

Variation in nanoparticle size, color and deposition methods of photonic nanocrystals for structural coloration of textiles

António P. Souto, Rui Fernandes, Andrea Zille

2C2T - Centro de Ciência e Tecnologia Têxtil,

Universidade do Minho

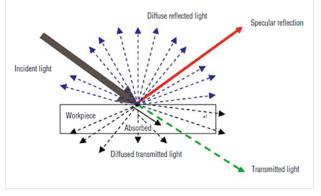
souto@det.uminho.pt

https://www.trustedclothes.com/blog/ 2016/06/23/impact-of-dyes/

http://maateeusa.com/what-is-wrong-withsynthetic-dyes/

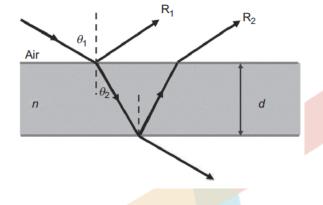
https://phys.org/news/2013-07-fashion-industry.html

Reflected light


n_H n_I

n_H

n


Substrate

LIGHT AND COLOR

Conventional Dyed Substrate

Thin-film Interference

5

 $t = 1/4 \lambda$

 $t = 1/4 \lambda$

1 pair

6

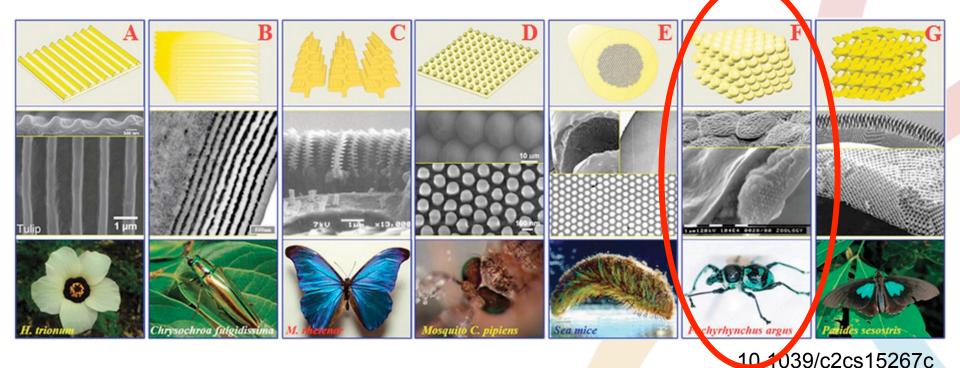
Multilayer Interference

Bragg's diffraction law (3D photonic crystals)

Hu, J., Active Coatings for Smart Textiles, 2016. ISBN: 9780857098399

Transmitted light

PHOTONIC CRYSTALS + textiles?


- Dielectric materials;
- highly periodic structure;
- spatially ordered lattices;
- capable of controlling the propagation of light due to the photonic band gap (PBG).

Applied in sensors, inkjet, lithography, light-emitting diodes (LEDs) and electronic devices.

PHOTONIC CRYSTALS

A, B, C – 1D structures D, E – 2D structures F, G – 3D structures

Photonic Crystals 1D Morpho butterfly

Photonic Crystals 1D Morpho butterfly

Lamellar structure in 6 - 8 layers

10kV X20,000 1µm 0002 JSM-5600

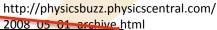
doi: 10.1098/rspb.2002.2019

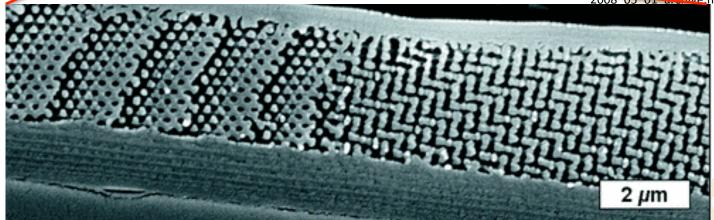
The pigmentation in the scale absorbs the extraneous green to red light and enhances the blue coloring 200 nm 🖛

10kV X20,000 1µm 0002 JSM-5600

Photonic Crystals 2D Mallard duck

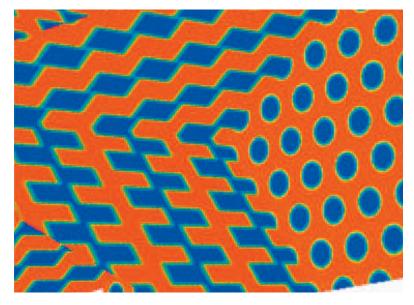
doi:10.1038/srep04718

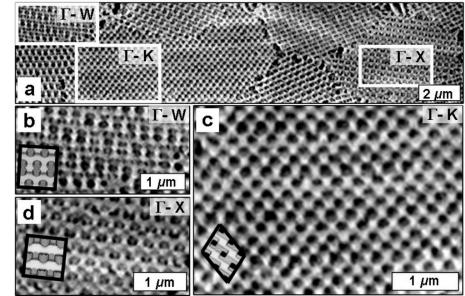

50 µm


20 µm

500 nm

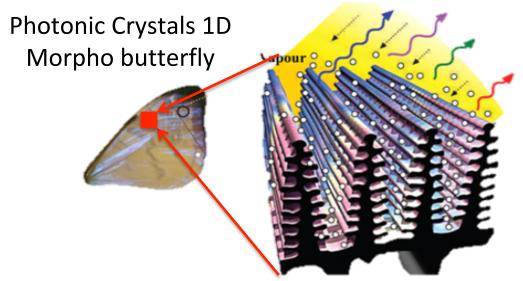
Photonic Crystals 3D diamond-based structure in the beetle L. augustus



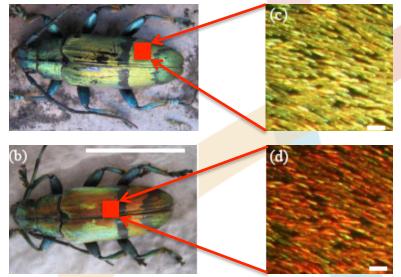

100 µm

10*u*r

Photonic Crystals 3D diamond-based structure in the beetle L. augustus



http://physicsbuzz.physicscentral.com/ 2008_05_01_archive.html


Sensors made of Photonic crystals

- by humidity effect

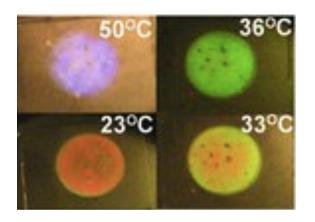
http://cdn.iopscience.com/images/0957-4484/27/12/122001/Full/nanoaa13e1f8_lr.jpg

Photonic Crystals 3D beetle Tmesisternus isabellae

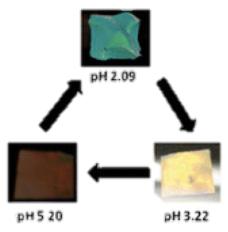

F. Liu, B. Q. Dong, X. H. Liu, Y. M. Zheng, J. Zi, "Structural color change in longhorn beetles Tmesisternus isabellae," Opt. Express **17**, 16183-16191 (2009);

https://www.osapublishing.org/oe/abstract.cfm?uri=oe-17-18-16183

- at our lab:

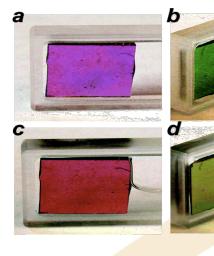


- wet



Sensors made of Photonic crystals

- by temperature effect - by chemical effect



- by pH effect

doi:10.3390/s130404192

DOI: 10.1021/nl061580m

In air

In ethanol

others: .ionic species .pressure .biomolecules

DOI: 10.1002/adma.201202459

Lab preparation soap-free emulsion polymerization

Monodispersed composite latex spheres of poly-(styrene-methyl methacrylate-acrylic acid) (P(St-MMA-AA)) were synthesized by soap-free emulsion polymerization in a three-necked flask equipped with a reflux condenser and a mechanical stirrer.

The mixture was stirred at 70 °C in N₂ atmosphere for 5 h to obtain a homogeneous particle diameter of ~170 to 250 nm.

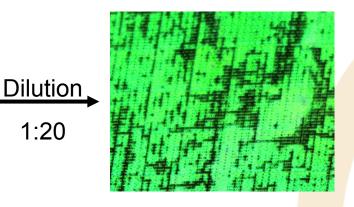
P(St-MMA-AA) NANOSPHERE SYNTHESIS

Table 1 – Different reaction conditions tested (control reaction in bold).

	Temperature (°C)	Stirring (rpm)	Size (nm)	
P(St-MMA-AA)	90	300	~170	
	80	300	~190	
	70	300	~210	7
	60	300	~250	R
	80	400	~190	
	80	200	~170	

Nanosphere size was confirmed by Scanning

Transmission Electron Microscope (STEM).



DEPOSITION METHODS – Gravitational sedimentation

Substrate: commercial black polyamide 6.6 plain fabric, with 61.5g/m², 67 warp and 47 weft yarns, 5.6 Tex and 3 Tex respectively.

Fabric was placed in a Petri dished filled with PCs suspension, which was dried in the oven at 40°C.

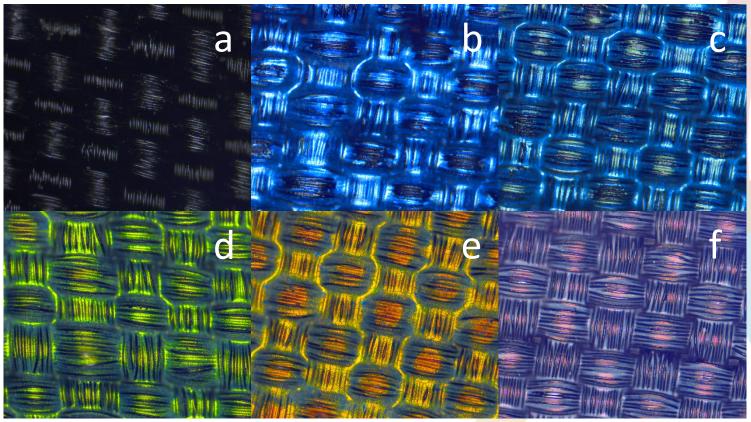
DEPOSITION METHODS – Dip-drawing

Initially tests were performed with a diluted solution:

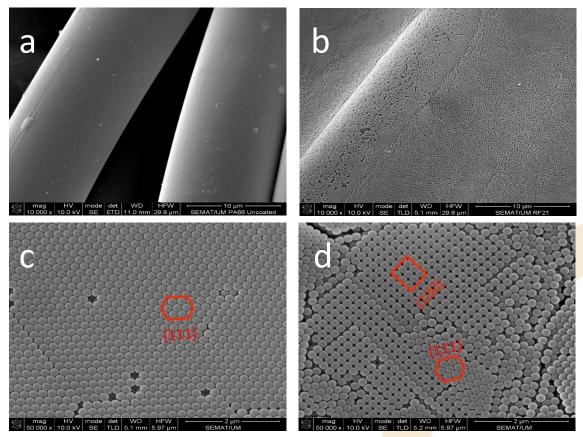
- to get a good structural color the fabric has to be dipped and dried several times;
- not viable for industrialization processes;
- higher energy costs.

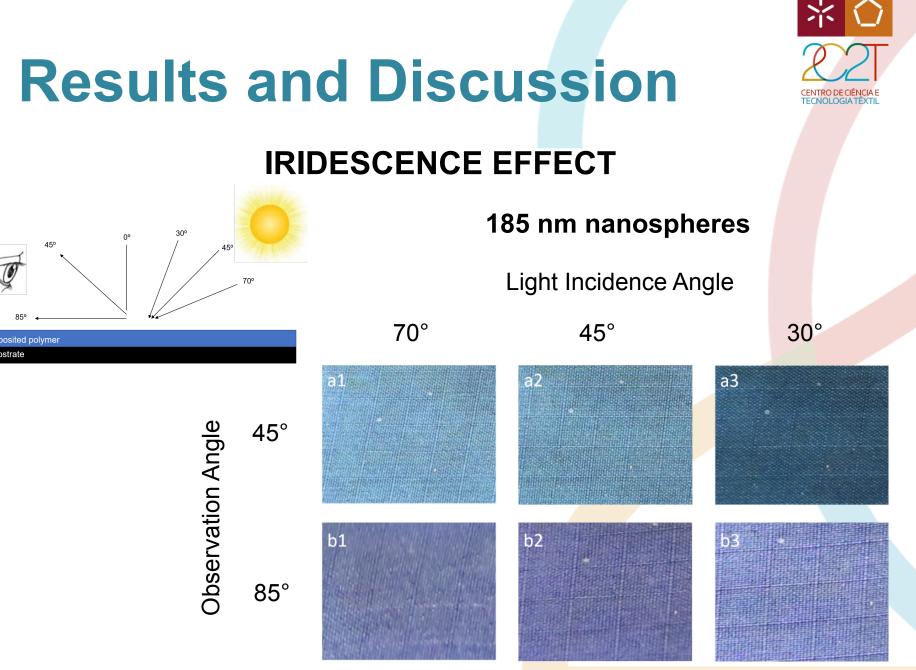
Optimize solution/method:

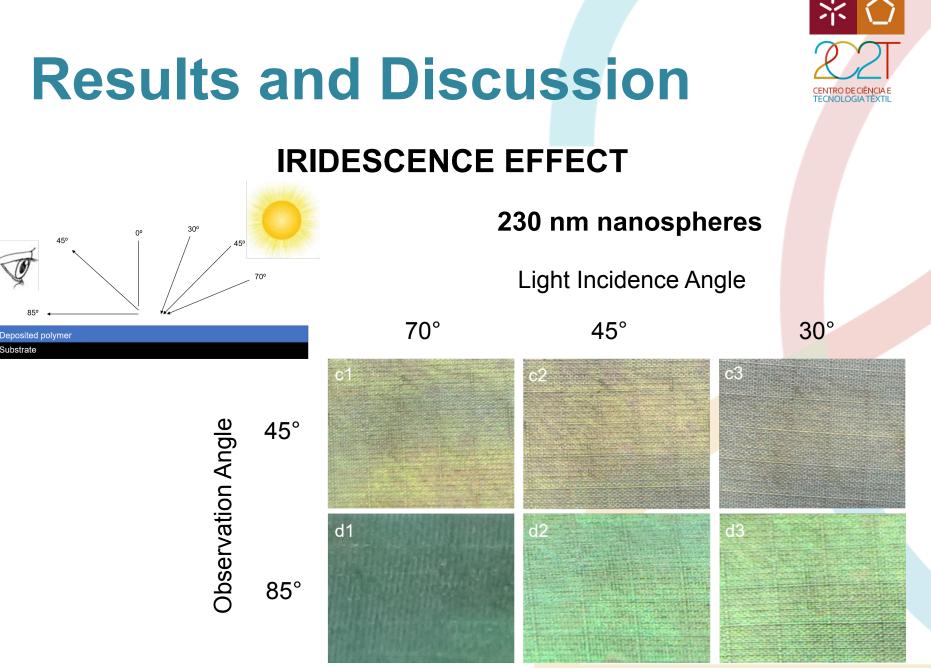
- One dip, plus dry (40°C);
- Saves time and energy.


DEPOSITION METHODS – Dip-drawing

Due to the small size variations obtained during the synthesis repetitions for each temperature and each stirring speed it was possible to obtain different shades of colors.

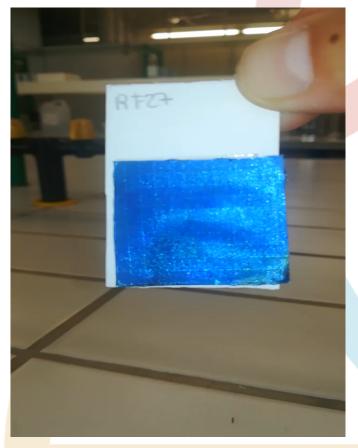

Results and Discussion OPTICAL MICROSCOPY


a) PA Uncoated and coated with P(St-MMA-AA) particles b) 170 nm,
c) 190 nm, d) 210 nm, e) 230 nm e f) 250 nm (100x magnification).


Scanning Electron Microscopy

SEM micrographs of coated PA fabrics. Hexagonally packed centre ({111}) structure is predominant, square arrangement ({100}) appears in out-of-plane surfaces.

Substrate



SPECULAR GLOSS

Specular gloss (UG) measurements for uncoated and coated PA fabrics, at 20°, 60° and 85°.

	20°	60°	85°
Uncoated	0.1	0.4	1.1
~190 nm nanospheres	0.3	1.9	3.6

Conclusion

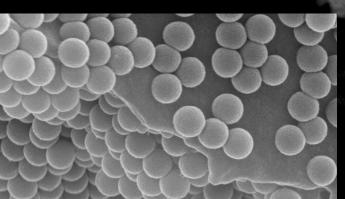
- ✓ Synthesis of P(St-MMA-AA) nanospheres with different sizes by controlling the reaction parameters
- ✓ Different colors obtained by deposition of PCs onto PA 6.6 fabric:
 - Mainly hexagonally packed center structure
 - Uniform distribution of nanospheres onto fabric surface
 - Good structural color, gloss and iridescence
- Reduced amount of water used in fabric coloration

(new tool with applications in protective clothing) PCs high light fastness

Eco-friendly coloration of fabrics

Nowadays challenges

 Can we give to the Nanophotonic crystals colour?
 YES, WE CAN -> We have done it!


 Can we "work" with several layers of color? YES, WE CAN

Nowadays challenges

Nowadays challenges

How to improve washing durability?

A study is going on to improve washing fastness, without loosing the handle properties, applying mixture of biopolymers.

Thank you for your attention

The authors would like to express their acknowledgment to the organizers of: MANUNET Transnational project TexEMFiRe MNET17/NMAT-1154

> António Pedro Garcia de Valadares Souto Universidade do Minho, Guimarães / Portugal Departamento de Engenharia Têxtil

> > souto@det.uminho.pt

Acknowledgment

The authors acknowledge the Portuguese Foundation for Science and Technology (FCT) for funding the project UID/ CTM/00264/2019 of 2C2T – Centro de Ciência e Tecnologia Têxtil, funded by National Founds through FCT/MCTES.