interesting challenges in analytical chemistry. Hyphenated methods, such as LC-MS, are now 

capable of generating huge amounts of multi-dimensional data. This megavariate data contains much 

more information than the traditional data interpretation methods could explain which, as a consequence, 

gave rise to the application of ML tools in order to surpass this limitation. 

 This chapter is divided in two main parts. The first one presents results regarding laboratory 

work needed to guarantee the acquisition of high-quality chromatographic data whilst the second part 

shows results related to the development of ML models capable of predict MCs based on the previously 

acquired data. 

 Since this work supports confidential status, results are presented in a generalist, non-specific 

style aiming to show how the developed tool can be of interest to the analytical chemistry community 

rather than the problematic which was studied. Also, it is not the scope of this dissertation to study the 

chemistry of PCBs. Moreover, the confidential details are not relevant for the presented study and, for 

that reason, this chapter focus on the developed methodology. 
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4.2. Optimization of the analytical method 

 This section introduces the work carried on in order to guarantee high quality chemical data. 

Since the analytical conditions of the employed method were already fine-tuned for a similar problem158 

the intention with this first section is to guarantee that the analytical method, specifically the analytical 

conditions regarding separation, produce chromatograms in a suitable shape and quality to further fed 

ML algorithms in order to build predictive models for MCs. 

  

4.2.1. Chemical Analysis – HPLC-MS 

 Efforts towards guaranteeing a suitable chemical profile capable of capture sample’s chemical 

nature were made by testing three different analytical conditions as described in Table 4. Since no 

methodologies for analytical method validation aiming to build predictive ML models were found in 

literature, the idea behind these tests is to ensure that the employed separation conditions allow a 

suitable peak separation and that no sample carryover occurs.  

 

 

 

  

Condition 
Analytical 

column 
Separation conditions 

Flux 

(mL/min) 

1 

Kinetex C18 

(100x4.6mm, 

2.6 µm) 

original conditions 60% A, linear gradient to 10% A in 20 min, 

linear gradient to 60% A in 5 min. Re-equilibration time was 5 min 
0.3 

2 

Kinetex C18 

(100x4.6mm, 

2.6 µm) 

original conditions 20% A, linear gradient to 10% A in 20 min, 

linear gradient to 20% A in 5 min. Re-equilibration time was 5 min 
0.3 

3 

Luna C18 

(100x2mm, 

3 µm) 

original conditions 60% A, linear gradient to 10% A in 20 min, 

linear gradient to 60% A in 5 min. Re-equilibration time was 5 min 
0.25 

Table 4 – Analytical conditions tested during chemical analysis verification. 
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 In order to qualitatively evaluate the produced chromatograms a notation of peaks correspondent 

to ions at m/z 280 and m/z 375 were kept in each chromatogram (Figure 16) with the aim of assessing 

the degree of peak separation that is achieved with each condition presented in Table 4. Condition 1 

(black, top) represents the analytical condition which is the base of the analytical method whilst 

conditions 2 (red, middle) and 3 (green, bottom) were presented for comparison purposes. 

 Figure 16 shows the resulting chromatograms of the three analytical conditions tested. 

Condition 3 indicates the employed separation conditions have a higher elution strength which results in 

a myriad of compounds being eluted in the beginning of the analysis thus decreasing peak separation 

and, subsequently, the quality of the chemical data. This information is also supported either by the large 

peak intensity observed in this condition which might happen as a result of having a large number of 

compounds being eluted at the same time as well as by the relative position of ions m/z 280 and 

m/z 375.  
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Figure 16 – Chromatograms of the tested analytical conditions. Ions at m/z 280 and m/z 375 are 

denoted as references for peak separation evaluation. 
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 Condition 2 denotes a condensed chemical profile and a larger elution strength than the one 

required to produce an adequate peak separation. This information is also supported by the position of 

ion m/z 375. Although condition 2 arguably denotes the best peak separation regarding the beginning 

of the analysis, peak separation at mid-time analysis is slightly worst when compared with condition 1. 

Furthermore, due to the nature of the analytical setup, species eluted at the beginning of the analysis 

(solvent and unretained species) are more likely to be less important to the matter of classification when 

compared with mid-time analysis. 

 Thus, these results show the analytical conditions employed produce chromatograms with a 

suitable shape and quality for the desired end. 

 

4.3. Machine Learning Model Development 

 In this section will be presented the obtained results regarding ML model development. The first 

subsection explores the obtained chemical data and introduces how the problem will be addressed by, 

regarding two different approaches. Second and third subsections focus on results related to each 

approach. 
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4.3.1. Exploratory Data Analysis 

 Each chromatographic analysis consists in a series of MS scans (ca. 12k) which can be viewed 

as a 30-min chromatogram. Figure 17(a) shows the total ion current (TIC) chromatogram of each MS 

spectra and Figure 17(b) depicts a MS spectrum related to the highest intensity peak at 18.93 min. 

 

 

When this information is resumed in a tabular format, the same can be viewed as in Figure 18. Each 

column represents the measured intensity of ions ranging from 50 to 1000 Da and each row consists in 

a time series of the acquired MS spectrum. 

 

Figure 18 - HPLC-MS data from the analysis of one PCB sample resumed in a tabular format.  

Features include the ion intensity from 50 to 1000 Da in a time series where each row consists in a scan. 
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Figure 17 – TIC (a) chromatogram and (b) MS spectrum for the peak at 18.93 min, acquired with the built-

in XCalibur software. 
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 To develop the ML model two different approaches regarding the used features were taken. One 

consisted in using the sum of TIC intensities – time approach. The second consisted in view each sample 

as the sum of ion intensities – mass approach. The objective with creating models using these two 

approaches is to compare both and to evaluate which one allows better ML model performances. The 

following subsections will present the results regarding both approaches. 

  

 

Considering time approach, Figure 19 shows chromatograms of five independent replicate samples, 

where a similar chemical profile can be observed across all samples. Slight variations in peak shape and 

area are expected as described in literature159. These can be related with some HPLC components 

(detector, column, autosampler) but the main reasons are usually pressure and autosampler variations. 

Furthermore, for this approach the number of scans was reduced 100 times (from 12k to ca. 120). This 

way, noise can be reduced to improve model performance while still keeping the chemical information. 

 Figure 20 depicts the 20 highest intensity ions regarding three independent replicate samples. 

At this point, it is crucially to understand that peak intensity variations in mass approach are expected as 

a result of the ESI-MS detection setup that allows a nominal mass precision which in turn enables the 

Time (min) 

Figure 19 – Chromatograms of five replicate sample of A2B3C1D2 regarding time approach. 
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possibility of having different isomers being considered the same compound. Nevertheless, the same 

hierarchical ion intensity relationship among samples can be stated. 

 

   

 Finding and exploring trends within samples is an important step to define which features are 

more promising to use in ML model development. Figures 19 and 20 suggest TIC (time approach) and 

ion intensity (mass approach) as suitable approaches to be used as features to feed ML models with. 

Figure 21 shows a portion of the used datasets for both approaches. 

Figure 20 - Ion distribution of the highest intensity ions for 3 replicate samples (mass approach). 
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 Time approach dataset (Figure 21, up) contains 120 features (0 to 30 min) whereas mass 

approach dataset (Figure 21, down) contains 950 features (50 to 1000 Da). Both datasets have 168 

rows which corresponds to the number of samples that were successfully analysed. 12 samples were 

not analysed due to contaminations related with the extraction process.  

 For each MC, a series of models were developed aiming to evaluate them at the prediction task. 

Models differ in the combination of data preprocessing and learner used, where for each data 

preprocessing technique all of the learners described in Table 5 were applied, independently.  

 

Table 5 – Data preprocessing and learners employed in the models. 

Data preprocessing Learners 

None Logistic regression 

Standard scaler (SS) Decision tree 

Principal component analysis Random forest 

 
Extreme gradient boosting 

Support vector machines 

 

Figure 21 - Portions of the original datasets used in model development. Time approach (up), mass 

approach (down). 
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These combinations result in fifteen different ML models. The choice for these learners was done in order 

to cover tree-based and support vectors modelling techniques. 

 

4.3.2. Time approach 

 This subsection describes the obtained model performances for all MCs regarding time approach 

measured by the averaged precision (n = 5). Table 6 describes the obtained model performances results 

on test data. The attained performances across all classifiers indicate data is linearly separated. SVM 

weak performance’s without data pre-processing are expected since SVM are highly sensitive to data 

scaling94. 

Table 6 - Results of model performances on test data regarding time approach, measured by the 

averaged precision (n = 5). 

Manufacturing 

Condition 
Preprocessing LR DT RF XGB SVM 

A None 89 (± 9) 92 (± 7) 83 (± 8) 86 (± 3) 67 (± 16) 

A SS 89 (± 10) 92 (± 7) 89 (± 10) 86 (± 3) 86 (± 3) 

A PCA (.95) 80 (± 11) 70 (± 18) 79 (± 10) 77 (± 15) 68 (± 15) 

B None 97(± 4) 93 (± 7) 93 (± 7) 91 (± 6) 29 (± 6) 

B SS 96 (± 4) 93 (± 7) 96 (± 4) 91 (± 6) 91 (± 6) 

B PCA (.95) 93 (± 8) 77 (± 15) 80 (± 14) 85 (± 8) 74 (± 14) 

C None 100 (± 0) 95 (± 4) 99 (± 3) 95 (± 4) 66 (± 8) 

C SS 99 (± 3) 95 (± 4) 99 (± 3) 95 (± 4) 95 (± 4) 

C PCA (.95) 99 (± 3) 93 (± 5) 99 (± 3) 91 (± 9) 91 (± 6) 

D None 97 (± 3) 94 (± 3) 96 (± 4) 96 (± 4) 47 (± 8) 

D SS 94 (± 10) 94 (± 3) 94 (± 3) 96 (± 4) 96 (± 3) 

D PCA (.95) 94 (± 3) 84 (± 8) 91 (± 9) 89 (± 9) 91 (± 6) 

 

  

 The same information can be graphically depicted as a clustermap grouped according to the 

Euclidean distance among results – Figure 22. SVM results obtained without preprocessing were 

removed for interpretation purposes. Figure 22(a) shows model average performance and Figure 
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22(b) the correspondent standard deviation of each model. Results indicate that an overall good linear 

separation is achieved with excellent performances predicting MCs C and D. Classifiers’ performances 

tend to be slightly worst on MCs A and B which suggest these conditions don’t have a predominant 

impact on samples’ chemical composition.  

 

  

 Regarding data preprocessing, best results are achieved with standard scaling or with no 

preprocessing at all. PCA tends to decrease classifiers performances’ contrary with other 

applications160,161. This may be attributed to the fact that PCA does not consider the target variable but 

rather independent variables’ variance. Thus, by using less descriptors the model is not able to capture 

all data trends which also suggests the model is using a large number of features in its decision process. 

This seems particularly important regarding MC A where PCA has the most negative impact on classifiers’ 

performances. Data suggests the best classifiers for this problem to be DT and LR both with and without 

standard scaling as these algorithms are not sensitive to scaling126. 

Figure 22 - Clustermap with (a) model average performances’ and (b) standard deviation regarding time 

approach measured by the averaged precision (n = 5). 

(a) (b) 
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 ML models seem to be stable to data splitting (Figure 22(b)) where MCs C and D show best 

stability. MCs A and B results show less stability to data splitting. Considering model’s architecture, better 

results can be achieved with tree-based models as XGB, DTs or RFs with and without data scaling. PCA 

also tends to decrease classifiers’ stability to data splitting especially in MCs A and B prediction which is 

in agreement with classifiers’ performances when PCA is applied as preprocessing technique. 

 Score plots of the first two principal components (PCs) (Figure 23) allow to reproduce some of 

the intuition behind classifiers’ performances where the first two PCs explain together 62.9% of system’s 

variance. Figures 23(c) and 23(d) graphically show why classifiers performance are usually better at 

predicting MCs C and D compared to MCs A and B. These results strongly indicate that the employed 

analytical conditions should be fine-tuned according to the MC that wants to be predicted. 
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Figure 23 - Score plot of the first two principal components. (a) MC A, (b) MC B, (c), MC C, (d) MC D. 

* Loadings were not included for interpretation purposes since all classifiers used a large number of features which would result in a 

complicated visualization. Selecting a small portion of them would distort the plot resulting in misleading conclusions.   

(a) (b) 

(c) (d) 
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4.3.3. Mass approach 

 Here are described the obtained ML model performances for all MCs regarding mass approach 

measured by the averaged precision (n = 5). Table 7 shows model performance of the different 

classifiers on all MCs. Data shows excellent linear class separation across all MCs for several models 

and high stability to model splitting. 

 

Table 7 – Results of model performances on test data regarding mass approach, measured by the 

averaged precision (n = 5). 

Manufacturing 

Condition 
Preprocessing LR DT RF XGB SVM 

A None 98 (± 3) 98 (± 3) 99 (± 2) 99 (± 2) 65 (± 10) 

A SS 99 (± 2) 98 (± 3) 99 (± 2) 99 (± 2) 99 (± 2) 

A PCA (.95) 100 (± 0) 94 (± 3) 98 (± 2) 95 (± 4) 94 (± 4) 

B None 100 (± 0) 98 (± 3) 95 (± 4) 98 (± 3) 28 (± 5) 

B SS 100 (± 0) 98 (± 3) 100 (± 0) 98 (± 3) 98 (± 3) 

B PCA (.95) 100 (± 0) 94 (± 4) 98 (± 3) 100 (± 0) 88 (± 4) 

C None 100 (± 0) 99 (± 3) 100 (± 0) 100 (± 0) 65 (± 8) 

C SS 100 (± 0) 99 (± 3) 100 (± 0) 100 (± 0) 100 (± 0) 

C PCA (.95) 100 (± 0) 95 (± 5) 99 (± 2) 96 (± 5) 95 (± 5) 

D None 97 (± 3) 90 (± 5) 94 (± 5) 92 (± 4) 44 (± 9) 

D SS 98 (± 5) 90 (± 5) 98 (± 5) 92 (± 4) 92 (± 4) 

D PCA (.95) 98 (± 5) 96 (± 4) 94 (± 3) 98 (± 2) 89 (± 7) 

 

 

Its graphical visualization (Figure 24) shows a perfect class separation regarding MCs C and B for 

several models. Models tend to perform worst predicting MC D which may also suggest that this condition 

doesn’t have a predominant impact on samples chemical composition. Preprocessing doesn’t seem to 

have a large impact on model performances since different combinations showed perfect separations in 

MCs B and C. Applying PCA as a preprocessing technique to feed SVM decreases model performance 

compared with the other combinations. Despite this, applying PCA and LR shows to be the best 

combination for MCs A, B and C. 
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 ML models show high stability to data splitting across all MCs with excellent results regarding 

MC C. Results show model stability is worst when predicting MC D. Applying PCA in preprocessing seems 

to decrease model stability especially for XGB, SVMs and DTs.  

 Score plots of the first two PCs (Figure 25) reproduce the intuition behind model working. The 

first two PCs explain 72% of system’s variance. Figure 25(c) illustrates perfect class separation 

regarding MC C which suggests this condition has relevant differences regarding the chemical 

composition of both classes. 

 Mass approach results are overall better than time approach. The main reason for this may 

come from the fact that time approach contains all information present in mass approach in a processed 

way, thus leading to a decrease in model performance. Mass approach uses ion intensity resulting in 

950 features while time approach only has 120 features which ends up with having less statistics to 

work on. 

Figure 24 - Clustermap with (a) model’s average performances and (b) standard deviation regarding mass approach, 

measured by the averaged precision (n = 5). 

(a) (b) 
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Figure 25 - Score plot of the first two principal components. (a) MC A, (b) MC B, (c), MC C, (d) MC D. 

* Loadings were not included for interpretation purposes since all classifiers used a large number of features which would result in a complicated visualization. 

Selecting a small portion of them would distort the plot resulting in misleading conclusions. 
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 Another interesting property regarding mass approach is the importance of the used features (in 

this case, ion intensities from 50 to 1000 Da) can be assessed with some models. Considering tree-

based models, this is done by iteratively measure how much the precision changes when a feature is 

excluded from model training. Figure 26 shows feature importance related to models that combine SS 

and RF for each MC concerning the 20 ions with largest importance. As previously suggested, data 

corroborates the fact that models are using a large number of features in MC prediction with the exception 

of Figure 26(c) where less features are used and, therefore, a large importance to the used features 

is given. This might be representative of the complexity of the chemical composition for different classes 

of the same MC. It seems the more similar chemical compositions are (e.g. A1 vs A2 samples), the large 

the number of features the model uses to classify. Data also suggests that heavier ions have a detrimental 

impact at predicting MCs A and B compared to MCs C and D. This might suggest the possibility of dimer 

formation with the employed conditions in the MS interface as pointed out by other authors162. 

 As previously mentioned, one limitation of this approach and specifically of assessing feature 

importance relates with the employed analytical setup which has a nominal precision and may in turn 

lead to misclassify isomers as the same compound. Nevertheless, with a high-resolution MS setup this 

limitation might be tackled enabling the analytical chemist to know the main differences regarding the 

chemical composition of the analysed samples.  

 Identifying which ions the model uses to classify samples rather than just predicting the response 

using unknown rules decided by a learner might be of interesting for different applications.
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Figure 26 - Feature importance of models with SS and RF for all MCs regarding mass approach. 
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4.4. Structure elucidation from feature importance using ESI-MS/MS 

 Following the feature importance attributed by models composed by SS and RF regarding mass 

approach, ESI-MS/MS of several ions was performed where some structure suggestions were 

successfully found. Table 8 summarizes the four chemical structure suggestions that we were able to 

accomplish with a certain degree of confidence measured by HighRes metric provided by the mzcloud 

software163,164. This metric measures the relationship between two spectra by means of a match factor 

which is determined from the m/z value and the abundance correlation coefficients where matches 

higher than 50 should be understood as probable structures. 

 

Table 7 – Results of model performances on test data regarding mass approach. 

m/z 

(Da) 

Structure suggestion 

[HighRes metric] 

Name 

242 

[70.4] 

Bis-(2-ethylhexyl)-amine 

255 

 [87.8] 

Isopropyl—9H-thioxanthen9-one 

279 

[81.4] 

Triphenylphosphine oxide 

280 

[97.3] 

2-methyl-4'-(methylthio)-2-

Morpholinopropiophenone 
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 From the found structures, most of them show aromatic structures with C=O/ P=O bonds, with 

the exception of the m/z 242 which consists in a di-substituted n-alkyl amine. Ions with m/z 280 and  

m/z 279 were related to specific parts of the PCB’s manufacturing process, namely, solder paste reflux 

and UV curing163–165. 

 

4.5. Data augmentation technique 

 A data augmentation technique was developed alongside aiming to generate more samples for 

all classes in order to increase model performance. This way, the first experiment involved picking 

different samples after performing SLE, mix same class samples and then analyse the new synthetic 

samples. Figure 27 shows three chromatograms where – after performing SLE – two samples (black 

and red line, both A2 samples) are mixed in a proportion 1:1 (v/v) in order to generate a third synthetic 

sample (blue, synthetic A2 sample) which in theory would have the same properties as its “parents”.  

 

 

  

  

  

 

 

 

Figure 27 shows the generated synthetic sample whose chemical profile is different from the rest of 

the original samples. Applying this methodology would in turn decrease model performance by 

introducing false insights in the data which drove to abort this experiment. The next intuitive step would 

be to mix same replicate samples in order to generate a new synthetic replicate sample.  

Figure 27 - First experiment in data augmentation technique development based on mixing same 

class samples and analyse the synthetic sample. 
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 This led to a new, innovative trial based on the chromatographic notion that the same sample 

analysed multiple times generates chemical profiles with slight differences in each analysis as a result of 

the analytical setup, as previously described159. In this work, the same notion can be applied to all 

independent replicates of the same sample. Figure 28 schematically depicts the intuition behind this 

data augmentation technique regarding time approach. Results related to data augmentation technique 

are all presented for time approach since model performances for mass approach already allowed perfect 

separation for some models. 

 For each of the 120 features, a minimum, an average and a maximum value can be recorded 

based on chromatograms from the 10 independent replicates. The developed data augmentation 

technique takes advantage of these three values to iteratively generate new datapoints within these 

boundaries according to a triangular distribution (Figure 28(b)). 

 This way, new synthetic chromatograms can be generated based on the interval between the 

minimum and maximum value. Triangular distributions are typically used when the real sample 

Figure 28 - Second experiment in data augmentation technique development based on 

generating new datapoints within the observed intensity boundaries for same class samples. 

*Chromatograms should be interpreted as a schematic representation of the maximum, average and minimum value for all 

replicate samples. 

 

(a) (b) 
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distribution is not acknowledged but the minimum and maximum values as well as the most likely value 

are known. 

 By applying this data augmentation technique, the original dataset can be synthetically 

oversampled to contain more samples. The visual result is depicted in Figure 29 where from the four 

A2B1C2D1 chromatograms shown, two are real and two are synthetic.  

 

    

 Chemical profiles reveal homogeneous across all samples thus indicating the data augmentation 

technique can be applied and model performance results compared with previous results and other 

oversampling techniques. 

 Figure 30 shows the score plot of the first two PCs and compares the original dataset 

(Figure 30(a)) with the synthetic dataset generated with the developed oversampling technique 

(Figure 30(b)). The augmented dataset contains 10 times more samples than the original one. With 

the application of the data augmentation technique 18 different clusters are now well-defined, 

corresponding to all different ABCD MCs combinations as described in Chapter 3. 

 

 

 

 

Figure 29 – Chromatograms of real and synthetic samples belonging to A2B1C2D1 samples. 
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The impact of the data augmentation technique in the overall model performance was also 

assessed. Figure 31 shows the comparison of model performances with original data (OD) and with 

synthetic data (DA). During model development the original dataset was divided in 2 parts. One was used 

for oversampling and to subsequently train models on and the other was used as validation set. Results 

show that the application of the data augmentation technique overall increases model performance 

across all MCs. Regarding model stability to data splitting, models which were trained with synthetic data 

show overall higher stability when compared with models trained on the original data. 

(a) (b) 

Figure 30 - Comparison of the effect of data augmentation. Score plots of the first two PCs. (a) 

original dataset, (b) synthetic dataset (x10 more instances). 
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 On the other hand, it is important to compare the developed technique with other over-sampling 

techniques. Random over-sampling (ROS), synthetic minority over-sampling technique166 (SMOTE) and 

adaptative synthetic sampling167 (ADASYN) were applied to the original dataset. The idea behind these 

techniques is different from the developed one. Whilst our data augmentation technique over-samples all 

classes, these techniques aim to over-sample minority classes, so all classes have the same number of 

instances. This way, the presented results for ROS, SMOTE and ADASYN show a balanced class dataset, 

whilst results concerning our over-sampling technique show an imbalanced dataset with 10 times more 

instances per class. Figure 32 shows the comparison of four different oversampling techniques 

regarding four different models for all MCs. Results show an overall better performance of the developed 

technique compared with the others. Results also show that the application of ROS, ADASYN and SMOTE 

in MC A tend to worsen model performance. Nevertheless, perfect class separations are achieved at 

predicting MC C using other techniques with models whose learners are LR or SVM.  

(a) (b) 

Figure 31 - Comparison of model performance with original data and synthetic data regarding time approach. (a) 

shows model performance measured by the averaged precision (n = 5) and (b) shows its correspondant standard 

deviation. 
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 To the best of our knowledge it is the first time an over-sampling technique was developed for 

chemical classification problems using chromatographic data. This may explain the observed 

improvement in model performances when compared with state-of-the-art techniques such as SMOTE 

and ADASYN, concerning this problematic.  

 

 

 

 

 

Figure 32 – Comparison of the effect of different over-sampling 

techniques on model performance’s results regarding time 

approach, measured by the averaged precision (n = 5). 
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Chapter 5 – Conclusions and future work 

 The objective of this Master thesis is to use chemical data acquired with chromatographic 

techniques to extract knowledge out of samples by building ML models to classify a relevant parameter 

(in this case, a MC). The project was developed in two complementary parts. The first one consisted in 

generating high-quality chemical data through HPLC-MS, while the second part focused on using the 

acquired chromatographic data to build ML models capable of predicting the employed MCs as well as 

extracting knowledge of the developed models. 

 Regarding the first part, the obtained results of the second part confirmed that the employed 

analytical conditions were adequate for the purposed end. This is supported either by score plots of the 

first two PCs as well as by model performance. These results also show that the analytical conditions 

should be fine-tuned according to the MC the model is predicting when top performances are required, 

considering that model performance is dependent on the employed analytical conditions (chemical 

fingerprint). 

 An important note relates to the fact that despite the ever-increasing number of works in this 

interface, currently, there aren’t any methodologies on how to validate an analytical method with focus 

on ML model development as far as our knowledge could go. Given the rise of works in this interface and 

the potential it comprises, further work should be done in order to create methodologies for method 

validation. 

 The second part of the developed work compared two complementary featurization approaches. 

Both allowed up to perfect separations (model precision of 100%) for some MCs. Time approach results 

were overall slightly worse compared to mass approach.  

 Assessing mass approach’s feature importance came to be one of the main interesting topics 

covered in this study. Further work should be done in understanding the relationship between feature 

importance and the impact a feature (ion intensity) has in differentiating the chemical composition of the 
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studied samples. Ultimately, this relationship might enable an analyst to understand what are the exact 

chemical compounds that make the studied samples different in terms of chemical composition. On the 

other hand, mass approach application is conditioned by the analytical equipment available. As 

mentioned, mass approach requires high-resolution MS in order to avoid false insights regarding isomers. 

In cases where high-resolution MS is not available, time approach might be the best option to explore 

when developing predictive models, in order to prevent isomers with different retention times to be 

acknowledged as the same ion. 

 Both approaches showed excellent model performances whereas mass approach revealed itself 

as the overall best approach considering both the sole purpose of MC prediction as well as sample’s 

chemical nature elucidation. A third, more complete approach that could, eventually, cover both retention 

time as well as mass spectra should be target of further work in order to tackle limitations regarding the 

developed approaches. 

 Main limitations of this work relate with the fact that all samples must be analysed with the same 

analytical method and with the time-consuming lab work required to generate chemical data. In this 

work, ca. 10 replicate samples of 18 different classes were extracted and analysed which might represent 

an obstacle to the application of this methodology both by industry and academia due to this time-

consuming step. However, the proposed data augmentation technique might enable surpassing this 

limitation since less samples are required to generate enough data to develop predictive models.  

 Regarding the developed data augmentation technique, results suggest that it might become a 

detrimental part of related works in this interface as it allows the use of less samples, which drastically 

diminishes the time required to build datasets. Nonetheless, further work should be done in order to 

answer open questions such as the minimum number of samples required to be representative of the 

whole MC class while maintaining accurate boundaries for oversampling. Equally important, a threshold 

for the largest difference between the maximum and minimum value should also be studied. Additionally, 
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further work should be done in the application of the developed over-sampling technique with other 

analytical techniques (e.g. NIR, GC, NMR, etc.) in order to verify if the same behaviour exists with other 

types of chemical data. 

 In conclusion, the developed work showed that new insights regarding sample nature can be 

acquired by applying ML in analytical chemistry. Areas in which gathering knowledge regarding sample 

nature is of significant importance will find value in this work. The developed work might have a crucial 

role in routine lab works in areas such as quality control regarding sample contamination, sample forgery, 

among others. Furthermore, the large-scale application of this methodology could enable interesting 

discoveries regarding what are the main differences in the chemical composition of different yet related 

samples (e.g.: natural plants, beverage industry, biotechnology, pharmaceutical, etc.). 
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