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Análise Estatı́stica das variáveis das
especificações de pneus e respectivos
testes

O objectivo deste estudo passou por identificar quais as variáveis mais importantestendo em conta os aspectos dimensionais de um pneu agricultural, bem como o de-senvolvimento de uma ferramenta, usando vários métodos, que permitiriam prever adimensão final do pneu, bem como entender o impacto no resultado final após realizaralterações nos valores das variáveisCom esse objectivo em mente foram aplicadas duas diferentes metodologias, a regressãolinear e logı́stica.De forma a realizar previsões sobre o resultado dimensional final do pneu foram de-senvolvidos dois modelos distintos, usando regressão linear, um para cada uma de duasvariáveis resposta (X36 eX37). Este processo também permitiu a compreensão de quaisas variáveis apresentam um maior impacto na dimensão final do pneu.Os resultados foram posteriormente validados utilizando valores que não se encon-travam na base de dados inicial, com o objectivo de entender se os modelos obtidos seajustavam correctamente e se, consequentemente, as simulações obtidas eram aceitáveis.Depois de analisar os resultados foi possı́vel concluir que o erro presente nas simulaçõesestava dentro dos limites aceitáveis.Por outro lado, a regressão logı́stica foi utilizada de forma a entender, tendo em contaos valores apresentados pelas variáveis, qual seria a possibilidade de um pneu passarou falhar no teste dimensional.Por fim, de forma a facilitar o cálculo das simulações previamente mencionadas paranovos pneus existiu a necessidade de desenvolver uma ferramenta que permitisse aoutilizador obter esse resultado apenas introduzindo os inputs necessários para cada umadas variáveis. Esta ferramenta foi desenvolvida utilizando o R Shiny.Toda a modelação foi realizada utilizando o software R versão 3.5.2 (2018-12-20).

Palavras-chave: impacto das variáveis; pneu agrı́cola; previsões; regressão linear; regressãologı́stica; resultados dimensionais; R Shiny
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Statistical Analysis of variables of tires’
specifications and respective tests

The objective of this study was to identify the most important predictor variablesregarding the dimensions of an agricultural tire, as well as the development of a tool,using various methods, that would allow the user to predict the final dimensional results,as well as understand the impact that each variable’s value change would have on thatsame result.In order to do that linear regression and logistic regression were used.To make the predictions about the final dimensional results, two different modelsbased on linear regression were developed; one for each of the response variables (X36and X37) regarding the tire’s dimensions. This also allowed the understanding of whichvariables were the most impactful ones on the final result for each of the dimensions.The results were then validated using values that weren’t present in the initial data,with the objective of understanding if the obtained models were correctly adjusted, andif the they were providing good simulations. After analyzing the results it was safe toconclude that the error of the simulations was within an acceptable range.On the other hand, the logistic regression was applied to understand, given the valuesof the variables, what was the chance of a tire passing or failing the dimensional test.Finally, in order to facilitate the calculation of the previously mentioned simulationsfor new tires, there was a need to develop a tool that would allow the user to obtain resultsin a friendly environment. This tool was developed in the R Shiny environment.All the modeling was made using the software R, version 3.5.2. (2018-12-20).

Keywords: agricultural tire; dimensional results; linear regression; logistic regression; predic-tions; R Shiny; variable impact
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1 Introduction

With the constant advance of the tire industry, it has become normal practice to re-sort to mathematical and statistical approaches in order to aid on the development andadvance of this industry.With this in mind, the present dissertation was realized during an internship on thecompany Continental Mabor, more specifically on the Research & Development depart-ment. This specific department is responsible for the development of new sizes for agri-cultural tires, therefore those are the type of tires addressed in this manuscript.In broad terms, the problem addressed on the following chapters consists on thestudy and understanding of the variables regarding the mold and specifications of a tire,and, upon having obtained that level of clarification, the problem evolved into findingcorrelations between them, as well as the creation of predictive models for two responsevariables, regarding the final size of the tires.This problem arose after the dimensional results obtained for the tires weren’t ac-cording to expectations, therefore there was a need to develop a deeper study in orderto understand where the problems lied, and how they could be fixed.Upon an extensive analysis of the data it was clear that the best approach, given itssize and behaviour, would be to apply linear regression, and obtain two separate models,one for each of the response variables.This dissertation is divided into four main chapters, to be presented next.The first chapter consists on a brief presentation of the company where the internshipwas realized, Continental Mabor, as well as the type of tires under study, going into somedetail on their technical features, construction and production processes. Regarding theconstruction there two main types, the radial and the bias/cross-ply. When it comes tothe tyres addressed on this study they all used the radial construction. The componentsof said tires are then explained in detail on the chapter previously mentioned. When itcomes to the production processes of a tire they can be divided into five stages: mixing,preparation, construction, vulcanization and final inspection.The next chapter consists on a theoretical presentation of all the topics covered through-out the dissertation, being divided into two major parts, the linear regression and thegeneralized linear models. This chapter addresses all the different topics of the linearregression, namely, variable selection, multicollinearity, goodness-of-fit, parameter esti-mation, statistical inference and residual analysis, among others. For the generalizedlinear models the topics covered follow the same line of thought of the linear regression,
1



with some additions regarding the variable selection methods, and the tests to assessthe quality of adjustment of the models obtained.The ensuing chapter is divided into three major parts. The first part consists on thepresentation of the data, as well as an exploratory analysis in order to understand itsbehaviour and characteristics. Some of the results obtained on this section are the cor-relation matrix, as well as location measures for the quantitative variables.The second part refers to the analysis and modeling of both the response variables,being presented the models obtained, and analyzed its quality of adjustment, as well asthe residual analysis for both of them, in order to understand if they were acceptable.The third part consists on the presentation of the binary variable to be used to obtainthe generalized linear regression model, that is nothing more than whether a tire passedor failed the dimensional tests. Once again, on this part of the chapter it’s presented thevariable under study, with some analysis and graphics, and afterwards it’s obtained andpresented the GLM model, where, once more, it’s performed a residual analysis and it’stested the goodness-of-fit, through multiple tests and statistics, in order to obtain thebest possible result.Lastly, the last chapter refers to the application developed in order to allow the usersto make predictions for the dimensional results of a tire, preventing the construction ofunnecessary tires, for example. This application was developed on R Shiny environment,and, in broad terms, it allows the user to input the values for the mold and specificationvariables and predict the final dimensional results of the tire that is being developed, thisby utilizing the linear regression models previously obtained.This dissertation ends with a chapter dedicated to conclusions and future research.
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2 Company

The present dissertation was developed during an internship on the company Conti-nental Mabor – Indústria de Pneus S.A., whose facilities are located in Lousado, Portugal.The following chapter regards a brief presentation of the company as well as a sum-mary of the type of tires which were target of this study.

2.1 Continental AG
Continental AG was founded in Hannover (Germany) in October of 1871. On its primedays the manufacture consisted mainly of flexible rubber and solid tires for carriages andbicycles.In 1898, initiated the production of flat tires (without tread drawing) for automobiles.Since then the company has been keeping up with the evolution of the automobile in-dustry with the study and application of techniques, products and equipment in order toimprove their tires. Its prestige goes beyond German borders and the Continental tiresstart to be used by winning cars of several racing competitions.In 2007, the company acquires Siemens VDO Automotive AG and leaps forward to beone of the five major world suppliers of the automobile industry, and at the same timeestablishes its position in Europe, North America and Asia.The Continental Group is specialist in the production of braking systems, dynamiccontrols for vehicles, potency transmission technologies, electronic systems and sen-sors. In addition to its operations connected to the automobile sector they also worktowards machinery manufacturing, for the mining and printing industry.Currently the company is located in 56 different countries, with 427 distinct locations.

2.2 Continental Mabor
Continental Mabor was created in December of 1989 as a company in the tire industry.Its name is the result of the junction of two major companies of rubber manufacture,Mabor, on a national level, and Continental AG, known worldwide.Mabor – Manufactura Nacional de Borracha, S.A., was the first tire factory in Portugal.In July of 1990 began the restructuring program that turned the old Mabor facilities intothe most modern ones of the Continental group, at the time. Averaging a daily production
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of 5000 tires in 1990, the company quadrupled its daily production in a matter of six years,to 21 000 tires a day.Presently the company’s production is very varied when it comes to sizes, types andbrands. Continental Mabor comprises in its portfolio tires destined to SUV’s (Sport UtilityVehicles), high performance tires, ContiSeal tires and ContiSilent tires. Its range of man-ufacture includes tires of rim 14” to 22” and currently averages a daily production of 56000 tires. Over 98% of the production is destined for exportation.The currently called “replacement market” absorbs roughly 60% of the annual produc-tion of the company. The remaining share is distributed along the assembly lines of themost prestigious builders of the automobile industry.

2.3 Research & Development Department

The internship on which this manuscript was based was inserted in the Research& Development Department. This department is responsible for the “creation” of newagricultural tires according to certain requirements previously set.

2.3.1 Tire Construction

There are two main types of construction, the bias construction and the radial con-struction, both represented in the following figure.

Figure 2.1: Radial construction vs bias construction.
The main differences between these two types of construction are that the radials’tires steel belts dissipate heat better, as well as the capacity of the tire to flex more, dueto the fact of the radial tires having fewer layers of body cords on the sidewall.The one mainly used and considered from now on is the radial construction, giventhat is the one that offers better overall results when it comes to the quality of the tire.
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Tire composition

The composition of radial tires is displayed in the following figure, where the imageon the left represents a transverse cut of the tire, and the one on the right a cross sectioncut in order to understand what are the components of a tire.

Figure 2.2: Left: transverse cut of a tire; Right: cross section cut.
As shown on the previous figure a tire is composed by several different components,each of them with its own importance, explained below.
• Bead

The bead is where the tire adjusts to the rim. It’s composed by a steel filamentinextensible and with different shapes and proportions according to the size of thetire.
Its main functions are:

(i) Secure the tire to the rim;
(ii) Provide the watertightness of the tire.

• Carcass ply
The carcass is a flexible structure formed by textile or steel filaments, formingarches that wrap around the bead.
Over the carcass are applied belts and layers of rubber that together will form thecomplete tire.
Some of the most important functions of the carcass are:

(i) Supporting the load and speed with the help of pressure;
(ii) Plays a role in the comfort and stability;
(iii) Plays a role in the energetic efficiency and yield of the tire.

5



• Belts
The belts are made up by metallic filaments coated with rubber. They are placedabove the carcass forming an area that guarantees the mechanical resistance ofthe tire to the velocity and the centrifugal force.
The belts cross obliquely and are placed on top of each other. Its cross with thefilaments of the carcass forms indeformable triangles, that guarantee the stiffnessof the top.
The role of these components is very complex:

(i) In the circumferential sense of the tire they have to be rigid so that they don’textend under the effect of the forces when the tire is rotating, and to perfectlycontrol the diameter of the tire, regardless of the conditions of utilization;
(ii) Allow the tire to be flexible but not elastic.

• Sidewall
Area that is situated between the tread/shoulder and the bead and that providesthe tire with side stability. This can be considered as the height of the tire, and isalso where the nomenclature of the tire can be found.
Its main roles are:

(i) Bear the load;
(ii) Support constant mechanical flexion;
(iii) Resistance to frictions and aggression;
(iv) Plays a role in the stability and comfort.

Phases of the construction of a tire

The construction of a tire is divided in two different main phases: coming up with theappropriate mold and specifications for the tire, and the secondly, the physical construc-tion of the tire (that includes several different phases itself).The first phase, and perhaps the most crucial one, is the drawing of the mold. This,in conjunction with the specifications used for the tire is what’s going to determine itsdimensions, therefore it’s extremely important to obtain the best possible mold, keepingin mind that after the mold is complete and ordered it’s impossible to make any changesto its dimensions.After that, the next step is to put together the best possible specification in orderto obtain a good overall tire (dimension wise, resistance, etc), keeping in mind variousfactors like weight, material used, quantity and, evidently, costs. These specificationsvary from the material used for the belts and plies, its quantity, the size of the bead, andmany other factors.
6



When everything is agreed upon and the mold and specifications are ready, the nextstep is the physical construction of the tire. This process can also be divided into severalothers, explained below.The process of construction of a tire (physical construction) is divided into five stages:mixing, preparation, construction, vulcanization and final inspection.The first phase, the mixing, is where the natural and synthetic rubbers are combinedwith various chemical products (pigments, mineral oil, silica, among others) in order tocreate the necessary materials used in the fabrication of the tire.The preparation stage, composed by the cold and hot preparation, is where the mate-rial needed for the specification of the tire is created. The hot preparation is responsiblefor the fabric of the sidewalls and treads, while the cold preparation is responsible fortextile and metallic plies.Next, on the construction stage, is where the components previously created are as-sembled together, giving origin to a tire denominated by “green tire”.On the stage of the vulcanization the tires are placed in a diaphragm (that containssteam at 170ºC and at a pressure of 6 bar) where it’s applied a segmented mold. The tireis submitted to this process for some time, gaining the desired shape.Lastly, on the last stage, the final inspection, the tire is submitted to an extensiveinspection in order to guarantee its quality and safety, and to verify if it obliges to the setrequirements.After all these processes the tires are submitted to various tests (dimensional, resis-tance, etc) in order to conclude that the tire is ready to be produced and sold, accordingto certain parameters established by the law.
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3 Linear Models

3.1 Linear Regression
Linear regression first appeared in the early 1800’s, and its earliest form was themethod of least squares, which was published by Legendre in 1805 [1], and later by Gaussin 1809 [2]. The term “regression” was coined by Francis Galton, in England, on a scien-tific article regarding the existence of a linear relation between the diameter of pea beansand the diameter of the descendant grains [3].The main objective of linear regression is to study the relationship between a depen-dent variable, Y , that represents the output or outcome whose variation is being studied,and the remaining p independent variables, X1, X2, ..., Xp. Lastly, the main goal is to beable to explain the phenomenon which is being studied and predict its outcome, throughthe following mathematical formula,

Y = Xβ + ε (3.1)
where Y is a vector with dimension n× 1, X represents the design matrix of the model,with dimension n × (p + 1), associated to a vector β, of dimension (p + 1) × 1, thatrepresents the regression parameters, and lastly, ε represents the random errors vector,with dimension n × 1, and with a Gaussian distribution. With that being said, Y alsofollows a Gaussian distribution and, therefore, ε and Y are random variables that verifythe following conditions:

• E[Y ] = Xβ;
• E[εi, εj] = 0, if i 6= j;
• V ar[Y ] = V ar[ε] = σ2In, where In represents the identity matrix of order n;
• X is deterministic, measured without error.
Therefore, given a random sample, (x11, x12, . . . , x1p, y1), . . . , (xn1, xn2, . . . , xnp, yn), with

n independent observations, where xij and yi represent, accordingly, the values of thevariables Xj and Y for the individual i, we obtain the following:
Yi = β0 + β1xi1 + β2xi2 + ...+ βpxip + εi, i = 1, ..., n (3.2)

where
8



• yi: i-th observation of the dependent variable;
• xij : i-th observation of the xj covariable;
• β0: expected value of Y when the independent variables are zero;
• βj : average increase of Y with each unit of xj , and maintaining all the other vari-ables constant, in case this variable is quantitative. Alternatively, if the variable isqualitative, this represents the average increase of Y for each category of xi, whencompared with the reference category;
• εi: random error associated to the response of the subject i.

3.1.1 Assumptions of Linear Regression
Linear regression has a set of assumptions that need to be verified so that the modelcan be considered valid.The first one states that the expected value of the errors is equal to zero, E[εi] = 0.Secondly the variance of the errors needs to be constant (homoscedasticity), in otherwords, that the residuals are equal across the regression line, V ar[εi] = σ2.The third assumption falls upon the need for the residuals to be independent, meaningthat there should be little or none autocorrelation in the data.Another condition is the normality of residuals, meaning that the residuals shouldfollow a normal distribution with mean zero and variance σ2, εi ∼ N(0, σ2).Lastly, there should be as little correlation between the independent variables as pos-sible, avoiding the issue of multicollinearity that will be explained further along the dis-sertation.The verification of all these conditions represents the ideal situation for the adequacyof the fitted model. However, in some cases, one or more assumptions can be disre-garded, depending on the data that is subject of study.

3.1.2 Parameter Estimation

Through a sample of n observation of the variables Y and ~X , it’s possible to estimate,using the least squares method, the regression coefficients, β0, β1, . . . , βp.The least squares method is based upon the determination of the values for all the
~β coefficients that minimize the sum of the square of the deviation between the ob-served values (Yi) and the fitted values (Ŷi) of the regression function. In other words,this method aims to minimize the residual sum of squares (ei), as given by,

n∑
i=1

e2
i =

n∑
i=1

(Yi − Ŷi)2 =
n∑
i=1

(Yi − (β̂0 + β̂1X1i + ...+ β̂pXpi))2 (3.3)
or in matrix notation,

eT e = (Y −Xβ̂)T (Y −Xβ̂) = Y TY − 2β̂TXTY + β̂TXTXβ̂ (3.4)
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where eT e is the residual sum of squares, β̂ = (β̂0, β̂1, . . . , β̂p) represents the vector ofthe fitted regression coefficients and Xβ̂ = (Ŷ1, Ŷ2, ..., Ŷn) represents the vector of fittedvalues.Consequently, deriving the expression to β̂ and making it equal to zero, it’s possibleto obtain the estimates of the parameters, on its matrix form
β̂ = (XTX)−1XTY. (3.5)

Therefore, the variance and covariance matrix of the estimates of the least squaresis given by
Cov[β̂] = σ2(XTX)−1, (3.6)

where σ2 represents the variance (constant) of the random errors, and (XTX)−1 is theinverse matrix of the crossed multiplications of X . Since σ2 is usually unknown its esti-mation is given by the following expression,
σ2 =

∑n
i=1(yi − ŷi)2

n− p− 1 =
∑n
i=1 e

2
i

n− p− 1 = SSE

n− p− 1 (3.7)
where SSE represents the residual sum of squares.
3.1.3 Statistical Inference

One example of statistical inference is, assuming the normality of the random errors,testing the statistical significance of a certain independent variable associated to a givenparameter βi, i = 1, ..., p, through an hypothesis test, such as, H0 : βi = 0 versus
H1 : βi 6= 0. The previous hypothesis can be tested with the following formula,

T = β̂i
σ̂β̂i

, (3.8)
that follows a t-Student distribution with, n − p − 1 degrees of freedom, and where σ̂2

β̂icorresponds to the i-th element of the diagonal of the variance-covariance matrix of theestimators of the parameters, σ2(XTX)−1.For a certain level of significanceα, the rejection region for the null hypothesis is givenby ]
−∞,−t1−α2 ;n−p−1

]
∪
[
t1−α2 ;n−p−1,+∞

[ (3.9)
Therefore, if p-value≤ α the decision falls upon rejectingH0, hence, one can concludethat βi is statistically significant, or in other words, that the independent variable Xi con-tributes to the explanation of the dependent variable, when considering the remainingindependent variables constant.In order to determine the confidence interval for βi with a confidence level of (1−α)×

100% we have, (
β̂i − t1−α2 ;n−p−1σ̂β̂i , β̂i + t1−α2 ;n−p−1σ̂β̂i

) (3.10)
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Testing the global significance of the regression can be done through the followinghypothesis test,
H0 : β1 = β2 = ... = βp = 0 vs H1 : ∃j = 1, ..., p : βj 6= 0 (3.11)

which translates into the existence of at least one regression coefficient different thanzero. The test statistic for this hypothesis test is given by,
F = (n− p− 1)× SSR

p× SSE
∼ Fp,n−p−1 (3.12)

where SSR is the explained sum of squares, SSE is the residual sum of squares and
Fp,n−p−1 is Fisher’s distribution with p parameters and n− p− 1 degrees of freedom.In order to implement the global significance test it’s common practice to constructan analysis of variance (ANOVA) table, like Table 3.1.

Table 3.1: Analysis of variance table (ANOVA).
Variation Sum of Degrees of Mean of F
Source Squares freedom squares Value
Regression SSR=∑(Ŷi − Ȳ )2 p MSR=SSR

pResidual SSE=∑(Yi − Ŷi)2 n− p− 1 MSE= SSE
n−p−1

MSR
MSETotal SST=∑(Yi − Ȳ )2 n− 1 MST=SST

n−1

3.1.4 Goodness-of-fit
The quality of regression for linear models can be ascertained in several ways. Usu-ally, the first approach is a graphical analysis of the results in order to evaluate the qualityobtained.Another way to assess the quality of regression is through the coefficient of determi-nation, designated by R2(0 ≤ R2 ≤ 1). This coefficient is the proportion of the variancein the dependent variable that is predictable from the independent variable(s). In otherwords, it’s the percentage of the variation of Y that is explained by the model.One particularity of the coefficient of determination, R2, is that it tends to increaseevery time the model is updated with more independent variables, regardless of theirsignificance. With that being said, the best alternative is to analyze the adjusted coeffi-cient of determination, R2

a, where the previous situation only happens if the new variableis deemed significant for the model. It’s possible to calculate the adjusted coefficient ofdetermination with the following formula,
R2
a = 1−

SSE
n−p−1
SST
n−1

= 1− n− 1
n− p− 1(1−R2) (3.13)

with
R2 = 1− SSE

SST
(3.14)
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and
SST =

n∑
i=1

(Yi − Ȳi)2. (3.15)

This coefficient allows an evaluation of the quality of a single model, however, if thegoal were to compare two models among themselves there needs to be a different ap-proach.When comparing models we can have two cases, the models subject of comparisonsare nested, this is, the independent variables of one of the models form a subset of theindependent variables of the other, or the models are made up by different variables andcan’t be considered nested.Regarding the first case, the easiest way to assess which of them can be consideredto be more accurate is to test if the parameters corresponding to the independent vari-ables that aren’t present in both models are simultaneously zero. If that’s the case thedecision of what model is best falls upon the one with the least variables, in order tosimplify the analysis.One way to compare a more complex model with a simpler one, assuming they arehierarchically nested is through the likelihood ratio test (LRT). The likelihood scores canbe calculated with the difference between the log-likelihoods, as follows,
LR = −2[l(θ0)− l(θ̂)] (3.16)

where θ is the given parameter and LR ∼ χ2
p, with p being the number of parameters.On the other hand, if the models are not nested the correct way to evaluate and com-pare the quality between both would be to use the adjusted coefficient of determination,or, alternatively, Akaike’s information criterion (AIC). Akaike’s information criterion is anestimator of the relative quality of statistical models for a given set of data. This crite-rion assesses the quality of each of the models, and orders them accordingly to the valueobtained. The lower the value of AIC obtained the better the quality of regression, whencomparing models. The AIC can be obtained with the following formula,

AIC = −2log(L) + 2p (3.17)
where L represents the model’s likelihood and p the number of parameters.
3.1.5 Variable Selection

The most common methods used to select which of the independent variables aresignificant for the model are the Backward, Forward and Stepwise methods.On this manuscript were used the backward method, applying the likelihood ratio testand the stepwise method using Akaike’s information criterion.Both of the methods provide similar results, in fact, the stepwise method it’s a com-bination of the backward and forward methods. This methodology begins with just onevariable and adds more recursively. Every time a new variable is added to the model theresulting model is analyzed in order to make sure that all of the variables can be consid-ered significant after that new input. This last process is nothing more than the backward
12



method, were the initial model is composed by all the variables possible and is simplifieduntil all the remaining ones can be considered significant.The decision on which of the models obtained (stepwise and backward) is the mostaccurate one is made by comparing them using Akaike’s information criterion, previouslymentioned.
3.1.6 Residual Analysis

The residual values in linear regression are nothing more than the difference betweenthe observed value of the dependent variable (y) and the predicted value (ŷ),
e = y − ŷ. (3.18)

The main objective of the residual analysis is to comprehend if all the assumptionsmade upon the data are verified, and if that doesn’t happen, understand how that impactsthe results.The assumption of the normality of residuals is easily tested using the Shapiro-Wilkstest, or alternatively, the Kolmogorov-Smirnov test, under the null hypothesis that theresiduals follow a normal distribution. This analysis can also be done graphically, througha QQ-plot, evaluating if the residuals are located mainly on top of the straight line, and ifthat’s the case then there’s graphical evidence that the residuals are normally distributed.In order to verify the homogeneity of the variance, the independence of the errorsand the null mean, one can also use a graphical approach, plotting the residual valuesversus the predicted values of the dependent variable. In order for the independence ofthe errors to be satisfied the points on the graph need to be randomly distributed aroundthe residual with null value, forming a cloud of uniform width. If the dispersion of theresiduals increases or diminishes along with the values of the dependent variable, thehomoscedasticity assumption isn’t verified.This assumption can be tested using Bartlett’s test for homogeneity of variances.The null hypothesis of this test states that all the variances are equal across all samples,against the alternative, that the variances are not equal for at least one pair, as follows,
H0 : σ2

1 = σ2
2 = ... = σ2

k vs H1 : ∃1i, j ∈ N, (i 6= j), σ2
i 6= σ2

j . (3.19)
3.1.7 Multicollinearity

Multicollinearity is a state of very high intercorrelations or inter-associations amongthe independent variables. It is therefore a type of disturbance in the data, and if presentthe statistical inferences made upon the latter may not be reliable. There are a few rea-sons why multicollinearity occurs:
• Can be caused by an inaccurate use of dummy variables;
• Can be caused by the inclusion of a variable which is computed from other variablesin the data set;
• The repetition of the same kind of variable;
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• Generally occurs when the variables are highly correlated to each other.
This particular issue can result in several problems, such as, the partial regression co-efficient may not be estimated precisely, causing the standard errors to be high. Anotherissue with the coefficient estimated is the change of signs as well as its magnitude whenusing different samples. Given these two issues, multicollinearity makes it difficult to as-sess the relative importance of the independent variables in explaining the dependentvariable. In the presence of high multicollinearity the confidence intervals of the coef-ficients tend to become very wide and the statistics tend to be very small. It becomesdifficult to reject the null hypothesis of any study when multicollinearity is present in thedata.In order to detect the existence of multicollinearity, one can fall upon a few methods.One of those methods is the analysis of the correlation matrix of the independent vari-ables, in order to determine if there are cases where the correlation values are too high. Ifone of those cases arises, one solution would be to eliminate one variable out of the pairthat displays a high value of correlation, but only after analyzing the data and determiningwhich one would make more sense to remove.Another method to evaluate the existence of multicollinearity is the determination andanalysis of the variance inflation factor (VIF), given by,

V IF = 1
1−R2

j

(3.20)
where R2

j is the determination coefficient of the regression.
Ideally the value of the VIF is as close to 1 as possible, and if that’s the case one canconclude that the variables are independent among each other. If the VIF is higher than10 then we are looking at a case with the presence of multicollinearity. This cut-off pointof 10 can vary according to the case study, being as low as 5 in some of them.

3.2 Generalized Linear Models
Advances in statistical theory and computer software allowed the use of methodsanalogous to those developed for linear models when considering the following moregeneral situations [4]:
• Response variables have distributions other than the Normal distribution – theymay even be categorical rather than continuous;
• Relationship between the response and explanatory variables need not be of thesimple linear form such as the following,

E[Yi] = µi = xTi β; Yi ∼ N(µi, σ2). (3.21)
One of these advances has been the recognition that many of the properties of theNormal distribution are shared by a wider class of distributions called the exponentialfamily of distributions [4]. A second advance is the extension of the numerical methodsto estimate the parameters β from the linear model described above to the situation
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where there is some non-linear function relating E[Yi] = µi to the linear component xTi β,that is
g(µi) = xTi β (3.22)

where the function g is called link function.
In the initial formulation of generalized linear models by Nelder and Wedderburn (1972)

g is a simple mathematical function.To summarize, generalized linear models (GLMs), are not only an extension of allmodels used to model non Gaussian data, but also of the classic linear model. Thesemodels have two major particularities, one of them being the fact that the distribution ofthe response variable is always a part of the exponential family of distributions, and theother is that the relation between the dependent and independent variables is given byany differential function, always maintaining the linear structure.
3.2.1 Exponential Family

The response variable Y , follows a distribution belonging to the exponential family ifits probability density function can be written in the following way,
f(y | θ, φ) = exp

{
yθ − b(θ)
a(φ) + c(y, φ)

}
(3.23)

where θ is the localization parameter, φ is the dispersion parameter and the functions
a(.), b(.) and c(.) are known functions for each distribution.

Regarding φ we have two possible cases. It can be a known parameter, then we’relooking at a distribution of the exponential family with θ as the canonical parameter. Or,the other case where φ is unknown, which means that the distribution might not be partof the exponential family. We also admit that the function b(.) is differentiable and thatthe support of the distribution doesn’t rely on the parameters.
3.2.2 Components of a Generalized Linear Model

A generalized linear model is composed by the following three distinct components:
1. The Random Component which identifies the dependent variable that is case ofmodeling, being a random variable with n independent observations and with adistribution belonging to the exponential family.
2. A linear predictor – that is a linear function of regressors,

ηi = α + β1Xi1 + β2Xi2 + ...+ βkXik (3.24)
3. A link function – that is smooth and invertible, in this case g(.), which transformsthe expectation of the response variable, µi = E[Yi], to the linear predictor:

g(µi) = ηi = α + β1Xi1 + β2Xi2 + ...+ βkXik. (3.25)
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There’s special interest in the cases where the linear predictor and the localization pa-rameter match, namely, ηi = θi. When this happens the link function is named canonicallink function. The canonical link functions are mostly used in the context of generalizedlinear models, since these guarantee the concavity of the likelihood function, and, there-fore, a vast quantity of asymptotic results are obtained in an easier way.
3.2.3 Link Functions

On the present dissertation two distinct functions were used as link functions, the
logit and the probit.The logit link function is a fairly simple transformation of the prediction curve, and alsoprovides odds ratios, both features that make it popular among researchers. This linkfunction takes the natural log of the ratio of the probability that Y is equal to 1 comparedto the probability that it is not equal to one. Hence, the logistic equation can be writtenas,

ln
(

π

1− π

)
= α + βX (3.26)

where π is the probability that Y = 1 and 1− π the probability that Y = 0.
The left hand of the equation represents the logit transformation. This transformationcan be written in terms of the mean rather than the probability,

ln

(
µ

1− µ

)
= α + βX. (3.27)

The transformation of the mean represents a link to the central tendency of the dis-tribution, one of the important defining aspects of any given probability distribution.Another possibility is the probit regression, that, as the names suggests, uses the
probit link function. This regression utilizes a (inverse) normal distribution link for a binaryvariable, instead of the logit link where Y ∗ = φ−1(π), and is given by,

φ−1 (π) = 1√
2π∗

∫ π

−∞
e

−z2
2 dz. (3.28)

3.2.4 Parameter Estimation
The estimation of parameters of a generalized linear model is usually made resort-ing to the maximum likelihood estimation (MLE), therefore, the estimators obtained areconsistent, asymptotically efficient and with asymptotically normal distribution.The MLE’s objective is to maximize the likelihood function, which is equivalent to max-imizing the log-likelihood of β, with a known φ, given by

log(L(β)) = l(β) =
n∑
i=1

{
wi(yiθi − b(θi))

φ
+ c(yi, φ, wi)

}
=

n∑
i=1

li(β) (3.29)
where li(β) = wi(yiθi−b(θi))

φ
+ c(yi, φ, wi) is the contribution of each observation of the

dependent variable to the likelihood [5].
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Assuming that certain conditions of regularity are met, the maximum likelihood esti-mators for β can be obtained as a solution of the likelihood equations
∂l(β)
∂βj

=
n∑
i=1

∂l(β)
∂βj

= 0, j = 1, ..., p (3.30)
equations given by

n∑
i=1

(yi − µi)zij
var(Yi)

∂µi
∂ηi

= 0, j = 1, ..., p. (3.31)
One way to solve these equations is through Fisher’s scoring, considered to be thesimplest way to do it. This method utilizes Fisher’s information matrix as the covariancematrix, I(β),

I(β) = E

[
− ∂2l(β)
∂β∂βT

]
= E

[
− ∂S(β)

∂β

]
(3.32)

where S(β) = ∑n
i=1 Si(β) = ∑n

i=1
∂li(β
∂βj

, j = 1, ..., p is the score function.
On its matrix form, Fisher’s information matrix is given by

I(β) = ZTWZ (3.33)
where W is the diagonal matrix and where its i-th element is given by

Wi =
(∂µi
∂ηi

)2

var(Yi)
. (3.34)

The dispersion parameter can also be estimated using the MLE, however, the simplestway to do it is utilizing a method based on the sampling distribution, for large values of
n, of Pearson’s goodness-of-fit statistic [5]. Hence, φ̂ is given by,

φ̂ = 1
n− p

n∑
i=1

wi(yi − µ̂i)2

V (µi)
. (3.35)

3.2.5 Hosmer and Lemeshow method
Just like some of the methods previously mentioned, the Hosmer and Lemeshowmethod is a statistical approach with the objective of minimizing the number of variablesused in the modeling of a variable, maintaining only the variables considered relevant.This method of selection of variables can be divided into four different steps.The first step consists of the creation of simple regression models for each of thevariables present on the data, obtaining the corresponding p-values through Wald’s test.In general, any variable with a p-value higher than 0.25 is considered in the model. Thisvalue is higher than the usual value considered (0.05) so that some variables that mayseem not important in the simple regression can be selected, because those variablescan reveal themselves as important in the multiple regression.The next step consists on adjusting the multiple regression model with the variablespreviously selected, and, once again, the objective is to evaluate the p-values obtained
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for each variable and select the ones that have are less than 0.25, excluding the onesthat don’t verify that condition.Thirdly, using the variables obtained on the second step, this step consists on ad-justing a new multiple regression model. The selection process continues until all theimportant variables are included in the model, making sure that all the excluded onesare not statistically significant. Lastly, still on this third step, all the variables excludedin the first step should be included on this new model, one by one, by decreasing orderof the p-value obtained, with the objective of identifying variables that when analyzed bythemselves are not relevant but become such when in the presence of other variables.The fourth and final step consists on introducing in the model all the interactions thatmay be relevant. Once all the relevant interactions are identified the previous variableselection process is repeated and all the interaction with a p-value of more than 0.05 areremoved from the model.
3.2.6 Statistical Inference

Most of the problems of statistical inference related with hypothesis tests upon theparameter vector β can be formulated such as:
H0 : Cβ = ξ vs H1 : Cβ 6= ξ, (3.36)

where C is a p × q matrix, with q ≤ p, of complete characteristic q and ξ is a vector ofdimension q, previously specified [5].In general, there are three statistics to test the hypothesis mentioned above, that arededuced from the asymptotic distributions of the maximum likelihood estimators andfrom suitable functions of those estimators.
• Wald’s Statistic, based on the asymptotic normality of the maximum likelihood es-timator β̂, and usually used to test null hypothesis made upon individual compo-nents;
• Wilk’s Statistic or Maximum likelihood statistic, based on the asymptotic distribu-tion of the ratio of the maximum likelihoods under the hypothesis H0 and H0 ∪H1,used to compare nested models;
• Rao’s Statistic or Score Statistic, based on the asymptotic properties of the scorefunction.

3.2.7 Goodness-of-Fit
Deviance

The deviance for logistic regression plays the same role as the residual sum of squaresplays in linear regression. In fact, the deviance, is given by the following function, [5]
D∗(y, θ̂) = −2× (lM(β̂M)− lS(β̂S)) (3.37)

where M is the model being studied and S represents the saturated model.
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Considering two nested models, M1 and M2, with p1 and p2 parameters, accordingly,it’s possible to obtain the following function (under the null hypothesis that the less com-plex model, M2 is a better fit),
D(M2)−D(M1)

φ
∼ χ2

p1−p2 (3.38)
whereD(M1) andD(M2) represent the deviance for the modelsM1 andM2, accordingly.
Hosmer-Lemeshow Test

The Hosmer-Lemeshow goodness of fit test is based on dividing the sample up ac-cording to their predicted probabilities, or risks. The observations in the sample are splitinto g groups, according to their predicted probabilities. In other words, supposing that
g = 10, then the first group consists of the observations with the lowest 10% predictedprobabilities. The second group consists of the 10% of the sample whose predicted prob-abilities are next smallest, and so on.A formula defining the calculation of this statistic is given by,

Ĉ =
g∑

k=1

(ok − n′kπ̄k)
2

n′kπ̄k(1− π̂k)
(3.39)

where n′k is the total number of subjects in the kth group, ck denotes the number of co-variate patterns in the kth decile,
ok =

ci∑
j=1

yj (3.40)
is the number of responses among the ck covariate patterns, and

π̂k =
ci∑
j=1

mjπ̂j
n′k

(3.41)
is the average estimated probability.

When it comes to choosing the number of groups to use for the test there isn’t aclear criteria. Hosmer and Lemeshow’s conclusions for simulations were based on using
g > p+1, where p represents the number of parameters, suggesting that if the model has10 covariates, for example, the number of groups would be at least 11. Intuitively, usinga small value of g ought to give less opportunity to detect miss-specification. However,if g is too large, the numbers in each group may be so small that it would be difficultto determine whether differences between observed and expected are due to chance orindicative or model mis-specification.The advantage of a summary goodness of fit statistic like Ĉ is that it provides a single,easily interpretable value that can be used to assess fit. The great disadvantage is thatin the process of grouping there’s a chance one might miss an important deviation fromfit due to a small number of individual data points [5]. Hence, bibliography advocatesthat, before finally accepting that a model fits, an analysis of the individual residuals andrelevant diagnostic statistics be performed. These methods are presented further alongthe dissertation.
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When it comes to performing this test on the statistical software R it can be donethrough the library ResourceSelection and utilizing the command hoslem.test.
Prediction Error

The prediction error, as the name suggests, evaluates the error associated to eachprediction obtained through the fitted model. Counterintuitively, we want this value to beas close to 1 as possible, given that it translates into the proportion of correct classifi-cations given by the model. It is calculated establishing first a cut-off point that rangesfrom 0 to 1. Usually the cut-off value used is around 0.5.This error can be divided in two components: sensitivity and specificity.Sensitivity (also called the true positive rate) measures the proportion of actual posi-tives which are correctly identified as such (in this specific case, the percentage of failedtires that are correctly identified as such), and is complementary to the false negativerate, and can be calculated with the following formula,
Sensitivity = TruePositives

(TruePositives+ FalseNegatives) . (3.42)

On the other hand, specificity (true negative rate) measures the proportion of neg-atives which are correctly identified as such (the percentage of approved tires that areidentified as such). The formula for the specificity is given by,
Specificity = TrueNegatives

(TrueNegatives+ FalsePositives) . (3.43)

In general, the higher the value of both the sensitivity and specificity, the better, mean-ing that the fitted model is predicting accurately the classification of each subject.
Area Under the ROC Curve

Area under the ROC (Receiver Operating Characteristic) curve (AUC) is a performancemeasurement for a classification problem at various threshold settings.Sensitivity and specificity rely on a single cut point to classify a test result as posi-tive. A more complete description of classification accuracy is given by the area underthe ROC curve. This curve, originating from signal detection theory, shows how the re-ceiver operates the existence of signal in the presence of noise. It plots the probabilityof detecting true signal (sensitivity) and false signal (1-specificity) for an entire range ofpossible cut-off points [6]. In other words, ROC is a probability curve and AUC representsdegree or measure of separability.The area under the ROC curve, which ranges from zero to one, provides a measure ofthe model’s ability to discriminate between those subjects who experience the outcomeof interest versus those who do not.It’s possible to interpret the value obtained for the ROC curve according to the follow-ing table,
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Table 3.2: AUC value classification.
Value Range Classification
AUC ≤ 0.5 This suggests no discrimination
0.7 < AUC < 0.8 This is considered acceptable discrimination
0.8 < AUC < 0.9 This is considered excellent discrimination
AUC > 0.9 This is considered outstanding discrimination

When it comes to calculating the value of the AUC and plotting the curve on R it canbe done through multiple libraries. One of them is the library ROCR, where utilizing thecommand plot.roc one can plot the corresponding ROC curve for a given model. Thislibrary also allows the determination of the value of the AUC for each model obtained.
Brier Score

Brier’s Score is a measure of the accuracy of a set of probability assessments, it al-lows the evaluation of the calibration of probabilistic predictions of binary events. Pro-posed by Brier (1950), it’s the average deviation between predicted probabilities for a setof events and their outcomes, so a lower score represents higher accuracy [7]. The scorevalue can be obtained using the following [15],
BS = 1

n

n∑
t=1

(ft − ot)2, (3.44)
where ft represents the probability of success estimated for the subject t, ot the trueclassification of the subject (0 or 1) and n the size of the sample.
Pseudo R2 (McFadden & Cox-Snell)

Another way to evaluate the goodness-of-fit of a model is through the adjustmentcoefficient. In this case there are two specific coefficients of interest, called pseudo-R2,one by McFadden and the other by Cox-Snell.[14]The first one, the McFadden coefficient, or ρ2 is nothing more than a transformation ofthe log-likelihood function into an index analogous to the multiple correlation coefficientby defining [9]
ρ2 = 1− L(θ̂)

L(θ̄)
(3.45)

where θ̂ is the maximum likelihood estimator and θ̄ is zero or is zero except for coeffi-cients of alternative dummies.The ρ2 andR2 indices both vary in the unit interval (except when some coefficients in
θ̄ are excluded from θ, in which case a poor fit may yield ρ2 or R2 negative). [10]The values obtained for the McFadden ρ2, are considerably lower than the usual R2

obtained in OLS (Ordinary Least Squares), therefore, when interpreting this coefficient,values between 0.2 and 0.4 are usually considered to be excellent, and indicate a verygood fit for the model.
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On the other hand, Cox-Snell’s adjustment coefficient, is, similarly to McFadden’s, atransformation of the log-likelihood function, and is given by,
R2 = 1−

L(θ̄)
L(θ̂)

 2
N (3.46)

where L(θ̄) and θ̂ are the same as previously defined, and N is the size of the sample. [16]
3.2.8 Residual Analysis

The residual analysis for the logistic regression models follows roughly the sameassumptions of a regular analysis for linear regression.With that being said, in order to assess the goodness-of-fit of the chosen model all theassumptions previously addressed on the section 3.1.6 need to be verified once more.
3.2.9 Parameter Interpretation

Unlike the linear regression models, when it comes to the logistic regression the in-terpretation of the coefficients is not as linear as evaluating the value obtained and drawconclusions. In order to interpret the coefficients obtained through the logistic regressionthere’s the necessity to introduce a measure of association termed the odds ratio.Assuming the utilization of the logit link function, the odds ratio are then obtained asfollows,
ÔR = exp(βk), k ∈ N. (3.47)

When it comes to the interpretation of the odds ratio it depends on the value obtained,as well as the type of variable under study. Regarding the case where the variable isquantitative, for an odds ratio of 3, for example, for each increase of 1 unit the estimatedodds of the event increases by a factor of 3. In the same way, for the same kind ofvariable, if the odds ratio is 1
3 , for each increase in 1 unit the estimated odds of the eventdecreases by a factor of 3.However, regarding qualitative variables, if the value is between 0 and 2, taking forexample 1.1, this means that regarding the reference category, the variable under studypresents a chance of verifying the event 10% higher. In the same way, if the value obtainedis, for example, 0.9, this means that the chance of the event being verified is 10% less,when compared to the reference category.In case the value obtained is between 2 and 3 (once again a random value just forexplanatory purposes), this means that the event is approximately two times more likelyto occur.
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4 Study of tests related to the
production of agricultural tires

4.1 Presentation of the data set
The data used on this manuscript refers to dimensional tests to which the tires wheresubjected in order to evaluate if the final results are within the limits established by thelaw, and, therefore, if the tires can be cleared for production.This data can be divided into four main components - nominal variables with identi-fication purposes, variables corresponding to the mold used for each tire, the specifica-tions of each tire, and finally, the two dimensional response variables -, representing tires“created” since the beginning of the department in 2016.The first component consists of four nominal variables, with identification purposes,as previously mentioned. These four variables are the size of the tire, the experimentaltest order (ETO) number, the article of the tire, and the number of the mold used. The sizeof the tire is given by, for example, 280/85 R 24, where the first number, 280, correspondsto the tire’s article nominal section width, the second number the article’s cross section(height of the tire) and the third number the article’s diameter (rim size).The second component, the mold variables, corresponds to the values used for cer-tain parameters of the mold used for each tire.Thirdly, the specification variables, refer to all the components utilized on the tire, andvalues given to certain parameters.Lastly, the two response variables refer to the result of the final dimensional measuresperformed upon the tires.Outside of these four components there’s an extra last variable that corresponds tothe final evaluation of the tire, that consists on comparing the values obtained on thedimensional tests with the tabled maximum values permitted by law.Due to confidentiality reasons all the variable names have been coded, hence, fromthis point on all the conclusions and inferences made upon the data will be mentionedusing the coded value assigned to each variable.

4.2 Exploratory Analysis
To understand how the data behaves it’s important to submit it to simpler statisticalanalysis, calculating basic descriptive statistics and interpreting them, in order to achieve
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a better understanding of the values present in each variable, the existing variations, pos-sible computation errors, and an overall understanding of all the data.The data is composed by 38 variables, denominated by X1 through X38, where nineof them are qualitative, and the remaining 29 are quantitative. Each variable is classifiedas shown on the following table,
Table 4.1: Variable classification.

Classification Variables

Qualitative

X1 (nominal)X2 (nominal)X3 (nominal)X4 (nominal)X21 (ordinal)X22 (ordinal)X24 (ordinal)X34 (ordinal)X38 (ordinal)
Quantitative (∈ R)

X5 to X20X23X25 to X33X35 to X37
To the present date there were 146 ETOs that were in conditions to be added to thedatabase, therefore that’s the number of observations used during the study.Like previously mentioned, the database has nine qualitative variables, where fourof those are just for identification purposes, and the remaining five are composed bydifferent levels of interest. All those variables, their levels and respective absolute andrelative frequencies are presented on the Table 4.2.
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Table 4.2: Absolute and relative frequencies of the qualitative variables.
Variables Levels Absolute Freq. Relative Freq. (×100%)

X21
1 57 39 %2 89 61 %

X22

1 6 4 %2 70 48 %3 49 34 %4 15 10 %5 6 4 %
X24

4 121 83 %5 9 6 %6 16 11 %
X34

1 117 80 %2 21 15 %3 8 5 %
X38

0 29 20 %1 117 80 %
Analyzing the values presented on the previous table it’s possible to see that regardingthe variable X22 the values are divided between five levels, and that most of the tires aredistributed between levels 2 and 3.When it comes to variable X24, roughly 83% of the tires assume the level 4 of thevariable, which is roughly eight times more than level 6, with 16 tires assuming that level.Similarly, the variable X34 has one level with considerably more observation than theremaining two, the first one, with 115 observations, corresponding to approximately 80%of the sample.Lastly, the variable X38 corresponds to the result of the tire, or in other words, if thetire passed the tests, assuming value 1 if that happened, and 0 otherwise. Hence, it’spossible to observe that 115 tires passed the tests, around 80% of the entire sample,while the remaining 29 tires failed, due to either width or diameter issues.Regarding the remaining variables in the database, they are quantitative, and 29 intotal. In Table 4.3 are presented some of the measures of location for these variables.
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Table 4.3: Summary statistics for quantitative variables.
Variables Min. 1st Quad. Median 3rd Quad. Max. Mean Std. DeviationX5 1092.0 1328.0 1554.0 1760.0 2060.0 1561.0 252.4X6 266.0 399.0 455.0 515.0 700.0 469.3 102.0X7 286.0 442.2 486.2 550.0 763.0 505.0 111.3X8 279.4 419.1 457.2 539.9 762.0 485.7 109.6X9 565.0 820.0 915.0 1190.0 1760.0 1007.0 290.5X10 39.0 46.0 50.0 54.0 63.0 50.2 4.9X11 632.0 738.0 788.0 990.0 1192.0 829.5 150.4X12 75.6 120.7 133.4 162.9 235.0 142.4 32.7X13 280.0 420.0 460.0 540.0 800.0 492.5 118.2X14 60.0 70.0 85.0 85.0 85.0 77.3 8.9X15 24.0 28.0 30.0 38.0 46.0 31.61 6.0X16 7.7 8.5 9.5 13.4 16.7 10.5 2.7X17 11.4 12.1 13.4 15.0 24.3 13.8 2.8X18 480.0 770.0 875.0 1022.5 1350.0 892.6 196.7X19 47.7 85.2 116.7 173.9 310.6 135.3 64.0X20 2.5 2.5 2.5 2.5 4.0 2.6 0.3X23 250.0 380.0 410.0 490.0 720.0 445.0 109.2X25 107.0 179.0 205.0 240.0 362.0 213.1 50.7X26 0.0 8.0 10.0 11.0 25.0 9.8 4.5X27 17.0 22.0 25.0 27.0 35.0 25.2 3.8X28 19.0 23.0 25.0 28.0 36.0 26.1 4.2X29 20.0 26.0 28.0 32.0 39.0 28.6 4.5X30 135.0 195.0 220.0 260.0 370.0 234.1 56.1X31 30.0 50.0 50.0 50.0 130.0 51.9 21.8X32 7.0 8.0 8.0 9.0 14.0 8.3 1.3X33 7.0 8.0 8.0 10.0 14.0 8.8 1.4X35 10.0 13.0 15.0 16.0 27.0 15.8 3.9X36 292.0 436.9 439.4 545.2 818.9 510.1 116.7X37 1088.0 1323.0 1569.0 1774.0 2101.0 1570.0 264.4

4.2.1 Correlation
Determining the correlation between all the variables provides an important insight inorder to understand how the data and the variables behave.The following matrix represents the correlations between all variables,
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Given the context of the data on which this manuscript is based upon, it was ex-pectable from the beginning to obtain such high values of correlation between all thevariables. Therefore, in order to analyze which ones are most correlated amongst eachother, the rest of the analysis is made assuming high correlation when the value is higherthan 0.9.As it’s possible to see there are several variables whose correlation is extremely high,close to 1. Like previously mentioned, this happens because some of the variables aresomewhat obtained through each other, or, in some other cases, because a change inthat specific variable implies a change on another one, in order to compensate the alter-ation made so that the tire doesn’t present construction problems.Analyzing all the correlations, and in particular the ones involving the response vari-ables we can see that when it comes to the dependent variable X36 there are severalvariables suggested to have an high correlation with this one.On the other hand, the other response variable, X37, presents fewer variables withcorrelation value above 0.9 when compared with the other dependent variable. It’s im-portant to point out that out of the five variables with correlation value superior to 0.9, thecorrelation between the response variable and the variable X5 is close to 1, suggestingthat this variable offers an almost complete explanation of the dependent variable.It’s also important to mention that the values of correlation obtained imply, and justify,the existence of multicollinearity on the data, as it was expected given the nature of saiddata.
4.2.2 Response variable X36

X36 is one of the response variables evaluated in this manuscript and, as previouslymentioned, it’s a quantitative variable regarding one of the dimensional results.The boxplots represented on the Figure 4.2 enable the possibility of establishing aconnection between X36 and the qualitative variables.
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Figure 4.2: Boxplots for the relation between the qualitative variables and X36.

It’s possible to observe that for the variable X21 the two existing levels present differ-ent median levels, and don’t indicate the existence of any outliers.For the variable X22, the tires with the value 2 and 3 have similar median results. It’salso clear the existence of two outliers, on levels 3 and 4, accordingly.Doing the same analysis for the variable X24 it’s clear that, unlike the previous case,all three levels have distinct medians. This variable, similarly to the latter, also suggeststhe presence of two outliers, but this time on the same level.Looking at the variable X34 it’s clear the existence of two major levels, the first two,and a third one with considerably less observations, as seen in Table 4.2. The last level,besides having an inferior number of observations also has the particularity of suggest-ing the existence of an outlier.Lastly, the boxplot for the variable X38 suggests very close levels for the medians ofthe two levels, and, once again, one of the levels shows signs of the existence of outliers,but on a larger quantity this time.
4.2.3 Response variable X37

The other response variable is X37, and, similarly to the other one, an analysis of theboxplots for the qualitative data is an important approach to understand the behaviourof those variables.
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Figure 4.3: Boxplots for the relation between the qualitative variables and X37.

Unlike the other response variable, forX37 only the variableX38 shows signs of havingequal medians for both levels, while the other variables don’t suggest that scenario forany of their levels.Another aspect that it’s important to point out is that, on this case, the total numberof outliers suggested is just two, being distributed each on the third level of the variables
X24 and X34, accordingly.

4.3 Modeling of the variable X36

In order to be able to make predictions for the outcomes of both the response vari-ables the data had to be fitted to two models (one for each variable) obtained using linearregression.In this case, the results presented in this sub-chapter are related to the variable X36.The expected outcome of the regression would be a model with the following appear-ance,
X36 = β0 + β1X5 + ...+ β36X35 (4.1)

where only the first four variables of the database are omitted given the fact that theydon’t provide any important information when it comes to explaining the outcome of thedependent variable.
30



The Table 4.6 represents the estimated coefficients of β for the complete model,
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Table 4.4: Coefficients for the complete model of the variable X36.
Variables Level Coefficient (β̂i) p-valueIntercept — −22.57 0.14X5 — 0.05 0.04 *X6 — 0.01 0.99X7 — 0.30 ≈ 0.00 *X8 — −0.07 ≈ 0.00 *X9 — 0.04 0.02 *X10 — 0.09 0.74X11 — 0.27 0.14X12 — 0.09 0.40X13 — 0.04 0.66X14 — −0.21 0.13X15 — −8.13 0.09X16 — −1.45 ≈ 0.00 *X17 — 0.12 0.72X18 — 0.16 ≈ 0.00 *X19 — −0.06 0.06X20 — 4.17 0.01 *X21 2 −3.03 ≈ 0.00 *
X22

2 −4.06 0.01 *3 −7.98 ≈ 0.00 *4 −14.33 ≈ 0.00 *5 −21.09 ≈ 0.00 *X23 — 0.01 0.88
X24

5 1.96 0.146 8.84 ≈ 0.00 *X25 — 0.01 0.99X26 — 0.29 ≈ 0.00 *X27 — −0.01 0.96X28 — 0.43 0.01 *X29 — 0.29 0.01 *X30 — 0.03 0.57X31 — −0.02 0.48X32 — 1.42 0.01 *X33 — −0.75 0.03 *
X34

2 −0.10 0.933 9.73 0.13X35 — 9.38 ≈ 0.00 *
∗ < 0.05 R2 ≈ 0.99 R2

a ≈ 0.99
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In order to obtain the best possible model, and therefore, reduce its error and numberof variables included maintaining only the important ones several methods were applied,with the final objective of choosing the one that provides the best outcome.With this goal in mind, in order to minimize the number of variables used in the model,the method applied was the backward method, with two variants, one of them using AIC,and the other one using the likelihood ratio’s test. After that the choice fell upon the modelwith the best combination for the value of AIC and the number of parameters. The resultsare presented in the Table 4.5,
Table 4.5: Descriptive table of the models obtained through different methods for X36.

Method Parameters AICComplete 36 652.29AIC 29 639.18LRT 21 640.77
Analyzing the results presented in the previous table it’s possible to observe that bothmodels present an almost equal value of AIC, however, the model obtained through thelikelihood ratio test displayed eight less variables when compared to the other model.Upon analyzing all the data and both the models obtained the next step would be todecide which one of the two models would be used for further analysis and predictionpurposes. The decision ended up falling upon the model obtained through the AIC, giventhat it’s the one that has a lower value of AIC, and, even though it presents more variables(less simple), those extra variables could provide important information and would givethe opportunity to observe how its variation affects the outcome of the response variableon the predictions.The model’s equation is then given by,

X36 =β0 + β1 ·X5 + β2 ·X7 + β3 ·X8 + β4 ·X9 + β5 ·X10

+ β6 ·X11 + β7 ·X12 + β8 ·X13 + β9 ·X14 + β10 ·X15

+ β11 ·X16 + β12 ·X18 + β13 ·X19 + β14 ·X20 + β15 · If(X21 = 2)
+ β16 · If(X22 = 2) + β17 · If(X22 = 3) + β18 · If(X22 = 4)
+ β19 · If(X22 = 5) + β20 · If(X24 = 5) + β21 · If(X24 = 6)
+ β22 ·X26 + β23 ·X28 + β24 ·X29 + β25 ·X31 + β26 ·X32

+ β27 ·X33 + β28 · If(X34 = 2) + β29 · If(X34 = 3) + β30 ·X35

(4.2)

where the estimates for the βi coefficients are presented 4.6.
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Table 4.6: Coefficients for the adjusted model of the variable X36.
Variables Level Coefficient (β̂i) p-valueIntercept — −17.39 0.19X5 — 0.05 0.01 *X7 — 0.30 ≈ 0.00 *X8 — −0.07 ≈ 0.00 *X9 — 0.04 0.02 *X11 — 0.28 0.10X12 — 0.12 0.17X13 — 0.08 0.09X14 — −0.24 0.06X15 — −8.41 0.05X16 — −1.40 ≈ 0.00 *X18 — 0.15 ≈ 0.00 *X19 — −0.06 0.04 *X20 — 3.98 0.01 *X21 2 −3.04 ≈ 0.00 *
X22

2 −4.00 ≈ 0.00 *3 −7.98 ≈ 0.00 *4 −14.51 ≈ 0.00 *5 −21.14 ≈ 0.00 *
X24

5 1.98 0.106 8.69 ≈ 0.00 *X26 — 0.30 ≈ 0.00 *X28 — 0.41 ≈ 0.00 *X29 — 0.25 0.01 *X31 — −0.02 0.17X32 — 1.54 ≈ 0.00 *X33 — −0.76 0.02 *
X34

2 −0.02 0.983 8.77 0.04 *X35 — 9.35 ≈ 0.00 *
∗ < 0.05 R2 ≈ 0.99 R2

a ≈ 0.99

Observing the values obtained it was possible to cross reference those with the exis-tent knowledge, and understand if they made sense.Some of the variables that were considered significant by the model and that corre-sponded to the already known facts were, X18, X22, X24 and X35.However, some other variables that were considered significant came as a surprise,since they were being overlooked. The two most relevant ones among this group are X7and X16.When it comes to X7 it came as a surprise that this variable was responsible for de-termining a substantial part of the final dimension of the tire represented by the responsevariable X36.Just likeX7,X16 was also a surprising result, so much so that there was a need to test
34



it. For that, two sets of tires were built, with the same size, mold and overall specification,where the only difference between them was the value of the variable X16. The resultsobtained confirmed that, in fact, X16 affected the final dimension of the tire, however, itwas also possible to observe that the coefficient obtained for this variable was slightlyhigher than what the real result came to be.

4.4 Modeling of the variable X37

Equally to the variableX36, the same methodologies were applied for the modeling ofthe variable X37.Once again were applied the same two methods in order to obtain the best possiblemodel, with the results presented in Table 4.7.
Table 4.7: Descriptive table of the models obtained through different methods for X37.

Method Parameters AICComplete 36 767.85AIC 21 748.54LRT 15 750.44
Just like for X36, the choice for the best adjustment for this variable falls upon themodel obtained through AIC, even though it has more parameters than the model ob-tained by applying the likelihood ratio test.The equation for the adjusted model is then given by,

X37 =− 15.86 + 0.87 ·X5 + 1.03 ·X10 + 1.22 ·X11 + 0.11 ·X12

− 0.22 ·X14 − 26.85 ·X15 + 1.92 ·X16 − 0.88 ·X17

+ 0.10 ·X18 + 0.19 ·X19 − 0.16 ·X23 − 9.35 · If(X24 = 5)
− 19.25 · If(X24 = 6) + 0.08 ·X25 − 0.49 ·X26 − 1.21 ·X29

+ 0.07 ·X31 − 1.93 ·X32 + 0.68 ·X33 + 23.06 · If(X34 = 2)
+ 54.92 · If(X34 = 3)

(4.3)

Upon analyzing the variables considered significant on the model, it was possible tounderstand that the variablesX5 andX34 were the ones with an increased importance inthe determination of the final dimension of the tire represented by this response variable.Furthermore, a consequent study upon the relation/correlation of these two variableslead to a quite important conclusion. The value assumed by the variableX5 is determinedthrough a relation with another parameter, which varies for different sizes of tires. Thiswas thought to be the only variation parameter for that value, however, further analysisdetermined that, the value presented by the variable X34 also influences the final valuefor the variable X5, meaning that, taking into consideration the the factor of X34, X5 canbe different for tires of the same size. This relation was previously unknown, and actuallyexplained quite a few of the unexpected results obtained until then.
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4.5 Residual Analysis
In order to evaluate the quality of adjustment of the model obtained there’s the need toperform a residual analysis. This analysis aims at identifying the difference between theobserved values and the fitted values obtained, where disparity between this differencecan result in a bad adjustment of the observations. Another goal is to ascertain about theexistence of isolated deviations of the model, in other words, the existence of one or moreobservations that don’t follow the same pattern as the remaining. These observationscan be: outliers, leverage points and influence points.The following six graphics allow the evaluation of the normality of the residuals, theinfluential observations and how the residuals behave according to the fitted values forboth the response variables.

Figure 4.4: Left: Fitted values vs residuals; Center: Normality QQ-Plot; Right: Influential observations by Cook’s distance.
Analyzing the left graphic for both of the variables it’s possible to see that most of theresidual values are within a range of 4 mm for the variable X36, and 5 mm for X37, withsome exceptions, called outliers. These outliers correspond to the observations 6, 119,131 and 132 for the first variable, and 65 and 95 for the second one. Upon analysis ofthese observations it doesn’t seem to be a computation or human error, therefore can’tbe considered “wrong”. Further along will be studied the case where these observationsare removed from the data.The center graphic is a normal QQ-plot, whose purpose is to indicate whether theresiduals follow a Gaussian distribution, in other words, if the assumption of normality

36



is verified. Upon analysis of the graphic it seems to suggest that the residuals do infact verify the assumption. As previously done for the variables, utilizing Lilliefor’s testfor normality it was possible to obtain a p-value for the hypothesis test of normality ofresiduals (H0: the errors follow a normal distribution) obtaining a value of 0.35 for X36and 0.14 forX37, hence, not rejecting the null hypothesis for either of them and confirmingthe normality of residuals suggested by the graphical analysis.Another possibility for the graphical analysis of normality is through the histogramfor both the variables and the respective density lines, with the objective of evaluating itsshape. Hence it was possible to obtain the following histograms,

Figure 4.5: Histogram of residuals for both response variables.

Lastly, the third graphic of Figure 4.4 allows the identification of the influential ob-servations calculated with the Cook’s distance. As it’s possible to see there seem to bequite a few observations classified as such (points above the red line), especially for thevariable X36. The next two plots show in detail those influential observations, as well astheir index.
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Figure 4.6: Cook’s distance plot for both response variables.

Both the model’s leverage points are given by the next two plots,
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Figure 4.7: Leverage points for both the response variables.

Pregibon [13] suggests the utilization of elements of the diagonal of the H matrix andthe analysis of the points that stand out in order to identify the leverage points. Some au-thors [5] suggest a practical rule in order to identify such observations: values that verify
hii ≥ 2n

p
. On Figure 4.7 the leverage points reveal the influence of the observation on itspredicted value. Through the graphical inspection it’s possible to verify that X36 displaysonly seven points above the dotted line, that can be considered influential observations.On the other hand, X37 displays quite a few more observations in that condition, 11 ofthem to be more precise.In order to analyze the deviation of the residuals were obtained the plots shown onFigure 4.8.
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Figure 4.8: Residual deviation for both the response variables.

It’s possible to observe that regarding the variable X36 only two observations have adeviation bigger than 5 mm (with a couple more marginal observations), which can beconsidered quite acceptable.On the other hand, the graphic for the variable X37 shows evidence of considerablymore observations with a deviation superior to 5 mm (absolute value), around nine ob-servations with a couple more marginal ones.When it comes to the outliers present in the residual values they are represented inthe following two boxplots, for each response variable.
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Figure 4.9: Residual outliers for both the response variables.

As is observable on the previous boxplot, the variable X36 presents four outliers, cor-responding to the observations 6, 119, 131 and 132. On the other hand, the variable X37shows evidence of the existence of only two outliers, corresponding to the observations65 and 95. Even though the second variable has less outliers, their distance to the aver-age residual value is great than any of the outliers of the variable X36.
4.6 Models’ Validation

One important aspect to test after obtaining any kind of modeling is testing it withdata not included in the database. In this particular case, the important aspect to testwould be the quality of the predictions obtained with the model for new values not in-cluded in the data. Given the lack of data, this was only possible to do for five differentdata entries presented 4.8,
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Table 4.8: Prediction for entries not included in the data.
Entry Real Value (X36) Real Value (X37) Prediction (X36) Prediction (X37)A 495.00 1953.80 496.10 1952.10B 485.90 1769.20 486.60 1770.30C 358.90 1191.40 355.30 1189.10D 353.70 1194.00 351.40 1190.20E 488.80 1421.30 489.60 1421.20

Analyzing the values obtained it’s possible to see that the biggest difference betweenthe real value and the value obtained through the prediction using the model is on theentry C for the variable X36, with approximately 3.6 mm of difference. When it comes tothe variable X37 the entry with the biggest difference between values is D, with around3.8 mm of difference, almost the same as the maximum error obtained for X36.Thus, it’s clear that the outputs given by the adjusted model are within an acceptableerror range from the real values, providing very important information and facilitating thecomprehension of how certain changes on the variables affect the final expected result.The ideal approach, in order to test the quality of the model, would be to split the datainto two different sets: test and train data (30% and 70%, for example) and perform allthe analysis on the train data and further along, in order to validate the results obtained,test them on the test data, and draw conclusions from the values obtained. However,given the reduced size of data used for this study, and also some particularities presenton it, this approach was not viable in this situation.

4.7 Modeling without outliers
It’s advisable not to remove outliers unless there’s certainty that they are input er-rors or measurement errors, which is not the case in the data treated in this manuscript.However, in order to understand the influence of these observations on the results, theywere removed and all the analysis were remade and compared to the results previouslyobtained.The observations removed in order to realize this analysis were the ones mentionedas outliers on the section 4.5 (6, 65, 95, 119, 131 and 132).In order to obtain the best possible model for the data, this time without the outliers,were used the same approaches as before (stepwise and backward using the LRT).

Table 4.9: Descriptive table of the models obtained through different methods for X36 and X37 (without outliers).
Variable Method Parameters AIC

X36

Complete 36 597.03AIC 27 585.70LRT 25 588.45
X37

Complete 36 725.85AIC 28 715.23LRT 26 715.03
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By analyzing the values obtained it’s possible to see that, regarding the variable X36,the choice of the model falls upon the one obtained through the AIC method, even thoughthe one resulting from the LRT method presents less variables. This choice was madegiven the fact that, just as before, even though the second model has less variables, theycan be important to explain the behaviour of the response variable, adding to the factthat the AIC value for the first model is lower.Regarding the variable X37 the choice is the same, and the reasons are similar. Eventhough the values of AIC for both the models are almost the same, the two extra variablespresent in the model obtained through the AIC method can be important, like previouslymentioned.With the choice being made the resulting models for X36 and X37 are then presentedin Table 4.10 and Table 4.11,
Table 4.10: Coefficients for the adjusted model of the variable X36 (without outliers).

Variables Level Coefficient (β̂i) p-valueIntercept — −28.31 ≈ 0.00 *X5 — 0.06 ≈ 0.00 *X7 — 0.28 ≈ 0.00 *X8 — −0.07 ≈ 0.00 *X9 — 0.06 ≈ 0.00 *X11 — 0.24 0.11X14 — −0.13 0.06X15 — −7.34 0.05X16 — −1.45 ≈ 0.00 *X18 — 0.17 ≈ 0.00 *X19 — −0.07 ≈ 0.00 *X20 — 4.60 ≈ 0.00 *X21 2 −3.37 ≈ 0.00 *
X22

2 −5.80 ≈ 0.00 *3 −9.74 ≈ 0.00 *4 −16.56 ≈ 0.00 *5 −23.03 ≈ 0.00 *X23 — 0.06 0.05
X24

5 1.23 0.266 8.58 ≈ 0.00 *X26 — 0.27 ≈ 0.00 *X28 — 0.42 ≈ 0.00 *X29 — 0.27 ≈ 0.00 *X32 — 1.49 ≈ 0.00 *X33 — −0.67 0.01 *
X34

2 0.19 0.853 7.47 0.01 *X35 — 9.23 ≈ 0.00 *
∗ < 0.05 R2 ≈ 0.99 R2

a ≈ 0.99
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Table 4.11: Coefficients for the adjusted model of the variable X37 (without outliers).
Variables Level Coefficient (β̂i) p-valueIntercept — −10.64 0.49X5 — 0.88 ≈ 0.00 *X6 — 0.10 ≈ 0.03 *X10 — 0.73 0.01 *X11 — 1.25 ≈ 0.00 *X12 — 0.18 0.01 *X14 — −0.38 0.01 *X15 — −28.00 ≈ 0.00 *X16 — 1.65 ≈ 0.00 *X18 — 0.09 ≈ 0.00 *X19 — 0.17 ≈ 0.00 *X21 2 −1.33 0.07
X22

2 −3.18 0.073 −4.94 0.01 *4 −4.59 0.125 −3.90 0.36X23 — −0.19 ≈ 0.00 *
X24

5 −9.68 ≈ 0.00 *6 −18.97 ≈ 0.00 *X25 — 0.07 0.06X26 — −0.45 ≈ 0.00 *X28 — 0.27 0.14X29 — −1.34 ≈ 0.00 *X30 — −0.15 0.01 *X31 — 0.07 0.05X32 — −1.43 0.02 *X33 — 0.59 0.14 *
X34

2 23.39 ≈ 0.00 *3 48.40 ≈ 0.00 *
∗ < 0.05 R2 ≈ 0.99 R2

a ≈ 0.99

4.7.1 Residual Analysis
Just like for the previously obtained models the new ones ask for an analysis in orderto evaluate the overall results and quality of adjustment. So, just like before, the next sixgraphics are an important asset for the understanding of the results obtained for boththe response variables, this time without the outliers.
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Figure 4.10: Left: Fitted values vs residuals; Center: Normality QQ-Plot; Right: Influential observations by Cook’s distance (for modelswithout outliers).

Analyzing both the left most graphics it’s possible to observe that this time aroundall the observations are within a range of 4 mm when it comes to the variable X36, unlikebefore. However, regarding the variableX37 it’s observable that some of the fitted valuespresent a distance superior to 6 mm from the observed values, even superior than theones previously obtained on the models with the outliers.The plots on the center represent the normal QQ-plots to assert the hypothesis ofnormality of the residuals of both the response variables. Observing the graphic corre-sponding to the response variable X36 it’s possible to conclude that the residuals seemto follow a Gaussian distribution, confirmed by Lilliefor’s test for normality, with a valueof 0.91, not rejecting the null hypothesis of normality of residuals. Similarly, for the vari-able X37, the graphical analysis also suggests some kind of normality of the residuals,that is once again confirmed by the Lilliefor’s test, with a value of 0.1. Once again, thegraphical analysis of normality can also be done through the following histograms forboth variables.
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Figure 4.11: Histogram of residuals for both response variables (without outliers).

Lastly, the right most plots refer to the influential observations obtained through Cook’sdistance, and it’s possible to observe that there are still quite a few of these observationson both response variables, where the variable X36 is clearly the one that evidences thepresence of these observations in a larger quantity.In conclusion, the models obtained by removing the outlier observations exhibit, over-all, better results, with an inferior error compared to the previous models, even thoughthe maximum value for the residuals is higher when compared to the previous one.
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4.8 Modeling of the variable X38

The variable X38 is qualitative with two levels, 0 and 1, and, as previously mentioned,it classifies if a tire passed or failed the test to which it was subject. If the tire passed thetest, this variable assumes the value 1, and 0 otherwise. As shown 4.2, out of the 144tires studied in this database, 115 of them passed the test, and the remaining 29 failed.Given the nature of this variable, the most advisable methodology to apply in this caseis the logistic regression.The variables used for the modeling of this variable are all the previously used, remov-ing the ones used as response variables for the linear regressionX36 andX37. Therefore,some of the exploratory analysis of these variables can be consulted on the section 4.2.The quantitative variables were subject to the two-sample Wilcoxon-Mann-Whitneytest, in order to test if the median points are equal on both samples (H0 : ηi = ηj).In order to evaluate this hypothesis for all the quantitative variables were obtained thefollowing set of plots.

Figure 4.12: Histograms and boxplots for the quantitative variables and p-values for the Wilcoxon-Mann-Whitney two-sample test.
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Figure 4.13: Histograms and boxplots for the quantitative variables and p-values for the Wilcoxon-Mann-Whitney two-sample test.

The results of the Wilcoxon-Mann-Whitney two-sample test referenced in the previousplots are presented in the following table in a more descriptive manner [23].
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Table 4.12: Results of Wilcoxon-Mann-Whitney two-sample test.
Variables p-value DecisionX5 0.13 H0X6 0.54 H0X7 0.77 H0X8 0.55 H0X9 0.92 H0X10 0.24 H0X11 0.73 H0X12 0.12 H0X13 0.90 H0X14 0.01 H1 *X15 0.83 H0X16 0.50 H0X17 0.76 H0X18 0.16 H0X19 0.57 H0X20 0.91 H0X23 0.88 H0X25 0.31 H0X26 0.51 H0X27 0.12 H0X28 0.15 H0X29 0.03 H1 *X30 0.72 H0X31 0.02 H1 *X32 0.94 H0X33 0.46 H0X35 0.58 H0
∗ < 0.05

Upon analyzing the p-values obtained for all the variables, the null hypothesis was re-jected on three different occasions, or more precisely, for three different variables, being
X14,X29 andX31. Therefore, it’s possible to conclude that there’s statistical evidence thatfor those three variables the median points on both samples are not the same. The sameconclusion can be obtained by performing a graphical analysis upon the plots presentedon the Figure 4.13.
4.8.1 Variable selection

Just like previously studied, in order to obtain the best possible model for the re-sponse variable several methods were used to minimize the number of variables, main-taining only those considered to be important in explaining the dependent variable.In this section three methods were used, two of which were already mentioned andused on the chapter regarding the linear regression, being the stepwise and backward.
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The third one is a new method not used so far in this manuscript, the Hosmer andLemeshow method for variable selection.In order to find the best possible fitted model for the response variable besides usingthese three different methods for variable selection were also used two different linkfunctions, the logit and the probit.Firstly, all the models were calculated for both of the link functions using the threedifferent methods previously mentioned, and then all of them were compared in order todetermine which one was the right choice, ending with one model for each link function.
Table 4.13: Comparison of models obtained through the methods: Backward, Forward, Stepwise and Hosmer-Lemeshow.

Link Function Method p1 p-value

Logit

Stepwise 27 ≈ 0.00Backward 16Hosmer-Lemeshow 7 ≈ 0.01Backward 16

Probit

Stepwise 25 ≈ 0.00Backward 11Hosmer-Lemeshow 7 ≈ 0.00Backward 11
p1 - number of parameters;

Looking at the results presented on the table, obtained through the likelihood ratiotest, using a Chi-Squared distribution, it’s possible to see that for both link functions, thechoice fell upon the model obtained through the backward selection method. This choicewas made because, when compared to the stepwise models, this one displays consid-erably less variables. When comparing it to the models obtained through the Hosmer-Lemeshow method it’s possible to see that the latter presents less variables, however, thevariables that were removed are considered to be important to the study, therefore thechoice fell once again upon the model obtained through the backward selection method.The coefficients obtained for each model are then presented in Table ??.
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Table 4.14: Coefficients for the chosen adjusted models using the logit and probit link functions.
Variables Level Model 1 (Logit) Model 2 (Probit)Slope — 28.07 35.86X5 — 0.12 * —X6 — — −0.11 *X8 — — 0.08 *X9 — 0.08 * —X11 — −0.13 * —X12 — −0.33 * —X14 — — −0.31 *X18 — −0.14 * —X19 — 0.19 * 0.05 *
X22

2 −12.39 —3 −9.99 —4 −16.72 —5 −2.94 —X25 — — −0.20 *X28 — −0.66 * —X29 — −0.60 * —X30 — — −0.19 *X32 — — −0.82 *X33 — 1.12 * 1.02 *
X34

2 −8.30 * −2.56 *3 −27.52 −1.21
∗ < 0.05

The next step is to naturally define which of the two could be considered the “best”model, using once again Akaike’s information criterion to compare both of them.
Table 4.15: AIC value for the models using logit and probit functions.

Model AICModel 1 (Logit) 91.90Model 2 (Probit) 89.78
Analyzing the values in Table 4.15 the model using the probit link functions displaysa slightly inferior value of AIC when compared to the one resultant from using the logitfunction. However, since the values are not so different, the choice of “best” model wasmade not only considering the AIC value but also the interpretability of the coefficientsobtained. Therefore, with that in mind, the model chosen and to be considered from thispoint forward is the one obtained using the logit link function.

4.8.2 Goodness-of-fit
Similarly to the linear regression the model obtained calls for an analysis in order toascertain its quality of adjustment and validity. In order to do that various metrics were
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calculated, and will be discussed next.Even though the model chosen was the one obtained through the utilization of the
logit link function, the next metrics were calculated for both the models, in order to un-derstand their behaviour and differences, and confirm the choice made.
ROC Curve

With the objective of studying the quality of adjustment of the models obtained oneof the metrics oftenly used is the area under the ROC curve. The goal is to obtain a valueof AUC as close to 1 as possible, translating into an outstanding discriminating power bythe model.The plots shown in Figure 4.14 represent the ROC curves obtained for both models.

Figure 4.14: Area under the ROC curve for both models.

Just by analyzing the shape of the curves obtained for each model it’s possible toobserve that the curve corresponding to the logit model appears to be slightly higherthan the one corresponding to the probit model, meaning that the value of the area un-der the curve will be consequently higher, and, therefore, the discriminative power of therespective model will be better than the other option.Analyzing the curves value-wise, the area under the curve for the logit model is of0.96, while the one for the probit model is 0.95, which means that while the values areextremely close, the logit model presents a slightly better outcome, confirming the con-clusion drawn by the graphical analysis.
Prediction Error

Another way to evaluate the goodness-of-fit of the models is to analyze its predictionerror. The determination of this prediction error is usually made utilizing a cut-off point
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of 0.5, however, for this analysis, with the objective of obtaining a broader spectrum ofresults, the prediction error was calculated with various cut-off points, ranging from 0 to1, in steps of 0.2 units.The results obtained are presented in the Figure 4.15.

Figure 4.15: Prediction error with various cut-off points for both models.

Analyzing the plot it’s clear that the model corresponding to the logit link functionpresents a clearly superior prediction error at most cut-off points, being lower than theprediction error of the probit model only when the cut-off point is superior to approxi-mately 0.78. Therefore, looking just at these results, the logit model was also the rightchoice between the two options.The side by side comparison of both models for these two metrics is then given bythe Figure 4.16.
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Figure 4.16: Side by side comparison of prediction error and area under the ROC curve for both models.

Hence, just by analyzing these two metrics it’s possible to conclude that the choiceof selecting the logit model as the “best” one was the correct one, being confirmed byboth the area under ROC curve values and the prediction error values.In order to calculate the prediction error was also necessary to calculate the speci-ficity and sensitivity of the models, or in other words, the correct identification of truenegatives and true positives, accordingly.
Table 4.16: Specificity, sensitivity and prediction error for both models.

Model 1 (Logit) Model 2 (Probit)Specificity 0.16 0.15Sensitivity 0.97 0.95Prediction Error 0.92 0.90
Once again, analyzing the values presented in the Table 4.18 it’s clear that the logitmodel can be considered as the model that offers a better goodness-of-fit, when com-pared to its alternative.

Brier’s score

A third valid option to evaluate the quality of adjustment of a model is through theBrier’s score. As mentioned before, the lowest the value of the score the better is the ac-curacy of the model, therefore, the model with the lowest score is the one that representsa better goodness-of-fit.
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The values of Brier’s score obtained for the logit and probit models are, accordingly,1.06 and 1.08. Hence, once again, the logit model is the one that can be considered tohave a best fit to the data.
The set of plots shown in Figure 4.17 are a visual representation of the estimatedprobabilities for the observations that were correctly and wrongfully classified by themodel.

Figure 4.17: Top: Estimated probabilities for the observations classified correctly; Bottom: Estimated probabilities for the observationswrongfully classified.

With the top graphics the objective is to have as many observations as possible closeto the value of probability 1 or 0 (the extremes), meaning that the degree of certainty thatthe observation was correctly classified was high, and the exact same for the opposite.It’s possible to see that this happens in both graphics, all the values are mostly concen-trated between 0.8 and 1, which indicates a good result.
On the other hand, for the observations that were wrongly classified the objective is tohave the observations concentrated near the middle of the graphic, on the cut-off point0.5, so that the result indicates uncertainty. However, on both the graphics this is not thecase, given that although some of the values are near 0.5 some others are close to 0,which doesn’t represent a good result.
Still, upon analyzing each pair of graphics for both the models, it’s clear once againthat the best choice is the one using the logit link function, given the reasons previouslymentioned.
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Hosmer-Lemeshow test

Given the fact that the models have 16 (logit) and 11 (probit) parameters, the numberof groups used to calculate the Hosmer-Lemeshow statistic was 17, following the criteriaproposed by the developers of the test, and previously mentioned. However, in order tounderstand what values this statistic would present, it was calculated for some othernumber of groups, as shown in Table ??.
Table 4.17: Results of the Hosmer-Lemeshow test for different number of groups for both models.

Link Function Groups p-value

Logit

10 2.63× 10−1

11 9.31× 10−6 *12 4.36× 10−1

13 3.23× 10−3 *14 5.03× 10−1

15 1.14× 10−2 *16 4.53× 10−7 *17 9.31× 10−2

18 4.13× 10−6 *19 7.65× 10−2

20 2.63× 10−6 *

Probit

10 5.97× 10−1

11 9.80× 10−1

12 9.98× 10−1

13 9.99× 10−1

14 9.98× 10−1

15 9.20× 10−1

16 7.23× 10−1

17 9.65× 10−1

18 9.97× 10−1

19 9.99× 10−1

20 9.58× 10−1

∗ < 0.05

Looking at the values on the table, it’s clear that, when it comes to the probit model,there isn’t statistical evidence to reject the null hypothesis that the model is well adjustedto the data, considering any number of groups.On the other hand, when it comes to the logit model, there are some number of groupsthat reject that hypothesis, namely, 11, 13, 15, 16, 18 and 20. However, for the number ofgroups considered (17) given the number of variables, the null hypothesis wasn’t rejected,therefore there’s statistical evidence that the model is well adjusted to the data.
Pseudo R2 (McFadden & Cox-Snell)

Two other metrics to evaluate the quality of adjustment of the models are the pseudo
R2 coefficients, particularly the McFadden and the Cox-Snell coefficients. The values for
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these two coefficients, as mentioned before, are considerably lower than the usual R2

obtained in OLS, therefore a lower value is to be expected.
Table 4.18: Pseudo R2 coefficients for both models.

Model 1 (Logit) Model 2 (Probit)McFadden 0.59 0.53Cox-Snell 0.44 0.41
As it was expected the values obtained are considerably lower when compared to theusual R2, being 0.59, 0.53 and 0.44, 0.41, for McFadden and Cox-Snell, accordingly.Although the values obtained are lower than the usualR2, in theory, in order to indicatea good fit the values should be slightly lower, between 0.2 and 0.4. However, the result isacceptable and it’s possible to infer that the quality of adjustment is acceptable.

Overall

After analyzing all the quality of adjustment tests and metrics and their results it’spossible to conclude that, overall, the quality of adjustment of both the models is accept-able, having obtained similar values in most of the tests and statistics.Hence, given that information, it’s possible to conclude that choosing the model ob-tained through the logit link function was justified and correct.
4.8.3 Residual Analysis

Just like in the linear regression, the logistic one also calls for a residual analysis inorder to understand the results obtained and the “behaviour” of the observations.
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Figure 4.18: Left: Fitted values vs deviation (outliers); Center: Leverage points; Right: Influential observations.

Analyzing the left plot of the Figure 4.18, it’s possible to observe the presence of twooutliers, corresponding to the observations 41 and 130, while the remaining values arewithin the expected ranges.When it comes to the middle plot, it’s observable the existence of quite a few leveragepoints, utilizing the same criteria previously used on the residual analysis for the linearregression models.Lastly, the third plot of the Figure 4.18 represents the influential observations, and it’sobservable that there are 14 observations that can be classified as such.When it comes to the normality of the residuals, utilizing the Lilliefor’s normality test,the p-value indicates that the normality is not verified (p− value < 2.2× 10−16).
4.8.4 Interpretation of the coefficients

The estimated model allows for the interpretation the chance of a tire passing thedimensional tests when compared to another tire with different features.The estimated odds ratio associated to the different tires, according to each variable,are presented in the Table 4.19.
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Table 4.19: Estimated odds ratio for each variable.
Variables Level Odds RatioSlope — 1.55×1012

X5 — 1.13X9 — 1.08X11 — 0.88X12 — 0.72X18 — 0.87X19 — 1.21
X22

2 ≈ 0.003 ≈ 0.004 ≈ 0.005 0.05X28 — 0.52X29 — 0.55X33 — 3.07
X34

2 ≈ 0.003 ≈ 0.00
Next it’s done the interpretation of the average impact of the isolated variation of thefeatures that describe a tire when it comes to its chance of passing the tests. Therefore,from now on, it’s made the assumption that when comparing two tires they possess thesame technical features regarding the variables contemplated in the model, except forthe variable being analyzed.Analyzing just the variable X5 it’s possible to conclude that an unitary increase in itsvalue increases the average chance of a tire passing by approximately 13%. Similarly, thethought process can be applied to the variable X9, where a positive unitary change willincrease the average chance of a tire passing by approximately 8%.On the other hand, upon looking at the variables X11, X12 and X18 it’s possible to seethat the same unitary increase will have the opposite effect on the average chance of atire passing, meaning that, said chance will decrease approximately 12%, 28% and 13%,accordingly.The variable X19, similarly to the first two previously mentioned, presents an averagechance roughly 21% higher for every unitary increase.Regarding the variable X22, a tire with value within the level 5 has an average chanceof passing the tests approximately 95% lower when compared to tires with the other 4levels.Similarly to the variablesX11, X12 andX18, the variablesX28 andX29 have an averagechance approximately 48 and 45% lower for each unitary increase on the variable.Lastly, with the variable X33, an unitary increase will make the chances of the tirepassing approximately 3 times higher.
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5 Shiny Application

Shiny is an R package that makes it easy to build interactive web apps straight from R.This method combines the computational power of R with the interactivity of the modernweb.The Shiny package comes with eleven built-in examples that demonstrate how Shinyworks, so that even beginners can pick it up easily and understand the concept behindthe package.To put it simply, a Shiny application is simply a directory containing an R script called
app.R, which is made up of a user interface object and a server function. This foldercan also contain any additional data, scripts, or other resources required to support theapplication.As previously mentioned, the application is divided into two different components,the interface object and the server function.The interface object is the bit of code that is going to define how the application isgoing to look like, as well as what inputs it’s going to require from the user in order toaccomplish a certain task.On the other hand, the server function is responsible for the “calculations” that theapplication is going to do. In other words, it’s the segment of code that decides how theinputs introduced by the user are going to be utilized, and also how the result is going tobe presented as an output (as a table, plot, etc.), keeping in mind that the aesthetics of theoutputs are controlled by the interface object, just like the overall look of the application.After the application is completed there are several ways to make it possible for out-side users to utilize the application.One of them is to host the application on the R public servers, for example, making itavailable to use right away.Further along this manuscript will be mentioned some of the features available onthis kind of application, and which ones were implemented.
Interface

The overall interface of the application is as shown on Figure 5.1.On the top side of the application there are seven tabs, each with its own purpose. Thefirst two represent two possible simulation results, each with its own tab. The next three,named database 1 through 3, like the name hints, are three distinct databases regardingtest results for all the ETOs available up until the date, this for three different tests. Finally,
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the last two tabs represent two databases created to store the input data introduced fora certain simulation and its corresponding result.

Figure 5.1: Main interface of the application.

Inputs

The application requires 35 inputs, two of them just for identification purposes andthe remaining 33 in order to calculate the prediction. After filling in all the values requiredthere are three options, as shown on Figure 5.2. The first option, “Test”, calculates thevalue of the prediction. This action requires all the empty camps to be filled.After having decided upon all the values of inputs, the second option allows to savethem and the prediction results in a new database, consisting in one of the tabs previ-ously mentioned.Lastly, the third option allows the user to save the prediction result as a PDF file.
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Figure 5.2: Left: sidebar options; Right: input camps examples and action options.

Prediction

After filling all the input camps and testing for the result the display is then given asshown on the Figure 5.3.

Figure 5.3: Left: sidebar options; Right: input camps examples and action options.

The first three values presented as “NA” are used for labelling, and therefore aren’tcorrectly filled in this example.The next value is the result for the simulation of one of the response variables, fol-lowed by the maximum allowed for that specific tire. The same happens for next twovalues, but now regarding the other response variable.The next two columns represent the evaluation of the results obtained. Here is madea comparison between the prediction result and the maximum allowed, where the value
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on this collumn is displayed as “PASSED” if the result is lower than the maximum and“FAILED” otherwise.The last collumn is an overall evaluation, displaying “PASSED” if both the predictionsare lower than the maximums presented, and “FAILED” otherwise.
Data storage

Other two options available on the application are to store the input data and theresults obtained, as well as access to databases from the existing ETOs, as shown onFigure 5.4.

Figure 5.4: Left: Databases tab; Right: input and results storage tab.

The databases are representative of the different tests realized by the tires so far,while the “Prediction Data” tab, like the name suggests, corresponds to the storage of allthe data regarding the inputs and the corresponding results.
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6 Conclusions and Future Research

Conclusions
The major aim of this dissertation was to understand the impact of all the variablesregarding the tire’s mold and specifications in the final dimensional results. Another ma-jor objective was to develop a tool capable of predicting said final result for each tire.With this in mind, the second part of this dissertation (Chapter 3) consists on theintroduction of some theoretical concepts regarding Linear Regression and Logistic Re-gression, while the first part consists on a brief introduction of the company were theinternship was realized, as well as the explanation of the various types of construction inexistence, the components of a tire, and the several steps since the beginning to the endof the construction.The fourth chapter portrays the development of the regression models in order tofulfill the objective previously presented, as well as the evaluation of said models to un-derstand their validity and quality of adjustment, with the ultimate goal of understandingwhat were the most important variables and to also understand if the models had therequirements to be used for future simulations and predictions. The main conclusionsto be drawn out of this chapter, regarding the linear regression, are the two models ob-tained, one for each of the response variables, as well as the coefficients obtained foreach of the significant variables, which made it possible to understand the importanceof each of them on the final dimension of the tire.Looking into the coefficients obtained for all the variables it was possible to under-stand if the values made sense, and if they were in agreement with the existing knowl-edge. In fact, the results obtained confirmed some of the existing suspicions. For exam-ple, the coefficients obtained for the variables X18, X22 and X24, mainly, could be consid-ered correct according to existing results. The variable X34 is another example of that,where tests were realized and the value of the coefficients for each factor of the variablewas confirmed by said tests (this regarding the response variable X37).On the other hand, some of the variables that were considered significant by the mod-els came as a surprise, such as X7, X16 and X17. The first one, upon further analysis,came to be considered one of the most important variables when it comes to the deter-mination of one of the dimensional results of the tire, and was overlooked up until thatpoint. As for the last two, they also came as an unexpected result, and therefore, in orderto confirm the results, two sets of tires were made, where the only difference would bethe value of those variables, with the purpose of directly comparing and understanding
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its importance. The results obtained confirmed that X16 and X17 were in fact affectingthe dimensions of the tire, however, the coefficient obtained initially for both of them wasslightly higher than the true value.Another result obtained was the correlation between the value of the variable X5 andthe variableX34. Upon analyzing all the values present in the variableX5 and understand-ing how they varied taking into consideration the tire size, it was possible to establish acorrelation between that and the values of the variable X34. With this study it was possi-ble to conclude that, according to the value assumed by the variable X34, the variable X5needed to take an appropriate value, otherwise the tire would fail on one of the dimen-sional criteria. This conclusion came to be as one of the most relevant ones, explainingvarious unexpected results.The chapter previously mentioned also contains the logistic analysis performed inorder to understand what’s the chance of a tire passing or failing the dimensional tests.Lastly, the fifth chapter is an overall look of the tool developed, evidencing and ex-plaining the multiple features available, as well as a demonstration of how the outputsare displayed.It’s also important to note that, all the knowledge obtained through the entirety ofthe internship, such as the models obtained, and the tool developed, were carefully doc-umented, and guidelines were written, so that everything can continue to be used andupdated by the employees, as need be.
Future Research
As future work, it would be interesting to analyze different variables, such as the onesexistent in the production, and understand what’s their impact on the dimensions of thetire.Taking into account that the tires are submitted to various other tests besides thedimensional ones, it would also be relevant to realize a similar study, and obtain models,for those studies as well. Obtaining said models it would be possible to simulate if agiven tire, with a certain mold and specification, would pass all of the tests needed tobe certified and cleared for the selling market. Such analysis wasn’t possible given thereduced size of data for these specific tests, which was approximately a third of the dataused on this dissertation.Another possibility of future work would be to add more features to the application,regarding the possible models previously mentioned, for example, and possibly an overallresult taking into consideration all of the simulations done and with a final decision basedon the results obtained for all of said tests.
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