






iv



Acknowledgements

Firstly, I’d like to thank my supervisors, Professor Raquel Menezes and Pro-

fessor Maria Eduarda Silva. Complete this work would have been impossible

without their constant support, availability and constructive suggestions.

I also want to thank my colleague and friend Ana for her encouraging words

during these years.

My acknowledgments must be addressed to the Portuguese Foundation for

Science and Technology (FCT) for funding this research through the Indi-

vidual Scholarship PhD PD/BD/ 105743/2014, and also as a member of

the research project PTDC/MAT-STA/28243/2017. One word of acknowl-

edgment to Minho University for providing me a rich work environment

and to the Center for Research & Development in Mathematics and Appli-

cations of Aveiro University (CIDMA) for financial support within project

UID/MAT/04106/2019.

Last but not the least, I would like to thank my family, especially André
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Abstract

Contributions to Spatial and Temporal Modelling

Recent technological advances allow the collection of data in space and time

in a wide range of contexts such as environmental and health sciences. Most

of these data are generated by monitoring processes and present spatial

and/or temporal structures. Traditionally spatial and temporal modelling

assumes that the locations (in time or space) sampled are either fixed or

stochastically independent of the spatial and temporally continuous phe-

nomenon under study. However, it is well-known that, for example, in air

pollution studies, typically the monitors are placed near the most likely

pollution sources in areas of high population density. In context of medi-

cal studies, a patient is usually observed most frequently when he presents

a worse clinical condition. In these examples neither are the observations

obtained regularly in time/space nor are the observed locations (in time or

space) stochastically independent of the phenomenon under study. Ignoring

this dependence can lead to biased estimates and misleading inferences. In

this work, we consider the problem of modelling time series with informative

observation times. We introduce the concept of Preferential Sampling in the

temporal dimension and we discuss alternative model-based approaches to

make inference and prediction under stochastic sampling schemes. In the

first approach, we present a model to deal with irregularly spaced time se-

ries in which the sampling design depends on the contemporaneous value

of the underlying process, under the assumption of a Gaussian response

variable. For this model, we present two estimation methods, one based on

Monte Carlo simulations and the other based on a Laplace approximation.

The second approach proposes a model for irregularly spaced time series in
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which the sampling design depends on all past history of the observed pro-

cesses. All discussed model-based approaches are illustrated with numerical

studies.

Keywords: Preferential Sampling, time series, continuous time

autoregressive process, SPDE, evolutionary processes.

viii



Resumo

Contribuições para a Modelação Espacial e

Temporal

Os recentes avanços tecnológicos permitem a recolha de dados no espaço

e no tempo numa grande variedade de contextos, como nas ciências am-

bientais e da saúde. A maior parte desses dados é gerada por processos

de monitorização e apresenta estruturas espaciais e/ou temporais. Tradi-

cionalmente, a modelação espacial e temporal assume que as localizações

amostradas (no tempo ou no espaço) são fixas ou estocasticamente inde-

pendentes do fenómeno espacial e temporal em estudo. No entanto, é bem

conhecido que, por exemplo, em estudos de poluição do ar, normalmente as

estações de monitorização são colocadas perto das fontes de poluição mais

prováveis em áreas de alta densidade populacional. Em estudos médicos,

um paciente é geralmente observado com maior frequência quando apresenta

pior condição cĺınica. Nestes exemplos, nem as observações são obtidas de

forma regular no tempo/espaço, nem as localizações das observações (no

tempo ou no espao) são estocasticamente independentes do processo em

estudo. Ignorar essa dependência pode levar a estimativas tendenciosas e

inferências enganosas. Neste trabalho, consideramos o problema de mode-

lar séries temporais com tempos de observação informativos. Introduzimos

o conceito de Amostragem Preferencial na dimensão temporal e discuti-

mos diferentes abordagens baseadas em modelos para fazer inferência e pre-

visão debaixo deste esquema de amostragem. Numa primeira abordagem,

apresentamos um modelo para lidar com séries temporais irregularmente

espaçadas em que o desenho amostral depende do valor contemporâneo do

processo subjacente, sob a hipótese de uma variável de resposta Gaussiana.
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Para este modelo, apresentamos dois métodos de estimação, um baseado em

simulações de Monte Carlo e outro baseado numa aproximação de Laplace.

Na segunda abordagem, propomos um modelo para séries temporais irregu-

larmente espaçadas, nas quais o desenho amostral depende de toda a história

passada dos processos observados. Os modelos propostos são ilustrados com

estudos numéricos.

Palavras-Chave: Amostragem Preferencial, séries temporais, pro-

cessos autoregressivos cont́ınuos no tempo, equações diferenciais

parciais estocásticas, processos evolucionários.
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1

Introduction

1.1 Motivation

In recent years data indexed in space and time have become the norm rather than

the exception as a result from technological developments. As an example we may

mention that sensors and mobile devices routinely gather data. Summarizing, modelling

and inferencing from these multidimensional and usually large data sets present new

challenges to statistical science. Most of these data present spatial and/or temporal

dependence structures that require new methodological and computational tools. The

literature on the analysis of multidimensional data, in particular space-time indexed

data, is increasingly abundant but many open problems remain.

To motivate one such problem, consider environmental monitoring data obtained

at a set of conveniently located sites over time, so common nowadays. Often the

temporal dimension of the data is characterized by high resolution and multiple seasonal

patterns while the sites are predominantly located in cities. Modelling these spatio-

temporal data commonly assumes that the sampled locations (in time or space) are

either fixed or stochastically independent of the phenomenon under study. However,

it is well-known that in air pollution studies the monitors are, typically, placed near

the most likely pollution sources and in areas of high population density. Thus, the

aforementioned assumption fails (in the spatial dimension) since the process under

study determines the data-locations. This problem, coined Preferential Sampling in the

context of spatial statistics has been discussed in a model-based approach by Diggle

et al. (2010). Similarly, data may be prone to irregular spacing in time for various

1



1. INTRODUCTION

reasons. For example, data related to natural disasters such as earthquakes, floods,

or volcanic eruptions which typically occur at irregular time intervals, give rise to

irregularly or unevenly spaced time series. A particular situation of irregularly spaced

data is that in which the sampling design depends also, for practical constraints, on

the observed values. Examples occur in fisheries where the data are observed when

the resource is available, in sensoring when sensors keep only some records in order to

save memory, in clinical studies, when a worse clinical condition leads to more frequent

observations of the patient and, in a completely different scenario, the times at which

transactions occur in the financial markets depend largely on the value of the underlying

asset. In all such situations, there is stochastic dependence between the process under

study and the times at which the observations are made, and the observation times

are informative on the underlying process. This thesis aims at contributing to jointly

model time series with informative observation times.

1.2 Main Objectives

Our framework considers joint models for data indexed by informative observation

times, assuming a continuous time underlying process observed at regular or at irregular

and stochastic points. Under a regular sampling, the choice of adequate covariates or

time functions prove to be enough to deal with informative times. Under unevenly

spaced time series, more complex model-based approaches are discussed in this thesis.

To represent the underlying process we opt for a continuous time series model such

as the Continuous Time Autoregressive (CAR) model, which is mathematically and

computationally tractable and yet sufficiently flexible to represent a wide range of

phenomena. The assumption that the observation times are informative and stochastic

is equivalent to assuming that they are a realisation of a random process, which is

stochastically dependent on the underlying process. This dependence is specified via

two model-based approaches. The first extends the concept of Preferential Sampling to

the temporal dimension, allowing the dependence between the underlying process and

the sampling (observation) process to be contemporaneous only. In the second model-

based approach, the dependence encompasses also the past history of the processes

(underlying and observation) which is more realistic in many real life contexts. Both

approaches rely on point processes: a log Cox Gaussian approach for the Preferential

2



1.3 Thesis outline

Sampling scenario and marked evolutionary processes to include the history of the

process.

Thus, the major objectives of this work are:

• to introduce the concept of Preferential Sampling in the temporal dimension

• to develop model-based approaches that take into account the stochastic depen-

dence of the sampling design on the process of interest

• to develop a computationally feasible framework to make inference and prediction.

We consider maximum likelihood estimation of the model parameters. Since the

likelihood involves an unobserved process, the underlying process, we resort to simu-

lation and numerical techniques to achieve its minimization. In a first approach, we

consider Monte Carlo simulation which proves to have a prohibitive computational cost.

In a second approach that overcomes the computational problems of parameter estima-

tion, we use an alternative numerical method based on the Laplace approximation of

the marginal likelihood and adopt a technique based on stochastic partial differential

equation (SPDE) to approximate the CAR process.

1.3 Thesis outline

In Chapter 2, we introduce main concepts related to traditional methods that may

support the analysis of data under irregular sampling in space and in time. The usage of

the variogram as a tool to measure spatial dependence between samples is highlighted.

The consideration of a convenient continuous time domain dynamic model for the

underlying continuous time stationary process, such as the Continuous time AR (CAR)

process, to deal with irregularly spaced time series, is also highlighted.

In Chapter 3, a two-step approach is suggested to model the spatial and temporal

dynamics of spatio-temporal data sets characterized by irregular sampling locations

and high resolution in the temporal dimension. The approach is applied to the data

set comprising hourly measurements of NO2 at 49 stations located over Portugal, being

the informative times treated by an harmonic regression and adequate covariates.

In Chapter 4, we introduce the concept of Preferential Sampling in the temporal

dimension as a formal definition for the dependence between the process generating

3



1. INTRODUCTION

the times of the observations and the data values. We propose a framework to deal

with Preferential Sampling in time, also able to deal with irregularly spaced time series,

under Preferential Sampling or not. We proceed with likelihood inference to estimate

the parameters of this model. We first consider a Monte Carlo approach for maximum

likelihood estimation of the model and then we consider a numerical method based on

a Laplace approach to optimize the likelihood. Numerical studies with simulated and

real data sets are performed to illustrate the benefits of this model based approach

versus the traditional one which ignores Preferential Sampling issues.

In Chapter 5, we consider that the sampling design may depend on all past history

of the process and we propose a model, based on evolutionary processes that takes into

account that the times and values of the observations contain important information

for the underlying process (informative and stochastic time points). Using numerical

studies, we document the performance of this approach comparing the results of shared

parameter estimates with those obtained from the traditional approach for irregularly

spaced data.

In Chapter 6, we present some conclusions and directions for future work.

4



2

Dependent data under irregular

sampling

In this Chapter, our main objective is to present a concise review of main concepts

and methods traditionally adopted for the analysis of data collected under irregular

sampling in space and in time. For irregular sampling in space, we introduce the main

fields of spatial statistics, that may support the analysis of this type of data, namely

Geostatistics. For irregular sampling in time (our focus in this work), a literature

review of current methods is given and we introduce the continuous time autoregressive

processes (CAR).

2.1 Introduction

Recent technological advances allow the collection of data in space and time in a wide

range of contexts such as environmental and health sciences. Data can present a spa-

tial structure, determined by the locations where data are collected, and/or a temporal

one, determined by the frequency with which observations are taken at these locations.

It is acknowledge that data collected in space, like data collected over time, tend to

exhibit statistical dependence. One commonly exhibited form of dependence is spatial

continuity, which reflects the fact that observations taken at two sites tend to be more

alike if the sites are close together than if the sites are far apart. Examination of this

correlation/dependence in time is commonly referred to as time series analysis. The

existence of spatial or temporal dependence in the data invalidates the results of a clas-
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2. DEPENDENT DATA UNDER IRREGULAR SAMPLING

sical statistical analysis, based on an assumption of independent observations, involved.

Spatial models work with data collected from different spatial locations. Over the

past 20 years, spatial statistics have emerged. One factor that has contributed to this

rise is the tremendous increase in computational capability.

Spatial data can be thought of as resulting from observations on the stochastic

process

{Y (x) : x ∈ D} (2.1)

where x are locations within some spatial region D ⊂ Rd, typically, d = 1, 2 or 3.

Cressie (1993) states that it is not reasonable to assume that spatial locations of

data occur regularly. The choice of locations is commonly guided by external factors,

by the context of the investigation or practical issues. For example, in air pollution

studies, the monitors are typically placed near the most likely pollution sources in ar-

eas of high population density. In other applications, the choice of sample points may

be restricted in some way. One form of restriction is when the study region includes

sub-regions which are of interest for prediction but inaccessible for sampling.

On the other hand, analysis of experimental data that have been observed at dif-

ferent points in time leads to specific problems in statistical modelling and inference.

The correlation introduced by the sampling of points in time can limit the applicability

of conventional statistical methods. Equally spaced sampling, is perhaps, the most fre-

quently assumed sampling scheme in practice. However irregularly spaced or unevenly

spaced time series occur in many situations, for example in natural disasters like vol-

canic eruptions and earthquakes, in economics, climatology and environment sciences.

Another example occurs in observational astronomy, measurements of properties such

as the spectra of celestial objects are taken at irregularly spaced times determined by

seasonal, weather conditions, and availability of observation time slots. In clinical stud-

ies (or more generally, longitudinal studies), a patient’s state of health may be observed

only at irregular time intervals, and different patients are usually observed at different

points in time.
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2.2 Irregular sampling in space

2.2 Irregular sampling in space

To analyse spatial data, according to Cressie (1993), we can identify three major spatial

processes, namely lattice processes, point processes and continuous processes commonly

referred to as geostatistics.

Lattice data

In this type of data D in (2.1) is a countable collection of spatial sites, with well defined

boundaries, at which data are observed. The collection D of such sites is called a lattice,

which is then supplemented by neighborhood information. The hypothesis underlying

modelling lattice data is that adjacent regions share information in the sense that close

areas have more in common than distant areas. The usual model structure in these is

the conditional autoregressive model, Besag (1991). These models induce autoregressive

spatial autocorrelation through an adjacency structure of the lattice units.

Lattice data include, for example, pixel values from remote sensing of natural re-

sources, presence or absence of a plant species in square blocks laid out over a prairie

remnant and the number of deaths of a cancer type in the counties of a nation, or

other administrative districts. Typically, this type of data is irregularly spaced but not

stochastic.

Point processes

The aim of point processes is to analyse the geometrical structure of patterns formed by

objects that are distributed randomly in space. Examples include locations of trees in

a forest stand, blood particles on a glass plate and galaxies in the universe. In addition

to the location of these objects, there may be further variables that are of interest asso-

ciated with each point. This information is known as marks. In this situation, objects

are represented by points and marks resulting in a marked point process. The points

describe the locations of the objects, and the marks provide additional information,

thus characterizing the objects further, e.g. through their type, size or shape. This

type of data, typically, is irregularly spaced and stochastic.

In other words, the objective of point process statistics is to understand and de-

scribe the short-range interaction among the points and explain the mutual positions
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2. DEPENDENT DATA UNDER IRREGULAR SAMPLING

of the points. Quite often this concerns the degree of clustering or repulsion (inhibi-

tion) among points and the spatial scale at which these operate. The analysis of a

point pattern also provides information on underlying processes that have caused the

patterns, Illian et al. (2008). Within the spatial point processes, perhaps the most

important theoretical development over the last years has been the provision of formal,

likelihood-based methods of inference for a reasonably wide range of models, Diggle

(2013).

There is an extensive literature on point processes, ranging from rather theoretical to

more applied texts, for e.g. Daley & Vere-Jones (2003, 2008), Møller & Waagepetersen

(2004), Illian et al. (2008) and Diggle (2013).

Geostatistics

The term geostatistics identifies the part of spatial statistics which is concerned with

data obtained by spatially discrete sampling of a spatially continuous process. Origi-

nally, the term geostatistics was coined by Georges Matheron and co-workers in France,

to describe their work dealing with problems of spatial prediction resulting from mining

industry. However, the geostatistical methods are now used in many areas of applica-

tion, far beyond the mining context in which they were originally developed. Common

examples are meteorological and air pollution data. In this context, the main goals are

to determine a spatial pattern, modelling correlation/covariance, make predictions and

testing whether there exists a spatial structure or not. For a model-based approach see

Diggle & Ribeiro (2007).

Following the notation used by Diggle & Ribeiro (2007), we denote a set of geosta-

tistical data by (xi, yi) : i = 1, ..., n, where x1, ...,xn are locations within an observation

region D ⊂ R2 and y1, ...yn are measurements associated with these locations. It is as-

sumed the existence of an unobserved field process {S(x) : x ∈ D}, usually regarded as

our goal of prediction. In many applications it is also assumed that:

• S is a stationary 1 and isotropic 2 Gaussian process, with mean µ, variance σ2

and spatial correlation function ρ(u) = Corr {S(x), S(x′)}, where u = ‖x− x′‖
1A random process is second-order stationary if its first moment is a constant and the covariance

between two variables is a function of the difference between their locations.
2A random process is isotropic if it remains invariant when subject to rotation of coordinates.

8



2.2 Irregular sampling in space

and ‖·‖ denotes the Euclidean distance;

• conditional on S, the yi are realizations of mutually independent random variables

Yi = Y (xi), normally distributed with conditional means E [Yi|S(·)] = S(xi) and

conditional variances τ2.

• Y (xi) = S(xi) +N(0, τ2), i = 1, ..., n.

According to Cressie (1993), the variogram is a model-based measure of the spatial

statistical dependence in a geostatistical process. The variogram, 2γ(·) or the semivar-

iogram, γ(·) of a spatial stochastic process S(x) is the function

γ(x,x′) =
1

2
Var

{
S(x)− S(x′)

}
Note that, γ(x,x′) = 1

2 [Var {S(x)}+ Var {S(x′)}] − 2Cov {S(x), S(x′)}. In the

stationary and isotropic case, this simplifies to γ(u) = σ2 {1− ρ(u)}, which explains

the inclusion of the one-half factor in the definition of the variogram.

Because the mean of a stationary process is constant, the variogram in the stationary

case can also be defined as γ(u) = 1
2E
[
{S(x)− S(x− u)}2

]
. Now, assume that the

data is generated by the stationary process

Y (xi) = S(xi) +N(0, τ2), i = 1, ..., n

Then the variogram of the observation process γY (u) is defined by γY (uij) =

1
2E
[
(Yi − Yj)2

]
, where uij = ‖xi − xj‖. It follows that

γY (u) = τ2 + σ2 {1− ρ(u)} (2.2)

Typically, ρ(u) is a monotone decreasing function and equation (2.2) neatly sum-

marizes the essential qualities of a classical geostatistical model. The typical variogram

is a monotone increasing function with the following features. The intercept, τ2, cor-

responds to the nugget variance, which occurs as a result of small variability between

spatially correlated variables and/or measurement errors. The asymptote, τ2 +σ2, cor-

responds to the variance of the observation process Y , sometimes called the sill, which

in turn is the sum of the nugget variance and the signal variance, σ2. The way in which

the variogram increases is determined by the correlation function ρ(u). When ρ(u) = 0

for u greater than some finite value, this value is known as the range of the variogram.
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2. DEPENDENT DATA UNDER IRREGULAR SAMPLING

The range is the distance such that pairs of spatial locations further than this distance

apart are negligibly correlated. A geostatistical convention defines the practical range

as the distance u0 at which ρ(u0) = 0.05

One of the most critical properties characterizing a variogram is that of conditional

negative-definiteness, i.e. the requirement that

n∑
i=1

n∑
j=1

aiajγ(xi − xj) ≤ 0

for any finite set of spatial locations, {x1, ...xn}, and for any set of real numbers

{a1, ...an}, such that
∑n

i=1 ai = 0.

In the absence of this property, the mean square prediction error could be estimated

by an absurd negative value. This leads to the impossibility of using some variogram

estimators within the inference and prediction context. One possible approach to solve

this problem is to approximate the empirical variogram (variogram based on observation

or experiment) by any parametric model which is known to be valid. The idea is to

search, among the families of valid variograms, for one that best approximates the

underlying spatial dependence of the available sample data.

As example of an useful correlation function adopted in geostatistical data mod-

elling, we have the Matérn family with algebraic form given by

ρ(u) =
(
2ν−1Γ(ν)

)−1
(
u

φ

)ν
Kν

(
u

φ

)
where ν > 0 and φ > 0 are parameters, and Kν(·) denotes a Bessel function of order ν.

The parameter φ, the range, determines the rate at which the correlation decays to zero

with increasing u. The parameter ν determines the analytic smoothness of S(x). For

ν = 0.5 the Matérn correlation function reduces to the exponential, ρ(u) = exp(−u/φ),

whilst ν → +∞, ρ(u) = exp(−(u/φ)2) which is called the Gaussian correlation function.

Having identified the model for spatial dependence, we can proceed with predict-

ing the spatially continuous process at an unsampled location. The process of spa-

tial prediction is generally mentioned as Kriging. Kriging is a Linear interpolation

method, since the estimated values are weighted linear combinations of the observed
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data, Unbiased since the mean of the errors is zero, and Best since it aims at minimiz-

ing the variance of the errors. That is, kriging is a BLUE estimator.

In Geostatistics, we can have regular or irregular sampling but, the usual assumption

is that the selection of the sampling locations does not depend on the values of the spa-

tial variable. In fact, most techniques are based on the assumption, possibly tacit, that

sampling locations are uniformly distributed over the observed region. However, there

are situations in which the process under study determines the data-locations and the

above mentioned assumption is violated. Diggle et al. (2010) coined this phenomenon

as Preferential Sampling: the sampling process and the observed process are dependent

and there is an underlying stochastic relationship between data and locations.

2.3 Irregular sampling in time

Real time series sometimes exhibit various types of “irregularities”: missing observa-

tions, observations collected not regularly over time for practical reasons, observation

times driven by the series itself, or outlying observations. However, the vast majority of

methods of time series analysis are designed for regular time series only. There are few

methods available in the literature for the analysis of irregularly spaced series. Some

authors, such us Jones (1981, 1985), Belcher et al. (1994) and Brockwell (2009) have

suggested an embedding into continuous diffusion processes, with the aim of using the

well established tools for univariate autoregressive moving average (ARMA) processes,

as opposed to the development of a complete set of tools for equally spaced data.

It must be noted that sometimes equally spaced time series are treated as irregularly

spaced time series, namely time series with missing observations and multivariate data

sets that consist of time series with different frequencies, even if the observations of

each time series are reported at regular intervals. One of the first authors to treat

evenly sampled gene expression time series with missing values as unevenly sampled

data is Ruf (1999).

Observations with irregularly spaced sampling times are much harder to work with,

partly because the established and efficient algorithms developed for equally spaced

sampling times are no longer applicable, Li (2014). A common approach to perform

parametric estimation is to construct a log-likelihood function in terms of the unknown
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2. DEPENDENT DATA UNDER IRREGULAR SAMPLING

parameters, Brockwell (2001). When the sampling times are considered determinis-

tic, the traditional approach is to build the classical Gaussian log-likelihood function.

However, because the inversion of the covariance matrix has to be performed, numer-

ical evaluation of this Gaussian log-likelihood function is in general very expensive,

Lange (2010). This computational effort may be overcome regulating the sampling

scheme, with some form of interpolation and then considering it as being equally spaced.

Under the assumption of equally spaced sampling times, the Gaussian log-likelihood

function can be approximated, at least for a sufficiently large sample, by the Whittle

log-likelihood function, Whittle (1961). This approach has been successfully applied to

irregularity caused by missing values, Little & Rubin (2014). While, it may be reason-

able to use this methodology to deal with the minor irregularities in sampling times

caused by missing values, the interpolation procedure will typically change the dynamic

of the underlying process, leading to biased estimates for the parameters, Erdogan et al.

(2005). Moreover, there is little understanding of which particular interpolation method

is the most appropriate on a given data set.

Another approach is to consider, a convenient continuous time dynamic model for

the underlying continuous time stationary process such as the Continuous time ARMA

(CARMA) model. The application of Kalman recursion techniques to the parametric

estimation of CARMA processes is reviewed in Tómasson (2015). Additionally, Kelly

et al. (2014) estimate the parameters of an irregularly sampled CARMA process using

a Bayesian framework.

Although there are different approaches to deal with irregularly spaced time series,

in this work, we will concentrate on the analogues of Autoregressive (AR) model in

discrete time but in continuous time, the CAR model, namely the first order CAR

process. Whereas the AR(p) model is a difference equation, CAR(p) models are defined

by stochastic differential equations, as is to be expected when generalizing to continuous

time. The relevant statistical theory of CAR(1) process is reviewed in the next Section

and much of the required theory is given by Jones (1981) and Priestley (1981).
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CAR(1) process

A stochastic process X = {X(t) : t ≥ 0} is a continuous time autoregressive process of

order p, CAR(p), if satisfies the differential equation:

X(p)(t) + αp−1X
(p−1)(t) + αp−2X

(p−2)(t) + ...+ α0X(t) = dW (t) (2.3)

where, α0, ...αp−1 are constants, {W (t) : t ≥ 0} is a Wiener process with variance pa-

rameter σ2
w and X(i)(t) is the i-th derivative of X(t), dW (t) is interpreted as the

increments of W (t) in the time interval (t, t+ dt).

The simplest CAR process is the CAR(1) satisfying:

X(1)(t) + α0X(t) = dW (t)

which can be written in differential form as:

dX(t) + α0X(t)dt = dW (t) (2.4)

where α0 > 0 is the autoregressive coefficient. Note that, X(t) is asymptotically sta-

tionary if an only if α0 > 0.

Under these conditions, equation (2.4) has a unique stationary solution, Hyndman

(1992):

X(t) = X(0)e−α0t + e−α0t

∫ t

0
eα0udW (u), t ≥ 0

Expected value

If X(0) = C

The expected value of X(t) is defined as

E[X(t)] = E

[
X(0)e−α0t + e−α0t

∫ t

0
eα0udW (u)

]
= Ce−α0t + e−α0tE

[∫ t

0
eα0udW (u)

]
= Ce−α0t (2.5)
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Since α0 > 0 we have

lim
t→∞

E[X(t)] = 0

Variance and Covariance

The variance of X(t) is defined as

Var[X(t)] = E[(X(t)− E[X(t)])2]

= E[(e−α0t

∫ t

0
eα0udW (u))2]

= E

[
e−2α0t

(∫ t

0
eα0udW (u)

)2
]

= e−2α0tσ2
w

∫ t

0
e2α0udu

= e−2α0tσ2
w

(
e2α0t

2α0
− 1

2α0

)
=

σ2
w

2α0

(
1− e−2α0t

)
(2.6)

Note that,

lim
t→∞

Var[X(t)] =
σ2
w

2α0

Let C(h) = Cov[X(t), X(t+ h)] denote the covariance function of the CAR(p) pro-

cess X(t).

The characteristic equation

A(z) =

p∑
j=0

αjz
j = 0 (2.7)

with αp = 1 has q distinct roots λ1, ..., λq where λi has multiplicity mi.

Using contour integration, (Doob, 1953, p.543) showed that

C(h) = σ2
w

q∑
i=1

ci(h)eλi|h| (2.8)
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where ci(h) is a polynomial in h of order mi. Where all the roots are distinct (mi =

1, ∀i), Jones (1981) gives

ci(h) =

−2Re(λi)

p∏
l=1
l 6=i

(λl − λi)(λl + λi)


−1

where Re(λi) is the real part of λi, and λl denotes the complex conjugate of λl.

If p = 1 then (2.7) reduces to

A(z) = α0 + z = 0⇒ λ1 = −α0

and (2.8) to

C(h) =
σ2
w

2α0
e−α0|h| (2.9)

It follows that the autocorrelation function, ρ(h) of X(t) is

ρ(h) =
C(h)

C(0)
= e−α0|h| (2.10)

We would like to point out that for one dimensional position vector, the exponential

spatial correlation structure is equivalent to the CAR(1) structure. In particular, as

explained in Pinheiro & Bates (2001), if one considers α0 = 1
φ , then φ is the correlation

parameter, generally referred as range in spatial statistics. Additionally, CARMA

processes driven by Wiener process are Gaussian processes.

2.4 Summary

In this Chapter, we present a concise review of the main methodologies used to analyse

data under irregular sampling in space and time, defining some important concepts of
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2. DEPENDENT DATA UNDER IRREGULAR SAMPLING

Geostatistics and CAR processes, serving as baseline for the modelling approaches to

be discussed in this thesis.

Firstly, in the next Chapter we present a methodology for data sets irregular in

space but regular in time, characterized by high resolution in the temporal dimension

and multiple seasonal patterns.
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3

Modelling data irregular in space

and regular in time: a case study

Part of the work included in this Chapter was published in Monteiro et al. (2017). The

objective is to model the spatial and temporal dynamics of spatio-temporal data sets

characterized by irregular sampling locations and high resolution in the temporal di-

mension, which are becoming the norm rather than the exception in many application

areas, namely environmental modelling. A two-stage modelling approach is proposed,

which combined with a block bootstrap procedure correctly assesses uncertainty in

parameters estimates and produces reliable confidence regions for the space-time phe-

nomenon under study.

3.1 Introduction

It is acknowledged that air pollution is a social as well as an environmental problem,

leading to a multitude of adverse effects on human health, ecosystems and the built

environment. Several research studies, systematic reviews and meta-analysis have been

carried out to analyse health effects of air pollutants: Shin et al. (2008) considered

these issues by monitoring the risk of death associated with outdoor air pollution; Mc-

Carthy et al. (2009) used ambient monitoring data to determine the relative importance

of individual air toxics for chronic cancer and noncancer exposures; Lai et al. (2013)

analysed the risk estimates for mortality and morbidity outcomes due to air pollu-

tants; Keramatinia et al. (2016) studied the relationship between exposure to NO2 and
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breast cancer incidence; Song et al. (2016) conducted a systematic review to provide an

association between air pollution and cardiac arrhythmia. In fact, the European Envi-

ronment Agency, EEA (2015) considers air pollution the single largest environmental

health risk in Europe. Thus the need for accurate assessment of air pollution arises

not only to investigate the linkage between ambient exposure and health effects but

also with regard to compliance with legislated regulatory standards to control levels

of environmental exposure. The above considerations advance the need for statistical

models aimed at characterizing and predicting air quality events and assessing policies

over specified areas.

In Portugal, estimation of the index of air quality involves measurements of the

following chemical elements: carbon monoxide (CO), nitrogen dioxide (NO2), sulphur

dioxide (SO2), ozone (O3) and fine particulate matter as PM10. The index is based on

the pollutant with the highest concentration relative to the Portuguese annual limit val-

ues for the protection of human health. This work focus on NO2 concentrations, which

is considered a primary pollutant, formed naturally in the atmosphere by lightning and

produced by plants, soil and water Carslaw (2005). However, the major sources are the

fossil fuel combustion processes, the emissions from electricity generating stations and

road traffic. Furthermore, NO2 concentration levels closely follow vehicle emissions,

in many situations, thus providing a reasonable marker exposure to traffic. Nitrogen

dioxide is toxic by inhalation and there is evidence that long-term exposure to NO2 at

high concentrations has adverse health effects, namely in respiratory and cardiovascular

systems, Ricciardolo et al. (2004). NO2 and other nitrogen oxides are also precursor

of ozone and particulate matter, whose effects on human health and the environment

are well documented. Concentrations of NO2 have been analysed extensively in many

urban areas (Carslaw, 2005; Grice et al., 2009; Roberts-Semple et al., 2012) as well as in

background sites (Donnelly et al., 2011; Menezes et al., 2016). Moreover, these studies

acknowledge that meteorological conditions influence NO2 levels (Donnelly et al., 2011;

Russo & Soares, 2014; Shi & Harrison, 1997). Thus the overall results indicate recurrent

multiple seasonal patterns resulting from anthropogenic activity and the influence of

meteorological variables. Fassò & Negri (2002) propose a non-linear statistical model

to deal with the problem of high frequency and multiple periodicities underlying en-

vironmental data dynamics. De Livera et al. (2011) also consider complex seasonal
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patterns into their modelling approaches, using exponential smoothing. The former

works restrict their applications to one geographical location.

This work proposes a methodology to characterize the spatial and high resolution

temporal evolution of spatio-temporal data using geostatistical approaches. The ap-

proach takes into account that environmental data often incorporate distinct recurring

patterns in time and considers the influence of meteorological variables. The suggested

framework is applied to hourly NO2 concentration levels in Portugal. Spatio-temporal

statistical modelling aims at revealing dependencies and spatio-temporal dynamics, e.g.

Cameletti et al. (2011) and, in our particular case, at obtaining hourly concentration

predictions over the country. To this end the model proposed by Menezes et al. (2016)

is extended to hourly data and meteorological variables are included. A block boot-

strap procedure is proposed to correctly assess uncertainty of parameters estimates,

as well as to produce reliable confidence regions for (space-time) NO2 concentrations.

The model is potentially useful in many areas including assessment of environmental

impact and environmental policies.

3.2 The Portuguese data set

This study analyses hourly measurements of NO2 obtained from the online database on

air quality (Qualar, 2015) of the Portuguese Environment Agency, whose mission is to

propose, develop and monitor the public policies for the environment and sustainable

development. The database on air quality provides hourly measurements, resulting

from monitoring activities, for various pollutants, including NO2. The available data

include information about the type of site where the station is placed (background,

industrial or traffic) and the environment of the zone (urban, suburban or rural). The

most serious drawback of QualAr is that validated data are only made available in

October of the following year.

The hourly NO2 concentrations under analysis concern 49 stations located over

Portugal (mainland) from October 1st to December 31st in 2014, in a total of 108192

observations. From the 49 stations, 33 are classified as background, 10 as traffic and 6

as industrial, 29 are located in urban areas, 11 in rural areas and 9 in suburban areas,

Figure 3.1. The selected period corresponds to the highest NO2 levels along the year,
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according Menezes et al. (2016), who analysed daily NO2 data during 8 years. This

study has about 18% of missing data in the hourly levels of NO2.

The NO2 concentrations have a mean of 20.6 µg/m3, standard deviation of 21.9

and median of 13µg/m3. The histogram of NO2 concentrations, represented in Figure

3.2, reveals asymmetry indicating departure from Gaussianity.

Figure 3.1: Monitoring Network.

A periodogram analysis of the data reveals periodicities at 12, 24 and 168 hrs, which

corresponds to intra-daily, daily and weekly periods. These recurring patterns are

clearly observed in Figure 3.3, which represents mean hourly values for both weekdays

and weekends. NO2 levels show two daily peaks, one in the morning (8:00) and one

in the afternoon (18:00) which coincide with rush-hour traffic, with the second peak
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Figure 3.2: Histogram of NO2 concentrations.

being more pronounced than the first. Moreover, the mean NO2 concentrations are

much lower on weekends (particularly on Sunday) than on weekdays, displaying, also,

smaller variation on weekends, which reflect reduced levels of vehicular emissions on

non-working days. Thus, the two main seasonal effects in the data: intra-day as well as

intra-week periodicities, may be, at least partially, explained by characteristics of the

station. In fact, Figure 3.4 illustrates the influence of the location and the environment

of the station in values of NO2. It is clear that the stations located in traffic areas and

urban zones present higher values for their NO2 quartiles as well higher variability. This

analysis indicates that the type of site and the environment zone must be considered

as explanatory variables.

Since it is acknowledge that meteorological variables influence NO2 levels, hourly

data from the following meteorological variables were obtained from Weather Under-

ground (2015), which provides weather data collected hourly from around the world:

wind speed (km/h); air temperature (0C) and relative humidity (%). The analysis of

the correlation between these meteorological variables and NO2 levels identified the well

known negative associations among them. High NO2 concentrations are favored by cold

and drier weather; on the other hand, an increase of wind-speed, generally, promotes

dilution and dissipation of the pollutants, thus yielding lower levels of NO2, in accor-
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Figure 3.3: Mean NO2 concentrations, for workdays and weekends. The gray line iden-

tifies the trigonometric representation of the cyclical component based on Fourier series,

Section 3.3.
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Figure 3.4: Boxplots of NO2 concentrations, by type of site and type of environment.

dance with Shi & Harrison (1997). Additionally Spearmans rank correlation coefficient

between NO2 and the meteorological variables for several lags, represented in Figure

3.5 indicates that the strongest correlations occur at 6-hour lag with air temperature,

1-hour lag with wind-speed and 5-hour lag with relative humidity. Therefore, these

meteorological variables at the identified lags are considered as explanatory variables
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3.3 Methodology

for NO2 levels.
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Figure 3.5: Spearmans rank correlation coefficient between hourly NO2 and the meteo-

rological variables for several lags.

The above exploratory analysis indicates two main seasonal effects in the temporal

dynamics of NO2 levels: daily and weekly. This preliminary study also shows that

the variables type of site (background, industrial or traffic) and type of environment

(urban, suburban or rural), together with the meteorological variables air temperature

(6-hour lag), wind speed (1-hour lag) and relative humidity (5-hour lag) are possible

explanatory variables for the NO2 levels. Further analysis, not reported here, shows

the presence of strong spatial dependence in the NO2 data set as widely reported in

environmental pollution data literature.

These remarks evidence the importance of using a spatio-temporal model incorpo-

rating multiple seasonalities for describing the complex structure and dynamics of the

phenomenon.

3.3 Methodology

Consider a spatio-temporal stochastic process Y (s, t) indexed in space by s ∈ Rd and

in time by t ∈ N. The process can be represented as

Y (s, t) = µ (s, t) + δ (s, t) (3.1)

23



3. MODELLING DATA IRREGULAR IN SPACE AND REGULAR IN
TIME: A CASE STUDY

where µ (s, t) = E(Y (s, t)) represents a spatio-temporal mean field modelling the trend,

usually refered to as the large-scale variation component and δ (s, t) is a zero-mean

smooth stationary spatio-temporal process that models the small-scale variation (here-

after referred to as stationary residual).

3.3.1 Large-scale variation

The mean component µ (·) in the above model may be a deterministic function when

the physics of the underlying phenomenon is known. However, in the large majority

of problems and spatio-temporal data sets such knowledge is unavailable and we must

resort to stochastic specifications which aim at representing the patterns of the ob-

served variability. Accordingly, in the specification of the mean component we include

regression variables observed jointly with the response variables and incorporate, also,

complex nested or non nested seasonal and cyclic effects. In fact, many time series

exhibit multiple seasonal patterns: hourly pollution levels reveal a daily pattern with

period of 12 or 24 as well as a weekly pattern with period 24 × 7 = 168 and a long

series might also exhibit an annual seasonal pattern with period 24 × 365, resulting

from the natural cycles and anthropogenic activity. Thus, a flexible approach to model

(3.1) consists on considering the generalized linear model (GLM) which combines three

components:

• A random component specifying the conditional distribution of the response vari-

able Y (s, t), given the values of explanatory variables. This conditional distri-

bution may be any from the exponential family thus avoiding transformations of

the response variable.

• A systematic component which specifies a linear predictor that is a function of a

set explanatory variables X

η (s, t) = AX (3.2)

where A is a matrix of real coefficients and X a matrix of regressors.

A smooth and invertible linearising link function g(·) which transforms the ex-

pectation of the response variable E(Y (s, t)) = µ (s, t) into the linear predictor

η (s, t) = g (µ (s, t)) .
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Matrix X contains the K regression variables Xi (s, t) , i = 1, . . . ,K observed jointly

with the response Y (s, t) , and the periodic regressors that capture the periodicities in

the time series. Assume that there are L identified periods (m1, . . . ,mL) and assume

for each cyclic component at time t, St,l a trigonometric representation based on Fourier

series with the form St,l =
∑kl

j=1

[
φj,1 cos

(
2πjt
ml

)
+ φj,2 sin

(
2πjt
ml

)]
, where kl represents

the number of harmonics required for the lth cyclic component. The number of periodic

regressors L depends on the data under study and may be determined by frequency

analysis of the time series. Thus we can write

η (s, t) = α+

K∑
i=1

βiXi (s, t) +

L∑
l=1

St,l

= α+
K∑
i=1

βiXi (s, t) +
L∑
l=1

kl∑
j=1

[
φj,1 cos

(
2πjt

ml

)
+ φj,2 sin

(
2πjt

ml

)]
(3.3)

where α, βi, φj,1, φj,2 ∈ R are regression parameters.

3.3.2 Small-scale variation

It is now necessary to consider the space-time dependence structure underlying the

stationary spatio-temporal residual δ (s, t). Many methods have been proposed in the

literature to define valid models for the spatio-temporal dependence structures e.g.

(De Cesare et al., 2001; Gneiting, 2002). For a comparative review of the characteris-

tics of many of these currently accepted and implemented models see De Iaco (2010).

One of the main distinctions between these models is based on the notion of separability.

A separable space-time covariance function can be written as the product of a purely

spatial component and a purely temporal component. This allows for efficient estima-

tion (especially computationally), and inference but the separability is restrictive and

often require unrealistic assumptions (Bruno et al., 2003), and a major disadvantage

of these models is that they can not incorporate the space-time interaction. Thus, in

our study, the attention has shifted to non-separable covariance structures, namely the

product-sum and sum-metric models, which are widely used in the literature. Other

parametric families of non-separable models are discussed in Cressie & Huang (1999),

Ma (2008) and Rodrigues & Diggle (2010). For more general classes of non-separable

covariance functions see Fonseca & Steel (2011), Ip & Li (2015).
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The product-sum model can be defined in terms of the semivariogram as

γst (hs, ht) = γs (hs) + γt (ht)− kγs (hs) γt (ht) (3.4)

where γs and γt are the corresponding valid semivariogram functions in space and time,

(hs, ht) ∈ R and

k =
sills + sillt − sillst

sills sillt

where sills and sillt represent the sill of the marginal semivariograms in space and

time, repectively, and sillst is the global sill.

The sum-metric model can be defined:

γst (hs, ht) = γs (hs) + γt (ht) + γ (|hs|+ α |ht|) (3.5)

with α ∈ R and γs e γt the semivariograms.

3.3.3 Parameter estimation and inference by block bootstrap

The estimation of model (3.1) is accomplished in a 2-step approach which estimates

separately the trend (large-scale variation) and the spatio-temporal dependence struc-

ture (small-scale variation) components. First obtain point estimates for the regres-

sion parameters using maximum likelihood (ML) and relaxing the assumption of non-

correlated errors, underlying ML estimation in GLM. Then fit a valid non-separable

space-time variogram to the residuals resulting from the previous step, fully accom-

plishing the estimation of the spatio-temporal correlation in the data.

An important issue arising in the first step as a consequence of relaxing the as-

sumption of uncorrelated residuals is that of assessing the statistical significance of the

estimated parameters. To handle this issue we resort a bootstrap procedure for serially

correlated data. We consider a modification of the so called block bootstrap Kreiss

& Paparoditis (2011), based on moving and overlapping blocks in the time dimension,

when taking fixed data in the space dimension. The main idea consists of dividing

the temporal data, (X1, . . . , XT ) say, into blocks of consecutive observations of length

l, (Xt, . . . , Xt+l−1). The first block corresponds to (X1, . . . , Xl) and each new block

slides M time units, becoming (X1+k×M , . . . , Xl+k×M ) with k = 1, . . . ,K, M << l and

l+K×M ≤ T , allowing for a total of K+1 blocks. This bootstrap approach is partic-

ularly appropriate when one has long time series, as it is usually the case with hourly
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data, collected at a small number of geographical locations. This bootstrap approach

further allows to obtain a confidence band for large-scale variation predictions.

The estimation of the parameters in the semivariograms (3.4) and (3.5) relies in a

least-squares approach over a space-time empirical variogram. At this stage the sample

marginal variograms in space and time, defined in De Iaco & Posa (2012) are important

to give some guidance for the selection of the one-dimensional variogram components in

(3.4) and (3.5). In fact, the selection of adequate models in (3.4) and (3.5) is crucial to

guarantee that the resulting function is valid for prediction using kriging tools. Myers

(2004) provide some guidelines that may be useful for model selection. To evaluate the

final variograms, a cross-validation approach originally introduced in Stone (1974), and

meanwhile adapted to the context of dependent data, is used. This procedure consists

on eliminating one observation from the whole set and then predicting its value from

the remaining data through a kriging methodology. Repeating the procedure for all

the observations, the Mean Square Error (MSE) of the resulting errors can be used to

choose between several (variogram) models. Following an adequate choice of a spatio-

temporal variogram, a block bootstrap procedure is once more resorted to correctly

assess uncertainty in its parameters estimates.

3.4 Results

The preliminary data analysis of NO2 concentrations in Portugal carried out in Sec-

tion 3.2, indicates that the underlying process presents several characteristics such as

non Gaussianity, multiple periodicities and spatial dependence, for which model (3.1)

introduced in Section 3.3 may be particularly useful. The 2-step estimation procedure

proposed is carried out leading to the characterization of the mean or large-scale vari-

ation component in Section 3.4.1, and that of the stationary residual or small-scale

variation component in Section 3.4.2. The estimation procedure is implemented in R

environment R Core Team (2015) and the following packages are used: gstat Pebesma

(2004), sp and space-time Bivand et al. (2013).

3.4.1 Large-scale variation

Firstly, we model the trend of NO2 data using a Generalized Linear Model as given in

equation (3.3). In the case of NO2 concentrations, exploratory analysis revealed that it
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is a continuous variable with an asymmetric distribution, in particular, we assume that

the response variable is gamma distributed with log-link. As the gamma distribution is

only defined for strictly positive values, we make a translation of the data set by 0.0001.

We consider six explanatory variables: type of site, type of environment, if weekend, air

temperature (6-hour lag effect), wind speed (1-hour lag effect) and relative humidity

(5-hour lag effect). Other factors were also considered, like the distinction between the

days of the weekend (week, Saturday and Sunday), but this did not result in signifi-

cant improvements. Furthermore, we consider other hour lag effects for meteorological

variables, however, the best model is selected under Akaike information criterion and

by graphical observation of NO2 fitted values vs. NO2 levels.

For modelling the seasonal effects in the data set, we proceed as represented in (3.3),

assuming a trigonometric representation for each cyclic component. The dominant

frequencies of the data were estimated, based on those stations without missing values,

which made it possible to identify two important periodicities equal to 12 and 24 hours.

Consequently, although we have tested distinct periodic regressors, including one for

the weekly cycles, the simpler model restricted to the daily (or half-daily) cycles proved

to be preferable.

The results of the gamma regression of the hourly NO2 concentrations are summa-

rized in Table 3.1. The standard errors were obtained using a moving block bootstrap in

the time dimension, each block with 5 weeks sliding 3 hours, generating 456 replicates.

All 49 monitoring stations were kept as fixed. According to the notation presented in

Section 3.3, the block length l = 5×7×24 = 840 hours, δ = 3 hours and K = 455. Two

weeks blocks were also considered, however, these were not able to capture patterns

of intra- and inter-day variability, meaning that the seasonal components became no

significant in the trend model. From the results in Table 3.1, we conclude that the

values of NO2 concentrations are greater during the week and in monitoring stations

where the environment is urban or suburban and the type of site is traffic. Besides

that, NO2 levels increase by a factor of 3.64 from rural to urban, by a factor of 1.64

from background to traffic, and by a factor of 1.22 during the week. In respect of me-

teorological variables, these variables have significant negative associations with NO2

levels. These conclusions confirm the results from the preliminary data analysis. Wind

speed has a stronger influence on NO2 concentrations than humidity and air temper-

ature. Furthermore, NO2 level decrease 3% by an increase of 1 km/h in wind speed
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and decrease 1% by an increase of 1% in humidity. In the case of air temperature, the

lack of significance of its coefficient was confirmed under the proposed block bootstrap

approach, which can be explained by the fact that only months with low temperature

are selected (in October to December, mean is 14.60C and standard deviation is 5.40C).

The acquired coefficient of determination shows that 41% of the large-scale variation

of NO2 concentrations is explained under this trend model.

Parameter Estimate Over-optimistic Bootstrap

Std. Error(∗) Std. Error

Intercept 2.452 0.019 0.259

Type of site (baseline: Background)

Industrial -0.517 0.009 0.026

Traffic 0.489 0.008 0.031

Day of the week (baseline: Weekend)

Week 0.202 0.007 0.024

Environment (baseline: Rural)

Suburban 1.147 0.010 0.128

Urban 1.310 0.008 0.153

Air Temperature -0.008 0.0006 0.015

Wind Speed -0.029 0.0004 0.002

Relative Humidity -0.006 0.0002 0.002

sin(2πt
12 ) -0.228 0.004 0.019

cos(2×2πt
12 ) -0.015 0.004 0.007

sin(2×2πt
12 ) 0.033 0.004 0.011

cos(4×2πt
12 ) 0.008 0.004 0.002

cos(2πt
24 ) 0.093 0.005 0.039

sin(2πt
24 ) -0.167 0.005 0.018

cos(3×2πt
24 ) 0.018 0.004 0.008

sin(3×2πt
24 ) 0.102 0.004 0.012

cos(5×2πt
24 ) 0.016 0.004 0.005

sin(5×2πt
24 ) -0.021 0.004 0.004

Table 3.1: Estimates of the gamma regression coefficients for hourly NO2 concentrations,

together with the corresponding standard errors obtained by bootstrap. The standard

errors given in (*) were obtained by GLM when relaxing the assumption of non-correlated

residuals.
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3.4.2 Small-scale variation

Having estimated the large-scale variation µ (s, t) as g−1(η (s, t)) in (3.3), we now aim at

estimating the dependence structure of the stationary residual δ (s, t), resulting from

Y (s, t) − µ (s, t) in (3.1). This issue is addressed through the approximation of the

spatio-temporal variogram. The fit of the empirical variogram demands estimation

of the unknown parameters of the theoretical model, namely, the nugget τ2, the par-

tial variance σ2 and the range φ. We start by analyzing the marginal spatial and

the marginal temporal correlation structures, defined in De Iaco & Posa (2012). The

Gaussian model is selected for the approximation of the spatial variogram, suggesting

the parameters estimates τ̂2
s = 0.19, σ̂2

s = 0.59 and φ̂s = 35.47km. For the temporal

variogram, it is selected the Exponential model, and the resulting parameters estimates

are τ̂2
t = 0.60, σ̂2

t = 0.06 and φ̂t = 47.47 hours. We examined other models, however,

the results for the parameter estimates were similar.

To decide whether to adopt the product-sum model in (3.4) or sum-metric model

in (3.5), we proceed with a cross-validation study to compare both models, according

to which the eliminated observations are predicted through the kriging tools. For each

model, we estimate the mean error (ME) and the mean square error (MSE) based on

all resulting prediction errors. The results in Table 3.2 are very similar, however, the

model sum-metric has an extra parameter for anisotropy which allows dealing with

spatial and temporal distances in the same term. Besides that, the sum-metric model

makes it possible to use specific variogram for space, time, and space-time. Therefore,

we decide to choose the sum-metric model with a Exponential function for the temporal

component and Gaussian functions for the spatial and the spatio-temporal components.

Model joint temporal space ME MSE

Product-sum model - Exp Gau -0.016 0.214

Sum-metric model Gau Exp Gau -0.007 0.219

Table 3.2: ME and MSE estimates of the cross-validation study.

Under this selection, the fitted final model is represented in Figure 3.6 (right), being

the corresponding empirical variogram given in the left panel. The resulting parame-

ters estimates and corresponding standard errors, obtained by moving block bootstrap,
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Figure 3.6: Plots of the experimental estimator (left) and the fitted model (right) for the

space-time variogram.

Variogram Model τ2 σ2 φ α

Spatial Gau 0.015 (0.025) 0.662 (0.128) 40km (1.348)

Temporal Exp 0.010 (0.020) 0.071 (0.022) 100h (0.003)

Joint Gau 0.172 (0.018) 0.132 (0.030) 70 (0.024) 13.007 (0.074)

Table 3.3: Parameters estimates, and corresponding bootstrap standard errors obtained

by moving block bootstrap with blocks of 5 weeks sliding 8 hours, generating 171 replicates,

for the spatial, temporal and spatio-temporal variograms.

blocks of 5 weeks sliding 8 hours, generating 171 replicates, are given in Table 3.3.

Initially, we tried the option of sliding 3 hours instead of 8 hours, as done for the re-

gression coefficients estimates in the trend, but the computational cost associated to the

estimation of the variogram was not acceptable. According to the results, we conclude

that the majority of the total variation is explained by the spatial component. The

temporal and spatio-temporal components have a smaller contribution. Furthermore,

NO2 concentrations have a significative spatial correlation up to 40 km and a temporal

correlation up to 100 hours (approximately 4 days).

3.4.3 Model assessment

To assess the goodness of fit of the model two measures are chosen: the Mean Absolute

Percentual Error (MAPE) and the Mean Absolute Scaled Error (MASE). The MAPE,
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being a percentage error has the advantage of being scale-independent, and so is fre-

quently used to compare model predictive performance between different data sets, in

this case stations with different environment characteristics. On the other hand, the

MAPE, being a measure based on percentage errors has the disadvantage of presenting

large values for observations close to zero. Hyndman & Koehler (2006) proposed the

MASE as an alternative measure based on scaled errors, which, in fact, compare the

error in the value predicted by the model with that of a naive prediction. The naive

prediction must take into account the data seasonality.

For model assessment the predictions are defined as Ŷ (s, t) = µ̂ (s, t) + δ̂ (s, t),

where: µ̂ (s, t) is the fitted large scale variation at location s and time t, given cli-

mate conditions; and δ̂ (s, t) is the predicted small scale-variation, obtained under a

cross-validation approach. This means that data from station at location s is elimi-

nated and δ (s, t) is predicted from the remaining data by kriging tools. Considering T

observations for any particular station s, one has

MAPE =
1

T

T∑
t=1

|et|
Y (s, t)

× 100% MASE =
T∑
t=1

|et|∑T
t=1 |Y (s, t)− Y (s, t− 168)|

where et = Ŷ (s, t)− Y (s, t).

Station Environment Type MASE MAPE(×100%)

Loures urban background 0.841 0.54

Beato urban background 0.618 0.40

Entrecampos urban traffic 0.898 0.48

Avenida da Liberdade urban traffic 0.443 0.47

Matosinhos suburban background 0.623 0.51

Lourinhã rural background 0.874 0.38

Sonega rural industrial 0.757 0.68

Table 3.4: MASE and MAPE errors for some stations, according environment of the zone

and type of the site.

Since our data set is of high dimensionality, model assessment is performed for a sub-

set of seven monitoring stations (Loures, Beato, Entrecampos, Avenida da Liberdade,

Matosinhos, Lourinhã, Sonega) representative of the different types of environments

during five consecutive working days: from 2014-10-13 at 0:00 (Monday) to 2014-10-17
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at 24:00 hrs (Friday). Goodness of fit measures, MAPE and MASE for the seven sta-

tions are presented in Table 3.4. For the computation of the MASE, a more adequate

measure in our case, we considered a naive prediction of the NO2 concentration at a

location, the value of the concentration at that location, at the same day and same time

of the day of the previous week, computed for mean climate conditions of that time

of day. This procedure takes into account the multiple seasonalities present in NO2

concentrations. The MASE values range from 0.44 to 0.90 and are all less than one

indicating that the model predicts more accurately that the naive predictor. There is

not a clear pattern on the errors with urban, traffic stations (Avenida da Liberdade and

Entrecampos) presenting the lowest and highest MASE errors. The absence of such a

pattern may be explained on one hand by the high variability that hourly concentra-

tions present and on the other hand, the low number of stations classified as rural and

industrial.

The predicted large and small scales variation and observed concentration in Loures,

an urban and background station, represented in Figure 3.7 illustrates the high vari-

ability present in the data. Although the overall mean intra-day pattern of the NO2

concentrations is well described by the model, see Figure 3.3, individual stations and

days present particularities that remain unexplained by the model.

Even so, this assessment exercise allows to conclude that the model provides a good

enough representation of the data and can be used for out of sample prediction and

scenario generation.

3.5 Space-time prediction and forecasting

This Section illustrates the potential of the proposed spatio-temporal modelling strat-

egy for prediction and forecasting. The former is accomplished by interpolating in the

observed space-time dimension, through the kriging tools. The latter is accomplished

through the mean predictor given in (3.3), as it allows to obtain NO2 forecasts as a

function of the explanatory variables.

3.5.1 Space-time prediction

A major advantage of the proposed modelling methodology is the possibility of using

space-time kriging techniques, namely ordinary kriging, to make predictions at any
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Figure 3.7: Estimation of the large-scale variation (top) and small-scale variation (bot-

tom) of NO2 concentrations in Loures Station from 2014-10-13 (Monday) to 2014-10-17

(Friday).

space-time point within the observation domain. Thus it allows to assess how pollution

patterns change over space and time, as well as extending the current sampling design to

locations without monitoring stations. This is illustrated in Figure 3.8 which represents

the predicted spatio-temporal NO2 concentrations process (small-scale variation) over

Portugal on a Friday and a Sunday at 8:00, 13:00 and 18:00. We choose these days

because Friday and Sunday are the days of the week with the highest and lowest

concentration levels, respectively, while the choice of the times correspond to daily

maxima, 8:00 and 18:00 and minimum, 13:00. Note that most of the temporal patterns

in NO2 concentrations result from anthropogenic activities and are captured by the

mean or large-scale variation. The first comment is that NO2 concentrations present a
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strong spatial pattern that does not present much variation over time: along the day

and over different days. The space-time residual process achieves higher values on the

coast where most of the urban and traffic monitoring station are located, corresponding

to higher population density.

One may find slight differences on spatial patterns in interior zones of Portugal

probably justified by the lack of monitoring stations, becoming harder to produce ac-

curate estimations. Moreover, we can conclude that the estimated residuals slightly

decrease, when comparing Friday and Sunday, mainly at 8:00 and 18:00. This should

be explained by the lower traffic typical from weekends at these moments of the day.
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Figure 3.8: Space kriging maps for 2014-11-21 (Friday) and 2014-11-23 (Sunday), aiming

to estimate the intra- and inter-day spatial patterns of NO2 after removing the estimated

trend.

A further application of space-time kriging allows to predict missing values in a

specific station. These missing values may occur occasionally at some time points or

when the station becomes inactive. Firstly, to illustrate this application, we proceed

with the estimation of large and small-scale variation from Monday 2014-10-06 to Fri-

day 2014-10-10 for Vila Nova da Telha, a suburban and background station from Maia

county with no observations during this period. The results are presented at Figure 3.9,

dashed lines, in the top panel, represent the 95% confidence bands for the estimated

large-scale variation obtained by moving block bootstrap in time dimension, as ex-

plained in Section 3. The 95% confidence bands for the estimated small-scale variation,

in the bottom panel, were obtained using kriging tools. We note that the estimated
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afternoon peak seems to occur 1 hour later which might be explained by the fact that

Maia is a satellite town of Porto, leading to a postponed rush hour traffic. Wednesday’s

NO2 concentrations are lower with a somewhat different pattern from the remaining

weekdays, which is also noted for other stations.
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Figure 3.9: Estimation of the large-scale variation, top panel, and small-scale variation,

bottom panel, of NO2 concentrations in Maia station from Monday 2014-10-06 to Friday

2014-10-10. The dashed-lines identify the 95% confidence bands for: large-scale variation,

obtained by a moving block bootstrap, each block with 5 weeks sliding 3 hours, generating

456 replicates (top panel); small-scale variation obtained by kriging tools (bottom panel).

3.5.2 Forecasting

The proposed model and associated modelling strategy enables to produce forecasts for

NO2 and quantify the associated uncertainty, as well as to analyse scenarios of possible

future situations such as climate change and environmental policies. As explained
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before, the NO2 forecasts are acquired through the mean predictor.

In Portugal, December 2015 was considered atypically warm with a mean temper-

ature of 11.80C, the second warmest since 1931. Consider the 14th of December, a

Monday, with mean valued for temperature, wind speed and relative humidity 16.10C,

15.6 km/h and 87%, respectively. The daily mean forecasts for NO2 in the 39 stations

are represented in the right panel of Figure 3.10. The point estimates are classified

for easiness of representation. Since QualAr NO2 levels for December 2015 are not

available at the time of writing, we compare these forecasts with fitted NO2 levels for

Monday 15th December 2014, left panel of Figure 3.10, a day with somewhat different

meteorological conditions: mean temperature of 11.20C, wind speed of 9.9 km/h and

relative humidity of 78.5%.

As expected, due to the altered weather conditions in 2015, the predictions of NO2

levels for this year are lower than for 2014, in particular in the north of the country.

Figure 3.10: Daily mean of fitted NO2 levels for 2014-12-15 (left). As meteorological data

are available earlier than NO2 levels, predictions for NO2 levels for 2015-12-14 (right).

To further analyse the impact of meteorological variables (wind speed and relative

humidity), we now compare hourly NO2 concentrations observed during a week in 2014
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with the corresponding 2015 forecasts for the same weekdays. The analysis is illus-

trated in Vila do Conde, a suburban and background station, between 15th and 21st

December of 2014 (14th to 20th December of 2015). In Figure 3.11, all the meteoro-

logical variables and NO2 levels for 2014 represent observed values, while the bottom

right panel represents NO2 forecasts for 2015. Bearing in mind that in 2014 the values

of wind speed ranged from 0 to 15 km/h and in 2015 ranged from 0 to 30 km/h (top

panels), and the increased variability of relative humidity in 2015 (middle panels), we

note a significant decrease in the forecasts of NO2 concentrations for 2015. Further-

more, the maximum peaks in the wind speed correspond to the minimum peaks of NO2

concentrations, showing a “mirror” alike effect.
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Figure 3.11: Observed NO2 concentrations and meteorological variables in Vila do Conde,

suburban and background station from 2014-12-15 (Monday) to 2014-12-21 (Sunday) (left).

Meteorological variables in Vila do Conde from 2015-12-14 (Monday) to 2015-12-20 (Sun-

day) (right) and corresponding NO2 forecasts.

3.5.3 Scenario analysis

Scenario analysis is achieved with conditional forecasting in which future (unknown)

realizations of the explanatory variables are fixed at plausible values of interest. To

illustrate the potential of the model in scenario generation, we obtain NO2 forecasts

under two distinct scenarios: if wind speed duplicates, and if relative humidity is re-
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3.5 Space-time prediction and forecasting

duced by half. In particular, we choose again Vila do Conde station, as being located in

the north Portuguese coast, typically a windy and humid region. Figure 3.12 displays

the observed NO2 concentrations from 2014-12-12 (Monday) to 2014-12-18 (Sunday),

against the NO2 forecasts under the two scenarios which are being considered. The

results confirm that an increase in wind speed provokes, in general, a decrease in NO2

concentrations and a decrease in relative humidity leads, generally, an increase in NO2

levels.
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Figure 3.12: Observed NO2 concentrations, in Vila do Conde station, from 2014-12-

12 (Monday) to 2014-12-18 (Sunday). The dashed-lines represent NO2 forecasts under the

scenarios: wind speed duplicates (top panel) and relative humidity reduced by half (bottom

panel).

A last example of scenario generation is the enforcement of environmental policies
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Entrecampos
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Figure 3.13: Observed NO2 concentrations in Entrecampos station from 2014-12-12

(Monday) to 2014-12-18 (Sunday). The dashed-line represents NO2 forecast under the

scenario of changing this station from traffic to background classification.

that many European cities are taking by pondering the permanent prohibition of ve-

hicles in certain areas. This is equivalent to changing the type of site of a station

located in a city from traffic to background. To illustrate this situation we consider

Entrecampos which is an urban and traffic station located in Lisbon, where only vehi-

cles registered after 1996 can circulate. Figure 3.13 displays the observed NO2 levels

together with NO2 forecast if Entrecampos station becomes classified as background,

assuming that the meteorological variables are the same as in 2014. The decrease not

only in mean but also in variability of NO2 levels is noteworthy.

3.6 Conclusions

In this Chapter, an easily implementable two-step approach is suggested to model

spatial and high resolution temporal data, which allows inference on the large-scale

and small-scale variation components of the spatio-temporal stochastic process. The

framework is particularly useful when data exhibits multiple seasonal patterns imposed

by social habits, anthropogenic activity and natural cycles explained by meteorological

condition, simultaneously incorporating any additional information considered relevant

to explain the phenomenon. This work contributes to the characterization of the space-

time dynamics, which can be used to complement the current sampling design by space-
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time prediction, to obtain forecasts and perform scenario analysis in environmental data

as NO2 concentrations, as well as in other data sets with similar characteristics, such

as electrical demand. The proposed modelling approach assumes data regular in time.

In the remaining Chapters of this thesis, we discuss model-based approaches to deal

with data collected irregularly in time under Preferential Sampling schemes.
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4

Modelling Preferential Sampling

in time

Part of the work included in this Chapter is accepted for publication on REVSTAT -

Statistical Journal, through a manuscript entitled “Modelling Irregularly Spaced Time

Series under Preferential Sampling”.

A particular case of irregularly spaced time series is that in which the sampling

procedure over time depends also on the observed values. In such situations, there

is stochastic dependence between the process being modeled and the times of the ob-

servations. In this Chapter, we introduce the concept of Preferential Sampling in the

temporal dimension and we propose a model-based approach to make inference and

prediction. We first consider a Monte Carlo approach for maximum likelihood esti-

mation of the model and then we consider a numerical method based on a Laplace

approach to optimize the likelihood.

4.1 Introduction

Analysis of experimental data that have been observed at different points in time leads

to specific problems in statistical modelling and inference. In traditional time series

the main emphasis is on the case when a continuous variable is measured at discrete

equispaced time points, Tómasson (2015). There is an extensive body of literature

on analysing equally spaced time series data, see for example Box et al. (2015) and

Brockwell & Davis (2002). Nevertheless, unevenly spaced (also called unequally or
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4. MODELLING PREFERENTIAL SAMPLING IN TIME

irregularly spaced) time series data naturally occur in many scientific domains. A

particular case of irregularly spaced data is that in which the collection procedure along

time depends also, for practical constraints, on the observed values. For example, a

certain health indicator for an individual may be measured at different time points

and with different frequencies depending on his health state. In a completely different

setting, the times of occurrence of transactions in the financial markets depend largely

on the value of the underlying asset. In environmental monitoring applications, or in

the context of smart cities if it is decided to monitor more frequently when a value

considered critical to human health is exceeded. Therefore, additional information

on the phenomena under study is obtained from the frequency or time occurrence of

the observations. Such situations in which there is stochastic dependence between

the process being modeled and times of the observations may be coined as temporal

Preferential Sampling, following Diggle et al. (2010) in the context of spatial statistics.

Preferential Sampling in time could be seen as a version of informative follow-up in

longitudinal studies, see, for example, Lin et al. (2004), Ryu et al. (2007) and Liang et al.

(2009) who proposed joint modelling and analysis of longitudinal data with possibly

informative observation times via latent variables. In these studies the follow-up time

process is considered dependent on the longitudinal outcome process and it should not

be regarded deterministic in the design of the study. The analogous problem in the

context of longitudinal clinical trial data has been studied too in the context of issues

concerning missing values and dropouts, in the sense that a missing observation conveys

partial information about the value that would have been observed. See, for example,

Diggle & Kenward (1994), Hogan & Laird (1997) and Daniels & Hogan (2008).

In this work, we propose a model-based approach to analyse a time series observed

under Preferential Sampling. The suggested framework considers the observed time

points as the realization of a time point process stochastically dependent on an under-

lying latent process (e.g. an individual health indicator or the underlying asset). This

latent process is assumed as Gaussian without loss of generality.

The developed work falls within the scope of irregularly spaced time series and it

applies theory of point processes, presuming that the time of the observations have been

produced by some form of stochastic mechanism. In the next Section, an introduction

to temporal point processes, based on Daley & Vere-Jones (2003) is developed.
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4.2 Basic concepts in point process theory

4.2 Basic concepts in point process theory

Point processes are stochastic processes that are used to model events that occur at

random intervals relative to the time axis or the space axis. Thus, we may consider two

main types of point processes: temporal point processes and spatial point processes.

A temporal point pattern is basically a list of times of events. For example, the

time of an earthquake in seismology or the time of an extreme asset return in financial

applications. An essential tool for dealing with this kind of data is a stochastic process

modelling the point patterns: a temporal point process. The term point is used since we

may think of an event as being an instant and thus we can represent it as a point on the

time line. For the same reason the words point and event can be used interchangeably.

4.2.1 The Poisson point process

The Poisson point process is one of the most used and studied point process models

due to its particularly convenient properties. In addition, it serves as a basis for the

construction of more complicated models. There are two different types of Poisson

processes: the homogeneous or stationary and the nonhomogeneous or inhomogeneous.

The first one is the simplest model in point processes theory and is completely defined

by

Pr {N (ai, bi] = ni, i = 1, . . . , k} =

k∏
i=1

[λ(bi − ai)]ni

ni!
e−λ(bi−ai) (4.1)

where N (ai, bi] denotes the number of events of the process falling in the half open

interval (ai, bi] with ai < bi ≤ ai+1.

Equation (4.1) embodies three important properties:

1. the number of points in each finite interval (ai, bi] follows a Poisson distribution

with mean λ(bi − ai);

2. the number of points in disjoint intervals are independent random variables;

3. the distributions are stationary: they depend only on the lengths bi − ai of the

intervals.
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4. MODELLING PREFERENTIAL SAMPLING IN TIME

Thus, the joint distributions are multivariate Poisson of the special type in which

the variates are independent.

The constant λ in (4.1) is the characteristic parameter, called the intensity or point

density, of the homogeneous Poisson process.

The inhomogeneous Poisson point process is an extension of the simplest one, where

the intensity λ is now a function of the time, λ(t). The process can be defined exactly

as in (4.1) with λ (bi − ai) =
∫ bi
ai
λdx replaced by

Λ (ai, bi] =

∫ bi

ai

λ(x)dx (4.2)

The properties of the homogeneous Poisson process have natural analogues in the

inhomogeneous case. Thus, the joint distributions are still Poisson, and the indepen-

dence property still holds.

Sometimes the intensity function λ(t) is rather irregular so it may be useful to

consider instead the point density distribution function, Ghorbani et al. (2006). Sup-

pose that there are n observations on (0, T ] at time points t1, ..., tn, in particular the

conditional distributions are independently distributed on (0, T ] with a common distri-

bution having density function λ(t)
Λ(0,T ] . Consequently, the corresponding location density

function of the n points is

fn(t1, . . . , tn) =
n∏
i=1

λ(ti)

Λ
(4.3)

where Λ =
∫
T λ(t)dt i.e. the n points form a sample of n independent points with

a probability density function proportional to λ(t).

4.2.2 Cox (doubly stochastic Poisson) processes

In our work we wish to model aggregated temporal point patterns where the aggregation

is due to some stochastic heterogeneity induced by an unobserved process. This leads

to a class of inhomogeneous Poisson processes with stochastic intensity functions, called

the Cox processes. A Cox process can be regarded as the result of a two-stage random

mechanism and for this reason Cox processes are sometimes termed “doubly stochastic

Poisson process”. In the first step, a non-negative intensity function λ(t) is generated.

Conditional on this, an inhomogeneous Poisson process with intensity function λ(t)

is constructed in the second step. In order words, given λ(t), the point distribution
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is completely random. This approach is a special case of the hierarchical modelling

approach, which is commonly used in model construction in many areas of classical

statistics.

In a stationary Cox process the intensity function is replaced by a stationary stochas-

tic process with non-negative values. The realizations of this process are functions

which are treated as intensity functions of inhomogeneous Poisson processes. All dis-

tributional properties of the point process generated are inherited from the stationary

stochastic process, yielding a stationary point process model.

Formally, the Cox point process model is defined in two steps:

• Consider a stationary non-negative valued stochastic process {Λ(t) : t ∈ R}.

• Given a realisation of the stochastic process, i.e. given that Λ(t) = λ(t) for all

t ∈ R, the points of the corresponding realisation of the Cox process form an

inhomogeneous Poisson process with intensity function λ(t).

Assuming Gaussian data, we shall consider log-Gaussian Cox processes, i.e Cox

processes where the logarithm of the intensity is a Gaussian process. Considering

a Gaussian process Z(t), this type of process cannot be used as the intensity of a

Cox process since it can take negative values. Thus, a suitable transformation has

to be applied to yield a Cox process. A very elegant transformation, resulting in a

mathematically tractable model, is

Λ(t) = exp (Z(t))

The corresponding process is termed a log-Gaussian Cox process and it was first

described in Rathbun (1996) and Møller et al. (1998).

4.2.3 Simulation of a Poisson process

An useful simulation technique to simulate an inhomogeneous Poisson point process

is independent thinning, that consists of using some predefined rules to remove points

of a process and form a new one. Suppose that X is a Poisson process with intensity

function λ(t), and that each point of X is either deleted or retained, independently of

other points. If the retention probability is p(t), then the resulting process of retained

points is Poisson with intensity λ(t)p(t). Then, to simulate an inhomogeneous Poisson
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point process with intensity λ(t) is enough to start by simulating a homogeneous one

with intensity λ = maxt∈T λ(t) and perform a thinning with retention probabilities

(thinning function) p(t) = λ(t)
λ .

In practice, this means that, based on the thinning function, a decision is made for

each point t1, . . . , tn in the sample of the homogeneous Poisson process with intensity

λ as to whether to “retain” or “thin” it. A point ti is retained with probability p(ti) =
λ(ti)
λ , each point being retained or deleted independent of what happens to any of the

other points.

The Cox processes can be simulated in a straightforward way, based on the hier-

archical nature of the model. In a first step the intensity λ(t) is generated and in a

second step the point pattern is simulated given λ(t) using the same method as for

inhomogeneous Poisson processes.

4.3 A model for Preferential Sampling in time

We consider data obtained by irregularly sampling a continuous time phenomenon

S(t) : t > 0 at a discrete set of times ti, i = 1, . . . , n. In many situations, S(t) cannot

be measured without error, hence, if Yi = Y (ti) denotes the measured value at time ti,

a model for the data takes the form:

Y (t) = µ+ S(t) +N(0, τ2), t > 0 (4.4)

Thus, this model has a set of components which are detailed as follows.

• S(·) is a stationary Gaussian process with E[S(t)] = 0. We consider S(·) as a

continuous time autoregressive process of order 1, CAR(1), defined in Section 2.3

that satisfies the differential equation

dS(t) + α0S(t)dt = dW (t)

where, α0 is the autoregressive coefficient and W (t) is a Wiener process with

variance parameter σ2
w.

• Y = (Y1, . . . , Yn)t is multivariate Gaussian with mean µY and covariance matrix

ΣY
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Y = (Y1, . . . , Yn)t ∼MVN (µy1,Σy)

with

µy = µ1 and Σy =
σ2
w

2α0
Ry(α0) + τ2In

where In is the n×n identity matrix, 1 denotes the n-element vector of ones and

Ry(α0) has elements rij = ρ (|ti − tj | ;α0) defined by equation (2.10) from Section

2.3 (ρ(h) = exp(−α0 |h|)). An equivalent formulation is that conditional on S(·),
the Y (ti) are mutually independent, normally distributed with mean µ + S(ti)

and common variance τ2.

• T = (t1, . . . , tn) denotes a stochastic process of observation times.

Under the above mentioned assumption that the sampling times are stochastic,

the joint distribution of S, T and Ymust be specified. Considering the stochastic

dependence between S and T , the model to deal with Preferential Sampling is defined

through [S, T, Y ] written as:

[S][T |S ][Y |S(T ) ] (4.5)

where [·] means “the distribution of”, S = {S(t) : t > 0}, T = (t1, . . . , tn) and S(T )

represents {S(t1), . . . , S(tn)}.
In this Chapter, we define a specific class of models through the additional assump-

tions

• Conditional on S, T is an inhomogeneous Poisson process with intensity

λ (t) = exp {a+ βS (t)} (4.6)

• Unconditionally T is a log-Gaussian Cox process. The log-Gaussian Cox process,

see Section 4.2.2, is a flexible class of point pattern models that allows condi-

tioning the sampling times to the variable of interest. β is the parameter that

controls the degree of preferentiality, for example, when β > 0 the sample times

are concentrated, predominantly, near the maximum of the observed values and

when β = 0 it corresponds to the situation of an homogeneous, non-preferential,

sampling.
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• Conditional on S and T , Y is a set of mutually independent Gaussian variates

with τ2 being the measurement error variance.

To obtain the parameters of the model we use maximum likelihood estimation.

For the shared latent process model, the likelihood function for data T and Y can be

expressed as

L(θ) = [T, Y ] =

∫
S

[T, Y, S]dS =

∫
S

[S][T, Y |S]dS =

∫
S

[S][T |S][Y |T, S]dS (4.7)

where θ = (µ, σw, α0, τ, β) represents the set comprising the model parameters.

Although the construction of this model is driven by a Preferential Sampling con-

text, it may be applied to model any type of irregularly spaced time series. One of its

advantages is to make predictions at unobserved time points.

Prediction

The predicted value of S(·) at an unsampled time point tni < t0 < tnj , S(t0|T ), is given

by S(t0|T ) = E
[
S(t0)|Y (T )

]
. Considering that the process CAR(1) is Markovian,

(Brockwell & Davis, 2002, p.358) shows that the conditional mean of S(t0) given Y (T )

is

S(t0|T ) = E
[
S(t0)|Y (T )

]
(4.8)

= exp (−α0(t0 − tni))Y (T ) + µ (1− exp (−α0(t0 − tni)))

The variance of the prediction is

σ2(t0) = V ar
[
S(t0)|Y (T )

]
=

σ2
w

2α0
(1− exp (−2α0(t0 − tni))) (4.9)

4.4 Inference - Monte Carlo approach

4.4.1 Maximum likelihood estimation

Evaluation of the conditional distribution [T |S] in (4.7) strictly requires the realization

of S to be available at all t ∈ T . We consider a discretization of the S process with N
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points and replace the exact locations T by their closest points on the grid. We then

partition S into S = {S0, S1}, where S0 denotes the values of S at each of n times

ti ∈ T , and S1 are the values of S at the remaining (N − n).

An algebraic simplification of [Y |T, S] is [Y |S0] so, we can rewrite the integral in

(4.7) as

L(θ) =

∫
S

[S][T |S][Y |S0]
[S|Y ]

[S|Y ]
dS (4.10)

Considering that [S] = [S1, S0] = [S1|S0][S0] and replacing the term [S|Y ] in

the denominator of expression (4.10) by [S|Y ] = [S0, S1|Y ] = [S1|S0, Y ][S0|Y ] =

[S1|S0][S0|Y ], equation (4.10) becomes

L(θ) =

∫
S

[S1|S0][S0][T |S][Y |S0]
[S|Y ]

[S1|S0][S0|Y ]
dS

=

∫
S

[T |S]
[Y |S0]

[S0|Y ]
[S0][S|Y ]dS

= ES|Y

[
[T |S]

[Y |S0]

[S0|Y ]
[S0]

]
(4.11)

Taking into account that the conditional expectation in (4.11) can be approximated

by Monte Carlo, Maximum Likelihood Estimates (MLE’s) are obtained by maximizing

the Monte Carlo likelihood

LMC(θ) = m−1
m∑
j=1

[T |Sj ]
[Y |S0j ]

[S0j |Y ]
[S0j ] (4.12)

where Sj are assumed as realizations of the distribution of S conditional on Y . S0j

denotes the values of Sj restricted to the n observed time points. We may notice that

j takes a value from 1 to m, the total number of Monte Carlo replicates. With this

purpose, we use a technique known as conditioning by kriging, Rue & Held (2005), and

the following construction. The new sample

Sj = U + ΣSA
T
(
AΣSA

T + τ2In
)−1

(V −AU)
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where A is the n×N matrix whose ith row consists of N−1 0s and a single 1 to identify

the position of ti within T = (t1, . . . , tn); U = Σ
1/2
S u ∼MVN(0,ΣS) with u ∼ N(0, 1)

and Σ
1/2
S is obtained from the Cholesky decomposition and V ∼MVN(y,ΣY ).

Then Sj has the required multivariate Gaussian distribution of S given Y = y. In

practice, to reduce Monte Carlo variance, we use antithetic pairs of realizations, i.e. for

each j = 1, . . . ,m/2 set S2j = 2µc − S2j−1, where µc denotes the conditional mean of

S given Y , Diggle et al. (2010).

T |Sj in (4.12) is an inhomogeneous Poisson process with intensity given by equation

(4.6)

λ(t) = exp(a+ βSj(t))

As we have seen in Section 4.2.1, the density function is given by
∏n
i=1

λ(ti)
Λ . Con-

sequently, and working with logarithm for computational reasons,

log([T |Sj ]) =
n∑
i=1

(a+ βSj(ti))− n log

(∫ T

0
exp(a+ βSj(t))dt

)
(4.13)

Since the Sj replicate is not known in [0, T ] domain, we can not calculate the

integral, so we approximate the integral using the composed trapezium formula for

unequally spaced data.

∫ T

0
exp(a+ βSj(t))dt =

1

2

N−1∑
k=1

(tk+1 − tk)(exp(a+ βSj(tk+1)) + exp(a+ βSj(tk)))

[S0j ] in (4.12) is multivariate Gaussian with mean 0 and covariance matrix ΣS0j

S0j ∼MVN
(
0,ΣS0j

)
with

ΣS0j =
σ2
w

2α0
RS0j (α0)

where RS0j (α0) is the n × n correlation matrix with elements rik = ρ (|ti − tk| ;α0)

defined by equation (2.10) from Section 2.3.
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[S0j |Y ] in (4.12) is multivariate Gaussian with mean µS0j |Y and covariance matrix

ΣS0j |Y , so that

µS0j |Y = ΣS0jΣ
−1
Y (y − µ1)

ΣS0j |Y = ΣS0j − ΣS0jΣ
−1
Y Σt

S0j

For more details about conditional distribution see for e.g. Anderson (1984).

In equation (4.12), [Y |S0j ] =
∏n
i=1[Yi|S0j(ti)] with Yi|S0j(ti) ∼ N(µ + S0j(ti), τ

2),

meaning that, conditional on S and T , Y is a set of mutually independent Gaussian

variates.

Obtained the MLE’s we can plug them into (4.8) and (4.9), treating them as known.

We are in position of doing the so-called plug-in predictions.

4.4.2 Numerical studies

In this Section, we document the performance of the model with time series simulated

under preferential and non preferential (irregular and regular sampling) scenarios. The

simulation allows to control the degree of preferentiality. We compare the results from

our model with the traditional Kalman filter approach to irregularly spaced data (cts

package (Wang, 2013)). To simulate a time series under Preferential Sampling, we use

the procedure described in Section 4.2.3.

Simulation design

To generate a time series under Preferential Sampling, we first generate a realization of

S from model (4.4) with α0 = 0.2 and σ2
w = 1, discretized in 400 equally spaced time

points. These values correspond to V ar[S(·)] = σ2 = σ2
w

2α0
= (1.581)2 and φ = 1

α0
= 5,

being the latter related to the lag beyond which there is no correlation for practical

purposes. To generate Y from model (4.4), we consider µ = 0 and τ = 0.1, conducting

three separate sampling procedures over the realization of S

• Preferential Sampling: conditional on the values of S, we obtain n = 70 sampling

times T following an inhomogeneous Poisson process with intensity function de-

fined in (4.6) and β = 2;
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• irregular sampling: we obtain n = 70 sampling times T from (4.6) and with β = 0,

illustrating the situation without Preferential Sampling;

• regular sampling: we obtain n = 70 sampling times with equidistant observations.

To illustrate the results of these sampling schemes, we represent in Figure 4.1 a

realization of the process S (gray line) and the three resulting data sets. We have 70

sampling times (black points), considering β = 2 in the process intensity function, in

which the preferential nature of the sampling process results in sample times falling

predominantly near the maxima. For 70 sampling times (white points), we consider

β = 0, the situation without Preferential Sampling and with irregularly sampling points.

For the remaining 70 points (star points), we have the situation of regular spaced

sampling times.

0 50 100 150 200

-4
-2

0
2

4

time

ob
s

Figure 4.1: Sample times with Preferential Sampling nature (black points), without

Preferential Sampling and irregularly spaced time points (white points), regular spaced

time points (star points) and underlying process S (gray line).

Estimation results

The parameters µ, σ, φ, τ and β are the target of estimation. The estimates are

obtained under (4.12), henceforward denoted by MCMLE’s and from the Kalman filter,

denoted by MLE’s. For the maximization of our Monte Carlo log-likelihood function,

we considered a total of grid points N = 400 and a total number of replicates m = 1000.
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The results of the mean and standard errors of each parameter, obtained from a

total of 250 independent samples are summarized in Table 4.1.

PS Data set (β = 2) Irregularly Sampling (β = 0) Regular sampling

True PS model CTS PS Model CTS PS Model CTS

µ̂ 0 0.13 (0.18) 1.91 (0.51) 0.04 (0.12) -0.01 (0.38) 0.02 (0.22) -0.01 (0.37)

σ̂ 1.58 1.53 (0.21) 0.91 (0.16) 1.64 (0.11) 1.54 (0.21) 1.60 (0.13) 1.47 (0.24)

φ̂ 5 5.71 (1.01) 2.52 (1.89) 5.20 (0.48) 5.41 (2.03) 5.12 (0.89) 6.56 (3.42)

τ̂ 0.1 0.12 (0.04) 0.17 (0.10) 0.11 (0.01) 0.22 (0.14) 0.11 (0.02) 0.56 (0.32)

β̂ 2 or 0 1.76 (0.39) 0.00 (0.07) 0.00 (0.02)

Table 4.1: Maximum likelihood estimates, under PS model (MCMLE’s) and by cts pack-

age (MLE’s), mean (standard errors) obtained from a total of 250 independent samples.

By analysing Table 4.1, we conclude that the model for Temporal Preferential Sam-

pling, when the sample times are preferentially sampled, presents estimates for the

parameters less biased and shows considerable success, particularly in estimating mean

(µ) and β parameters. When the preferentiality degree is null, with regular and irreg-

ularly sampling the estimation methods are essentially equivalent.

Further studies with β taking non-integer and negative values (sampling times are

concentrated, predominantly, near the minimum of the observed values) lead to similar

conclusions.

Inference on S(t)

To illustrate the potential of the model-based approach, we obtain prediction confidence

intervals for the underlying process S(t). For this purpose, MCMLE’s and the MLE’s

from Kalman filter are plugged-in equation (4.8) to predict S(t) at equally spaced time

points. These together with the corresponding standard errors, in (4.9), allowed us to

calculate prediction 95% confidence intervals and estimate their coverage.

Figure 4.2 represents one simulation of S(t) (black line), the corresponding Prefer-

ential Sampling data (black points) and the predictions at equally spaced time points

acquired from MCMLE’s (white points) and MLE’s (gray points). MLE’s which do not

take into account the preferential character of the data lead to predictions with larger

bias (overestimation of the observations) and smaller variance than that of MCMLE’s.

To analyse the impact of ignoring Preferential Sampling on the quality of predic-

tions, we conducted a second simulation study. We simulated 250 realizations of S, for
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4. MODELLING PREFERENTIAL SAMPLING IN TIME

each one we constructed a Preferential Sampling data set and predict S(t) at 50 equally

spaced time points. In fact, in the overall simulation results, confidence intervals from

MCMLE’s present an estimated coverage of 88% while the MLE’s provide an estimated

coverage of just 73%. Thus, the proposed model leads to estimates that are less biased

but with larger variance, reflecting the uncertainty associated with the observations.

0 50 100 150 200

-2
0

2
4

time

obs

Figure 4.2: Predictions acquired from MCMLE’s (white points) and MLE’s (gray points),

dashed line are confidence bands, black points are the Preferential Sampling data and black

line is the underlying process S .

Numerical studies suggest that our model is effective at detecting potential Pref-

erential Sampling situations, estimating an adequate model and obtaining predictions

for the process.

4.4.3 Application to real data

In this Section, we apply our modelling procedure to two real data sets. The first

consists of a time series related to the biomedical marker level of platelet after a cancer

patient undergoes a bone marrow transplant, while the second is a data set associated

with measurements of the lung function of an asthma patient.

Biomedical marker

We consider the problem of monitoring the level of a biomedical marker, platelet, after

a cancer patient undergoes a bone marrow transplant. The data, 91 measurements

in different days of log(platelet) [PLT] is represented in Figure 4.3 and is studied by

Shumway & Stoffer (2017) as missing data problem. The first 35 data points correspond
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4.4 Inference - Monte Carlo approach

to daily data. Afterwards the indicator began to show better results and observations

become irregularly spaced. According to Jones (1984), “Platelet count at about 100

days post transplant has previously been shown to be a good indicator of subsequent

long term survival”. This data is available in the package astsa Stoffer (2017) with the

name of “blood”.

0 20 40 60 80

4.0
4.5

5.0

time(days)

log
(PL

T)

Figure 4.3: Measurements of the log(platelet) [PLT] .

The MCMLE’s for model parameters are: µ̂ = 4.97, φ̂ = 54.85, σ̂ = 0.52, τ̂ = 0.14

and β̂ = −1.51. MLE’s from Kalman filter, are µ̂ = 4.89, φ̂ = 53.94, σ̂ = 0.42 and

τ̂ = 0.13. The estimated value for β with negative sign indicates that the data was,

in fact, observed under a preferential framework whereby the patient is observed more

frequently when the biomarker shows lower values. As expected, since the estimated

value for β is negative, the mean (µ) estimated from MCMLE’s is greater than the

estimated from MLE’s.

Predictions of the biomarker within the period of observations are obtained plugging-

in the estimated parameters in equations (4.8) and (4.9). Figure 4.4 top panel shows the

95% prediction intervals for (log of) the biomarker obtainded from MCMLE’s, while the

bottom panel represents the 95% prediction intervals obtained from MLE’s. As we saw

in the numerical studies with simulated data, the predictions obtained from MCMLE’s

present larger variance reflecting the uncertainty associated with the preferential data

under analysis.

This type of study allows greater knowledge of the underlying process and analyse,

for example, when measurements of the patient’s health indicator should have been

carried out.
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Figure 4.4: Prediction 95% confidence intervals using predictions acquired from

MCMLE’s (top) and MLE’s (bottom).

Lung function of an asthma patient

Belcher et al. (1994) analysed 209 measurements of the lung function of an asthma

patient. The time series is measured mostly at 2 hour time intervals but with irregular

gaps as demonstrated by the unequal space of tick marks in Figure 4.5. This data is

available in the package cts Wang (2013) with the name of “asth”.

To assess the performance and the utility of the proposed model, we select the

last 50 observations of “asth” data, corresponding to the period with more missing

observations. We considered a log-transformation of the data which leads to more

symmetric distribution of the values. We obtain predictions within the period of these

observations, aiming to “complete” the data set. Figure 4.6 shows predictions of (log

of) the variable of interest for that patient at regular time points. The MCMLE’s for
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Figure 4.5: Measurements of the log (lung function).

model parameters are µ̂ = 6.18, φ̂ = 2.83, σ̂ = 0.06, τ̂ = 0.03 and β̂ = 0.62. The small

positive value for β̂ reveals a week degree of preferentiality.

Additionally, since this data set covers about 30 days of a health state monitoring

of the patient, we perform three further analyses. We obtain sub samples, with 50 time

points, of the entire data set using the thinning algorithm described in Section 4.2.3,

assuming β equals to -2, 0 and 2 in (4.6), illustrating the cases

• State of poor health (β = −2);

• State of healthy (β = 2);

• Random sample (β = 0)

We obtain the prediction confidence intervals for the underlying process, as de-

scribed in Section 4.4.1, and the results for confidence intervals obtained from MCMLE’s

present an estimated coverage of 92% in both preferential samples (β = ±2) and 97%

in the case of the random sample. These results help to justify the small degree of

preferentiality present in data.

4.5 Inference - Laplace approach

In the first part of this Chapter, we have derived an MCMLE’s algorithm for estimating

the model parameters. The algorithm works well and allows the model to be used in
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Figure 4.6: Predictions of (log of) the variable of interest (black line) and Confidence

Intervals (dashed line). Black points are observations for the logarithm of lung function of

an asthma patient.

practice, however, the convergence of this algorithm is very slow and the running time

becomes burdensome for longer time series and a large number of Monte Carlo samples.

Also note that the algorithm is sensitive to starting values θ0. Besides these, the large

variability between likelihood values in each Monte Carlo iteration makes the likelihood

difficult to optimize. Our aim is now to

• Work directly with the likelihood function (4.7), using an alternative numerical

method that uses the Laplace approximation for the marginal likelihood avoiding

previous Monte Carlo approximation;

• Adopt a technique based on stochastic partial differential equation (SPDE) to

approximate the CAR process. This allows to create a temporal mesh and corre-

sponding components of the sparse precision matrix of a Gaussian Markov Ran-

dom Field (GMRF) in time-dimension;

• Improve significantly the optimization of the likelihood function using program-

ming language C++.

The above mentioned numerical techniques based on the Laplace approximation

and SPDE have become usual when dealing with complex models and large data sets,

Dinsdale & Salibian-Barrera (2018) and Diggle & Giorgi (2017). These changes will
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hopefully result in a large increase in the stability of our parameter estimates, partic-

ularly in comparison with our previous method based on Monte Carlo approximation.

4.5.1 Methodological details

An alternative method (henceforth LAP) to the Monte Carlo simulation outlined in

Section 4.4.1 is to utilize Automatic Differentiation of a Laplace Approximation to the

marginal likelihood, to evaluate directly equation (4.7), i.e.

L(θ) = [T, Y ] =

∫
S

[T, Y, S]dS =

∫
S

[S][T, Y |S]dS =

∫
S

[S][T |S][Y |T, S]dS

Automatic Differentiation

Automatic Differentiation (Griewank & Walther, 2008), also known as Computational

Differentiation or Algorithmic Differentiation, is a set of techniques that numerically dif-

ferentiates a function, which frees us from calculating and incorporating the derivatives.

Two methods, “source transformation” and “operator overloading” are commonly used

to implement automatic differentiation. CppAD (Bell, 2012), a package for C++ algo-

rithmic differentiation, implements the “operator overloading” approach which is easier

to implement and use compared with “source transformation”. The R package TMB,

short for Template Model Builder, (Kristensen et al., 2016) uses CppAD to provide up

to third order derivatives of the joint log-likelihood function. These derivatives are the

required for the Laplace Approximation of the marginal likelihood.

Laplace Approximation

The Laplace approximation is used to approximate the integral in the likelihood (4.7).

If we assume that the likelihood function for L(θ) can be written as

L(θ) =

∫
S
exp(−f(S,θ))dS (4.14)

where f(S,θ) denote the negative joint log-likelihood of the data, θ is the vector of

parameters (fixed effects) and S the random effects. The Laplace approximation for

L(θ) is
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4. MODELLING PREFERENTIAL SAMPLING IN TIME

L∗(θ) = (2π)N/2det(H(θ))−1/2exp(−f(Ŝ(θ),θ))

where

Ŝ(θ) = argSminf(S,θ) (4.15)

and H(θ) is the Hessian of f with respect to S evaluated at Ŝ(θ),

H(θ) =
∂2

∂S2
f(S,θ)|

S=Ŝ(θ)

The estimate of θ minimizes the negative of the logarithm of the Laplace approxi-

mation,

−logL∗(θ) = −N
2
log(2π) +

1

2
logdet(H(θ)) + f(Ŝ(θ),θ) (4.16)

This objective function and its derivatives acquired by using Automatic Differenti-

ation, are required to apply standard nonlinear optimization algorithms (e.g., nlmimb)

to optimize the objective function and obtain the estimate for θ. Using TMB library,

the user has to define the joint log-likelihood of the data and (i.e. conditional on) the

random effects as a C++ template function. The other operations such as integration

and calculation of the marginal score function, are done directly in R language. The

package evaluates and maximizes the Laplace approximation of the marginal likelihood

where the random effects are automatically integrated out. This approximation, and

its derivatives, are obtained using automatic differentiation (up to order three) of the

joint likelihood. In the case of Preferential Sampling, we simply have to define the joint

negative log-likelihood

f(S,θ) = −log([S][T |S][Y |S, T ])

and allow TMB to integrate out the latent field S to evaluate approximately (4.7).

Uncertainty of the estimate θ̂ or of any differentiable function of the estimate ζ(θ̂)

that the user specifies, is obtained by the δ-method:

V ar(ζ(θ̂)) = −

{
∂ζ(θ)

∂θ′

[
∂2(logL∗(θ))

∂θ∂θ′

]−1
∂ζ(θ)

∂θ

}
θ=θ̂

(4.17)
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These uncertainty calculations also require derivatives of (4.16). However, deriva-

tives are not straight-forward to obtain using automatic differentiation in this context.

Stochastic Partial Differential Equation

To increase computational efficiency, we use a technique based on the stochastic partial

differential equations (SPDE), Lindgren et al. (2011), to approximate the Gaussian

process S. Lindgren et al. (2011) show that using an approximate stochastic weak

solution to (linear) SPDE, for some Gaussian fields (GF) in the Matérn class, is possible

to provide an explicit link between GF and Gaussian Markov randon fields (GMRF).

Besides that we use the representation of a Gaussian process with Matérn covariance

structure as the solution of the following SPDE,

(
φ−2 −∆

)α/2
(ωS(t)) = W (t), t ∈ R+, (4.18)

where W (t) is Gaussian white noise, ∆ is the Laplacian and φ is the range parameter

of the Matérn covariance function γ(u) in its standard parametrization,

γ(u) =
σ2

Γ(ν)2ν−1
(u/φ)ν Kν (u/φ) : u ≥ 0

where Kν is the modified Bessel function of second kind and order ν > 0 and σ2 is

the marginal variance. The integer value of ν determines the mean square differen-

tiability of the underlying process, which matters for predictions made using such a

model. However, ν is usually fixed since it is poorly identified in typically applications.

The remaining parameters in (4.18) are α = ν + 1/2, from this we can identify the

exponential covariance with ν = 1/2, and ω that controls the variance,

ω2 =
Γ(1/2)

Γ(1)(4π)1/2φ−1σ2

We approximate the process S by S̃, where

S̃(t) =
n∑
k=1

ψk(t)Wk, t ∈ R+
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4. MODELLING PREFERENTIAL SAMPLING IN TIME

where ψk(·) are piecewise linear basis functions at a set of time knots andW = W1, ...Wn

is a zero-mean multivariate Gaussian variate with covariance matrix Q−1. The con-

struction is done by projecting the SPDE onto the basis representation in what is

essentially a Finite Element method. For α = 1 the required form of Q is

Q = ω2(φ−2C +G2)

where C and G2 are sparse matrices whose explicit expressions can be found in Lindgren

et al. (2011).

4.5.2 Numerical studies

A simulation study is performed to document the performance of LAP method. To

simulate a time series under Preferential Sampling we use the procedure described in

Section 4.2.3.

We first generate a realization of S from model (4.4) with α0 = 0.2 and σ2
w = 1,

discretized in 800 equally spaced time points. These values correspond to V ar[S(·)] =

σ2 = σ2
w

2α0
= (1.581)2 and φ = 1

α0
= 5, being the latter related to the lag beyond which

there is no correlation for practical purposes. To generate Y from model (4.4), we

consider µ = 0 and τ = 0.1, conducting three separate sampling procedures over the

realization of S

• Preferential Sampling: conditional on the values of S, we obtain n = 70 sampling

times T following an inhomogeneous Poisson process with intensity function de-

fined in (4.6) and β = 2, which corresponds to the situation when the sampling

times are concentrated, predominantly, near the maximum of the observed values;

• irregular sampling: we obtain n = 70 sampling times T from (4.6) and with β = 0,

illustrating the situation without Preferential Sampling;

• Preferential Sampling: conditional on the values of S, we obtain n = 70 sampling

times T following an inhomogeneous Poisson process with intensity function de-

fined in (4.6) and β = −2, which corresponds to the situation when the sampling

times are concentrated, predominantly, near the minima of the observed values;
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4.5 Inference - Laplace approach

The parameters µ, σ, φ, τ and β are the target of estimation. We compare the

parameter estimates, obtained from a total of 500 independent samples, for three al-

ternative methods,

• LAP, implemented through C++, via package TMB;

• LAP, implemented via package INLA (Rue et al., 2009);

• Kalman filter approach, implemented via package cts.

The INLA algorithm, proposed by Rue et al. (2009) and available in the R-INLA

software package, is a numerical approximation method for Bayesian inference. INLA

relies on Laplace approximation methods to numerically approximate posterior distri-

butions. This method performs Gaussian approximations of the parameters by inferring

their mode. Although posterior distributions do not necessarily have to be Gaussian,

INLA relies on the fact that for most real problems and data sets, the conditional

posterior of the latent field looks “almost” Gaussian, Rue et al. (2009). This is clearly

assisted by the, non-negligible, impact of the Gaussian priors on the posteriors.

In our study, the prior distributions will be the default non informative and for the

SPDE model, for σ and φ, we consider the Penalized Complexity prior, PC-prior, as

derived in Fuglstad et al. (2018).

Results of parameter estimation

The results of the mean and standard errors of each parameter, obtained from a total

of 500 independent samples are summarized in Table 4.2.

In Figures 4.7, 4.8 and 4.9 we have the corresponding boxplots for the preferential

(β = 2), non-preferential (β = 0) and preferential (β = −2) simulated data sets,

respectively, with true parameter values marked as red line. (PS corresponds to LAP

method)

By analysing Table 4.2 and Figures 4.7, 4.8 and 4.9, we conclude that under Pref-

erential Sampling, LAP, via TMB offers more accurate estimates than LAP via INLA,

except in the case of σ. Comparing with the traditional Kalman filter, LAP showed con-

siderable success mainly for µ, σ and φ. The parameter β seems to be underestimated

using LAP and R-INLA in the case of β = 2 and overestimated for β = −2.
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PS Data β = 2 Not PS Data β = 0

True LAP INLA CTS LAP INLA CTS

µ̂ 0 0.167 (0.483) 0.600 (0.423) 1.929 (0.480) -0.010 (0.386) -0.013 (0.381) 0.003 (0.362)

σ̂ 1.581 1.471 (0.355) 1.550 (0.333) 0.906 (0.157) 1.496 (0.201) 1.580 (0.194) 1.529 (0.207)

φ̂ 5 5.873 (2.531) 7.486 (3.097) 2.339 (1.462) 5.061 (1.605) 5.536 (1.533) 5.065 (1.672)

τ̂ 0.1 0.166 (0.099) 0.151 (0.352) 0.176 (0.090) 0.211 (0.144) 0.045 (0.110) 0.233 (0.135)

β̂ 2 ; 0 1.359 (0.258) 1.076 (0.204) -0.005 (0.098) -0.004 (0.077)

PS Data β = −2

True LAP INLA CTS

µ̂ 0 -0.174 (0.384) -1.768 (1.880) -1.919 (0.480)

σ̂ 1.581 1.426(0.279) 1.699(0.455) 0.913 (0.153)

φ̂ 5 5.223 (1.695) 6.443(1.748) 2.317(1.228)

τ̂ 0.1 0.155(0.101) 0.080 (0.113) 0.170(0.094)

β̂ -2 -1.344 (0.241) -0.530(0.786)

Table 4.2: Maximum likelihood estimates, under LAP (implemented via TMB package),

LAP (implemented via INLA package) and by Kalman filter approach (implemented via

cts package), mean (standard errors) obtained from a total of 500 independent samples.

For the case of non-preferential sampling, all estimation methods perform equiv-

alent. The exception is in the case of τ , using LAP via INLA which presents an

unexpected behavior (Figure 4.8).

Sensitivity Analysis

To investigate the sensitivity to initial values in parameter estimation, we conducted

two different parameter estimations, one considering as initial values (θ0) the “true”

values and other considering as θ0 the parameters estimated by traditional Kalman

filter approach.

An estimate for the initial value of β, given a sample data set Y , can be obtained as

follows. Suppose that Y = {(ti, yi) : i = 1, . . . , n}, where yi denotes the measured value

and ti is the corresponding time of the observation. A preliminary β0 can be obtained

through a simple algorithm such as: first, use a kernel-type intensity estimator of the

locations to derive λ̂(t); and, then, choose β0 such that log λ̂(t) ' const+ β0Y (t)

The results of the mean and standard errors of each parameter, obtained from a

total of 250 independent samples are summarized in Table 4.3.

The proposed method seems to be quite robust to initial values of θ in both scenar-

ios, under preferential and not preferential sample data.
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Figure 4.7: Boxplots for models parameters estimated over 500 preferentially sample

simulated data sets, β = 2, with true parameter values marked as red line.

4.5.3 Application to real data

In this Section, we apply our modelling approach supported by the LAP estimation

method to the real data related to the biomedical marker, platelet, after a cancer

patient undergoes a bone marrow transplant, previously described in Section 4.4.3.
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Figure 4.8: Boxplots for models parameters estimated over 500 non-preferentially sample

simulated data sets, β = 0, with true parameter values marked as red line.

Biomedical marker

The estimated parameters, using LAP method, together with estimated standard errors

are summarized in Table 4.4.

Comparing the above parameter estimates with those obtained in Section 4.4.3,

via Monte Carlo method: µ̂ = 4.97, φ̂ = 54.85, σ̂ = 0.52, τ̂ = 0.14 and β̂ = −1.51,

we conclude that the estimated value for β also has negative sign but a bit lower.

Anyway, the corresponding confidence interval for β̂ is (−1.568;−0.304), confirming
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Figure 4.9: Boxplots for models parameters estimated over 500 preferentially sample

simulated data sets, β = −2, with true parameter values marked as red line.

that β estimated from Monte Carlo and LAP approaches are in accordance. The

estimates for the mean parameter, considering the two approaches, present equivalent

results.

Analogous to what was done in Section 4.4.3, we plugging-in the estimated parame-

ters in equations (4.8) and (4.9) and we obtain the predictions of the biomarker within

the period of observations. Figure 4.10, top panel, shows the 95% prediction intervals

for (log of) the biomarker, obtained from MCMLE’s while the middle panel represents
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Preferential Data set Not Preferential Data set

True LAP (True θ0) LAP (θ0 from CTS) LAP (True θ0) LAP (θ0 from CTS)

µ̂ 0 0.247 (0.417) 0.247 (0.417) -0.030 (0.388) -0.030 (0.388)

σ̂ 1.581 1.412 (0.255) 1.413 (0.255) 1.500 (0.207) 1.500 (0.207)

φ̂ 5 5.244 (1.699) 5.242 (1.700) 5.167 (1.739) 5.167 (1.739)

τ̂ 0.1 0.164 (0.104) 0.163 (0.106) 0.204 (0.138) 0.203 (0.138)

β̂ 1.5;0 1.175 (0.159) 1.175 (0.159) 0.002 (0.100) 0.002 (0.100)

Table 4.3: MLE’s, mean (standard errors) obtained from a total of 250 independent

samples, considering as initial values (θ0) the “true” values and other considering the

parameters estimated by traditional Kalman filter.

Parameter Estimate Standard Error

µ̂ 4.993 0.290

log(ω̂) 2.545 0.198

σ̂ 0.329

log(φ̂) 3.559 0.710

φ̂ 35.115

log(τ̂) - 2.086 0.132

τ̂ 0.124

β̂ -0.936 0.316

Table 4.4: Maximum likelihood estimates under LAP.

the 95% prediction intervals obtained from the MLE’s from the Kalman filter approach

and bottom panel represents the 95% prediction intervals obtained from the MLE’s

from LAP approach. In this situation the predictions obtained from LAP present lower

variance than the predictions obtained from Monte Carlo approach, revealing greater

precision.

4.6 Conclusions

We propose, in this Chapter, a methodology that takes into account the times of occur-

rence of the observations but also able to deal with irregularly spaced time series. Firstly

we propose a Monte Carlo approach for the maximum likelihood estimation that not

only provides good estimates for model parameters but also reveals quite satisfactory

results for prediction. However this approach also presents some drawbacks and later

in this Chapter we present a numerical alternative to the Monte Carlo Simulation.
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Figure 4.10: Prediction 95% confidence intervals using predictions acquired from

MCMLE’s (top), MLE’s (middle) and LAP (bottom).

This approach, based on a Laplace approximation, increases the stability of our pa-

rameter estimates and presents quite satisfactory results for parameter estimation and

predictions. It is much more computationally efficient and runs faster, while MCMLE’s
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takes approximately 20 minutes to estimate parameters in a single simulation, LAP

takes approximately 21 seconds. Although INLA is slightly faster (16 seconds), LAP

presents more accurate results and provides user high levels of flexibility, due to the

direct specification of the joint likelihood.

A key aspect of this methodology is that it provides a tool to acquire some infor-

mation on the underlying stochastic process.

In the next Chapter, we consider that the sample design may depend on all past

observation times and actual observed values and we propose a model that allows to

take into account the history of the process.
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5

Modelling informative time

points: an evolutionary process

approach

Previously we assumed that the variable of interest is sampled in time according to a

sampling design that depends on the values of the underlying process, ignoring the past

of the observation processes. However, this kind of assumption of a memoryless pro-

cess for the observations process having an evolution without aftereffects is sometimes

unrealistic and useless in real contexts, where the dependence on the past is crucial.

In this Chapter we consider that the sampling design may depend on entire past

history of the process, meaning all the times of the observations as well as the values

of these observations. In these situations, the observed time points can be considered

informative to the process being studied. The importance of joint modelling informative

times and data was already recognised by Ryu et al. (2007) and Liang et al. (2009),

within the scope of longitudinal studies. In current work, taking into account the

natural temporal order underlying available data represented by a time series, then a

modelling approach based on evolutionary processes seems a natural choice.

5.1 Introduction

Point processes provide, as noted before, a very useful theoretical tool to represent the

evolution of some random value, or system, over time. In such processes it is assumed
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that what happens now may depend on the past, but not on the future. This identifies

a natural ordering for temporal point processes. Our interest now is to consider a point

process that specifies a stochastic model for the time of the next event given we know

all the times of previous events. Such processes are termed evolutionary point process.

In the next Section, a brief introduction to the theory of evolutionary processes,

based on Daley & Vere-Jones (2003), is developed.

5.2 Evolutionary point processes

An important concept in evolutionary processes is the history of the process, denoted

by Ht which represents the entire history of the point process prior to time t, meaning

that Ht specifies the times of all point events in the interval (−∞, t). We refer to H̃t as

the observed history of the process over the interval [0, t), that is the history consistent

with an observation on the process. In this work, the specification of the point process

conditional on its history is via the conditional intensity function, defined formely below.

Furthermore, the point processes are assumed to be simple point processes, meaning

that no points coincide and therefore the points can be ordered strictly in time.

5.2.1 Conditional intensity function

The conditional intensity function, λ∗(t) = λ(t|H̃t), is defined by

λ∗(t) =
f(t|H̃t)

1− F (t|H̃t)
, t1 < · · · < tn < t (5.1)

where f(t|H̃t) is the conditional density and F (t|H̃t) is the corresponding cumulative

distribution function and t1, · · · , tn are observed points.

Intuitively, the conditional intensity at t gives the conditional “risk” of a point event

occurring at that instant in time, given the observed history of the process prior to time

t.

Examples of point processes in which the conditional intensity has a particular

functional form are the following:

• The (inhomogeneous) Poisson process. In this process the number of points in

disjoint sets is independent and the conditional intensity function inherets this

property. The Poisson process is quite simply the point process in which the
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conditional intensity function is independent of the past, i.e. the conditional

intensity function is equal to the intensity function of the Poisson process, λ∗(t) =

λ(t).

• The conditional intensity function of a Hawkes process with an exponential decay

function has the form

λ∗(t) = η + ψ
∑

i:ti∈(0,t)

exp(−γ(t− ti))

where η > 0, ψ ≥ 0, γ > 0 and ψ < γ if the process is assumed to be stationary.

Note that each time a new point arrives in this process, the conditional intensity

grows by ψ and then decreases exponentially back towards η. In other words, a

point increases the chance of getting other points immediately after (self-exciting).

Setting ψ = 0, return us to the homogeneous Poisson process.

5.2.2 Marked point processes

In addition to the times of the point events, there may be additional variables that

are of interest associated with each point event. This information is known as marks

and the mark space (M) can be of many different types, but it is often (a subset of)

R or N. The marks may have an independent interest or may be included to make a

more realistic model of the event times. For example, in the analysis of a particular

medical indicator, it is relevant to know its value and not only when it was observed.

In addition, the value of the indicator influences how often measurements are taken.

More formally, a marked point process, with point event times in R and marks

in M , is a point process {(ti, yi)} on R × M with the additional property that the

process associated with times t1, t2, · · · , the ground process, is itself a point process

on R. We specify a marked point process by defining the conditional intensity λ(·|H̃t)

of the ground process, and then, for a given point event and observed history at time

t, we define the conditional distribution function for the marks. We can specify the

distribution of the mark y associated with the point t by its conditional density function

f∗(y|t) = f(y|t, H̃t), i.e. this specifies the distribution of the mark given t and the

history of the process, that includes information of times and marks of past events.

The definitions of the complete and observed histories, Ht, and H̃t, and the conditional
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intensity function are extended for marked point processes. We can now define the

conditional intensity function for the marked case as

λ∗(t, y) = λ∗(t)f∗(y|t) (5.2)

where λ∗(t), called the ground intensity, is the counting process associated with the

point events in the time domain and is defined exactly as the conditional intensity

function for the unmarked case, except that it is allowed to depend on the marks of the

past events. In addition, the marks are assumed to be conditionally independent given

the history of the marked point process and unpredictable. A process is said to have

unpredictable marks if the distribution of the mark at ti is independent of all previous

point event times and marks.

Thus, we can rewrite (5.2) as

λ∗(t, y) =
f(t|H̃t)f

∗(y|t)
1− F (t|H̃t)

=
f(t, y|H̃t)

1− F (t|H̃t)

where f(t, y|H̃t) is the joint density of the time and the mark, conditional on past times

and marks, and F (t|H̃t) is the conditional cumulative distribution function of t also

conditional on the past times and marks.

An example of a marked point process is the marked Hawkes process. This process

is a generalization of the unmarked Hawkes process, such that each point event time

now has a mark associated with it. The conditional intensity of the ground process is

given by

λ(t|H̃t) = λ∗(t) = η + ψ
∑

ti:ti∈(0,t)

exp(β1yi) exp(−γ(t− ti)) (5.3)

where η, γ > 0, ψ, β1 ≥ 0 and yi denotes the observed value at time ti.

Equivalently we could define it by its conditional intensity function including both

marks and times

λ∗(t, y) =

η + ψ
∑

ti:ti∈(0,t)

exp(β1yi) exp(−γ(t− ti))

 f∗(y|t) (5.4)

The idea behind using this model is that every new event increases the intensity by

ψ exp(β1yi) and large events increase the intensity more than small.
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5.2.3 Inference

Daley & Vere-Jones (2003) note that for point processes described as having an evo-

lutionary character, their conditional intensities and likelihoods are relatively simple.

The evolutionary character of such point processes allows the likelihood to be found

by successively conditioning on the past. Explicitly, the likelihood of a realization

((t1, y1), · · · , (tn, yn)) on [0, T )× R, of a marked point process is given by

LE =

(
n∏
i=1

λ∗(ti)

)
exp

(
−
∫ T

0
λ∗(u)du

)( n∏
i=1

f∗(yi|ti)

)
(5.5)

See (Daley & Vere-Jones, 2003, p.246-256) for a development of the likelihood. The

third factor on the right-hand side of (5.5) is the contribution to the likelihood from

the observed marks. The associated log-likelihood function is given by

log(LE) =
n∑
i=1

log λ∗(ti)−
∫ T

0
λ∗(u)du+

n∑
i=1

log f∗(yi|ti) (5.6)

The use of the log-likelihood implies bearing in mind some practical considerations.

A point process is only observed for a finite interval [0, T ] and time 0 is some time after

the origin of the process. For evolutionary point processes, there may be effects from

point events occurring before time 0. Daley & Vere-Jones (2003) referred such effects

as edge or boundary effects. An approach often taken in the literature is ignoring the

effects from point events occurring before the start of the observation period. In this

case the conditional intensity can be regarded as approximate for some initial part of

the observation period, and as such, there is likely to be some effect on the estimated

model. Rasmussen (2013) highlights that the estimate of η is likely to be too high,

however, he noted that the effects on the estimated model will be negligible if the data

set being used is large. Another question is the computational burden of evaluating

(5.6), this arises from the nested sum in the first term, if we take into account that

n∑
i=1

log λ∗(ti) =

n∑
i=1

log

η + ψ
∑

ti:ti∈(0,t)

exp(β1yi) exp(−γ(t− ti))

 (5.7)
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5.3 An evolutionary model for informative time points

Consider an unobserved stochastic process in time S(t), represented by a CAR(1). Now

admit that S(t) is observed at times ti, i = 1, · · · , n, yielding a data set (ti, yi), where

the corresponding Yi = Y (ti) is the noisy version of S(ti). Since our goal is to inference

on S(t), admitting that the sampling times are stochastic and the sampling design may

depend on all past history of the process, (both the actual times and values of the

observations), then a model able to deal with this evolutionary character must specify

the joint distribution of S, T = (t1, . . . , tn) and Y = (Y1, . . . , Yn), [S, T, Y ]. Considering

that [S, T, Y ] = [S][T, Y |S] let {(T, Y )|S} be an evolutionary marked point process with

ground intensity

λ∗S (t) = λ(t|H̃t, S) = η + ψ
∑

ti:ti∈(0,t)

exp(β1yi) exp(−γ(t− ti)) (5.8)

with η, γ > 0 and ψ, β1 ≥ 0.

Admitting the conditional mark density, f∗S(y|t) = f∗(y|t, S), then according to

(5.2), the conditional intensity function including both marks and times is

λ∗S(t, y) = λ(t, y|H̃t, S) = λ∗S(t)f∗S(y|t) (5.9)

The main purposes behind this model are

• every new event increases the intensity by ψ exp(β1yi) and large events increase

the intensity more than small events;

• observations that are more distant in time have less influence, considering on γ

parameter;

• the initial value of the conditional intensity equals η and we ignore effects from

events occurring before the first observation.
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5.3.1 Maximum likelihood estimation

To obtain estimates for the parameters of the model we use maximum likelihood esti-

mation. For the shared latent process model, the likelihood function for data T and Y

can be expressed as

L(θ) = [T, Y ] =

∫
S

[T, Y, S]dS =

∫
S

[S][T, Y |S]dS (5.10)

where θ = (µ, σw, α0, τ, β1, γ, ψ, η) represents all the model parameters.

Considering that the likelihood of a marked point process is given by (5.5), [T, Y |S]

in (5.10) takes the form

[T, Y |S] =

(
n∏
i=1

λ∗S(ti)

)
exp

(
−
∫ T

0
λ∗S(u)du

)( n∏
i=1

f∗S(yi|ti)

)

The associated log-likelihood function is given by

log([T, Y |S]) =
n∑
i=1

log λ∗S(ti)−
∫ T

0
λ∗S(u)du+

n∑
i=1

log f∗S(yi|ti) (5.11)

Substituting in (5.11), the conditional (ground) intensity, λ∗S(·), and the conditional

mark density f∗S(yi|ti), specified as N(Si, τ
2), then the log-likelihood can be rewritten

as

log([T, Y |S]) =

n∑
i=1

log

η + ψ
∑

j:tj<ti∈(0,t)

exp(β1yj − γ(ti − tj))

 (5.12)

−ηT − ψ

γ

n∑
i=1

exp(β1yi)(1− exp(−γ(T − ti)))

−n
2

log(2πτ2)− 1

2τ2

n∑
i=1

(yi − Si)2
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5.3.2 Computational issues

To overcome the computational burden of evaluating (5.12), which arises from the

nested sum in the first term

n∑
i=1

log

η + ψ
∑

j:tj<ti∈(0,t)

exp(β1yj − γ(ti − tj))


we use a compiled C++ subroutine. Besides that we set λ(0|H̃0) = η and ignore the

effects from point events occurring before time 0.

For [S] in (5.10) we adopt SPDE approximation for the Gaussian process S, as

described in Section 4.5.1. This allows to create a temporal mesh and corresponding

components of the sparse precision matrix of a GMRF, used to more efficiently evaluate

the normal density required.

To approximate the integral in the likelihood (5.10) we utilize Automatic Differen-

tiation of a Laplace Approximation to the marginal likelihood, as described in Section

4.5.1. In the case of sampling design that may depend on entire past history of the

process, we simply have to define the joint negative log-likelihood as

f(S,θ) = −log([S][T, Y |S])

and allow TMB package to integrate out the latent field S to evaluate approximately

(5.10).

This model, henceforth EVOL, allows to take into account the history of the process,

capture the evolutionary character of the process and deal with irregularly spaced time

series.

5.4 Numerical studies

We now intend to proceed with the assessment of the EVOL model, comparing the

results of its parameter estimates and those of the traditional Kalman filter approach.

We use simulated time series, so we start by describing the procedure needed to simu-

late a marked point process.
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Simulation Design

The method to simulate an inhomogeneous Poisson process, described in Section 4.2.3

requires that the conditional intensity to be bounded above, i.e. there is a finite M such

that for all t, λ(t|H̃t, S) ≤ M . This method was generalised by Ogata (1981) and this

generalisation only requires that the intensity to be locally bounded. The algorithm

is described as follows. Suppose we can find a piecewise constant process M(·|H̃t, S),

conditional on the history of the point process, such that for t ∈ [0, T ),

λ(t|H̃t, S) ≤M(·|H̃t, S)

Given that we can find a suitable M(·|H̃t, S), we can simulate a realisation of the

point process of interest in this way: define an inhomogeneous Poisson process N∗

which has a piecewise constant intensity M(·|H̃t, S) that changes value according to

the history H̃t and decide on the termination condition, for e.g. the simulation interval

is [0, T ), then simulate the points 0 ≤ t∗1 < t∗2 < · · · < t∗N∗[0,T ) < T from the process

N∗. Each t∗i is then selected with probability λ(t∗i |H̃t∗i
, St∗i )/M(t∗i |H̃t∗i

, St∗i ) to form part

of the simulated realisation of the point process of interest, where the history Ht∗i
and

St∗i give the simulated history of the point process of interest up to time t∗i . For each

point ti that is selected to the simulated realisation of the point process of interest we

simulate a mark yi from Y (t) = µ+ S(t) +N(0, τ2).

In practice, the function M(·|H̃t, S) changes value each time a point event is added

to the simulated realisation of the process of interest, and so it will not be known before

carrying out the simulation.

To generate a time series under a Preferential Sampling that depends on all past

history of the process, we adapt the R code used by (Lapham, 2014, p.124-125).

As follows, we start to generate a realization of S, a CAR(1) process with α0 = 0.2

and σ2
w = 1. These values correspond to V ar[S(·)] = σ2 = σ2

w
2α0

= (1.581)2 and φ =

1
α0

= 5. The parameter values used to generate the marked point process are

η = 0.05, ψ = 0.025, β1 = 0.6, γ = 0.1

and to generate the marks yi, we consider µ = 0 and τ = 0.1.
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To illustrate the results of these sampling procedure, we represent in Figure 5.1 a

realization of the process S (gray line) and the resulting data set.

0 100 200 300 400

-4
-2

0
2

4

time

ob
s

Figure 5.1: Sample times with dependency on all past history of the process and under-

lying process S (gray line).

Estimation Results

For EVOL model, η and ψ parameters have a tuning role. Relatively to η, we ignore

effects from point events occurring before the start of the observation period and we

assume that the initial value of the conditional intensity equals η. Regarding ψ, it

controls the sum value in the ground intensity. Thus, in a first simulation study the

parameters µ, σ, φ, τ, β1 and γ are the target of estimation and we set η and ψ values

at the true ones. For the simulation study we consider a total of 500 independent

samples with at least 50 points over the interval [0, 400]. The results of the mean and

the standard errors for each parameter, obtained from EVOL model, under (5.11), and

from Kalman filter approach implemented via cts package are summarized in Table 5.1.

In Figure 5.2 we have the corresponding boxplots, with true parameter values marked

as red line.

By analysing Table 5.1 and Figure 5.2, we conclude that EVOL model presents

more accurate estimates than Kalman filter approach. The parameter τ seems to be

overestimated in both approaches. For β1 and γ the estimates are quite reasonable and

82



5.4 Numerical studies

True EVOL CTS

µ̂ 0 0.196 (0.267) 0.225 (0.304)

σ̂ 1.581 1.567 (0.204) 1.606 (0.209)

φ̂ 5 5.995 (1.647) 6.188 (1.617)

τ̂ 0.1 0.456 (0.197) 0.483 (0.194)

β̂1 0.6 0.618 (0.128)

γ̂ 0.1 0.095 (0.026)

Table 5.1: Maximum likelihood estimates, under EVOL approach and by Kalman filter

approach, mean (standard errors) obtained from a total of 500 independent samples.

we believe that the inclusion of these two parameters in the model is more realistic in

real contexts.

Further studies with different combinations of the parameters, namely for β1 and γ

were analysed. When β1 > γ the conclusions are similar, but when β1 < γ or β1 > 1 it

is necessary to do some calibration work with parameter ψ in order to obtain samples

with a reasonable dimension.

Sensitivity Analysis

To analyse the impact of estimating also the parameters η and ψ and to investigate the

sensitivity to initial values in parameter estimation, we conducted a second simulation

study. We consider two different parameter estimations, one considering as initial values

(θ0) the “true” values and other considering for µ, φ, σ and τ the parameters estimated

by traditional Kalman filter approach and for the other parameters we consider β1 =

0.4, γ = 0.2, η = 0.07 and ψ = 0.035.

The results of the mean and standard errors of each parameter, obtained from a

total of 200 independent samples are summarized in Table 5.2.

The proposed method seems to be quite robust to initial values and the inclusion

of parameters η and ψ seems do not cause identifiability issues, only parameter β1 is a

little overestimated.
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Figure 5.2: Boxplots for models parameters estimated over 500 independent samples with

true parameter values marked as red line.

5.5 Conclusions

In this Chapter, we present a model approach that allows to deal with sampling designs

that depend on all past history of the process. This model allows to take into account

the evolutionary character of the process and is, in our opinion more realistic, since

it also consider the previous observations and the temporal distance to which they

occurred. The results for the parameter estimation are quite satisfactory and the

algorithm is computationally efficient.
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True EVOL (True θ0) EVOL (θ0 from Kalman filter )

µ̂ 0 0.239 (0.276) 0.239 (0.276)

σ̂ 1.581 1.526 (0.224) 1.526 (0.224)

φ̂ 5 5.720 (1.429) 5.720 (1.429)

τ̂ 0.1 0.477 (0.202) 0.477 (0.202)

β̂1 0.6 0.782 (0.325) 0.782 (0.325)

γ̂ 0.1 0.114 (0.065) 0.114 (0.065)

ψ̂ 0.025 0.025 (0.023) 0.025 (0.023)

η̂ 0.05 0.065 (0.021) 0.065 (0.021)

Table 5.2: MLE’s, mean (standard errors) obtained from a total of 200 independent

samples, considering as initial values for EVOL approach the parameters estimated by

traditional Kalman filter.
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6

Concluding remarks and further

work

The main objective of this work was centered in the presentation of contributions to

Spatial and Temporal modelling. Namely, in the context of analysing data under irreg-

ular sampling and data where the process of observation times/locations is stochastic

and provides additional information about the phenomena under study.

The framework proposed in Chapter 3 allows inference on the large-scale and small-

scale variation components of the spatio-temporal stochastic process. Our proposal uses

a block bootstrap procedure to correctly assess uncertainty in parameter estimates and

produce reliable confidence regions for (space-time) unobserved values of the variable

of interest.

Nonetheless, the discussed model presents some limitations, one of which is the dif-

ficulty in capturing temporal specificities intrinsic to a location. In fact, as discussed in

section 3.4.3 in the illustrating example, although the overall mean intra-day pattern

of the NO2 concentrations is well described by the model, individual stations and days

present particularities that remain unexplained. For example, stations located in the

surroundings of major cities present anticipated and/or postponed rush-hour traffic

leading to lagged peaks of NO2 concentrations. To overcome this issue interactions be-

tween harmonic regression and type of station could be incorporated into the model, or

time and space-varying model parameters could be allowed. Furthermore, this method,

as a two-stage approach may introduce some extra-variance in the inferential proce-
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dures, which is expected to be negligible. An alternative approach to model NO2 data

is to use a technique based on the stochastic partial differential equations (SPDE) im-

plemented via the INLA R package which is currently widely used in spatio-temporal

modelling. For high resolution time series, such as the ones considered in the present

work, Blangiardo & Cameletti (2015) point out that INLA becomes computationally

expensive and advise lowering the temporal resolution by defining the model on a set

of time knots, instead of on the set of all the time points. In our view, this could,

however, mask high frequency variability, such as intra-day variability resulting from

anthropogenic activities and meteorological conditions.

In Chapter 4 we propose a model-based approach that takes into account the times

of occurrence of the observations but also able to deal with irregularly spaced time

series. For parameter estimation we use maximum likelihood estimation and we propose

two alternatives, one based on Monte Carlo simulation and other based on a Laplace

approach to optimize the likelihood. The results for estimated parameters, in both

situations, are quite satisfactory when compared with the traditional approach that

uses Kalman filter to deal with irregularly spaced time series. However, the second one

is much more computationally efficient, runs faster and increases the stability of our

parameter estimates.

Diggle & Giorgi (2017), in the context of spatial statistics, affirm that the use of

a single parameter in (4.6), β, to capture both the strength of the preferentiality and

the amount of non-uniformity in sampling locations is somewhat inflexible. These au-

thors discuss a more flexible and computational more efficient class of models, based

on the proposal of Pati et al. (2011). Furthermore they suggest an extension to the

model proposed by Diggle et al. (2010), by adding a second Gaussian process and use

of stochastic partial differential equation models. For future investigation we intend to

adapt those suggestions to the time dimension.

In Chapter 5 we present a model approach that allows to deal with sampling designs

that depend on all past history of the process. To specify a process conditional on the

past we considered the intensity function and a marked point process for the times T

and marks Y . The suggested modelling approach exhibited, in the numerical studies,

accurate estimates for the parameters and proved to be computationally quite efficient.
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The new Protection Policy of Personal Data made it very difficult for us to find an

illustrative data set for the framework presented in Chapter 5, but we intend to apply

this model-based approach to a real data set and define a simple method to choose

suitable starting values for the estimation algorithm.

As a goal for future research, we plan to investigate new model structures that

accommodate covariates and allow for a non-gaussian response variable.

It is also of our interest to proceed with spatio-temporal modelling of data that

presents both spatial and temporal Preferential Sampling. One such example rises in

the context of smart cities projects which aim at helping city planners to correctly

manage urban environments. This typically requires the development of statistical

tools capable of handling large amounts of data collected by sensor networks. However,

for practical constraints, the sampling design underlying the sensor networks might

not uniformly represent the observation region, if more sensors are placed on those

areas considered as more critical, leading to a Preferential Sampling design in space.

In a similar way, the collection procedure along time might depend, also for practical

constraints, on the observed values, if, for example, it is decided to monitor according

the history of the process. An extension to spatio-temporal modelling of data may

prove to be useful for the above examples.
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