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Ortótese Inteligente e Vestível para Assistir a Marcha Humana Debilitada  

Resumo  

O acidente vascular cerebral (AVC) é a terceira principal causa de incapacidade motora 

adulta. A reabilitação da marcha com um treino repetitivo e orientado ao doente, possível 

com ortóteses ativas (OAs), potencia a recuperação da mobilidade. Contudo, é necessário 

ajustar a reabilitação da marcha às atuais necessidades do sujeito, bem como integrar senso-

res vestíveis nas OAs para avaliar objetivamente a marcha.  

Esta tese visa o desenvolvimento do SmartOs, um sistema ortótico ativo, modular, e vestí-

vel, com o intuito de providenciar um treino de marcha repetitivo e orientado às necessidades 

de doentes com AVC, e de avaliar a locomoção do doente por meio de dados cinemáticos e 

musculares. Esta tese inclui cinco fases de investigação. 

Primeiro, foi desenvolvida uma estrutura modular para integrar, de forma inovadora e efi-

caz, sistemas sensoriais, ferramentas de análise da marcha, e estratégias de controlo nas OAs. 

Segundo, foi desenvolvido um laboratório portátil de análise de marcha com quatro sistemas 

sensoriais, passíveis de serem utilizados em stand-alone ou combinados com sistemas exter-

nos. O benchmarking com sistemas comerciais demonstrou a potencialidade destes sistemas 

sensoriais para a avaliação objetiva da locomoção. Terceiro, foi desenvolvida uma máquina de 

estados com limites adaptativos para a deteção de eventos da marcha, a qual demonstrou ser 

adequada como benchmarking para avaliação de eventos humanos da marcha. Quarto, foi 

criada uma ferramenta de machine learning para o reconhecimento e previsão de modos de 

locomoção e transições. Esta ferramenta destaca-se pela classificação precisa de direções e 

terrenos com uso exclusivo de dados cinemáticos. Por último, foi desenvolvida uma arquite-

tura de controlo hierárquica com quatro estratégias de controlo. As estratégias de trajetória 

orientada ao sujeito e impedância adaptativa fornecem um treino de marcha repetitivo e as-

sist-as-needed, respetivamente. As estratégias baseadas na eletromiografia e na interação ho-

mem-OA contribuem para o fortalecimento muscular.  

Em suma, os resultados indicam que o SmartOs está funcional para futura aplicação em 

ambiente clínico quer como uma solução de assistência personalizada, quer como uma ferra-

menta de avaliação da marcha de doentes com AVC.  

Palavras-chave: assistência e reabilitação da marcha, estratégias de assistência, ortóteses ati-

vas, reconhecimento de intenção, sensores vestíveis 
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Smart Wearable Orthosis to Assist Impaired Human Walking 

Abstract 

Stroke is the third leading cause of adult long-term motor disability. Gait rehabilitation ap-

proaching user-oriented and repetitive gait training has the potential for long-term mobility 

recovery. Active orthoses (AO) can tackle these rehabilitation abilities. More research is 

needed to foster gait rehabilitation oƌieŶted to the ĐuƌƌeŶt useƌ͛s Ŷeeds and to integrate wear-

able sensors into AOs for objective gait assessment. 

This thesis aims the development of SmartOs, a smart, modular, wearable active lower limb 

orthotic system, to foster user-oriented and repetitive gait training in impaired gait due to 

stroke and to evaluate human motor condition using kinematic and muscular gait measures. 

This work includes five research stages.  

First, a modular framework was implemented to integrate into an innovative and effective 

manner, wearable sensor systems, gait analysis tools, and control strategies into AOs. Second, 

a wearable motion lab including four wearable sensor systems, with an open-architecture for 

both stand-alone or third-party systems use, was successfully developed. The benchmarking 

analysis with commercial systems outlined that the sensor systems are purposeful for objec-

tiǀe eǀaluatioŶ of the useƌ͛s ŵotoƌ ĐoŶditioŶ. Third, a gait event detection tool through a finite 

state machine with an adaptive threshold-based structure was developed for detecting gait 

events in daily locomotion. Results show that the tool is suitable as a benchmark for detecting 

human gait events. Fourth, a machine learning-based recognition and prediction tool was 

achieved to classify locomotion modes and transitions. This tool advances the state-of-the-art 

by demonstrating that the exclusive use of kinematic data successfully classifies different 

walking directions and terrains. The last research stage made the SmartOs a multi-functional 

system through a hierarchical control architecture with four assistive control strategies. The 

user-oriented trajectory and adaptive impedance controls foster repetitive and assist-as-

needed gait training, respectively. Both the EMG-based and user-orthosis interaction based 

control contribute to muscle strengthening.  

Findings indicate that SmartOs is functionally operative for a future clinical application as a 

personalized assistive and gait assessment solution of stroke survivors.                              

Keywords: active orthoses, assistive control strategies, gait rehabilitation and assistance, mo-

tion intention recognition, wearable sensors
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Chapter 1 - Introduction 

This Ph.D. thesis presents the research and development activities carried out during the 

past four years in the scope of the Doctoral Program in Biomedical Engineering at the Univer-

sity of Minho. The research activities were mainly performed in Biomedical Robotic Devices 

Lab included in the Center for MicroElectroMechanical Systems (CMEMS), a research center 

of Department of Industrial Electronics from the University of Minho. Part of the research was 

also developed in Neural Rehabilitation Group at Consejo Superior de Investigaciones Científi-

cas (CSIC) in Madrid, Spain.  

The developed biomedical research is inserted into SmartOs project - Smart control of a 

stand-alone active orthotic system. It proposes a personalized robotic technology combined 

with a toxin-based intervention for long-term recovering of the functional motor abilities of 

stroke survivors. SmartOs aims the development of a smart wearable orthotic system by com-

bining an active lower limb orthosis to assist as need during task-oriented gait training, with a 

ǁeaƌaďle ŵotioŶ laď foƌ ŵoŶitoƌiŶg the useƌ͛s ŵotioŶ. This Ph.D. thesis addressed the first 

development initiatives of the SmartOs project, which is in a development stage and prelimi-

nary validation.  

The research activities completed in this Ph.D. thesis address the field of neurorehabilita-

tion robotics with a focus on human gait analysis and assistive control strategies towards per-

sonalized gait rehabilitation and assistance in post-stroke conditions using wearable active 

orthotic devices.  
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1.1.Motivation and Research Scope 

Walking is the most daily performed human gait task, and it plays a relevant contribution 

to the useƌ͛s aĐtiǀe ǁellďeiŶg. It consists of a repetitive sequence of lower limb motions to 

move the body forward, maintaining postural stability [1], [2]. Neurological diseases, muscular 

deformities, and peripheral injuries can compromise healthy human walking. The impaired 

gait sequels tend to increase with the actual aging tendency. Currently, 21.3% of the Portu-

guese population is older adults [3]. In 2060, 30% of Europeans (172 million) will be over 65 

years old (currently 17%). 

According to the World Health Organisation, every year, 15 million people suffer a stroke 

(20,000 in Portugal) [4]. Stroke is the third leading cause of motor disability [5]. This neurolog-

ical disease is responsible for long-term motor disability; 70% of stroke survivors exhibit mo-

tor impairments and remain permanently disabled [6]. Gait after stroke is often characterized 

by an asymmetrical pattern, neuromotor impairment such as drop foot. About 35% of stroke 

victims present lower limb spasticity [6], which has an incidence rate of 57.8 cases per million 

inhabitants in Portugal [7]. Spastic gait may limit the biomechanical and functional motor abil-

ity at different daily tasks (e.g., walking, sitting, standing, jumping, climbing, and turnings). The 

limited mobility commonly results on the dependence on others (i.e., social assistance), social 

and work exclusion, early retirement (10% in the working-age), and costly medical assistance. 

Stroke sequels represent a significant burden on health and social resources, growing steadily 

in Europe due to demographic changes, costing around 1 million euros per year in 2020 [8].  

Emerging therapies are necessary to help and improve the quality of life of the individuals 

that face permanent motor disabilities. Clinicians have been recommending the physical re-

habilitation as the more appropriate strategy for the long-term biomechanical and functional 

gait recovery of neurologically injured individuals, such as stroke survivors [9]. An appropriate 

gait rehabilitation comprises user-oriented ;i.e., aĐĐoƌdiŶg to the useƌ͛s dƌiǀeŶ ƌeƋuiƌeŵeŶts 

and needs), task-oriented and repetitive gait training, and the eŶĐourageŵeŶt of the user’s 

participation in the therapy.  

Various physical rehabilitation interventions have been proposed [9]–[12]. In particular, 

gait rehabilitation driven by wearable assistive lower limb devices such as active orthoses 

(AOs) are becoming a prominent assistive and augmented intervention [13]. They are capable 

of acting in parallel with the human limb for fostering a user-oriented, task-oriented, and 
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repetitive gait therapy while achieving a continuous objective assessment of the end-users 

motor condition [14]. Moreover, AOs can improve current treatments due to its ability to 

adapt the mechanical assistance according to real-time evaluation of the useƌ͛s Ŷeeds, ad-

dressing an assist-as-needed (AAN) approach [15]. One major milestone was the develop-

ment of AAN strategies, in which a robotic assistive device only supplies as much assistance 

as necessary for patients to accomplish a movement. 

It is expected that the high degree of physical training with specific and repetitive motion 

tasks fostered by AOs evokes brain plasticity, providing biomechanical advantages and a func-

tional compensation. This will iŵpƌoǀe the oǀeƌall patieŶt͛s fuŶĐtioŶal aŵďulatioŶ, ŵoǀeŵeŶt 

coordination, abnormal gait pattern prevention, muscular strength, balance control, energetic 

efficiency locomotion, and general wellbeing [13]. Using AOs may enhance the cognitive abil-

ities, ǁhiĐh iŶ tuƌŶs, ŵaǇ iŶĐƌease the useƌ͛s ĐoŶfideŶĐe aŶd ƌaise theiƌ leǀels of aĐtiǀitǇ aŶd 

independence. Additionally, AOs can be designed to encourage the useƌ͛s paƌtiĐipatioŶ iŶ the 

therapy; thus, accelerating the motor learning process [15].  

The current need for physical therapy is expected to remain strong into the foreseeable 

future, given the likely high prevalence of impaired gait and the reduced number of physical 

therapists. Wearable assistive devices, such as AOs, may tackle these needs. They will contrib-

ute as a complementary rehabilitation tool to conventional physical therapy to strengthen the 

long-term motor recovery and actuate in daily assistance to offer the patients an adequate 

level of independence. Further, as AOs are challenged to emulate the skills of a trained ther-

apist, they may relieve and reinforce the repetitive and heavy work of physical therapists [16], 

[17].  

1.2.Problem Statement  

To date, available AO-based rehabilitation interventions are not satisfying and present 

poor usability and clinical evidence with pathological end-users. Despite the technological 

efforts on AOs [18]–[22], they are still not able to foster assistance oriented to the current 

useƌ͛s Ŷeeds, ŵotoƌ tasks, aŶd tiŵelǇ adaptiǀe foƌ dǇŶaŵiĐ dailǇ eŶǀiƌoŶŵeŶts Ŷoƌ to eŶĐouƌ-

age the useƌ͛s paƌtiĐipatioŶ. 

The clinical eǀideŶĐe of AOs͛ effeĐtiǀeŶess iŶ gait ƌehaďilitatioŶ has ďeeŶ liŵited to shoƌt-

term clinical trials involving a reduced number of pathological end-users. There is no sufficient 
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ĐliŶiĐal eǀideŶĐe of the AOs͛ poteŶtial to ƌeĐoǀeƌ fuŶĐtioŶal ŵotoƌ aďilitǇ iŶ daily performed 

tasks. It is imperative to develop a significative evaluation on the usability and cognitive and 

physical recovery effectiveness of AO-based rehabilitation and assistance.  

Quantitative gait analysis is also a required topic for the clinical domain to objectively as-

sess the efficiency of AOs and to provide reliable, objective measures to support the clinical-

based motor diagnosis. Nowadays, prescription of rehabilitation interventions are not stand-

ardized aŶd ofteŶ depeŶd oŶ ĐliŶiĐiaŶs͛ eǆperience and subjective measures [23], [24]. More 

efforts toward objective and easy to apply methodologies for assessing the motor function 

and unified method to evaluate the effectiveness of AO-based therapy are needed. 

More research is needed to boost the achievements expected with AO-based gait rehabil-

itation and assistance, as follows. First, to develop adaptive and compliant assistive control 

strategies for timely and effective assistaŶĐe͛s adjustment aĐĐoƌdiŶg to the useƌ͛s Ŷeeds. Sec-

ond, bioinspired control architectures, following organization principles of the human motion-

control system, started to emerge and constitute a relevant aspect for tackling the current 

gap on AAN strategies [9]. For that matter, it is imperative that the control architecture of AOs 

endows assistive control strategies, whose assistance is driven by gait tools able to detect 

current gait eǀeŶt aŶd to ƌeĐogŶize the useƌ͛s ŵotioŶ iŶteŶtioŶ aŶd motor disability level [9], 

[14]. The control architecture also has to be synchronized with easily wearable sensor systems 

for objective gait monitoring and useƌ͛s Ŷeeds eǀaluatioŶ [25], [26].  

Research should transform the AOs into multi-functional assistive devices, able to provide 

different assistive strategies and functionalities for post-stroke gait rehabilitation. Recent 

studies suggest paƌaŵeteƌiziŶg the joiŶts tƌajeĐtoƌies aĐĐoƌdiŶg to the useƌs͛ ďodǇ ĐoŶditioŶs 

and gait phases, instead of imposing predefined trajectories as currently applied. This oriented 

assistiǀe ĐoŶtƌol stƌategǇ ǁill ĐoŶtƌiďute to iŵpƌoǀiŶg the useƌ͛s Đoŵfoƌt aŶd ŵoǀeŵeŶt Đo-

ordination [27], [28].  

Considering the potentialities of the AAN gait training, current research directions [11], [29] 

also sought to adapt the impedance behavior of the human-AO interaction by proposing 

adaptive impedance control strategies. However, to achieve an AAN strategy, the dynamic 

parameters of the human-AO interaction need to be tuned accordantly to the gait cycle and 

speed [30]. Furthermore, active and natural interaction between user and AO is crucial for 

promoting motor recovery and increasing brain plasticity [28]. The combination of user-ori-

ented assistive control strategies with biofeedback systems is an unsolved but necessary 
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challenge to manage the human-robot interaction in free-living scenarios synergistically. This 

combination can accelerate the motor learning process and boost the overall motor recovery 

[11], [31]. 

Moreover, the electromyography-based control strategy is raising as one interesting strat-

egǇ to take iŶto aĐĐouŶt the useƌ͛s ŵotioŶ iŶteŶtioŶ eŶĐoded iŶ electromyography (EMG) sig-

Ŷals ǁhile eŶĐouƌagiŶg the useƌ͛s paƌtiĐipatioŶ to pƌoǀide a fuŶĐtioŶal gait tƌaiŶiŶg [32], [33].  

Post-stroke gait impairments are usually related to one or several gait phases. Conse-

quently, AOs should not only assist as much as needed but also assist when needed, i.e., to 

assist in part of a gait cycle related to the target impairment employing gait-phase-based con-

trol strategy [34]. It is necessary to develop time-effective, versatile computational tools able 

to detect the overall human gait events in both controlled and real-life situations using wear-

able sensors [35]–[40]. Furthermore, by analyzing the existing state-of-the-art [41]–[43], there 

is still a set of challenges to be pursued in the useƌ͛s ŵotioŶ iŶteŶtioŶ ƌeĐogŶitioŶ; to develop 

an user-independent and more versatile tool for predicting and recognizing several daily lo-

comotion modes and locomotion mode transitions.  

Considering these shortcomings, future designs in AOs towards the direct interaction 

among gait analysis tools, multiple sensors, and actuation, biofeedback, monitoring, and 

power supply systems, while meeting the needs of effective assistive control strategies and 

prioritizing safety mechanisms [9], [16], [44]–[46]. This multiple system integration will in-

crease the complexity of wearable AOs for ambulatory and user-oriented applications, de-

manding the development of interoperable, deterministic, modular frameworks.  

This thesis considered the listed research challenges to bring new insights and innovative 

research directions into the development of a wearable assistive orthotic system for fostering 

user-oriented and repetitive gait training while fostering an objective gait monitoring.  

1.3.Goal and Research Questions  

The ultimate goal of this Ph.D. thesis is the development of a smart, modular, wearable 

active lower limb orthotic system, named as SmartOs system, to foster user-oriented and 

repetitive gait training in impaired gait due to stroke and to evaluate human motor condition 

using real-time and objective kinematic and muscular gait measures.  



Chapter 1- Introduction 

6 

 

In the scope of this thesis, SmartOs system includes two wearable AOs for knee and ankle 

assistance, synergistically interconnected with a wearable motion lab. This innovative combi-

nation allows tailoring in real-time the assistance according to the specific ambulatory re-

sponse of the user. AOs incorporate a hierarchical control architecture bioinspired on the 

principles and organization of the human motion-control system to tackle an AAN approach. 

The robotic assistance is ďased oŶ the useƌ͛s ŵotioŶ iŶteŶtioŶ aŶd gait phase, both decoded 

by gait analysis tools, which fuse biomechanical and muscular information from wearable 

motion lab. The interconnection of sensor feedback, analysis and motor control describes the 

smart nature of the SmartOs system for personalized gait rehabilitation and assistance. The 

control architecture incorporates different user-oriented assistive control strategies that will 

constitute an innovation action within the healthcare domain. 

Furthermore, this thesis develops a modular, real-time, interoperable, power- and time-

effective framework to be easily extendable, enabling the inclusion of other modules such as 

further AOs, sensor and biofeedback systems, assistive control strategies, and gait analysis 

tools. The development of a modular wearable robotic technology follows a user-centered 

design approach to ŵaǆiŵize the useƌ͛s aĐĐeptaďilitǇ and usability and provide a reliable and 

safe rehabilitation solution.  

To achieve these ultimate goals, it is necessary to pursue the following objectives.  

• Objective 1: To review related studies to post-stroke gait analysis and gait rehabili-

tation using wearable assistive orthoses. First, to identify the key outcome measures 

and motion capture systems applied in post-stroke gait rehabilitation based on lower-

limb orthotic assistance. Second, to review the clinical evidence and methodologies 

for the orthotic-based gait training. Gathered knowledge guided the designing of clin-

ical protocols for SmartOs-based gait training with neurologically impaired subjects. 

The third literature analysis focuses on wearable AOs to identify the leading technolo-

gies iŶǀolǀed, the ŵaiŶ ĐliŶiĐal aĐhieǀeŵeŶts aŶd disĐusses oŶ AOs͛ poteŶtial aŶd Đhal-

lenges for gait rehabilitation. This review will serve as a base for the design of the 

SmartOs system. Chapter 2 presents these three surveys.  

Furthermore, critical reviews oŶ gait eǀeŶt deteĐtioŶ, useƌ͛s ŵotioŶ iŶteŶtioŶ ƌeĐogŶi-

tion, and assistive control strategies are addressed in Chapter 5, Chapter 6, and Chap-

ter 7, respectively, to identify the research directions that SmartOs should approach in 
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these topics. This objective led to one published journal paper [47] and two journal 

papers under review.  

• Objective 2: To set functionalities and conceptual design of SmartOs and to develop 

modular, real-time, power- and time-effective framework to enable the SmartOs sys-

tem integration and expandability for further sensor and actuation systems, assistive 

control strategies, and gait analysis tools. Chapter 3 addresses this objective that re-

sulted in two conference papers [48], [49] and two journal paper under review.  

• Objective 3: To design, develop, and validate the wearable motion lab and gait anal-

ysis tools for monitoring and assessing the post-stroke gait progression using biome-

chanical and muscular measures and metrics. Wearable motion lab aims to include a 

set of self-calibrated, stand-alone, low-cost, wearable sensor systems to measure in 

real-tiŵe the useƌ͛s ŵotoƌ ĐoŶditioŶ. The seŶsoƌ iŶfoƌŵatioŶ ǁill ďe the ďase foƌ iŵ-

plementing gait analysis tools to detect gait event, to recognize and predict the in-

tended motion, and to feed the closed-loop control architecture. Chapter 4 tackles this 

objective. It led to one conference publication [50], one journal paper under review, 

and one journal paper under elaboration.  

• Objective 4: To design, develop, and validate an adaptive, time-effective, real-time 

gait tool for human gait event detection using a minimal number of wearable sensors 

in an attempt to be easily reproducible under different contexts. The detected gait 

events will be the base for gait cycle-based assistive control strategies and to compute 

spatiotemporal metrics as relevant features for the useƌ͛s ŵotioŶ iŶteŶtioŶ ƌeĐogŶi-

tion tool. Chapter 5 addresses this objective. It led to one conference publication [51] 

and one journal publication [52].  

• Objective 5: To design, develop, and validate an automatic, user-independent ma-

chine learning-ďased tool for user’s ŵotioŶ iŶteŶtioŶ reĐogŶitioŶ aŶd prediĐtioŶ of 

different daily locomotion modes and locomotion mode transitions, based on the min-

imal kinematical data to improve the SmartOs usability. The classification of the useƌ͛s 

motion intention will contribute to timely tuning the assistance provided by AOs ac-

cording to the useƌ͛s ŵotioŶ intention and to generate smooth transitions. Chapter 6 
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approaches this objective. It led to two conference publications [53], [54] and one jour-

nal paper under review. 

• Objective 6:  To design, develop, and validate a hierarchical, closed-loop, control ar-

chitecture with a set of user-oriented assistive control strategies, such as user-ori-

ented trajectory control, adaptive impedance control, EMG-based control, to both at-

taiŶ to diffeƌeŶt useƌ͛s Ŷeeds aŶd to ďeĐoŵe SŵaƌtOs a multi-functional assistive sys-

tem suitable for distinct kinds of therapies. Additionally, this goal aims to explore more 

time-effective low-level tracking controls. Chapter 7 addresses this objective, which 

led to four conferences publications [48], [55]–[57] and one paper under elaboration.  

The proposed ideas describe the transdisciplinary research adopted in this thesis that will 

contribute in the near future to use SmartOs as a robotic assistive technology for personalized 

and repetitive gait rehabilitation to gaining functional autonomy and improving the quality of 

life of the stroke survivors. 

 

The following research questions (RQs) are proposed and expected to be answered: 

• RQ1: Which are the key outcome measures to evaluate the functional motor recovery 

of stroke survivors upon orthotic-based gait rehabilitation? This RQ is related to Objec-

tive 1 and is answered in Chapter 2. 

• RQ2: What are the main assistive potentialities and scientific challenges to consider in 

the design of a wearable active orthotic system for robotic-based gait rehabilitation? 

This RQ is related to Objective 1 and is answered in Chapter 2. 

• RQ3: Can a single kinematic measure enable a time-effective detection of several gait 

events under distinct walking conditions? This RQ is related to Objective 4 and is an-

swered in Chapter 5. 

• RQ4: Is it possible to recognize and predict daily performed locomotion modes and lo-

comotion mode transitions using a machine learning tool that exclusively deploys kine-

matic data? This RQ is related to Objective 5 and is answered in Chapter 6. 
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• RQ5: Which set of assistive control strategies will yield a multi-functional assistive sys-

tem addressing different gait therapies? This RQ is related to Objective 6 and is an-

swered in Chapter 7. 

• RQ6: Can feedback error learning control, a low-level controller, provide proper real-

time performance to an active assistive lower-limb device? This RQ is related to Objec-

tive 6 and is answered in Chapter 7. 

1.4. Contribution to knowledge 

This thesis contributes with a smart, wearable orthotic system, SmartOs, able to act and 

cooperate closely with human beings. This technological solution includes wearable active 

lower limb orthoses interconnected with a wearable motion lab and assistive control strate-

gies with impact in both rehabilitation and diagnostic domains.  

The main contributions outlined of this Ph.D. thesis are, as follows.  

• A systematic review on clinical methodologies and key outcome measures applied in 

post-stroke gait rehabilitation using orthotic assistance (Chapter 2). 

• A descriptive review highlighting the technical and clinical challenges and potentiali-

ties in wearable lower limb AOs (described in Chapter 2). 

• Smart, wearable lower limb active orthotic system - SmartOs system - with a modular, 

deterministic, power- and time-effective framework, following a user-centered design 

approach (described in Chapter 3).  

• Multi-modular wearable motion lab synchronizing a set of stand-alone, self-calibrated, 

wearable sensor systems, namely an inertial sensor system (InertialLAB) and a wireless 

instrumented shoe system (GaitShoe) to obtain quantitative lower limb kinematic 

measures, and an EMG system and a muscular contraction-based force sensor system 

(MuscLAB) to monitor muscular measures. These are economic sensor systems with ex-

tendable potentials for versatile human motion and posture analysis for both healthy 

and pathological subjects (Chapter 4).  

• Time-effective, versatile, real-time tool able to detect six gait events through a finite 

state machine with adaptive thresholds (described in Chapter 5). 

• Evidence highlighting the effectiveness of foot angular velocity signal at the sagittal 

plane for gait event detection in controlled and non-controlled gait conditions, varying 
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variations of gait speed and slopes, climbing staircases, and attending to inter-subject 

and inter-step variability (described in Chapter 5).  

• Automatic, user-independent, more versatile recognition and prediction machine-

learning tool using wearable kinematic sensors for classifying several daily performed 

locomotion modes while covering different walking directions (forward, back, clockwise, 

and counter-clockwise) with variations in gait speed and terrains (flat, ascending and 

descending stairs and ramp, stepping over obstacles). The tool also classifies transitions, 

with one gait step before their occurrence, fƌoŵ/to those teƌƌaiŶs usiŶg the useƌ͛s self-

selected lower limb (described in Chapter 6). 

• Findings supporting the potential of only using the trunk and lower limb kinematic data 

to recognize and predict daily performed locomotion modes and locomotion mode 

transitions (described in Chapter 6). 

• Time-effective and adaptive low-level control, the Feedback Error Learning control, 

innovatively explored in wearable lower limb orthotic devices, providing small steady-

state errors, the ability for disturbance compensation and adaptiveness to the user-AO 

interaction (described in Chapter 7). 

• Four user-oriented assistive control strategies to foster user-oriented gait training 

while considering the useƌ͛s effoƌt, intention, and participation. These strategies consti-

tute four different operation modes of AOs to approach distinct kinds of gait therapies, 

as follows (described in Chapter 7). First, the user-oriented trajectory control enables a 

user-oriented repetitive gait training, loŶgeƌ thaŶ the ŵaŶual theƌapists͛ assistance, en-

hancing motor coordination. Second, the adaptive impedance control provides an AAN 

gait training through stiffness adjustment with variable challenging therapy strengthen-

ing muscle strength. The inclusion of an user-oriented trajectory into the impedance 

control also enables the user to recover his/her natural gait pattern. Third, the EMG-

based control and user-orthosis interaction based control favour high-challenging mo-

tor therapies, contributing to high-level of muscle strengthening. However, the EMG-

based control strategy is more suitable for subjects with a high-to-moderate level of 

impaired gait function since it requires lower physical effort from the user than the user-

orthosis interaction-based strategy.  
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Under an assistive point of view, SmartOs contributes to a multi-functional orthotic system 

by enabling the physical therapist to challenge the patient with different gait speeds and ther-

apies ǁith ǀaƌiaďle phǇsiĐal effoƌt aŶd useƌ͛s paƌtiĐipatioŶ. Moƌeoǀeƌ, it deĐƌeases the ďuƌdeŶ 

of physical therapist work and tracks in real-tiŵe the useƌ͛s ŵotioŶ state. The wearable mo-

tion lab provides biomechanical and muscular gait measures that will support the clinical-

based diagnosis with more accurate information. This objective evaluation will also contribute 

to fine-tuŶiŶg tƌeatŵeŶts to the patieŶt͛s speĐifiĐ Ŷeeds. In the future, it is expected that 

SmartOs contributes to long-term functional, biomechanical, and energetic-efficient motor 

recovery of stroke survivors.  

During this thesis, scientific and technical support was provided to master students of dif-

ferent fields of engineering, contributing to five Master Dissertations on Industrial Electronics 

and Computers, one Master Dissertation on Informatics Engineering, one Master Dissertation 

on Biomedical Engineering, and three academic projects of the Master on Industrial Electron-

ics and Computers. These Master Students contributed to the work herein presented. More-

over, three Master Dissertation on Biomedical Engineering and one Master Dissertations on 

Industrial Electronics and Computers are currently under co-guidance.  

Furthermore, the work developed in this thesis played an important role in the scientific 

research and development of SmartOs project and in actively specifying two accepted grant 

proposals, as follows.  

• SmartOs: Smart control of a stand-alone active orthotic system, project approved under 

Individual National Grant Proposal - Projetos de Investigação Científica e Desenvolvi-

mento Tecnológico - with Cristina P. Santos as Principal Investigator. Currently sup-

ported by FEDER Funds through the Programa Operacional Regional do Norte and na-

tional funds from FCT.  

• SmartOs: Smart control of a stand-alone active orthotic system project accepted under 

Copromotion National Grant Proposal - Projetos de Investigação e Desenvolvimento 

Tecnológico em Copromoção, P2020 - with Orthos XXI as the leader company and Cris-

tina P. Santos as Principal Investigator of the research center.  
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Lastly, this thesis contributed to the following prize awards: 

• Best oral presentation and paper for the work entitled ͞EMG-based Motion Intention 

ReĐogŶitioŶ foƌ CoŶtƌolliŶg a Poǁeƌed KŶee Oƌthosis͟, received at 19th IEEE Interna-

tional Conference on Autonomous Robot Systems and Competitions (ICARSC), Porto, 

2019. 

• Finalist at Healthy category of SantaCasa Challenge-Social Innovation with SmartOs pro-

ject, recognized by Santa Casa Misericórdia de Lisboa, Lisboa, 2018.  

• 1st Prize at Prémio Engenheiro Jaime Filipe with SmartOs project, recognized by Instituto 

Nacional para a Reabilitação, Lisboa, 2017.  

1.5.Publications 

The work here described allowed the publication of the following journal articles, confer-

ence papers, and a book chapter. The contribution to the conference papers as the second 

author relies on the conceptual design of the proposed solution or innovation, performing the 

experimental validation, and supporting the paper elaboration and review. 

 

Journal Articles  

• Joana Figueiredo, Simão Carvalho, Diogo Gonçalves, Juan C. Moreno, Cristina P. San-

tos, ͞MaĐhiŶe LeaƌŶiŶg-Based Framework for Daily Locomotion and Transition Recog-

nition and Prediction: A Kinematic-Based AppƌoaĐh͟, IEEE Journal of Biomedical and 

Health Informatics, 2019 (submitted, under review) [IF = 4.2; Q1-Electrical and Elec-

tronic Engineering, Q1-Health Information Management]. 

• Joana Figueiredo, Pedro Nuno, Paulo Félix, Juan C. Moreno and Cristina P. Santos, 

͞Sŵaƌt, Weaƌaďle, AĐtiǀe OƌthotiĐ SǇsteŵ – SmartOs: A Gait Rehabilitation and Analy-

sis Fƌaŵeǁoƌk͟, JouƌŶal of MediĐal SǇsteŵs, ϮϬϭϵ ;suďŵitted, uŶdeƌ ƌeǀieǁͿ [IF = 2.4; 

Q1- Healthy Informatics, Q1-Health Information Management, Q1-Computer Science 

Applications, Q1-Medicine]. 

• Joana Figueiredo, Simão P. Carvalho, João Paulo Vilas-Boas, Juan C. Moreno, Cristina 

P. SaŶtos, ͞Weaƌaďle IŶeƌtial SeŶsoƌ SǇsteŵ Toǁaƌds HuŵaŶ KiŶeŵatiĐ Gait AŶalǇsis: 

BeŶĐhŵaƌkiŶg AŶalǇsis to MVN BIOMECH͟, Journal of Biomechanics, 2019 (submitted, 
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under review) [IF = 2.57; Q1- Biomedical Engineering, Q1-Rehabilitation, Q1-Orthope-

dics and Sports Medicine]. 

• Joana Figueiredo, Ana C. Matias, Fátima Pereira, Juan C. Moreno, Cristina P. Santos, 

͞Loǁeƌ liŵď spastiĐ gait ŵaŶageŵeŶt ďǇ ĐoŵďiŶiŶg ďotuliŶuŵ toǆiŶ ǁith oƌthotiĐ 

therapy: A systematic ƌeǀieǁ͟, Physical Therapy, 2018 (submitted, under review) [IF = 

3.04; Q1- Physical therapy, Sports Therapy and Rehabilitation]. 

• Joana Figueiredo, Ana C. Matias, Fátima Pereira, Juan C. Moreno, Cristina P. Santos, 

͞OutĐoŵe ŵeasuƌes aŶd ŵotioŶ Đaptuƌe sǇstems for assessing lower limb orthosis-

ďased iŶteƌǀeŶtioŶs afteƌ stƌoke: A sǇsteŵatiĐ ƌeǀieǁ͟, Disability and Rehabilitation: 

Assistive Technology, 2018 (submitted, under review) [IF = 1.1; Q2-Biomedical Engi-

neering, Q2- Physical therapy, Sports Therapy and Rehabilitation, Q2-Rehabilitation]. 

• Joana Figueiredo, Paulo Félix, Juan C. Moreno, Cristina P. Santos, "Gait Event Detec-

tion in Controlled and Real-life Situations: Repeated Measures from Healthy Subjects", 

IEEE Transactions on Neural Systems & Rehabilitation Engineering, vol. 26, 2018. DOI: 

10.1109/TNSRE.2018.2868094. [IF = 3.47; Q1- Biomedical Engineering, Q1-Computer 

Science Applications, Q1-Medicine]. 

• Joana Figueiredo, CƌistiŶa P. SaŶtos, JuaŶ C. MoƌeŶo, ͞AutoŵatiĐ ReĐogŶitioŶ of Gait 

Patterns in Human Motoƌ Disoƌdeƌs usiŶg MaĐhiŶe LeaƌŶiŶg: A Reǀieǁ͟, Medical Engi-

neering & Physics, vol. 53, pp:1-12, 2018. DOI: 10.1016/j.medengphy.2017.12.006. [IF 

= 1.78; Q2- Biomedical Engineering, Q2-Biophysics]. 

Conference Papers 

• Pedro Nuno Fernandes, Joana Figueiredo, Luis Moreira, Paulo Félix, Ana Correia, Juan 

C. MoƌeŶo, CƌistiŶa P. SaŶtos, ͞EMG-based Motion Intention Recognition for Control-

liŶg a Poǁeƌed KŶee Oƌthosis͟, 19th IEEE International Conference on Autonomous Ro-

bot Systems and Competitions (ICARSC), Porto, 2019. 

• Simão Carvalho, Joana Figueiredo, CƌistiŶa P. SaŶtos, ͞EŶǀiƌoŶŵeŶt-Aware Locomo-

tioŶ Mode TƌaŶsitioŶ PƌediĐtioŶ SǇsteŵ͟, 19th IEEE International Conference on Auton-

omous Robot Systems and Competitions (ICARSC), Porto, 2019. 
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• Pedro Nuno Fernandes, Joana Figueiredo, Juan C. Moreno and Cristina P. Santos, 

͞FeedďaĐk-Error Learning for Gait Rehabilitation Using a Powered Knee Orthosis: First 

AdǀaŶĐes͟, IEEE 6th Portuguese Meeting on Bioengineering (ENBENG), Lisbon, 2019. 

• Cristiana Pinheiro, Daniel Sanz-Merodio, Joana Figueiredo, Cristina P. Santos, Elena 

Garcia, ͞KiŶeŵatiĐ aŶd kiŶetiĐ studǇ of sit-to-stand and stand-to-sit movements to-

wards a human-like skeletal ŵodel͟, IEEE 6th Portuguese Meeting on Bioengineering 

(ENBENG), Lisbon, 2019. 

• J. M. Lopes, Daniel Sanz-Merodio, Joana Figueiredo, Cristina P. Santos, Elena Garcia, 

͞Thƌee-LiŶk IŶǀeƌted PeŶduluŵ foƌ HuŵaŶ BalaŶĐe AŶalǇsis: A PƌeliŵiŶaƌǇ StudǇ͟, IEEE 

6th Portuguese Meeting on Bioengineering (ENBENG), Lisbon, 2019. 

• Luís Moreira, Daniel Sanz-Merodio, Joana Figueiredo, Cristina P. Santos, Elena Garcia, 

͞The StudǇ of Gait CǇĐle StaďilitǇ UsiŶg a Fiǀe-Link Inverted Pendulum Model: First De-

ǀelopŵeŶts͟, IEEE 6th Portuguese Meeting on Bioengineering (ENBENG), Lisbon, 2019. 

• Joana Figueiredo, Paulo Féliǆ, CƌistiŶa P. SaŶtos, JuaŶ C. MoƌeŶo, ͞Real-Time human 

gait segmentation based on adaptive tool using single-aǆis ǁeaƌaďle gǇƌosĐope͟, IX 

Congreso Iberoamericano de Tecnologías de Apoyo a la Discapacidad (IBERDISCAP), 

Bogotá, 2017.  

• Joana Figueiredo, Paulo Féliǆ, CƌistiŶa P. SaŶtos, JuaŶ C. MoƌeŶo, ͞Toǁaƌds HuŵaŶ-

Knee Orthosis Interaction Based on Adaptive Impedance Control Through Stiffness Ad-

justŵeŶt͟, 15th IEEE Conference on Rehabilitation Robotics (ICORR), London 2017.  

• Joana Figueiredo, Diogo GoŶçalǀes, JuaŶ C. MoƌeŶo, CƌistiŶa P. SaŶtos, ͞AutoŵatiĐ 

and Real-tiŵe LoĐoŵotioŶ Mode ReĐogŶitioŶ of a HuŵaŶoid Roďot͟, 20th Interna-

tional Conference on Climbing and Walking Robots and Support Technologies for Mo-

bile Machines (CLAWAR), Porto, 2017.   

• Paulo Félix, Joana Figueiredo, Cristina P. Santos, Juan C.  MoƌeŶo, ͞Adaptiǀe ƌeal-time 

tool foƌ huŵaŶ gait eǀeŶt deteĐtioŶ usiŶg a ǁeaƌaďle gǇƌosĐope͟, 20th International 

Conference on Climbing and Walking Robots and Support Technologies for Mobile Ma-

chines (CLAWAR), Porto, 2017.   

• Joana Figueiredo, César Ferreira, Luis Costa, João Sepúlveda, Luis P. Reis, Juan C. 

MoƌeŶo, CƌistiŶa P. SaŶtos, ͞IŶstƌuŵeŶted IŶsole SǇsteŵ foƌ AŵďulatoƌǇ aŶd RoďotiĐ 

Walking Assistance: Fiƌst AdǀaŶĐes͟, IEEE IŶteƌŶatioŶal CoŶfeƌeŶĐe oŶ AutoŶoŵous 
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Robot Systems and Competitions (ICARSC), Coimbra, 2017. DOI: 10.1109/IC-

ARSC.2017.7964062. 

• Paulo Félix, Joana Figueiredo, Cristina P. Santos, Juan C.  MoƌeŶo, ͞EleĐtƌoŶiĐ DesigŶ 

and Validation of Poǁeƌed KŶee Oƌthosis SǇsteŵ ǁith Weaƌaďle SeŶsoƌs͟, IEEE Inter-

national Conference on Autonomous Robot Systems and Competitions (ICARSC). Coim-

bra, 2017. DOI: 10.1109/ICARSC.2017.7964061 

• Joana Figueiredo, CƌistiŶa P. SaŶtos, JuaŶ C. MoƌeŶo, ͞Assistiǀe LoĐoŵotioŶ Stƌategies 

foƌ AĐtiǀe Loǁeƌ Liŵď DeǀiĐes͟, IEEE 5th Portuguese Meeting on Bioengineering 

(ENBENG), 2017. DOI: 10.1109/ENBENG.2017.7889473. 

• Paulo Félix, Joana Figueiredo, Cristina P. Santos, Juan C.  MoƌeŶo, ͞Poǁeƌed kŶee oƌ-

thosis foƌ huŵaŶ gait ƌehaďilitatioŶ: Fiƌst adǀaŶĐes͟, IEEE 5th Portuguese Meeting on 

Bioengineering (ENBENG), Coimbra, 2017. DOI: 10.1109/ENBENG.2017.7889427.  

Book Chapter  

• Juan C. Moreno, Joana Figueiredo, José L. PoŶs, ͞Eǆoskeletons for lower-limb rehabil-

itatioŶ͟, Chapteƌ ϳ iŶ Rehabilitation Robotics: Technology and Application, Elsevier, 

2018.  

1.6.Thesis outline 

This thesis is organized into eight chapters, as illustrated in Figure 1.1.  

Chapter 2 is a comprehensive review on wearable lower limb orthotic devices, disclosing 

the main reasons and advantages of their application in post-stroke gait rehabilitation and 

assistance, the clinical methodologies and outcome measures applied in passive orthosis and 

representative technical advancements in AOs.  

Chapter 3 introduces the main functionalities and conceptual design of SmartOs system 

and the development of the modular, interoperable, power- and time-effective framework 

for integrating modules of SmartOs.  

Chapter 4 presents the design and development of the hardware and software interfaces 

of each wearable sensor system that formed the Wearable Motion Lab. The chapter provides 

the experimental validation of each sensor system considering a benchmarking analysis with 

commercial well-established solutions. 
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Figure 1.1- Graphical diagram of thesis organization.   

Chapter 5 describes the development of a novel, real-time gait event detection able to de-

tect up to six gait events tool using minimal sensor kinematic information. It also investigates 

the real-time effectiveness of the tool by including repeated healthy gait patterns collected in 

controlled and non-controlled gait conditions.  

Chapter 6 proposes a machine learning-based framework to find an accurate and general 

motion intention recognition and prediction tool. It also explores the feasibility of only using 

kinematic data for daily locomotion mode recognition and prediction.  

Chapter 7 presents the hierarchical control architecture, detailing the methodologies, the 

effectiveness from experimental evidence, and clinical potentialities of each assistive control 

strategy. This chapter also provides a critical analysis of the most effective low-level controller 

for SmartOs system.  

Chapter 8 presents a summary of the thesis͛ keǇ fiŶdiŶgs aŶd ĐoŶtƌiďutioŶs, togetheƌ ǁith 

directions for future research and technical improvement opportunities.   
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Chapter 2 – Research on Wearable Lower Limb Assis-

tive Orthotic Devices 

This chapter aims to review wearable lower limb assistive orthotic devices, disclosing the 

main reasons and advantages of their application in post-stroke gait rehabilitation and assis-

tance and representative advancements in the technology involved.  

The chapter starts with an introductory insight on stroke sequels and highlighting the im-

pact of involving and complementing the conventional therapies with robotic-aid therapies, 

namely wearable assistive orthotic devices.  

Subsequently, this chapter presents three literature surveys. The first survey covers a sys-

tematic review focused on the outcome measures and motion capture systems applied in 

post-stroke gait rehabilitation using lower-limb orthotic devices. The second systematic sur-

vey aims to review the clinical evidence and the key methodologies for the orthotic-based gait 

training. The third literature analysis focuses on wearable AOs to identify the leading technol-

ogies iŶǀolǀed aŶd disĐusses oŶ AOs͛ poteŶtial iŶ the ƌehaďilitatioŶ doŵaiŶ. EaĐh suƌǀeǇ ƌaises 

the limitations presented in the associated field. This critical analysis will allow identifying the 

scientific challenges in post-stroke gait rehabilitation with wearable AOs, aiming to face them 

with the proposed SmartOs system. 
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2.1.Introductory Insight  

Stroke is one of the leading causes of motor disability in adults, where stroke survivors 

might live with life-changing neurological consequences. It can lead to an impaired biome-

chanical performance (e.g., decreased gait speed, step length, and ankle dorsiflexion), asym-

metric gait pattern, postural instability, and abnormal motor conditions (e.g., equinus foot, 

drop foot, and spastic gait) [7], [58]. Focal spasticity at plantar flexors is the main cause asso-

ciated to equinus foot [59]–[61]. The stroke victims also report difficulty to perform daily 

functional tasks (e.g., walking, sitting, standing, jumping, climbing, and turnings) leading to 

dependence on others (i.e., social assistance), and costly medical assistance.  

Individuals that have suffered neurological diseases, such as stroke, often require physical 

rehabilitation interventions to improve their motor ability and ambulation. Various lower limb 

rehabilitation interventions have been proposed, such as (i) walking aids as canes and wheeled 

walkers, (ii) manual training assisted by therapists, (iii) treadmill with partial body weight sup-

port, (iv) functional electrical stimulation, and (v) wearable assistive devices, namely orthoses 

and exoskeletons [9]–[12], [62]. The walking aids consist of a simple rehabilitation not ori-

eŶted foƌ the useƌ͛s ŵotoƌ ĐoŶditioŶ aŶd geŶeƌallǇ pƌesĐƌiďed foƌ people ǁith loǁ leǀels of 

mobility impairment [9], [63]. Gait training realized by therapists requires exhaustive manual 

assistance that may promote asǇŵŵetƌiĐ ƌehaďilitatioŶ. The gait tƌaiŶiŶg͛s duration is limited 

ďǇ the theƌapist͛s fatigue aŶd suďjeĐtiǀelǇ deteƌŵiŶed ďǇ the theƌapist͛s eǆpeƌieŶĐe [10].  

On the other hand, previous studies [11], [14], [64]–[67] have reported that the arrange-

ment of body weight support-based treadmill systems with a static lower limb assistive device 

(e.g., Lokomat and LOwer-extremity Powered ExoSkeleton) leads to positive rehabilitation ef-

fects, even for spastic gait in opposition to the manual training [11]. Nevertheless, the static 

lower limb assistive systems present a limited rehabilitation to the clinical setting for relatively 

brief training sessions, and to less-challenging locomotor tasks [12], [68]. 

Physical rehabilitation interventions that evoke brain plasticity and involve user-oriented, 

task-oriented and repetitive gait training and eŶĐouƌage the useƌ͛s paƌtiĐipatioŶ iŶ the theƌapǇ 

are challenging and needed [9]. Both functional electrical stimulation as neuroprosthetic de-

vices and wearable assistive robotic devices, as exoskeletons and AOs, may achieve such re-

habilitation.  
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In last years, an exponential increase of researches on the lower limb exoskeletons and AOs 

have been shown as they are becoming a prominent physical rehabilitation intervention for 

fostering a user-oriented, task-oriented and repetitive gait rehabilitation in neurological con-

ditions. This mechanic-based assistance, with similar physical principles to the ones in the con-

ventional physical rehabilitation, does not constitute a physical burden for therapists and en-

able a practical use for the daily living assistance while meeting the requirements for an ob-

jective gait assessment [14].  

Both exoskeletons and AOs are defined as active/powered mechanical devices with an an-

thropomorphic nature to fit the human body tightly and to woƌk aĐĐoƌdiŶg to the huŵaŶ͛s 

motions [16]. In general, an exoskeleton is used to augment the strength and endurance of 

the movements of an able-bodied user [16], [69]. AO is an assistive device applied to restore 

or modify the structural and motor function of the neuromuscular and skeletal system to 

achieve an overall recovery of the ambulatory ability of a person exhibiting impaired gait func-

tion due to neurologic or/and motor diseases/injuries [16], [69]. The development of an AO is 

generally more difficult and challenging than the one addressed for an exoskeleton since AO 

faces the daunting issue that the specific nature of a disability is widely variable between pa-

tients [16]. However, the teƌŵ ͞eǆoskeletoŶ is also used to ƌefeƌ to assistiǀe deǀiĐes ǁheŶ 

theǇ eŶĐoŵpass the ŵajoƌitǇ of the loǁeƌ liŵďs͟ [16]. AOs have been designed only to assist 

actively the motion of specific lower limb joint, mainly the knee and ankle joints, or a motor 

condition [13], [16].  

 

The investigation carried out in this Ph.D. thesis was centered on wearable lower limb as-

sistive orthotic devices, instead of static devices, for two reasons. First, there is evidence that 

rehabilitation with functional and daily performed activities, only ensured by wearable de-

vices, outcomes a more effective and lasting functional motor recovery. Second, current 

tendencies suggest the application of wearable orthotic devices has the advantage to assist 

the users in accomplishing their desired activities [69], [70]. 

Due to the potential advantages of wearable AOs, it is crucial to present and discuss the 

current state of this research area. Sub-Chapter 2.4 presents a review of the available techno-

logical designs of AOs, analyzing their application purposes and scenarios, and clinical evi-

dence. It also provides a critical analysis of the state-of-the-art disclosing future technical and 

clinical challenges and new expected functionalities.  
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Moreover, it is crucial to find unified measures that investigate post-stroke rehabilitation 

to pave the way for further clinical research on AOs. Research should first identify the key 

outcome measures and set benchmarks to objectively evaluate the clinical evidence in the 

post-stroke rehabilitation based on wearable assistive devices. Such analysis is presented in 

Sub-Chapter 2.2 in the format of a systematic review.  

Lastly, the investigation should look for standardization of clinical protocols to contribute 

to AOs͛ pƌesĐƌiptioŶ. NoŶetheless, it ǁas oďseƌǀed a ďƌief Đlinical evaluation of AOs in post-

stroke rehabilitation, which in turns, also showed a lack of standardized clinical methodologies 

in research with AOs. Sub-Chapter 2.3 presents a systematic review of the clinical protocols 

and key methods to consider in post-stroke clinical interventions involving wearable assistive 

devices.  

Although the exclusive inclusion of passive orthosis in the two systematic analyses, the 

reviewed knowledge may be transferred to better design the clinical protocols in AO research. 

Note that passive devices assist or passively control the motion of the lower limb joints during 

gait with direct physical resistance [17].  

2.2. A Systematic Review of Outcome Measures for Post-stroke Clin-

ical Assessment 

As with all available orthotic-based rehabilitation programs, the inclusion of outcome 

measures has gained importance through the years, driven primarily by the need for the evi-

dence-based practice [71]. The outcome measures in post-stroke rehabilitation can be classi-

fied aĐĐoƌdiŶg to the Woƌld Health OƌgaŶizatioŶ͛s IŶteƌŶatioŶal ClassifiĐatioŶ of FuŶĐtioŶiŶg, 

Disability and Health (ICF) into three categories, namely: body structure/impairment, activi-

ties, and participation [72], to approach a unified assessment.  

Although numerous outcome measures for post-stroke motor function exist, it is not clear 

which most accurately measure meaningful changes upon orthotic-based interventions. Ad-

ditionally, the analysis of motion capture systems applied for measuring the outcome 

measures in clinical interventions has not received attention. This systematic review aims to 

analyze the outcome measures used in orthotic-based gait rehabilitation of post-stroke pa-

tients towards identifying the key outcomes, the most applied motion capture systems and 

the standard timing for assessment. This review sought to answer the following research 
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questions: (i) Which are the most measured outcomes?; and, (ii) Are the motion capture sys-

tems used in post-stroke gait analysis wearable systems?.  

2.2.1.Methods 

This work follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyzes 

(PRISMA) guidelines [73] to ensure transparency of the review. The literature search was con-

ducted until November 2017 in Web of Science, Scopus, MEDLINE, and Physiotherapy Evi-

dence Database using the following seaƌĐh stƌategǇ: [͞stƌoke͟] AND [͞loǁeƌ liŵď oƌthosis͟ OR 

͞aŶkle oƌthosis͟ OR ͞kŶee oƌthosis͟] AND [͞ƌehaďilitatioŶ͟ OR ͞assistaŶĐe͟ OR ͞gait tƌaiŶiŶg͟] 

AND [͞outĐoŵes͟ OR ͞ gait ŵeasuƌeŵeŶts͟ OR ͞ theƌapeutiĐ sĐales͟ OR ͞ ĐliŶiĐal ŵeasuƌes͟ OR 

͞ĐliŶiĐal sĐales͟ OR ͞assessŵeŶt͟ OR ͞ŵeasuƌes͟]. The search was limited to titles, keywords, 

and abstracts. 

The papers identified in this initial search were evaluated based on the following inclusion 

criteria: (i) included participants in an acute or chronic stage of stroke; (ii) investigated the 

rehabilitation effects using quantitative or participation measures; (iii) prescribed passive or 

active wearable lower limb orthoses; and (iv) conducted randomized controlled clinical trials. 

Articles were excluded if they: (i) used non-portable system associated with the orthotic de-

vice; and (ii) prescribed other treatment approaches besides the orthotic therapy namely, 

functional electrical stimulation and brain computational interface. The methodologic quality 

of each included study was assessed using the Cochrane risk-of-bias tool [74].  

2.2.2.Results and Discussion   

Figure 2.1 summarizes the literature search process of this review. From this analysis, 18 

studies were included. The ankle-foot orthosis (AFO), mostly the conventional AFO configura-

tion (i.e., polymeric, non-articulated posterior leaf-spring AFO), was prescribed in 16 random-

ized trials (88.9%) whereas only two studies [75], [76] used the knee orthosis. From the full-

text article analysis, we verified that studies including active orthotic devices [19], [77]–[81] 

did not accomplish randomized clinical trials, as such, they were not included in this analysis. 

The included studies, as demonstrated in Appendix A.1, successfully performed the gener-

ation of the allocation sequence (100% lower risk of bias). They also present a low risk of bias 

through incomplete data and selective reporting. However, studies assessment quality may 

be affected by detection bias since a significant portion of the studies (83.3%) did not provide 
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any information relating to whether the intended blinding of outcome assessors was con-

ducted or effective. Another factor that may affect the quality of the reported findings is the 

high risk of attrition bias observed in 27.8% of studies due to the handling of incomplete out-

comes.  

 

Figure 2.1- Flow chart of the literature search process.  

The literature analysis found 39 outcome measures for assessing the orthosis-based gait 

rehabilitation applied to 387 post-stroke survivors in the chronic or acute stage. This analysis 

observed heterogeneity in the assessment protocol for selecting the outcome measures and 

timings for assessment when considering similar assessment goals. Such heterogeneity was 

also reported in previous systematic analyses [82]–[84]. Appendix B lists the information ex-

tracted from 18 studies as well as the ICF category per outcome measure. The research ques-

tions were tackled according to this information as follows.  

 Which are the most measured outcomes? 

There is evidence to apply outcome measures from the Activity ICF category, including bio-

mechanical (such as spatiotemporal, kinematic, and kinetic measures), functional and bal-

ance outcome measures, for assessing the post-stroke orthosis-based gait rehabilitation.  

This review demonstrated that the spatiotemporal measures, namely gait speed [75], [85]–

[92], step length [75], [85]–[89], [91], [93], cadence [75], [86], [91], [93], and stride duration 
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[75], [87], [89], [92], [93]) were the most monitored outcome measures. Gait speed was 

pointed out as the primary outcome given its contribution for measuring the increased motor 

function upon the orthotic-based intervention [86]. Lower limb kinematics, including flex-

ion/extension of hip, knee and ankle at different stages of the gait cycle, and range of motion 

(ROM) of these joints, were the second most measured outcomes [85], [86], [88]–[91], [93], 

[94] followed by functional metrics (mainly, Time-Up-Go Test, 10 Meter Walking Test, and 

Berg Balance Scale [75], [76], [95]–[98]).  

On the other hand, the impairment (mainly, Modified Ashworth Scale to assess the spas-

ticity level [88], [89], [96]) and body function outcome measures (such as electromyography 

measures of tibialis anterior [75], [90], [93], biceps femoris [93], and rectus femoris muscles 

[93]), both belonging to Body Structure ICF category, were the quantitative outcome 

measures less inspected.  

Furthermore, only four clinical trials investigated the applicability and usability of the or-

thotic-based gait rehabilitation for daily use through Participation outcome measures [75], 

[86], [88], [99], using satisfaction questionnaires [75], perceived exertion scale [99], and Eu-

roQol EQ-5D-5L29 quality of life questionnaire [86], [88]. A systematic review centered on 

assessing satisfaction with orthoses reported that objective measures continue to be more 

discerning than patient self-reports [100].  

Are the motion capture systems used in post-stroke gait analysis wearable systems? 

Non-wearable motion capture systems recorded most of the outcome measures. These 

systems are not able to analyze consecutive gait cycles nor the gait recovery in daily locomo-

tion activities [101], [102]. The studies used non-portable motion capture systems to monitor 

the Activity outcome measures such as the force platforms (AMTI BP400600 platform [86], 

GAITRite [87], Kistler platform (Switzerland) [91], pedar® platform [92] to measure the spati-

otemporal outcomes), optical motion systems (Vicon system (Oxford Metrics, UK) and ELITE 

(BTS Bioengineering, Italy) to track spatiotemporal parameters and kinematic parameters), 

and balance platforms (Biodex system [97]).  

On the other hand, muscular activity outcomes were measured by wearable EMG systems, 

such as telemetric EMG device (Zebris Medical GmbH, Germany) [75], wireless EMG (BTS 

FREEEMG 300) [93], and the Myopac EMG unit (Myopac) [90]. 
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2.2.3. Clinical Highlights and Future Directions  

There is evidence for assessing the effectiveness of orthosis-based gait rehabilitation after 

stroke through Activity outcome measures, primarily the gait speed. Non-wearable motion 

capture systems have mostly recorded these outcomes. The widespread use of Activity out-

come measures suggests that post-stroke rehabilitation mainly approaches the functional 

ability or difficulty that an individual might experience in completing a given daily motor ac-

tivity. Participation outcome measures may introduce complementary information to the ob-

jective outcome measures. This clinical highlight may guide the clinical assessment in AO-

based gait rehabilitation, as the SmartOs.  

To progress the evidence regarding orthotic-based rehabilitation in post-stroke conditions, 

future researches are recommended to (i) approach a transparent declaration of blinded out-

come assessment, (ii) fully describe the methodologies used to collect outcome measures, (iii) 

endow wearable motion systems, and (iv) include baseline and follow-up outcome complete-

ness to enable critical and reliable appraisal of the viability of the rehabilitation treatment 

fostered by the lower limb orthosis. Furthermore, clinical studies involving active wearable 

orthotic systems should follow a randomized trial approach, a relevant methodological proce-

dure in clinical trials. The heterogeneity found in this analysis highlights the need for some 

agreement on assessing post-stroke rehabilitation towards a unified clinical methodology. 

2.3.A Systematic Review of Clinical Protocol and Evidence on Post-

Stroke Rehabilitation using Wearable Passive Orthoses 

Given the prevalence and wide diversity of wearable orthotic devices in the health care 

system, it is still needed to set clinical methodologic guidelines and benchmarks for the re-

search in orthotic-based rehabilitation in terms of clinical protocol design (e.g., physical activ-

ities, and frequency and duration of therapy) and clinical evidence analysis.  

This systematic review aims to analyze the clinical protocol and key methodologies in post-

stroke orthotic-based rehabilitation and the clinical effects. For this purpose, this systematic 

review seeks to answer the following questions: (i) What are the main inclusion and exclusion 

criteria?; (ii) Which are the key methodologies for designing the clinical protocol in the ortho-

sis-related studies?; (iii) Which are clinical interventions endowed in orthosis-related studies?; 

and, (iv) What is the clinical evidence of passive orthosis in post-stroke gait recovery?.  
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2.3.1.Methods 

This work follows the PRISMA guidelines [73]. A comprehensive literature search was car-

ried out until January 2017 through the databases Web of Science, Scopus, MEDLINE, and 

Physiotherapy Evidence Database. The keywords explored during the electronic search, 

through AND and OR operators, are: [͞stƌoke͟] AND [͞loǁeƌ liŵď oƌthosis͟ OR ͞ aŶkle oƌthosis͟ 

OR ͞kŶee oƌthosis͟] AND [͞ƌehaďilitatioŶ͟ OR ͞assistaŶĐe͟ OR ͞gait tƌaiŶiŶg͟] AND [͞effeĐts͟ 

OR ͞eǀideŶĐe͟] AND [͞pƌotoĐol͟ OR ͞eǆpeƌiŵeŶt͟ OR ͞ĐliŶiĐal test͟]. The search for such key-

words was limited to titles, abstracts, and keywords.  

The studies identified in this initial search were evaluated based on the main following in-

clusion criteria: (i) assessed the effect of the wearable ankle or knee orthosis in rehabilitation; 

(ii) involved at least 5 participants in an acute or chronic stage of stroke; and, (iii) described 

the experimental design included randomized trials. Articles were excluded if they: (i) used 

non-portable orthotic devices; and (iii) prescribed other treatment approaches besides the 

orthotic therapy. The Cochrane risk-of-bias tool [74] was employed to assess the methodolog-

ical quality of the included studies in terms of sources bias.  

2.3.2.Results and Discussion 

Figure 2.2 illustrates the literature search process of this review. From the specified search 

strategy and after removal of duplicates using Mendeley, 20 randomized studies were ana-

lyzed, which involved 1154 post-stroke patients. This review does not investigate clinical re-

marks regarding AO-based rehabilitation given the lack of randomized clinical methodology 

and the inclusion of a few participants (less than 3).  

Concerning the methodological quality of the included studies (presented in Appendix A.2), 

there is a low risk of selection bias (100% of random sequence and 75% allocation conceal-

ment) and outcomes reporting bias (100%). On the other hand, there is an unclear risk of bias 

related to the blinding of participants, personnel and outcome assessors. Another factor that 

may affect the quality of the reported findings is the high risk of attrition bias observed in 35% 

of studies due to the handling of incomplete outcomes.  

The research questions were tackled according to the information extracted from 20 stud-

ies (listed in Appendix C) as follows. 
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Figure 2.2- Flow chart of the literature search process.  

What are the main inclusion and exclusion criteria? 

Diverse inclusion and exclusion criteria were observed according to the rehabilitation goal. 

Nonetheless, the main inclusion criteria were: (i) suffered a single unilateral ischemic or hem-

orrhagic stroke [95], [98], [103] at least 6 months ago [86], [99], [103]–[107]; (ii) presented 

hemiplegia [75], [86], [95], [96], [104], [105], [108]; (iii) able to walk with the AFO or knee 

ankle foot orthosis (KAFO) safely, (iv) had not undergone any surgical procedures in recent 

months; and, (v) patients over 18 years old [85], [86], [94], [95], [98], [104]–[106]. Moreover, 

the participants should present a cognitive level sufficient to give informed consent, as also 

cognitive, visual, hearing, cardiac, and respiratory functions should be appropriate such that 

the patient is able to understand and follow the protocols [87], [94], [95], [98], [106], [109].   

The studies excluded patients that presented additional orthopaedic or neurological defi-

cits to the paretic or non-paretic limbs [75], [87], [98], [109], and morbid obesity that might 

impair the locomotion [107]. 

Which are the key methodologies for designing the clinical protocol in the orthosis-related 

studies? 

Findings suggest that the design of the clinical protocol should approach the following 

methodologies. First, carry out randomized trials for enhancing the statistic quality and 
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properness of the clinical evidence. Second, before performing the clinical trials, the research-

ers or therapist must concede a familiarization period (ranging from 5 days to 2 weeks) to the 

participants that did not usually wear the prescribed orthosis such that they become familiar 

with the device and thus do not mis-analyze the adaptation period. Third, use of footwear 

during the assessments with and without orthosis to allow a more reliable comparison be-

tween the presence and absence of orthotic assistance, discarding the eventual corrective 

effect of footwear [86], [97], [103], [105], [106], [108], [110]–[112].  

Which are clinical interventions endowed in the orthosis-related studies? 

There is evidence that functional tests were the most endowed clinical interventions to 

investigate the functional locomotor recovery of post-stroke patients upon orthotic-based re-

habilitation. In overall, the post-stroke participants underwent functional tests, such as 10 

Meter Walking [75], [85]–[87], [94], [95], [98], [99], [103]–[105], [108], [113], [114]; Timed Up 

Go [95], [96], [98], [99], [103], [106], [113]; Timed Up and Down Stairs [96], [98], [103], [106]; 

and, Berg Balance Scale [95], [113]. Participants could rest, generally, from 2 to 10 minutes 

between each trial [87], [96], [104], [105], [108].  

Each session usually lasted from 30 to 60 minutes. There is no consensus for the repeata-

bility of the clinical intervention. It can present a short-term duration for 6 trials [85], [94], 

[104], [105] or can last for variable long-term periods: 8-week [75], 12-week [98], [107], [114], 

24-week [99], [115], and 30-week [113].  

What is the clinical evidence of passive orthosis in post-stroke gait recovery? 

This systematic review found that the clinical evidence of post-stroke rehabilitation based 

oŶ oƌthotiĐ deǀiĐes depeŶd oŶ the patieŶt͛s disaďilitǇ leǀel, the tiŵiŶg foƌ pƌesĐƌibing orthosis 

and its configuration, and the underwent clinical intervention.  

A dynamic KAFO [104] used for six trials and a hinged soft KAFO [75] applied for four weeks 

decreased knee hyperextension during the stance phase (i.e., reduces the genu recurvatum) 

[75], [104]. The dynamic KAFO increased gait speed and stride length [104].  

The short-term and long-term therapy with AFOs improved (i) walking speed [85]–[87], 

[96], [103], [104], [109], [114], [116]; (ii) step length of the paretic limb [85]–[87], [105], [116]; 

(iii) peak ankle dorsiflexion at swing phase [94], [105], [114], and peak keen flexion [85], [114]. 

These kinematic achievements were related to the correction of foot-drop and equinus foot. 

Furthermore, AFO-based rehabilitation slightly enhanced motor ability regarding Timed Up 
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and Down [86], [95], [96], [103], Timed Up and Down Stairs [96], [103], and 10 Meter Walking 

Test [95], [114] and postural balance in Berg Balance Scale [86], [95]–[97].  

2.3.3.Clinical Highlights and Future Directions  

Orthotic-based gait rehabilitation may depend on the design of the clinical protocol, dura-

tion of the gait training, and the wearable orthosis configuration. An early prescription of an 

orthotic device can lead to more efficient locomotion recovery compare to a delayed one. 

Passive wearable orthoses can rectify abnormal motor conditions and lead to beneficial ef-

fects on the spatiotemporal outcomes. Nonetheless, the functional motor ability recovery 

upon passive orthosis-based rehabilitation was not prominent nor was the main clinical 

achievement. Metallic and rigid orthoses are less recommended to achieve an overall func-

tional motor recovery.   

Future researches are recommended to describe the clinical protocol following methodo-

logic guidelines entirely, to investigate the long-term effects, and to endow clinical interven-

tions with motor activities daily performed. Clinical studies involving wearable AOs should fol-

low a randomized trial approach and engage further participants for a significative analysis of 

their clinical evidence, mainly for functional motor recovery.  

2.4. Wearable Active Orthotic Devices: A Descriptive Review on Po-

tentialities, Current Solutions, and Challenges 

Although passive orthotic devices are often prescribed to improve gait deficiencies, they 

do not include active elements to accommodate for changing walking conditions or functional 

tasks [17], neither to face the intra- and inter-subject variable nature of motor disability [16]. 

On the other hand, technological directions on wearable AOs have pursued personalized, 

user-oriented, task-oriented and repetitive gait training focused on restoring function loco-

motor ability to perform daily motion activities [14].   

2.4.1.Wearable AOs Potentialities 

Wearable AOs are becoming an increasingly prominent clinical intervention to provide a 

long-term functional motor recovery through the replacing or restoring of a portion of the 

mechanical work performed by the biological muscle-tendons acting at the joints during loco-

motion [117]. They are challenged to partly emulate the skills of a trained therapist and to 
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actively and safely assist the human legged mobility following an AAN approach while enabling 

a natural and compliant interaction with the biological muscle-tendons [16], [17], [118] and 

a continuous gait monitoring [9], [119]. AAN physical rehabilitation paradigm means to assist 

the participant only as much as is needed to accomplish the desired motion activity [120].  

AOs have been designed to exhibit a set of features, advanced regarding passive orthotic 

devices, such as: (i) provide an intensive and repetitive therapeutic training according to a 

real-tiŵe eǀaluatioŶ of the useƌ͛s Ŷeeds aŶd disaďilitǇ leǀel [9], [121]; (ii) tailor the mechanical 

assistance to accommodate different motor activities of higher metabolic energy consump-

tion and gait speed variations [121]; (iii) incorporate the patient-active mode by taking into 

account the paƌtiĐipaŶt͛s aĐtiǀe iŶteŶtioŶ aŶd the ǀoluŶtaƌǇ effoƌts [31], [120]; (iv) encourage 

the user’s partiĐipatioŶ in the therapy since his/her active and high-intensity physical partici-

pation may facilitate the motor learning process and, thus, accelerating and enhancing the 

gait recovery [11], [15], [31], [118], [122]; and (v) adapt the mechanical assistance ensuring a 

compliant human-AO interaction through the real-time adjustment of the human-AO dynam-

ics [123].  

2.4.2.Current Wearable AOs 

Advances in actuation, energy storage, miniaturized sensing, and embedded computa-

tional technology have led to the development of wearable assistive robotic devices [9]. This 

descriptive review was limited to wearable AOs that provide some means of augmenting 

power and oriented assistance of lower limb joints. AOs endowing active components that 

merely lock and unlock joints of an orthosis or those are not portable and do not stand-alone 

mechanically (e.g., treadmill-based devices, and AOs using tethered sources for power or com-

puting) are not discussed. When compared to tethered assistive devices, the wearable AOs 

that could be worn during untethered functional locomotor activities, focusing on specific 

daily activities, which may benefit rehabilitation with the more considerable evidence and 

largest effect sizes [76]. 

Table 2.1 describes the wearable AOs (Figure 2.3) with focus on the actuation and sensor 

systems, the current development stage, application and clinical studies carried out. To date, 

wearable AOs are mostly in a scientific development stage with a limited commercial offer 

by Ottobock© [124]. The application of AOs with mechanical assistance at hip and knee joints 
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was divergence, including various locomotor system diseases, such as spinal cord injury (SCI), 

stroke, and poliomyelitis; whereas, ankle AOs were mainly applied to prevent drop-foot gait.  

The issue of portability is one of the significant factors that limit the application of AOs 

outside of clinical therapy. The AOs͛ ŵass is a ƌeleǀaŶt featuƌe foƌ iŶĐƌeasiŶg the AOs͛ usaďilitǇ 

aŶd affoƌdaďilitǇ as ǁell as the useƌ͛s aĐĐeptaŶĐe. From the results extracted, it was verified a 

variable body mass; Arizona Univ. AAFO weights 1.75 kg [18], [19]; the Univ. of Illinois Active 

AFO weights 1 kg plus the mass of the power supply system [20]; the body mass of most of 

the AOs varies from 2 to 3 kg [21], [22], [78], [125]; the mass of the knee AOs rounds 3.7 kg 

[76], [126], [127]; Achilles mass is 6.7 kg [128]; and, the heavier system has 12 kg [129].  

 

Figure 2.3- Wearable AOs. A:Vanderbilt Powered Orthosis [129]; B: C-Brace KAFO [124]; D: Tibion PK100 Knee 

orthosis [127]; E: LISSI Active AFO [130]; F:Achilles [128]; G:Michigan Active AFO [21], [131]; H:Arizona State Univ. 

AAFO [18], [19]; I:Univ. of Illinois Active AFO [20]; J:Yonsei University Active AFO [78]. 

Independently of the application, the design considerations for wearable AOs must account 

for compact, lightweight, time-effective actuation systems to provide net power to move the 

joints, and sensor systems and a control architecture to define the needed assistance to be 

applied to move the weakened limbs in desired gait patterns [120], [132]. Figure 2.4 shows 

the on-body location of the actuation system and sensor systems of the reviewed wearable 

AOs in this survey.   
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Table 2.1- Wearable AOs: actuation system, sensor system, application, development stage, and developed clinical studies. 

Wearable AO  

Actuation System Sensor system Application 

[Stage] 

 [Total Mass] 

Clinical Study 

Actuator 
Actuated joint Sensor  

(Location) 
Measurement Goal 

Participants Effectiveness 

Hip Knee Ankle 

Vanderbilt Powered  

Orthosis [129] 
Electric A A - 

Potentiometer  

(Actuator) 

Hip and knee angle  SCI 

[RS] 

[12 kg] 

1 paraplegic male 

subject (35 years; 

1.85 m, 73 kg) with 

T10 complete SCI 

-High degree of step-to-

step repeatability of hip 

and knee trajectories  

- Increased gait speed  

Accelerometer 

(Thigh) 

NI 

C-Brace KAFO [124] 

Electric - A P 

IMU (Knee) Knee orientation 

Gait event detection  

Poliomyelitis, 

Incomplete SCI 

(lesion between 

L1 and L5). No 

spasticity.  

[CA]   

[NI] 

NI NI 

SCKAFO [126] Electric - A P 

Load cell (Feet) Gait initiation  
Poliomyelitis 

[RS] 

[3.6 kg] 

1 male subject with 

poliomyelitis (54-

years; 1.68 m; 68 

kg)  

- Facilitated controlled 

knee flexion/extension  

-Gait pattern closer to 

the normal gait  

Tibion PK100 Knee orthosis 

[127] 
Electric - A - 

Force sensor (Feet)  Gait event detection Post-stroke 

[RS]  

[3.7 kg] 

3 post-stroke pa-

tients in chronic 

stage  

-Improved sit-to-stand  

- Improved gait speed 

after a 4 week-training 

Encoder (Actuator) Knee angle  

Tibion Knee orthosis [76] Electric - A - 

Force sensor (Feet)  Gait event detection 

Post-stroke  

[RS]  

[3.7 kg] 

3 chronic stroke 

survivors (2 males, 

1 female; 54.7 ± 

15.9 years; 1.67 ± 

0.9 m; 97.5 ± 5.97 

kg) 

Improved balance 

(12.6% for BBS), and 

functional mobility 

(12.0% for 6MWT and 

16.7% for Emory Func-

tional Ambulation)  

Encoder (Actuator) Knee angle  

EMG  

(Tibialis-anterior 

and gastrocnemius) 

Tibialis-anterior and 

gastrocnemius mus-

cular activity 

Force sensor (Feet)  Gait event detection 

Encoder (Actuator) Ankle angle  

Univ. of Illinois Active AFO 

[20] 

Pneu-

matic 
- - A 

Force sensor (Feet)  Gait event detection Drop foot  

[RS] 

[1 kg plus 

power supply]   

 

- - 
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Wearable AO  

Actuation System Sensor system Application 

[Stage] 

 [Total Mass] 

Clinical Study 

Actuator 
Actuated joint Sensor  

(Location) 
Measurement Goal 

Participants Effectiveness 

Hip Knee Ankle 

LISSI Active AFO [130] Electric - P A 

IMU (Ankle) Ankle angle  

Drop foot  

[RS] 

[NI]   

- - 

EMG  

(Tibialis-anterior 

and gastrocnemius) 

Tibialis-anterior and 

gastrocnemius mus-

cular activity 

Force sensor (Feet)  Gait event detection 

Encoder (Actuator) Ankle angle  

Univ. of Illinois Active AFO 

[133]  

Pneu-

matic 
- - A 

Angle sensor  

(Ankle) 

 

Gait event detection 

Drop foot  

[RS] 

[NI] 

1 plantarflexor im-

paired male subject 

(51years; 1.75 m; 

86 kg) and 1 dorsi-

flexor impaired fe-

male subject (37 

years; 

1.57 m; 62 kg)  

Active AFO:  

- provides functional as-

sistance during gait and 

increased stance times 

-prevented the drop 

foot and maintained toe 

clearance during swing.  

Force sensor (Feet) 

Michigan Active AFO [21], 

[131]* 

Pneu-

matic 
- A A 

EMG sensors (so-

leus, tibialis ante-

rior, vastus lat-

eralis, medial ham-

strings) 

EMG-based control  

Neurologically 

injured patients 

[RS] 

[2.9 ± 1.3 kg] 

- - 

Load Cell (Actuator) AĐtuatoƌ͛s foƌĐe  

IPEC AFO [134]  
Pneu-

matic 
- - A 

Potentiometer (Ac-

tuator) 

Ankle angle  

Drop foot  

[RS] 

[NI] 

1 SCI subject 

Prevented toe-drag dur-

ing the swing phase 

 Encoder (Actuator) Ankle angle 

Force sensors 

(Feet) 

Gait event detection 

SMAFO [135] 

Pneu-

matic 

compli-

ant**  - - A 

Encoder (Actuator) Ankle angle  Drop foot  

[RS] 

[NI]   

 

 

 

 

1 subject with right 

drop foot (80 kg) 

Prevented the drop foot  

Force sensors 

(Feet) 

-Gait event detection 

-Ankle torque  
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Wearable AO  

Actuation System Sensor system Application 

[Stage] 

 [Total Mass] 

Clinical Study 

Actuator 
Actuated joint Sensor  

(Location) 
Measurement Goal 

Participants Effectiveness 

Hip Knee Ankle 

Achilles [128] SEA - - A Encoder (Actuator) Ankle angle      

Drop foot 

[RS]  

[6.7 kg] 

- - 

MIT Active AFO [22]* SEA - - A 

Potentiometer  

(Actuator) 

Ankle angle  

Drop foot 

[RS] 

[2.6 kg plus 

power supply] 

2 male subjects 

with unilateral drop 

foot (62 years; 1.79 

- 1.77m; 79 - 95 kg) 

AO with variable-imped-

ance:  

- provides more benefits 

for the treatment of 

drop foot compared to 

passive orthoses;  

-Kinematic pattern 

closer to healthy gait.  

Force sensor (Feet)  Gait event detection 

Arizona State Univ. AAFO 

[18], [19] 

SEA 

 
- - A 

Encoder (Actuator) Ankle angle  

Post-stroke 

 [RS] 

[1.75 kg] 

3 stroke survivors (2 

male, 1 female; 

52±6.93 years; 

84.67 ±7.3kg; 

1.71±16.6 m)  

-Increased cadence, an-

kle range of motion and 

push-off power; 

- Key ankle gait metrics 

closer to healthy values.  

Force sensors 

(Feet)  

Gait event detection 

Yonsei University Active 

AFO  [78] 
SEA - - A 

Force sensors 

(Feet)  

Gait event detection 

Drop foot  

[RS] 

[2.8 kg] 

3 male hemiplegic 

patients with drop 

foot (51±2.3 years, 

1.64±4.2 m, 

63.5±5.7 kg) 

-Prevents drop foot;  

-Prevents toe drag;  

-Higher improvement in 

step length and gait 

speed than passive AFO 

Univ. of Medical Sciences 

Active AFO [80] 
SEA - - A 

Foot-switches 

(Feet) 

Gait event detection, 

gait speed, stride du-

ration 
Post-stroke  

[RS] 

[NI]   

1 post-stroke pa-

tient in the chronic 

stage  

(45 years, 1.78 m, 

83 kg) 

-Increased stride length, 

moments of the joints;  

- Improved standing and 

walking abilities com-

pared to the passive or-

thosis  

Encoder (Actuator) Ankle angle 

P – Passive; A – AĐtiǀe; ͚-͚ Not addressed; CA – Commercially Available; RS – Research Stage; NI: not indicated; *- Unclear the presence of tethered components  

** Pneumatic compliant: Pneumatic stiffness adjustment 

BBS: Berg balance scale; 6MWT: six-minute walk test.  
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Figure 2.4- Overview of the on-body location of the actuation system and sensor systems considering the re-

viewed wearable AOs in Table 2.1.  

Actuation Systems  

The design principles of the actuation system, such as output force/torque, efficiency, and 

portability, has a crucial significance for the wearable AOs since they generally determine their 

performance. Actuation systems, such as electric motors, pneumatic muscle actuators, and 

series elastic actuator (SEA) were applied to move the AO by converting a source of energy 

into mechanical motion. Table 2.1 shows that the application of pneumatic and SEA actuators 

in wearable AOs centered on ankle assistance; whereas the electric actuators presented a 

more versatile lower-limb application. Further, some AOs combine passive and active me-

chanical joints, both approaching the sagittal plane. This literature analysis indicates that ac-

tual wearable AOs do not endow hydraulic actuators.  

Electric actuators convert the electrical energy into mechanical torque. For most gait-

related applications, they integrate an electric motor (e.g., direct current (DC) motors) and a 

harmonic drive to achieve the desired torques and control the provided torque and speed 

[136], [137]. As described in Table 2.1, electric actuators are the elected actuators for most 

wearable AOs, including the commercial AO. They are easily controllable and meet the criteria 

of necessary power with compact and portable solutions for wearable devices. Their main 

drawback is the low power-to-weight ratio, being essential to connect them to harmonic drive 

gears. Novel lightweight electric actuators are needed.  

Pneumatic actuators include variable volume pressure chambers to convert a pressurized 

gas into mechanical torque. They provide a set of inherent benefits over electric ones, such as 

high force-to-weight ratio without the need of gearboxes, faster response time, smooth 
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actuation, and enable backdrivability [69], [137], [138]. Nevertheless, the control is more com-

plex, and electric actuators are 92% more power efficient for robot-assisted walking applica-

tions [69]. Furthermore, this actuation technology showed to be bulky and is commonly asso-

ciated with tethered systems [139]–[141].  

Alternative compliant actuation systems to these conventional technologies are under in-

vestigation, such as SEA. SEA combine compliant structures (e.g., a spring) in the electro-me-

chanical actuators to convert compression of springs into mechanical torque [17], [69], [137]. 

SEA has essential features for wearable AOs since it can exhibit low impedance, low friction, 

shock tolerance, acceptable dynamic range, and may enable the user to feel more comfortable 

assistance [80]. Nonetheless, the use of these actuators in wearable AOs faces a limitation 

about the spring constant of the elastic element that is fixed, i.e., limited bandwidth [18], [22]. 

Research on compact and highly efficient mechanisms that allow varying the stiffness of series 

elastic components, a compromise between minimal endpoint impedance and high force con-

trol bandwidth, is needed.  

Table 2.2 summarizes the advantages and disadvantages of each actuator.  

Table 2.2-Advantages and disadvantages of actuators. Information obtained from [17], [69], [137]. 

Actuator Advantage Disadvantage  

Electric 

- Easily controllable 

- Power efficient 

- Portable 

- Heavy 

- Requires gear reduction to achieve the desired 

torque 

- Noisy 

Pneumatic 

- Silent 

- Precise 

- Resistant to rough environments 

-High ratio actuator power to weight 

- High efficiency 

- Low control bandwidth  

- Big dimensions (bulky) 

- Power lost in pressure drops 

- Issues on internal friction and leakage, intrinsic 

noise  

SEA 

- High force fidelity 

- Low impedance 

- Low friction 

- Limited bandwidth (constant spring) 

- Stability limitations 

Sensor systems  

AĐtiǀe assistiǀe deǀiĐes ƌelǇ oŶ seŶsoƌ sǇsteŵs͛ feedďaĐk to ĐoŶtƌol the sǇsteŵ aĐĐoƌdiŶg 

to the motion activity and to determine the assistance required by the user. The integration 

of the sensors on AOs has been limited to control purposes, including encoders [18], [80], 

[127], [130], [134], [135], potentiometers [22], [129], [134] and Inertial Measurement Units 

(IMUs) [124] for angle and angular speed estimation, and load cells [21], [125], [126] for motor 
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torque estimation and user-AO interaction torque estimation. To supplement the information 

available from AOs, EMG sensors [117], [142] for muscle activity analysis, and force sensors 

such as foot-switches and force sensitive resistors (FSRs) [20], [22], [78], [80], [127], [130], 

[132], [134], [135], foƌ gait eǀeŶt deteĐtioŶ, haǀe ďeeŶ plaĐed oŶ the useƌ͛s ďodǇ. There is a 

common use of wearable sensors in wearable AOs.  

Clinical Evidence  

Preliminary, short-term clinical trials with neurological patients have been carried out to 

investigate the clinical effectiveness of wearable AOs. They involved patients with sequelae of 

SCI [129], [134] and poliomyelitis [126], stroke survivors in the chronic stage [18], [19], [76], 

[80], [127], and subjects with drop foot gait [22], [78], [135].  

The studies had small sample sizes, varying from 1 to 3 participants, which may limit the 

effectiveness and robustness of their study findings. Inspection of the protocol designs across 

studies revealed non-detailed clinical protocols on clinical interventions and outcome 

measures, and there are considerable variations in the duration and frequency of sessions 

performed. The most applied outcome measures used to assess the capabilities of an AO for 

gait rehabilitation (to re-tƌaiŶ the useƌ͛s ǁalkiŶg ĐapaďilitǇͿ aŶd gait assistaŶĐe ;to ďƌiŶg the 

patieŶt͛s ǁalkiŶg aďilitǇ Đloseƌ to that of healthǇ suďjeĐtsͿ aƌe: ǁalkiŶg speed, ROM, gait sym-

metry, and step cadence [143]. 

The effectiveness of AO-based therapy is an open matter of research [143]. The Tibion 

knee orthosis improved gait function in stroke survivors in terms of increased gait speed, sit-

to-stand activity, balance, and functional walking ability [76], [127]. The gait training delivered 

by active AFOs, with actuation systems based on pneumatic and SEA, successfully prevented 

drop foot gait and maintained toe clearance during swing [22], [78], [133]–[135]. Conse-

quently, these active AFOs augmented push-off power [18], [19] and increased stance timing 

[133], stride length [80], and cadence [18], [19]. Furthermore, the active AFO-based improve-

ments in walking ability were more apparent and closer to healthy gait than the ones achieved 

by the passive orthoses [18], [19], [22], [78], [80].  

In overall, the findings of these pilot clinical studies support that the motor learning 

boosted by the AO-based repetitive gait training has the potential to augment and extend the 

effect sizes of the functional motor recovery when compared to the passive orthosis.  
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2.4.3.Discussion on Technological and Clinical Challenges 

To date, AOs proposed in the scientific field are still not able to foster personalized, user-

oriented assistance and timely adaptive for dynamic daily environments nor to encourage the 

useƌ͛s paƌtiĐipatioŶ. CuƌƌeŶt technological challenges in wearable AOs include the integration 

of following technologies: (i) polyvalent, time-effective assistive control strategies tailored 

accordantly to the ĐurreŶt user’s Ŷeeds and user-AO interface sensing to deliver a personal-

ized assistance, (ii) unobtrusive wearable biofeedback system approaching less-cognitive ef-

fort to actively eŶĐourage the user’s partiĐipatioŶ, (iii) wearable sensor systems and easy to 

apply gait analysis methodologies for the real-tiŵe ŵoŶitoriŶg of the user’s Ŷeeds evaluation 

and neuro-ŵeĐhaŶiĐal useƌ͛s ŵotoƌ ĐoŶditioŶ, and (iv) tools for the reĐogŶitioŶ of user’s ŵo-

tion intention aŶd ĐuƌƌeŶt patieŶt͛s disaďilitǇ leǀel. Moreover, the approaches for modeling 

the human-AO interaction is not yet taking into account the symbiotic interaction between 

the user and the AO, a critical factor for ensuring compliant and efficient assistive control 

strategies [69]. 

These challenges are key innovation points that will be addressed by SmartOs system to-

wards a repetitive, user-oriented gait therapy [14], [118]. For this matter, SmartOs aims to 

combine in an interoperable manner wearable sensor systems, biofeedback systems, and gait 

analysis tools into an AO such that it has the ability to adapt the delivered mechanical work 

according to a real-time evaluation of the useƌ͛s Ŷeeds ǁhile eŶĐouƌagiŶg the useƌ͛s paƌtiĐipa-

tion in the therapy. 

Despite much progress in robotic technologies, there is still needed to develop lightweight, 

compact AOs with a unique mechanical design, that reduces its mass and overall dimensions 

for lower metabolic expenditure and AOs with lightweight, compliant, low-power, easily con-

trollable actuation systems that behaviours like human joints [10]. Computational mecha-

nisms for AOs͛ ŵass ĐoŵpeŶsatioŶ are proposed in SmartOs to be more compatible with the 

useƌ͛s ŵiŶiŵal ŵetaďoliĐ ƌeƋuiƌeŵeŶts.  

The challenges in sensor systems go through the development and integration of modular 

wearable time-effective sensor systems, easily flexible to incorporate a wide range of sensors, 

in a way that they provide quantitative and repeatable long-term assessments. To accomplish 

the AAN approach, current directions suggest that AOs should have a close-communication 

with sensor systems to enable the evaluation of the therapy in free-living environments [25], 
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[26], [144]. To address the previous two challenges, SmartOs pursues the development of a 

wearable motion lab with a set of modular sensor systems for the biomechanical and muscular 

motion analysis. It will enable the real-time, ambulatory monitoring of the neuro-biomechan-

iĐal useƌ͛s ŵotoƌ ĐoŶditioŶ and decoding the user intended movement.  

Studies have demonstrated that biofeedback systems can complement gait training in post-

stroke conventional therapy by enhancing balance, gait symmetry, and weight bearing [145]–

[147]. Nonetheless, the integration of wearable biofeedback systems (not limited to non-am-

bulatory rehabilitation as explored in [148]) with wearable AOs still has to be approached for 

encouraging and motivating the patient to improve gait pattern. SmartOs aims to tackle this 

problematic. 

The increased complexity of AOs, given the combination of sensors, actuation, and biofeed-

back systems, control strategies, and computational tools for gait analysis, demands the de-

velopment of frameworks with features such as modularity, interoperability, scalability, de-

terminism, and effective response. Moreover, the design of bioinspired control architectures, 

following design principles based on human motor control, started to emerge [9]. The design 

of the framework and control architecture of SmartOs follows these technological challenges 

while guaƌaŶteeiŶg useƌs͛ safetǇ.  

C-Brace [124] is the closest solution of a personalized gait training therapy, by endowing 

teĐhŶologies aďle to assess the useƌ͛s ŵotoƌ ĐoŶditioŶ aŶd to deteƌŵiŶe hoǁ ŵaŶǇ assistaŶĐe 

is needed. However, C-BƌaĐe does Ŷot applǇ ŵethodologies to stiŵulate the useƌ͛s paƌticipa-

tion in the motor activities as it is not indicated for patients with spasticity, a motor condition 

commonly observed after a stroke [149]. There a common limitation for the application of 

AOs in the presence of spasticity (Miller, Zimmermann, & Herbert, 2016). SmartOs proposes 

innovative initiatives on the combined use of pharmacologic interventions with AOs in spas-

tic gait recovery, which is boosted by task-specific therapy and stretching during daily activi-

ties [11], [31], [68]. 

Recent tendencies have suggested the application of soft robotic devices that use soft ma-

terials such as textiles and elastomers to assist in a more comfortable, unobtrusive, and com-

pliant means [7]. Nevertheless, further technological advances are needed since current soft 

robots include an off-board actuation unit comprising the ambulatory assistance [7], [150], or 

they require that the user wears the actuation system via a heavy backpack frame with a mass 

of 10.64 kg [151].  
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There are a set of challenges to be tackled regarding the short-term clinical trials with AOs 

performed with a limited number of participants. First, more controlled clinical research con-

sidering randomized trials is Ŷeeded to deteƌŵiŶe AOs͛ ĐliŶiĐal effeĐtiǀeŶess aŶd usefulŶess, 

which would also strengthen the literature in general support of AOs use for functional gait 

rehabilitation [152]. 

 Second, there is a lack of the clinical evidence of AOs for the functional motor recovery, 

reducing the metabolic cost of the user, and the average muscular generated torques by the 

user. A literature review previously underlined the need for a standardized methodology to 

benchmark the AOs ability for gait rehabilitation and assistance [143]. Future clinical protocols 

should include a significant number of participants, who will undergo repetitive functional 

tests and locomotor activities daily performed, and consider quantitative outcome 

measures, such as Activity and Impairment ICF outcomes, and the patieŶts aŶd ĐliŶiĐiaŶs͛ peƌ-

ception through Participation outcome measures.  

Third, clinical trials comprising long-term evaluation with several follow-up assessment 

timings are needed to investigate the long-term motor recovery. A long-term benchmark anal-

ysis with passive devices and other conventional rehabilitation therapies is an avenue to be 

approached considering homogenous control and study groups involving a significant number 

of participants.  

Fourth, more research is needed to investigate (i) the adaptation of the user to powered 

assistance and (ii) the iŶteraĐtioŶ of the deǀiĐe ǁith the user’s ďodǇ, considering the physical 

interaction (i.e., how the lower limbs successful accomplish the desired motion) and neural 

interaction (i.e., how the nervous system will respond to the provided assistance) [143].  

Further clinical challenges cover a significative evaluation regarding the usability, and the 

possible cognitive and physical burden regardiŶg the AOs͛ use oŶ dailǇ liǀiŶg eŶǀiƌoŶŵeŶts. 

The delineated clinical trials for SmartOs followed these challenges to achieve long-term, high-

ƋualitǇ ƌeseaƌĐh toǁaƌds gaiŶiŶg higheƌ leǀels of ĐliŶiĐal eǀideŶĐe of AOs͛ use aŶd effeĐts. Such 

clinical step may support the clinical decision for a more informed prescription of physical 

rehabilitation therapy.  

 

 

 



Chapter 2- Research on Wearable Lower Limb Assistive Orthotic Devices  

40 

 

2.5.Conclusions  

Wearable AOs are promisor assistive devices to meet the requirements of a suitable phys-

ical rehabilitation intervention including a user-oriented, task-oriented, and repetitive gait re-

habilitation in neurological conditions while enabling an objective gait assessment. Advances 

in these assistive devices may offer great potential for post-stroke gait rehabilitation, contrib-

uting to transformative changes in functional motor ability to perform daily locomotor activi-

ties, biomechanical performance, and boost cognitive motor control ability. 

This literature research identified a set of technological and scientific challenges in weara-

ble AOs, such as mechanical designs, actuation systems, sensor systems, assistive control 

strategies to strengthen their position as personalized rehabilitation or gait analysis tool. The 

survey allowed to conclude that the AO should endow a modular, time-effective framework 

able to combine, in an interoperable manner, wearable sensor systems, and biofeedback sys-

tems into an AO. Furthermore, real-tiŵe, ƌoďust gait aŶalǇsis tools foƌ ƌeĐogŶiziŶg useƌ͛s ŵo-

tion intention and disability level have to been introduced into control architectures of AOs, 

considering the current directions for bioinspired and AAN control architectures. The AO de-

sigŶ has to ďe fullǇ ǁeaƌaďle, lightǁeight, Đoŵfoƌtaďle, aŶd tightlǇ shape the useƌ͛s ďodǇ. Ad-

ditionally, there is an actual needed for personalized, long-term training solutions to treat 

spastic gait condition.  

Lastly, there are still missing clinical studies considering a significant number of participants 

with stroke sequels. More efforts are needed towards a unified clinical methodology ap-

proaching functional motor exercises and using objective metrics to assess the long-term ef-

fectiveness of AO-based gait therapy. The gathered information in Chapter 2.2 and Chapter 

2.3 may guide the designing of the clinical protocols attending to the actual demand for a 

benchmark scheme.  

The design and development of SmartOs system, presented in Chapter 3, pursue to con-

sider the highlighted scientific challenges and know-how. Continuous user involvement is es-

sential in the design and development of personalized solutions, as proposed by SmartOs, en-

suring that they match user needs and desires, as well as capabilities. 
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Chapter 3 – SmartOs System: Conceptual Design, Func-

tionalities and Framework  

This chapter describes the conceptual design and functionalities of SmartOs system, con-

sidering the gathered knowledge in Chapter 2. This information enabled to identify all Smar-

tOs͛ ŵodules foƌ desigŶiŶg the modular framework in an interoperable and time-effective 

manner. Moreover, this chapter presents the performance evaluation of the modular frame-

work considering a technical validation of the developed hardware and software interfaces.  

3.1.Introductory Insight  

Current technological and scientific directions on wearable AOs include the integration of 

wearable sensor and biofeedback systems and assistive control strategies driven by gait anal-

ysis tools foƌ ƌeĐogŶiziŶg useƌ͛s ŵotioŶ iŶteŶtioŶ aŶd motor disability [14]. SmartOs system 

addressed these directions. It includes wearable AOs linked to a full-lower limb Wearable Mo-

tion Lab (with biomechanical and muscular sensors) and a Wearable Biofeedback System. This 

innovative combination is advantageous over the state-of-the-art, and turns SmartOs an af-

fordable system that can be applied for gait rehabilitation and ambulatory gait analysis.  
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For this purpose, a modular framework was designed and developed to approach a time-

effective and robust integration of the identified SŵaƌtOs͛ modules. Further the SmartOs sys-

tem integration, the framework allows the SmartOs system expandability for further gait anal-

ysis tools, assistive strategies, and sensor, biofeedback and actuation systems. The framework 

followed the bioinspired principles of a hierarchical control architecture to timely tune the 

assistiǀe leǀel deliǀeƌed ďǇ AOs aĐĐoƌdiŶg to the eǀaluatioŶ of the useƌ͛s Ŷeeds, ŵotioŶ iŶteŶ-

tions and user-AOs interaction tracked in real-time by the Wearable Motion Lab and decoded 

by the Gait Analysis Tools. Finally, the framework includes mobile and desktop applications 

foƌ the iŶtuitiǀe ĐoŶfiguƌatioŶ of the SŵaƌtOs͛ ŵodules aŶd functionalities and visual moni-

toring of the user-AOs motion, respectively.  

3.2.Conceptual Design and Functionalities  

SmartOs is a new multi-functional, modular, wearable active orthotic assistive system 

able to act and cooperate closely with human beings to approach AAN rehabilitation. Conse-

quently, the design of SmartOs followed the functional and technical end-users driven re-

quirements to iŶĐƌease the useƌ͛s aĐĐeptaďilitǇ aŶd to fosteƌ a ƌeliaďle aŶd safe gait ƌehaďili-

tation. End-users and clinicians have been involved in consolidating a set of requirements that 

has triggered and fine-tuned the development of SmartOs. 

The clinical initiatives of SmartOs approach (i) task-oriented and repetitive gait training ac-

ĐoƌdiŶg to the useƌ͛s Ŷeeds; ;iiͿ long-term biomechanical, energetic-efficient and functional 

motor recovery; (iii) abnormal gait pattern correction, in particular, drop foot gait; (iv) encour-

aging the useƌ͛s aĐtiǀe paƌtiĐipatioŶ iŶ the gait tƌaiŶiŶg aŶd thus aĐĐeleƌatiŶg gait ƌeĐoǀeƌǇ and 

likely enabling a cognitive ability improvement; and, (iv) objective gait analysis of the useƌ͛s 

motor condition by tracking biomechanical and muscular information. Figure 3.1 presents the 

conceptual design of SmartOs, highlighting the included modules to fulfil these clinical func-

tionalities.  
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Figure 3.1- SmartOs conceptual design. 

Wearable Motion Lab includes a set of stand-alone, low-cost, self-calibrated wearable sen-

sor systems, detailed described in Chapter 4, to ŵoŶitoƌ the iŵŵediate useƌ͛s ŵusĐulaƌ-bio-

mechanical data during daily performed locomotor tasks. The seŶsoƌs͛ iŶfoƌŵatioŶ allows tai-

loring in real-tiŵe the peƌsoŶalized theƌapies aĐĐoƌdiŶg to the speĐifiĐ useƌ͛s ŵotoƌ ĐoŶditioŶ 

and is the base for the implementation of the gait analysis tools, as summarizes Table 3.1.  

Table 3.1-Application of sensor data monitored by the Wearable Motion LAB in the Gait Analysis tools 

Wearable Motion LAB 
Gait Analysis Tool 

Sensor system Sensor Data 

GaitShoe 

Force-ground contacts Gait event detection 

Foot͛s kiŶeŵatiĐs ;aŶgle, aŶgulaƌ speed, 
acceleration) 

Gait speed estimation 

Joint angle estimation  

Useƌ͛s disaďilitǇ leǀel ƌeĐogŶitioŶ 

MuscLAB  

Surface EMG 

Loǁeƌ liŵď ŵusĐles͛ aĐtiǀatioŶ  Useƌ͛s disaďilitǇ leǀel ƌeĐogŶitioŶ 

 

InertialLAB 

Kinematics (angle, angular speed, acceler-

ation) of lower limb joints (ankle, knee, hip) 

and segments (foot, shank, thigh, trunk) 

Joint angle estimation  

Useƌ͛s disaďilitǇ leǀel ƌeĐogŶitioŶ 

Useƌ͛s ŵotioŶ iŶteŶtioŶ ƌeĐogŶitioŶ 

Risk/incipient falls detection 

  

SmartOs incorporates a set of automatic, time-effective Gait Analysis Tools to detect gait 

events (described in Chapter 5), to ƌeĐogŶize useƌ͛s ŵotioŶ iŶteŶtioŶ (described in Chapter 6) 

and disability level, and to detect incipient falls and other risk situations. These gait tools are 

processed into the Hierarchical Control Architecture, detailed presented in Chapter 8, to 
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generate user-oriented assistive commands. This architecture also endows safety mecha-

nisms to safeguard the joint integrity, which may interrupt the assistance as and when 

needed. Furthermore, SmartOs embodies two sources of Wearable Actuation Systems, the 

AOs and the wearable biofeedback system, and two user-friendly Graphical Applications, de-

scribed below.  

3.2.1.Wearable Actuation Systems 

Currently, SŵaƌtOs͛s fƌaŵeǁoƌk integrates two AOs, the ankle (PAFO) and knee (PKO) 

right-side modules of the lower-limb H2-exoskeleton (Technaid S.L., Spain). Figure 3.2.A illus-

trates the two AOs that only assistance in the sagittal plane for gait speed ranging from 0.5 to 

1.6 km/h. Each AO has the following embedded sensors: (i) precision potentiometer (resolu-

tion of 0.5°), the angle position sensor; (ii) strain gauges (four strain gauges connected in a 

full Wheatstone bridge, resolution of 1 Nm), the user-AO interaction torque sensor; and, (iii) 

hall effect sensor, used to track the ŵotoƌ͛s aŶgulaƌ speed, the ŵotoƌ͛s ĐuƌƌeŶt and torque. 

PAFO also integrates two FSRs at the heel and toe to measure the ground reaction force. 

Moreover, three IMUs (MPU-6050, InvenSense, USA) were integrated into AOs for gravity 

compensation and gait event analysis.  

The actuation system consists of an electrical actuator (flat brushless DC motor EC60-100 

W, Maxon) coupled to a gearbox, the CSD20-160-2A strain wave gear (Harmonic Drive), with 

a ratio of 160:1, providing an average torque of 35 Nm and peak torques of 180 Nm. The 

brushless DC motor was selected given its advantages in the DC motors category for wearable 

applications, including higher efficiency, more torque density, reduced noise, and reduced 

electromagnetic interference. The mechanical structure is made of stainless steel and type 

7005 aluminum. More technical details regarding the AOs can be found in [48], [154].  

 The Control Area Network (CAN) was used to establish the communication among the AOs 

and the Hierarchical Control Architecture, given its strict determinism, data collision avoid-

ance, optimized data transfer, and multiple-access points that allow new AOs to be easily con-

nected to the physical layer [153]. 

Additionally, SmartOs includes a Wearable Biofeedback System with a minimum-to-null 

cognitive and physical effort for fostering time-discrete vibrotactile/tactile and visual stimuli. 

Vibrotactile and visual stimuli have been explored. The wearable vibrotactile stimuli-based 

waistband (actuation system formed by a coin eccentric rotating mass vibrotactile motor and 
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DRV2605 haptic drivers (Adafruit®, USA)) will provide time-discrete vibrotactile stimuli in the 

lower trunk (at navel and spine zones) and paretic limb. For visual stimuli, the ORA-2 aug-

mented reality glasses (Optinvent, France) is being used.   

 

Figure 3.2- Wearable Actuation System: A: Wearable AOs. B: Wearable Biofeedback System. 

3.2.2.Graphical Applications  

Two user-friendly graphical applications (Figure 3.3) were designed and developed to ena-

ble the intuitive use and full abstraction from low-level interfaces and technical aspects of the 

SŵaƌtOs͛ ŵodules in both laboratory and clinical context. The applications, integrated into 

SmartOs via wireless technology, were designed to be intuitive in terms of usability consider-

ing the therapist and technical as possible users. Furthermore, the applications enable easy 

integration of any new modules or settings.  
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Figure 3.3- Main menus of Graphical Applications. A: Mobile Graphical Application. B: Desktop Graphical 

Application. 

The Mobile Graphical Application enables the intuitive set-up of all SŵaƌtOs͛ ŵodules, al-

lows the sǇsteŵ’s ĐoŶfiguratioŶ to differeŶt suďjeĐts aŶd therapies, and provides the sys-

teŵ͛s status foƌ end-users. This application fulfills requirements such as (i) streamlined and 
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guided interaction for a fast, natural, walk-through navigation, and (ii) use of explicit graphical 

ĐoŵpoŶeŶts foƌ ďeiŶg ŵoƌe easilǇ useƌ͛s uŶdeƌstaŶdaďle. It was developed in Android oper-

ating system (tested in multiple devices, ranging from Android 5.0 to 8.1.) following configu-

rations dependencies and with a protection layer such that the therapies are configured with-

out allowing invalid functional configurations that might compromise the physical integrity of 

both the user and system. All messages are transmitted via Bluetooth protocol to the central 

ĐoŶtƌolleƌ uŶit of SŵaƌtOs. EaĐh appliĐatioŶ͛s laǇout ǁas ŵade up of Widgets deĐlaƌed iŶ An-

droid XML vocabulary. Figure 3.3.A presents a set of menus available in this application.  

The Desktop Graphical Application (Figure 3.3.B) was developed using Qt platform. It fo-

cuses on real-time monitoring at 100 Hz of all data generated along with therapy in a dash-

board design tailored to the user. Additionally, it manages all collected data over therapy ses-

sioŶ aŶd useƌ͛s iŶfoƌŵatioŶ foƌ logging in JavaScript Object Notation (JSON) format into a local 

database, the SQLite. This application was designed considering minimal input from the user, 

automatic displaying, and human-readable visualization graphical tools. The WiFi protocol was 

used to establish communication with the central controller unit of SmartOs.  

Both applications were scored with ͞Good͟ to ͞EǆĐelleŶt͟ range of intuitiveness and ease 

of use and navigation according to the System Usability Scale questionnaire by eight non-

technical users. More results are presented in [155].  

3.3.Modular Framework for SmartOs’ Modules Integration  

In this thesis, it was designed, developed, and validated a modular, real-time, interopera-

ble, power- and time-effective, fully wearable framework to enable an effective and safety 

integration and interaction of SmartOs modules.  

3.3.1.Framework Requirements  

The framework should consider the ambulatory functionality of SmartOs, which opens a 

set of new requirements as follows. First, the framework should embody wearable modules 

to be usable by end-users with different heights, body mass, and morphologies. Second, it is 

desirable that the framework is power-effective using a wearable power supply unit able to 

supply at least eight hours for prolonged recording sessions. Third, the framework should be 

modular in terms of hardware and software interfaces to facilitate the integration of more 

stand-alone modules and functionalities. Fourth, the framework should provide a time-
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effective communication between all modules and include software interfaces capable of hit-

ting all real-time deadlines with small latency (determinism). Additionally, the framework 

should be hierarchically structured and should respect the distinct real-time constraints of 

the hierarchical control architecture. This lead to the development of the framework with a 

non-centralized architecture.  

Furthermore, the framework should include a central storage unit for data logging. Lastly, 

it should pƌoǀide iŶtuitiǀe iŶteƌaĐtioŶ ǁith SŵaƌtOs͛ fuŶĐtioŶalities aŶd ŵodules aŶd ǀisual 

feedback regarding therapy progress. The integration of mobile and desktop graphical appli-

cation allows fulfilling these two requirements.  

3.3.2.Framework with Non-centralized Architecture  

The framework was designed following a non-centralized architecture, including different 

development boards foƌ ŵaŶagiŶg the SŵaƌtOs͛ ŵodules. This architecture includes a single 

Central Controller Unit (CCU) for running Gait Analysis Tools, high-level controllers of Hierar-

chical Control Architecture, and the external communication with the Graphical Applications. 

Moreover, the architecture includes development boards with less-computational perfor-

mance, namely: (i) Low-Level Orthotic System (LLOS) that handles the AOs, the low- and mid-

level controllers of Hierarchical Control Architecture, and embedded IMU sensors; (ii) Weara-

ble Motion LAB (WML) that manages the Wearable Motion Lab, namely InertialLAB, GaitShoe, 

MuscLAB and EMG system; and (iii) Wearable Biofeedback System (WBS) that handles the 

biofeedback systems. The interfaces of WBS are out of the scope of this thesis. 

Figure 3.4.A presents the developed non-centralized architecture. The separation of the 

low-level from the high-level modules favours the ŵaŶageŵeŶt of the SŵaƌtOs͛ peƌfoƌŵaŶĐe 

by not affecting the hard-real-time requirements of the low-level modules. Also, a hierarchical 

safety mechanism can be easily controlled in case of a system failure at any part of the Smar-

tOs͛ framework. Moreover, this approach emphasizes the expandability of the framework.  
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Figure 3.4- A: Representation of SmartOs non-centralized architecture and interfaces for SmartOs integration. 

B: LLOS interfaces for AOs and embedded sensors. C: WBS interfaces. D: WML interfaces including GaitShoe 

and InertialLAB. E: WML interfaces including MuscLAB and EMG system.  

3.3.3.Framework: Hardware Interfaces  

This subchapter provides an overview of the hardware interfaces developed for integrating 

SŵaƌtOs͛ ŵodules. The CCU includes a Raspberry Pi 3 (Raspberry Pi Foundation, UK), a single-

board computer with a quad-core processing unit (1.2 GHz, 64 bit CPU) and 1 GB of RAM. The 

built-in wireless LAN and Bluetooth connectivity were used for communicating with desktop 

and mobile graphical applications, respectively. Three universal serial bus (USB) ports embed-

ded in the board were used for serial port communication with LLOS, WML, and WBS. The 

aǀailaďle peƌipheƌals foƌ SŵaƌtOs͛ ŵodules ĐoŵŵuŶiĐatioŶ togetheƌ ǁith the high-speed ca-

pabilities and low-dimensionality (56x85x16 mm) made the Raspberry Pi 3 suitable for CCU.  

The LLOS’ hardware interface (Figure 3.4.B, 65x96x31 mm) integrates a CAN interface (us-

ing XT90 connector) and inter-integrated circuit (I2C) interface (using USB connector) to in-

terface with the AOs and IMUs (MPU-6050, InvenSense, USA), respectively.  

The WML (Figure 3.4.C and D, 65x100x34 mm) includes the I2C interface (using ethernet 

connector) for communication with the InertialLAB, the serial peripheral interface (SPI) to 

control the radiofrequency (RF) module (NRF24L01+) for wireless communication with 

GaitShoe, and analog-to-digital converter (ADC) interface (using 2-pin connector) for Mus-

cLAB and EMG system. LLOS and WML include a Universal Asynchronous Receiver/Transmitter 
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(UART) interface (set at 230400 bps) in the direct memory access mode for high-performance 

communication with the CCU using USB converter (FT232RL FTDI) given its easy plug-in with 

the USB ports of Raspberry Pi 3. 

The hardware interfaces of LLOS and WML are handled by the wearable STM32F4-Discov-

ery development board (STMicroelectronics, Switzerland) a power-cost effective solution 

centralized on the STM32F407VGT microcontroller (ARM® Cortex®-M4 32-bit core), running 

at 168 MHz. SŵaƌtOs͛ framework takes advantage of features of this board, such as high-

speed embedded memories (flash memory up to 1 Mbyte and SRAM up to 192 Kbytes), a 

number of I/Os and peripherals with standard communication interfaces (CAN, SPI and I2C). 

Lastly, this development board presents an acceptable dimensionality (80x100x25 mm) for 

wearable applications as this one.  

The power supply system (Figure 3.4.A) includes a lithium iron phosphate battery (LifePO4, 

22.4 VDC, 12 Ah), which enables at least 8 hours of autonomy, and a hardware interface to 

poǁeƌ up all SŵaƌtOs͛ ŵodules with 5 V. The batteƌǇ͛s ďodǇ ŵass ;ϳϴϭ gͿ aŶd diŵeŶsioŶs 

(161x49x47 mm) are acceptable to be used oŶ the useƌ͛s ďaĐk. 

3.3.4.Framework: Software interfaces   

This sub-chapter discloses a general overview of the framework software interfaces. A 

more detailed description is provided in Appendix D.  

A specific SŵaƌtOs͛ ĐoŵŵuŶiĐatioŶ pƌotoĐol with a standardized message structure was 

defined to (i) establish the communication with/from CCU; (ii) exchange data between the 

SŵaƌtOs͛ ŵodules ǁith efficiency; (iii) allow for easier integration of any new module; and, 

(iv) facilitate the detection and reporting of errors and warnings. Three types of SmartOs mes-

sages were specified: (i) command messages to set-up any configurable aspect of the Smar-

tOs͛ modules; (ii) data messages containing data from the sensors, controls, and/or gait anal-

ysis tools; and, (iii) status messages briefing about the executed commands, including success 

messages, error messages, and current status of SmartOs (e.g., battery level). The command 

messages follow a top-down approach from the mobile graphical application to CCU, and from 

this to the LLOS and WML, as illustrated in Figure 3.5. On the other hand, status and data 

messages have a bottom-up approach, except for some LLOS configurations for specific assis-

tive control strategies.  
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The CCU iŶteƌfaĐes all SŵaƌtOs͛ modules and graphical applications and executes the high-

level methods on Ubuntu Mate OS. Given the complexity of distributed systems, the CCU was 

implemented in C++ language, which allows: (i) object-oriented programming; (ii) complete 

control over memory management; and (iii) scalability to expand the system following a mod-

ular and standard software design. The POSIX Pthread Libraries were used. 

The software architecture of CCU (depicted in Figure 3.5) was organized into five main soft-

ware modules (classes), namely ExternalDevice (communication with external devices to 

CCU), CentralController (setup, start and stop all configurable modules), HLController (man-

ages and executes high-level controllers), SmartGaitAnalysis (handles and executes gait anal-

ysis tools), and Log (data logging in JSON file and Desktop Graphical Application).  

 

Figure 3.5- Softǁaƌe aƌĐhiteĐtuƌe of CCU. Diagƌaŵ of ŵaiŶ Đlasses iŶ CCU aŶd floǁ of SŵaƌtOs͛ ŵessages ďe-

tween CCU and its external devices.  

For the software architecture of LLOS and WML (Figure 3.6), the programming language 

selected was C language. The middleware layer of this architecture incorporates the freeRTOS 

real-time operating system and hardware abstraction layer (HAL) libraries, namely STM32Fx 

HAL drivers (e.g., CAN, ADC, I2C, and SPI drivers). The freeRTOS provides the facilities for mul-

titasking, concurrent programming towards the development of an effective framework and 

a set of libraries that allow easy definition and use of tasks, queues, and semaphores. 
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Figure 3.6- Software architecture of LLOS and WML and flow of SmartOs messages.  

The software architecture of LLOS and WML endows four and three main software mod-

ules, respectively, as follows. External Communication handlers the communication from/to 

CCU; Management Unit handles command messages and, in the LLOS, it executes the mid- 

and low-level controls; Embedded IMU sensor manages the sensor data acquisition and pro-

cessing from IMUs; Orthotic system setups, starts and stops AOs; and, Wearable Sensor Sys-

tem setups, starts and stops all wearable sensor systems and manages sensor data acquisition 

and processing. The priority of the real-time software interfaces was adjusted such that the 

hardware timers were configured to meet the time requirements of LLOS and WML. 

The real-time processes of the CCU, WML, and LLOS are executed to meet the time require-

ments listed in Table 3.2. The data acquisition and processing of InertialLAB, GaitShoe, Mus-

cLAB, and embedded IMUs of LLOS are executed every 10 ms (100 Hz), attending to the fact 

that the high energy frequencies of human biomechanical gait data ranging from 0.25 to 25 
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Hz [156]. On the other hand, we set the data acquisition and processing of the EMG system 

(WML) to 1 kHz since the bandwidth of EMG measures may reach up to 500 Hz [157].  

All data messages are exchanged every 10 ms, except the data messages from CCU to LLOS, 

that contain data of high-level controllers timing-specified according to the gait speed. Addi-

tionally, the mid-level control loop runs at 100 Hz attending to the usually applied frequency 

for gait application [156]; whereas the low-level control loop runs at 1 kHz, a frequency ten 

times higher than the mid-level controller, to minimize the delayed actuator response. Finally, 

all status and command messages present an asynchronous operating rate given their singular 

occurrence during the therapy configuration or random occurrence during real-time therapy. 

Table 3.2- SŵaƌtOs͛ tiŵe ƌeƋuiƌeŵeŶts foƌ ƌeal-time therapy.  

SmartOs 

Modules 

Software  

Modules 
Software Routine 

Required 

Time (ms) 

LLOS 

Embedded IMU 

Sensor 

IMU_Run 10.0 

IMU_SendExternal  10.0 

Orthotic system 
Orth_Run 10.0 

Orth_SendExternal  10.0 

Management 

Unit 

Control_Run* 1.0 

Control_SendExternal  10.0 

WML 
Wearable  

Sensor System  

InertialLAB_Run 10.0 

InertialLAB_SendExternal  10.0 

GaitShoe_Run 10.0 

GaitShoe_SendExternal  10.0 

EMG_Run 1.0 

EMG_SendExternal  10.0 

CCU 

HLController  AssistiveStrategy (Data Messages, CCU → LLOS)** 51; 58; 65; 72  

Log Log (Data Messages, CCU → Desktop Application)  10.0 

ExternalDevice 
handlerMsg (Data Messages, CCU  Mobile  

Application) 
Asynchronous 

*The hard-real-time conditions are presented since Control_Run includes the mid-level and low-level controllers 

running at 10 ms and 1 ms, respectively.  

** Timing-specified according to the gait speed 

3.3.5.Framework: Performance Evaluation  

The performance of the framework was inspected through a technical validation concern-

ing computational and energetic effectiveness. This evaluation aims to verify whether the 
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proposed non-centralized architecture comprises the real-time computational and energetic 

performance of SmartOs system since the use of several development boards may introduce 

some latency and may increase power consumption.  

Validation Setup  

The validation was performed along 50 gait cycles with the experimental setup defined for 

the LLOS and WML modules, as follows. For LLOS, the setup included the (i) PAFO configurated 

with user-oriented trajectory control strategy (described in Chapter 7.4) at the maximum gait 

speed (1.6 km/h), (ii) right foot IMU running the gait event detection tool (described in Chap-

ter 5), (iii) two IMUs executing the gravitational compensation (described in Chapter 7.2.3). 

The setup of WML included the InertialLAB, GaitShoe, and EMG system. As the use of EMG 

system and MuscLAB is mutually exclusively in SmartOs system, the WML͛s validation involved 

the EMG system given its higher computational demanding when compared to MuscLAB.   

The validation duration (50 gait cycles) was set to consider a sufficiently long period to 

investigate the variability of the framework along the gait cycle, instantaneous effects, and 

the ramp-up time. 

Data Collection and Performance Metric  

During the validation, power consumption measures, involving current consumption and 

power consumption, and computational time measures, including (i) call periods of the timers 

(all routines named as Run) and tasks (all routines named as SendExternal), and (ii) latency of 

tasks and timers, were collected for a posterior analysis. A current sensor (INA219) was con-

nected to the development boards of LLOS and WML by I2C interface to measure the current 

and power consumed by the LLOS and WML during the experiment. The computational time 

measures were collected by setting the available timers to 1 𝜇s, so the call periods and latency 

of Run and SendExternal procedures of LLOS and WML could be validated. This approach was 

preferred to available time measurement tools to add the less overhead possible to the real-

hard time processes of LLOS and WML.  

The mean, standard deviation, maximum, and minimum values of the collected computa-

tional and consumption measures were computed to evaluate the framework performance 

under real-time conditions. The standard deviation metrics enables to analyze the framework 

peƌfoƌŵaŶĐe͛s ǀaƌiaďilitǇ along the gait cycle, whereas the maximum and minimum values 
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were determined to investigate the occurrence of instantaneous effects. Moreover, the root 

mean square error (RMSE) of all call periods was determined considering the measured call 

period and the defined call period (listed in Table 3.2).  

Results and Discussion  

Table 3.3 and Table 3.4 present the results of the computational performance of LLOS and 

WML, respectively. This evaluation only considered the timers and tasks evocated repeatedly 

in real-time to investigate the effects of a non-centralized architecture during real-time ther-

apy. 

 By analyzing Table 3.3, lower RMSE values (0.005 < RMSE < 0.289 ms) related to the call 

period measures were reported, indicating that the time requirements of LLOS (listed in Table 

3.2) were met. Further, there is variability in the call period times along the gait cycle, as 

shown by maximum and minimum values presented in Table 3.3. This variability was more 

evident during the system initialization. The time variability was mostly observed for SendEx-

ternal task when compared to the respective Run routine likely due to highest execution pri-

ority of Run routines than SendExternal tasks.  

 Table 3.3- Computational performance evaluation of LLOS. Mean, standard deviation (STD), maximum 

(Max), and minimum (Min) time values, and RSME of the call period of tasks and timers of LLOS.  

Software 

Module 
Software 

Routine 

Measure 

Description  
Mean ± STD 

(ms) 

Max 

(ms) 

Min 

(ms) 

RMSE 

(ms) 

Embedded 
IMU Sensor 

IMU_Run 

Call period 9.999 ± 0.005 10.189 9.963 0.005 

Latency 1.585 ± 0.016 1.686 1.499 - 

Acq_Proc 

Latency 

1.575 ± 0.016 1.622 1.490 - 

IMU_SendExternal   
Call period 9.998 ± 0.035 10.459 9.560 0.035 

Latency 0.088 ±0.039 0.415 0.007 - 

Orthotic 
system 

Orth_Run 
Call period 9.999 ± 0.011 10.310 9.942 0.011 

Latency 0.009 ± 0.0004 0.015 0.009 - 

Orth_SendExternal  
Call period 9.998 ± 0.053 10.406 9.565 0.053 

Latency 0.021 ±0.03 0.370 0.011 - 

Management 
Unit 

Control_Run 

Call period 0.999 ± 0.0005 1.010 0.993 0.0005 

Latency 0.219 ± 0.013 0.255 0.008 - 

ML_LL 

Latency 

0.079 ± 0.062 0.255 0.003 - 

Control_ 

SendExternal  

Call period 9.998 ± 0.289 10.738 8.213 0.289 

Latency 0.081 ± 0.243 0.311 0.015 - 

Figure 3.7 pƌeseŶts a gƌaphiĐal distƌiďutioŶ of the LLOS͛ ĐoŵputatioŶal peƌfoƌŵaŶĐe as aŶ 

instance of the higher-complexity moments of LLOS along the gait cycle. 
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Figure 3.7- GƌaphiĐal distƌiďutioŶ of the LLOS͛ ĐoŵputatioŶal peƌfoƌŵaŶĐe. MeaŶ aŶd staŶdaƌd deǀiatioŶ ǀalues 

marked at red and blue, respectively.  
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The latencies obtained for tasks and timers are relatively lower than the respective call 

periods. This finding indicates that (i) the time execution of the software interfaces of LLOS is 

lower than the available time, (ii) non-hierarchical architecture does not compromise LLOS 

performance, and (iii) there is room to add more mid- and low-level controls or embedded 

sensors to the LLOS. The latency of IMU_Run (1.585 ± 0.016 ms) was mainly responsible for 

IMU data acquisition and processing (Acq_Proc Latency = 1.575 ± 0.016 ms). On the other 

hand, the latency of executing the mid- and low-level controls (0.079 ± 0.062 ms) is half of the 

one spent in Control_Run (0.219 ± 0.013 ms).  

Moreover, a latency of 0.243 ms was observed for the command messages send from high-

level control (running in CCU) to mid-level (executed in LLOS) given the non-centralized archi-

tecture. However, the introduced latency due to the non-centralized architecture did not 

compromise the time requirements of high- and mid-level controls (both configurated to be 

executed every 10 ms).  

Regarding the WML, the low RMSE values (0.0006 < RMSE < 0.008 ms) obtained during 

experimental validation indicate that the developed interfaces of WML met the defined time 

requirements. The results presented in Table 3.4 also show the existence of variability in the 

call period times along the gait cycle, mostly for SendExternal tasks given their lowest execu-

tion priority when compared to Run routines. Note that for Run routines, the maximum call 

period times never overcome the defined time requirements.  

InertialLAB was the sensor system with higher latency for Run routines likely due to higher 

complexity for data processing (described in Chapter 4.2). The latencies obtained for tasks 

and timers are relatively lower than the own call periods suggesting that (i) the time execution 

of the software interfaces of WML does not compromise the WML performance, and (ii) there 

is still room to add sensor systems to the WML.  

In overall, the computational evaluation points out that the STM32F4-Discovery develop-

ment board provides the resources required for computational effectiveness of LLOS and 

WML, as well as enables the inclusion of further modules. Additionally, the developed soft-

ware interfaces were capable of hitting all real-time deadlines with small latency (determin-

ism). 
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Table 3.4- Computational performance evaluation of WML. Mean, standard deviation (STD), maximum (Max), 

and minimum (Min) time values, and RSME of the call period of tasks and timers of WML. 

Software 

Routine 

Measure 

Description 
Mean ± STD 

(ms) 

Max 

(ms) 

Min 

(ms) 

RMSE 

(ms) 

InertialLAB_Run 

 

Call period 9.999 ± 0.0005 10.0 9.999 0.0006 

Latency 2.751 ± 0.004 3.039 2.725 - 

Acq_Proc Latency 2.740 ± 0.004 3.029 2.714 - 

InertialLAB_SendExternal 

Call period 9.999 ± 0.008 10.596 9.971 0.008 

Latency 0.013 ± 0.002 0.015 0.0 - 

GaitShoe_Run 

 

Call period 9.999 ± 0.0005 10.0 9.999 0.0006 

Latency 0.154 ± 0.0003 0.154 0.153 - 

Acq_Proc Latency 0.144 ± 0.0005 0.144 0.143 - 

GaitShoe_SendExternal 

Call period 9.999 ± 0.003 10.068 9.996 0.003 

Latency 0.009 ± 0.002 0.033 0.007 - 

EMG_Run 

Call period 0.999 ± 0.0004 1.0 0.999 0.0007 

Latency 0.133 ± 0.0005 0.133 0.132 - 

Acq_Proc Latency 0.122 ± 0.0004 0.123 0.122 - 

EMG_SendExternal 

Call period 9.999 ± 0.0005 10.0 9.999 0.0006 

Latency 0.054 ± 0.002 0.095 0.051 - 

Table 3.5 presents the power consumption evaluation of LLOS and WML during 50 gait 

cycles. Both current consumption and power consumption were higher for WML than LLOS 

given the higher number of sensor systems, peƌipheƌals aŶd deǀelopŵeŶt ďoaƌd͛s ƌesouƌĐes 

activated in WML. The variability of power consumption along the experiment was more pro-

nounced for LLOS than WML.  

Moreover, the results presented in Table 3.5 report that the inclusion of further develop-

ment boards, for achieving the non-centralized architecture, increases the current consump-

tion (around 100 mA). Nonetheless, this increment was not sufficiently high to comprise the 

energetic performance of the SmartOs system since the total current consumption (around 

ϭϬϬ ŵAͿ is Ƌuite iŶfeƌioƌ to the ĐapaĐitǇ of the SŵaƌtOs͛ poǁeƌ supply system (12 Ah).  

 

 



Chapter 3- SmartOs: Conceptual Design, Functionalities, and Framework   

59 

 

Table 3.5- Power consumption evaluation of LLOS and WML. Mean, standard deviation (STD), maximum (Max), 

and minimum (Min) values of the current and power consumed.  

 
Current Consumption (mA) Power Consumption (mW) 

Mean ± STD Max Min Mean ± STD Max Min 

LLOS 22.72 ± 1.5 23.9 17.2 66.76 ± 4.4 70 51 

WML 76.18 ± 0.04 76.3 76 222.99 ± 0.03 223 221 

3.4.Conclusions  

For achieving the gait rehabilitation and analysis challenges proposed for SmartOs system, 

a modular, real-time, power- and time-effective framework was developed. It was designed 

following a user-centered design approach given the relevance of continuous user involve-

ment in the development of personalized solutions, such as SmartOs. All interfaces of the 

framework are wearable. 

Overall, the developed hardware and software interfaces of the framework shown to be time- 

and power-effective. The technical validation, in real-time conditions, emphasized that the in-

creased latency and power consumption, as a result of the non-centralized architecture, did not 

compromise the framework performance. This finding indicates that the hierarchical interaction 

between AOs with the wearable sensor systems (described in Chapter 4), gait analysis tools 

(Chapter 5 and Chapter 6), and assistive control strategies (presented in Chapter 7), was suc-

cessfully achieved through a non-centralized architecture. Moreover, there is still room to ex-

pand the SmartOs system with other stand-alone modules to attempt to the useƌ͛s ƌeƋuiƌe-

ments as needed. 

Lastly, the integration of the mobile and desktop graphical applications allows an intuitive 

interaction ǁith SŵaƌtOs͛ fuŶĐtioŶalities aŶd ŵodules aŶd ǀisual feedďaĐk ƌegaƌdiŶg theƌapǇ 

progress. 
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Chapter 4 – Wearable Motion Lab 

This chapter starts with an introductory insight into the relevance of human gait analysis 

and the use of wearable sensors for this application. It presents the Wearable Motion Lab, 

outlining the hardware and software developed for the InertialLAB, GaitShoe, MuscLAB, and 

EMG system. Moreover, it describes the gait analysis tools implemented in each sensor system 

to monitor relevant biomechanical and muscular measures and metrics for the post-stroke 

gait rehabilitation assessment. The chapter ends with a concluding analysis of performance 

and challenges of Wearable Motion Lab.  

4.1.Introductory Insight  

Human gait analysis has the potential to be applied as an automatic and objective assess-

ment tool of human gait condition. Clinical gait analysis may contribute (i) to better under-

stand the etiology of gait abnormalities supporting the clinical-based diagnosis with objective 

and timeless information, (ii) to foster better treatment decisions, (iii) to recognize walking 

risk situations, and (iv) to improve clinical follow-up [158], [159]. Furthermore, real-time gait 

analysis may be applied in the design of personalized gait therapies by tuning the assistance 

according to the patient-specific needs [101], [159]–[162], and eventually at home for moni-

toring the quality of walk (to forecast any forthcoming abnormality of useƌ͛s gaitͿ. 
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In the context of gait rehabilitation, human gait analysis may involve the systematic study 

and monitoring of distinct biomechanical information such as spatiotemporal, kinematic, and 

kinetic gait data, and physiologic parameters such as muscular activity [1].  

Most commonly, the human gait analysis is conducted in a motion analysis laboratory with 

expensive but highly accurate sensor systems, such as optical motion systems and force plat-

forms. Nevertheless, these motion capture systems are non-portable [39], only operating in 

controlled environments and reducing equal access to healthcare [163]. Consequently, they 

do not analyze consecutive gait cycles for long-term mobility scenarios [101].  

Current challenges include the development of wearable motion labs with cost-effective, 

robust, unobtrusive, easily wearable sensor systems for all-day and any-place real-time gait 

monitoring ǁithout iŶteƌfeƌiŶg ǁith the useƌ͛s ŵoǀeŵeŶt [26], [158]. Technological advances 

have made these sensors smaller, lighter, cheaper, and with low-power consumption, making 

them suitable for long-term and outdoor ambulatory applications [39]. 

Diverse wearable sensor systems have been developed to enable the evaluation of the hu-

man biomechanical and muscular status in a free-living environment, such as (i) force-based 

systems to monitor the feet contacts on the ground (i.e., the gait events) for a posterior de-

termination of temporal parameters, (ii) inertial sensor-based systems to monitor the lower 

limb kinematics, and (iii) EMG sensor systems to track muscular activation for a posterior 

muscle weakness evaluation.   

This chapter presents a Wearable Motion Lab given the potentialities of human gait anal-

ysis, mainly for personalized AO-based gait rehabilitation purposes. The Wearable Motion Lab 

integrates a set of stand-alone, self-calibrated, low-cost, ergonomic, wearable sensor sys-

tems to measure in real-tiŵe the useƌ͛s ŵotoƌ ĐoŶditioŶ. In particular, it includes an inertial 

sensor-based system (InertialLAB) and a wireless instrumented shoe system (GaitShoe) to 

track lower limb biomechanical measures, and an EMG system and a muscular contraction-

based force sensor system (MuscLAB) to monitor muscular measures.  

The design of these wearable sensor systems addressed five main requirements. First, the 

hardware systems should embed compact, low-cost, and efficient electronic components to 

produce a cost-effective wearable system. Second, the sensor system should incorporate an 

easy-wearing system to cover 10th-to-90th percentile of the male/female population (height 

ranging from 1.50 m to 1.90 m and body mass ranging from 45 kg to 100 kg). Third, software 

routines should follow a modular, open-architecture to provide real-time kinematic and 
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muscular information to third-party systems. Fourth, the sensor system should endow a 

prompt calibration routine with a minimum-to-null effort. LastlǇ, the sǇsteŵ͛s autoŶoŵǇ 

should last for at least eight hours for accommodating prolonged recording sessions. 

4.2.InertialLAB 

4.2.1.Critical Analysis of Related Work 

Research contributions related to the ambulatory human gait analysis may involve inertial 

sensor-based systems with IMUs [158]. The IMU-based systems proposed in the research 

community have to deal with three main challenges as follows: (i) automatic, user-independ-

ent calibration to avoid the use of time-consuming calibration methods [164], [165]; (ii) relia-

ble computational tools, eventually combined with biomechanical models, for the real-time 

angle estimation [166]; and ;iiiͿ teĐhŶiĐal ŵatteƌs to deal ǁith seŶsoƌ͛s ŵisaligŶŵeŶts [167], 

[168]. Moreover, there is an emergent need to make the IMU-based systems easily calibrated 

solutions [25], [26], [144]. 

On the other hand, commercial IMU-based solutions such as MVN BIOMECH (Xsens, Neth-

erlands), RIABLO (CoReHab, Italy), G-walk (BTS Bioengineering Corp., Italy) (i) are high-cost sys-

tems, (ii) usually require non-wearable processing units to run the joint angle estimation, (iii) 

do not directly and easily provide the real-time biomechanical data to third-party devices or 

algorithms (for instance, human motion intention recognition tools), and (iv) do not offer a fully 

wearable integration into further sensor and actuation systems.  

4.2.2.Methods 

A cost-effective wearable inertial sensor system, the InertialLAB, was developed for real-

time tracking of three-dimensional (3D) angular velocity and 3D-acceleration up to 6 lower 

limbs and trunk segment, and joint angles in the sagittal plane up to 6 lower limb joints.  

As a gait analysis tool, InertialLAB includes a low computational joint angle estimation 

method to enable its execution in a wearable board for a more practical ambulatory analysis. 

The joint angle estimation was implemented at a ƌelatiǀelǇ high saŵpliŶg fƌeƋueŶĐǇ ;ч ϮϬϬ 

Hz) to meet the computational requirements of high-performance tools, such as the motion 

intention recognition and control architectures [9].  
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Hardware-in-the-loop  

Figure 4.1.A illustrates the hardware architecture of InertialLAB. It is scalable as desired up 

to seven IMUs, placed on the back, thigh, shank, and foot segments, as suggested by [169], 

[170]. The MPU-6050 (InvenSense, USA), that combines a 3-axis MEMS accelerometer (± 8 g) 

and a 3-axis MEMS gyroscope (± 2000 º/s), was selected given its small size (15x20x2 mm) and 

mass (0.009 kg), and low admissible current consumption (3.8 mA). A magnetometer was not 

included to avoid the complications related to the magnetic field in rehabilitation scenarios as 

treadmill [165].  

A multi-channel board (80x80x25 mm) to enable multi-channel recording (TCA9548A I2C 

multiplexer) was developed. Each IMU communicates with development board 

(STM32F407VGT) through I2C protocol (up to 400 kHz) using USB cables in the spiral form to 

meet the anthropometry requirements and to enable an easy plug and unplug solution.  

The STM32F407VGT development board (80x100x25 mm) has the resources required for 

a time-effective (up to 200Hz) acquisition and processing. Additionally, it communicates with 

an attached USB flash drive (4GB of storage capacity, write speed of 8MB/s) to store the col-

lected data. A standard 2000 mAh power-bank powers InertialLAB. It ensures the autonomy 

of at least eight hours, considering that the InertialLAB consumption reaches up to 25 mAh.  

 

Figure 4.1- A: Hardware architecture of InertialLAB. B: Orientation of the segment (red arrow and the associated 

numbers) and joint angles (green circles and the associated numbers) in the stand-up steady-state and direction 

of the joint rotation. 
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Each IMU, the development board and multi-channel boards were fixed in 3D printed boxes 

and attached to the human using adjustable straps (Figure 4.1.A) aiming for easy usability and 

poƌtaďilitǇ. This appƌoaĐh also ŵiŶiŵizes the seŶsoƌ͛s ƌelatiǀe ŵotioŶ to the huŵaŶ͛s seg-

ments to avoid fluctuations in the IMU measures.  

Software-in-the-loop  

The software routines may run up to 200 Hz in the STM32F407VGT for real-time monitoring 

and calibration of kinematic data, and gait analysis tool for segment orientation estimation 

and joint angle estimation in the sagittal plane (more details in Appendix E.1).  

An automatic, user-independent, on-body calibration routine was proposed. This calibra-

tion takes place on the first 10 s of each trial, simultaneously for all IMUs, while the user is 

wearing the IMUs in the stand-up steady-state. Equation (4.1)  was used to calculate the gy-

ƌosĐope͛s Đaliďƌated ǀalue ;𝐶௩௔௟௨௘) for each new sample ( ௩ܰ௔௟௨௘Ϳ, ĐoŶsideƌiŶg the gǇƌosĐope͛s 

scale factor ( ௙ܵ௔௖௧௢௥), and the gyroscope offset per axis ( ௚ܱ௬௥௢) as the mean of gyroscope͛s 

raw values for 10 s [171]. 

𝐶௩௔௟௨௘ = ( ௩ܰ௔௟௨௘ ∗ ௙ܵ௔௖௧௢௥) − ௚ܱ௬௥௢ (4.1) 

The calibration of accelerometer consists of its normalization using the positive and nega-

tive component of the acceleration vector (‖𝐴‖), as the maximum and minimum values for 

the normalization, respectively [171]. Equation (4.2) presents the determination of the norm 

of the acceleration vector (‖𝐴‖), considering the acceleration measures of each axis (𝐴௫, 𝐴௬, 

and 𝐴௭).  

‖𝐴‖ = √(𝐴௫ଶ + 𝐴௬ଶ + 𝐴௭ଶ) 
(4.2) 

The segment orientation was estimated by inertial data fusion-based methods, namely the 

complementary and Kalman filters [172]. The complementary filter was implemented using 

0.98 and 0.02 as the gains of the gyroscope and accelerometer contribution, respectively. The 

gains were found by an empiric trial-error procedure considering a tradeoff of the short-term 

reliability of gyroscope-based estimation and long-term reliability of accelerometer to mini-

mize the drift that would arise from an entire contribution to the gyroscope. The Kalman filter 

is more complex, more computationally expensive than the complementary filter, but it was 



Chapter 4 –Wearable Motion Lab 

 

66 

 

explored given its effective response [172]. After a parameter tuning, the Kalman filter was 

implemented using the noise covariance matrix ܳ௞ and the measurement covariance matrix ܴ, as described in Equation (4.3). 

ܳ௞ = [Ͳ.ͲͲͷ ͲͲ Ͳ.ͲͲͲ͵] 
 

(4.3a) 

ܴ =  [Ͳ.Ͳ͸͸ͻ ͲͲ Ͳ.Ͳ͵ͻ] (4.4b) 

The gait analysis tool for joint angle estimation followed a trigonometry-based method 

depeŶdeŶt oŶ the segŵeŶts͛ oƌieŶtatioŶ ǀalues ;𝜃்௥௨௡௞, 𝜃்ℎ𝑖௚ℎ, 𝜃ௌℎ௔௡௞  , 𝜃ி௢௢௧) and the as-

sumption that, in the stand-up steady-state, the segment and joint orientations are as de-

scribed in Figure 4.1.B. Additionally, it was considered that leg segment angles vary from [-

270; 180]°, the other segments vary from [-180; 180]°, and the joint angles vary from [-180; 

180]°. Taking these aspects into consideration, the hip (𝜃ு𝑖௣), knee (𝜃𝐾௡௘௘) and ankle (𝜃𝐴௡௞௟௘) 

angles were estimated using the formulas described in Equation (4.4).   𝜃𝐴௡௞௟௘ሺ°ሻ =  −ͻͲ − 𝜃ௌℎ௔௡௞ + 𝜃ி௢௢௧   𝜃𝐾௡௘௘ሺ°ሻ =  𝜃்ℎ𝑖௚ℎ − 𝜃ௌℎ௔௡௞   𝜃ு𝑖௣ሺ°ሻ =  −ሺ𝜃்௥௨௡௞ − 𝜃்ℎ𝑖௚ℎ − ͳͺͲሻ  (4.4) 

The use of sensor fusion methods for joint angle estimation may be highly sensitive to in-

ternal and external sensor errors. Consequently, the effectiveness of empiric models for drift 

error compensation was explored to be applied in InertialLAB upon joint angle estimation tool. 

A software tool was implemented to identify a well-fitted, user-independent, joint-dependent 

regression model for improving the joint angle estimations of InertialLAB to minimize the drift 

errors. Different machine learning-based regression models (artificial neural network (ANN), 

decision tree, and support vector machine) were explored considering the IŶeƌtialLAB͛s joiŶt 

angles and joint angular velocities as inputs and the MVN BIOMECH͛s joiŶt aŶgles as the taƌget 

measurements. All variables were normalized using the min-max method within [-1; 1].  

After a comparative analysis using 31500 observations in 5-fold cross-validation, the two-

layer shallow ANN with 5 neurons in the hidden layer was the best-fitted regression model 

to predict the hip, knee and ankle angles (R2 = 0.92, R2 = 0.94, and R2 = 0.87, respectively).  

Lastly, a light-based feedback system was developed using the light-emitting diodes (LEDs) 

aǀailaďle iŶ the deǀelopŵeŶt ďoaƌd to iŶfoƌŵ the useƌ aďout the IŶeƌtialLAB͛s state. The gƌeeŶ 
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LED is on during the calibration routine whereas the blue LED is on during data acquisition and 

storage. The red LED warns the user for the occurrence of some error. 

4.2.3.Experimental Validation   

A benchmarking analysis of InertialLAB against the MVN BIOMECH [173] was performed 

to assess the operability and effectiveness of InertialLAB in free-walking conditions. The MVN 

BIOMECH was included for two-fold reasons. First, it is a well-established wearable inertial 

system able to monitor all kinematic data monitored by the InertialLAB (angular velocity, ac-

celeration, and joint angles). Second, it is a wearable solution able to track the human gait in 

ambulatory scenarios like those explored in this work in opposition to camera-based motion 

sǇsteŵs. AdditioŶallǇ, liteƌatuƌe͛s ƌesults ƌepoƌt that MVN BIOMECH ƋuaŶtifies lower-limb 

joint angles with an excellent validity and fair-to-excellent reliability for overground walking 

[174], [175] and climbing stairs [175] when compared to camera-based motion systems.  

Participants  

The benchmarking analysis included 11 able-bodied subjects (7 males and 4 females) who 

sigŶed a ǁƌitteŶ iŶfoƌŵed ĐoŶseŶt to paƌtiĐipate iŶ this studǇ. The paƌtiĐipaŶts͛ ŵeaŶ age ǁas 

24.53 ± 2.09 years old, with a height of 1.71±0.10 m and body mass of 59.3 ± 17.37 kg.  

Protocol and Data Collection 

The participants wore their sport-shoes and 7 IMUs in the configuration depicted in Figure 

4.2.A. To ensure the repeatability of the sensoƌ͛s alignment in the leg, the assessor identified 

and marked the lateral side at the middle of the thigh and shank segments [176]. For the trunk 

and foot segments, the assessor identified the lower back position (near to the center of mass) 

aligned with the spinal cord and the instep position aligned with the navicular bone, respec-

tively. The sensors of InertialLAB and MVN BIOMECH were placed on these positions by the 

assessor, who used the double holder straps of InertialLAB to ensure that its sensors are 

aligned and fixed over the IMUs of MVN BIOMECH. A hardware-based sync method (TTL sync) 

synchronized both systems.  

Each trial started with the calibration of the MVN BIOMECH in N-pose (stand upright on a 

horizontal surface with back straight). Then, the participant stayed in the stand-up steady-

state for 10 s to calibrate InertialLAB. Subsequently, the participants were asked to randomly 

perform 3 trials per self-selected gait speeds (slow, normal, and fast) on a 10 m-flat surface. 
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Additionally, the subjects randomly conducted 10 gait trials by ascending and descending on 

two terrains (a staircase and a ramp, Figure 4.2.B), at a self-selected gait speed. The staircase 

had 8 steps with 17 cm of height, 31 cm of depth and 110 cm width. The ramp was 10 m with 

10° inclination. Furthermore, the participants conducted 9 trials with 180° turns as illustrated 

in Figure 4.2.C.    

 
Figure 4.2- A: Usability of InertialLAB (black boxes) and MVN BIOMECH (orange boxes). B: Ongoing gait trials in 

flat terrain and staircase. C: Turns set-up.  

Data Collection and Analysis 

The data (3D angular velocity, 3D acceleration, and sagittal joint angles) were collected at 

100 Hz, the maximum rate allowed by MVN BIOMECH. The Matlab® (2017b, The Mathworks, 

USA) was used for the benchmarking analysis of these kinematic measures as follows, without 

considering the acceleration and deacceleration zone. First, the correlation coefficient (𝜌) and 

cross-approximate entropy (XApEn [177]) were computed for assessing the waveform similar-

ity and dissimilarity/asynchrony, respectively, and the normalized root mean square error 

(NRMSE) was computed as a magnitude-based deviation measure. Second, the ratio among 

the IŶeƌtialLAB͛ dƌift eƌƌoƌ aŶd the MVN BIOMECH͛s dƌift eƌƌoƌ (Drift Ratio) was computed to 

investigate the drift error in the joint angle estimations. The drift error was calculated as the 

slope of the linear trend of the joint angle signals [164]. For trials including turns, the percent-

age of the increment of drift with the 180°-turn was computed to compare the drift error 

before and after the turning. Lastly, Bland-Altman plots were used to assess the effect of re-

gression models for drift error reduction. 
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4.2.4.Results  

The following technical remarks were observed during the experiments. MVN BIOMECH͛s 

peƌfoƌŵaŶĐe ǁas highlǇ depeŶdeŶt oŶ the ĐaliďƌatioŶ͛s eŶǀiƌoŶŵeŶt. The poǁeƌ supplǇ sǇs-

tem of MVN BIOMECH was replaced every 60 min in daily recording sessions; whereas, no 

charging periods were needed for the InertialLAB. Moreover, from video modeling and analy-

sis tools of an open-source optic tracker, a comparable performance between the comple-

mentary filter and Kalman filter (differences were lower than 0.2° with RMSE < 6.5°) was ob-

served for the segment orientation. Thus, the ĐoŵpleŵeŶtarǇ filter ǁas used for segŵeŶts’ 

orientation estimation, given its inherent lower computation load when compared with the 

Kalman filter. The InertialLAB software routines were executed with a mean computation time 

of 2.4 ± 0.47 ms, with 95% of the samples computed within 3.1 ms. Furthermore, the IMU 

placed on the foot was the less effective sensor in magnitude (mean NRMSE < 0.115 and <0.10 

of foot IMU and remaining sensors, respectively) and waveform similarity (0.81 < 𝜌 <0.87 for 

foot IMU and 0.89 < 𝜌 <0.95 for remaining sensors) as the speed increases.  

The benchmarking analysis relied on the kinematic data monitored by InertialLAB to evalu-

ate its operability at self-selected gait speeds (slow: 0.83 ± 0.11 m/s, normal: 1.09 ± 0.16 m/s, 

and fast: 1.59 ± 0.17 m/s) throughout three non-structured terrains (flat, staircase and ramp).  

Table 4.1 shows that the error of the gyroscope embedded on the InertialLAB increases 

with the gait speed. On the other hand, the IŶeƌtialLAB͛s aŶgulaƌ ǀeloĐitǇ sigŶals ďeĐoŵe 

more similar (𝜌 increases) and synchronous (XApEn decreases) to those of MVN BIOMECH as 

the speed increases. The acceleration signals of InertialLAB presented a similar performance 

in magnitude (0.114 < NRMSE < 0.117) and waveform correlation (0.721 < 𝜌 < 0.73) when the 

gait speed varies. Comparing with MVN BIOMECH, the gyroscope and accelerometer of the 

InertialLAB performed better in stair ascend and descend. 

Table 4.1- Benchmarking Analysis for 3D Angular Velocity. Mean NRMSE, 𝜌, XApEn. 

Terrain Speed NRMSE 𝝆 XApEn 

Flat 

Low 0.08 ± 0.012 0.859 ± 0.062 0.069 ± 0.017 

Normal 0.103 ± 0.017 0.863 ± 0.082 0.052 ± 0.058 

Fast 0.104 ± 0.018 0.871 ± 0.037 0.043 ± 0.079 

Ramp ascend Normal 0.117 ±0.024 0.857 ± 0.078 0.051 ± 0.029 

Ramp descend Normal 0.103 ± 0.026 0.807 ± 0.139 0.057 ± 0.049 

Stair ascend Normal 0.082 ± 0.047 0.925 ± 0.076 0.051 ± 0.032 

Stair descend Normal 0.083 ± 0.037 0.903 ± 0.057 0.062 ± 0.026 
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The findings stated in Table 4.2 indicate that the waveform similarity between the Inertial-

LAB͛s joiŶt aŶgles aŶd MVN BIOMECH͛s joiŶt aŶgles iŶĐƌeases as the speed iŶĐƌeases ;𝜌 in-

creases from 0.899 to 0.909; XApEn reduces from 0.082 to 0.075). The joint angle signals of 

the InertialLAB tracked in ramp and stairs tend to be more correlated (increment of mean 𝜌 

from 0.898 to 0.944) and less dissimilar (reduction of mean XApEn from 0.082 to 0.051) with 

the paired joint angles of MVN BIOMECH, as illustrated in Figure 4.3.  

   

   

   

   

   

Figure 4.3- Representative time series of hip (1st column), knee (2nd column) and ankle (3rd column) angles in 

sagittal plane from all subjects wearing the InertialLAB (red) and MVN BIOMECH (black) at low (1st row), normal 

(2nd row), and fast (3rd row) speed in flat terrain, and at self-selected speed for ascend ramp (4th row), and de-

scend ramp normal (5th row). 
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However, an offset in the absolute values (drift error) is evident. The IŶertialLAB’s drift 

error was more pronounced in the ankle joint, and it tends to increase with the gait speed 

and when walking in a ramp. Moreover, the findings indicate that turns affect the joint angle 

estimations of both systems, but with double effect in the InertialLAB (drift error increased 

59.72% and 27.46% for InertialLAB and MVN BIOMECH, respectively, after turns). 

Table 4.2- Benchmarking analysis for the sagittal joint angle. Mean and standard deviation values of NRMSE, 𝜌, 

XApEn, Drift Ratio per speed and terrain (RA- ramp ascend, RD-ramp descend, SA-stair ascend, SD-stair descend).  

Terrain Speed NRMSE 𝝆 XApEn 
Drift Ratio 

Hip Knee Ankle 

Flat 

Low 0.066 ± 0.01 0.898 ± 0.042 0.082 ± 0.021 2.7 2.8 3.9 

Normal 0.067 ± 0.008 0.905 ± 0.049 0.080 ± 0.014 3.2 2.5 4.1 

Fast 0.070 ± 0.009 0.909 ± 0.063 0.075 ± 0.012 3.5 3.2 4.9 

RA Normal 0.086 ± 0.012 0.936 ± 0.08 0.051 ±0.020 5.4 4.6 5.5 

RD Normal 0.084 ± 0.011 0.931 ± 0.035 0.053 ± 0.025 6.5 5.6 6.9 

SA Normal 0.098 ± 0.007 0.930 ± 0.013 0.057 ± 0.013 4.7 4.0 4.2 

SD Normal 0.088 ± 0.004 0.944 ± 0.014 0.061 ± 0.027 2.6 2.3 3.7 

NRMSE values do not reflect the drift errors of both sensor systems  

Furthermore, the Bland-Altman plots illustrated in the top view of Figure 4.4 indicate the 

presence of a bias in the joint angles estimated from fusion-based methods given the non-

zero mean difference values (-4.54, 2.67, and -3.98 for the hip, knee, and ankle, respectively).  

 
Figure 4.4- Bland-AltŵaŶ plots of IŶeƌtialLAB͛ aŶgle estiŵatioŶs ;top ǀieǁͿ aŶd the joiŶt aŶgle pƌediĐtioŶs ďǇ the 

ANN (bottom view) against the angles of MVN BIOMECH. The red horizontal lines represent the mean difference 

and the 95% limits of agreement (i.e., mean difference ± 1.96 SD of the difference). 
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In opposition, the mean difference is closer to 0° after ANN regression model application 

(bottom view of Figure 4.4), suggesting that the bias, such as the drift error, is approximately 

Ŷull foƌ the ANN͛s joiŶt aŶgle pƌediĐtioŶs. 

4.2.5.Discussion  

InertialLAB Design Analysis 

Concerning the design, the InertialLAB presents the following contributions. First, the use 

of an automatic, user-independent, on-body calibration in the first 10 s of the data monitor-

ing avoids higher time-consuming calibration methods [164], [178] and demands less effort 

for the user and assessor. Second, InertialLAB advances similar commercial systems by pre-

senting a modular and open-architecture with the possibility of full customization to operate 

as a stand-alone solution for general human motion analysis or gait phase detection as in [52] 

and to be directly integrated into third-party systems, particularly in AOs [179]. Such modu-

larity will enable a prompt integration of the software routines into other processing units, 

liŵitiŶg the ĐhaŶges to the peƌipheƌal deǀiĐes͛ configuration routine. 

Third, the power supply unit of InertialLAB is more advantageous than the one of MVN 

BIOMECH regarding the durability and usability (power unit of 20x20x100 mm vs. two power 

units of 60x50x150 mm), which favors its daily application.  

Furthermore, the gait analysis tools were executed by a wearable board (80x100x25 mm) 

when compared to MVN BIOMECH (higher-dimensionality board such as a personal computer) 

and the one (200x137x55 mm) used in [178]. This allows a more practical application of Iner-

tialLAB for ambulatory gait analysis.  

Kinematic Gait Analysis  

The carried out validation extends the one presented in previous studies [164], [167], 

[178] by analyzing the joint angles and also the 3D-angular velocity and 3D-acceleration with 

gait patterns from non-structured real-world scenarios to better assess the reliability and re-

peatability of InertialLAB.  

The increased magnitude-based errors in the gyroscope and accelerometer with gait 

speed may be explained by the increment of the IMUs͛ attaĐhŵeŶt iŶstaďilitǇ as speed iŶ-

creases, especially considering the positioning of InertialLAB over MVN BIOMECH. Further-

more, the performance of the IMUs embedded on the InertialLAB was better in climbing stairs 
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than in flat terrain and ramp. Two reasons may explain it. First, it may result from a shorter 

walked distance in the staircase comparing to other terrains. Second, climbing stairs may deal 

with a slight impact interaction with the ground, resulting in lower secondary motions of the 

IMUs than in other terrains.  

The proposed joint angle estimation tool is fairly simple, but it presents a high waveform 

similarity when compared with MVN BIOMECH, while considering different terrains (flat, 

stairs, and ramp). Previous studies [174], [175] reported an excellent waveform similarity (> 

0.9) with MVN BIOMECH for walking [174], [175], jumping activity [174] and climbing stairs 

[175]. Tadano et al.[167] have shown high correlations (𝜌 > 0.78) in a 5m-flat surface. The 

InertialLAB presented a comparable performance in a 10m-flat surface (mean 𝜌 = 0.905 for 

three joints). According to [167] and [174], the high correlation in joint angle time-series (𝜌 > 

0.898 for the three terrains) can be interpreted as a high reliability and excellent validity of 

the InertialLAB, respectively.  

There is evidence of the presence of offset-ďased eƌƌoƌs iŶ the IŶeƌtialLAB͛s joiŶt aŶgle es-

timations. Previous works also reported offset-based errors for the lower limb joint angle es-

timation when using the Kalman filter for short distance trials [164], [167], [178]. Liu et al. 

[164] reported a maximum RMSE of 16.6° for trials with 3 strides; Beravs et al. [178] outlined 

a mean error lower than 5° when one subject walked 30 steps; and Tadano et al. [167] found 

a mean RMSE ranging from 7.88° to 10.14° from a gait analysis along 5 m. On the other hand, 

the eƌƌoƌs ƌepoƌted iŶ the IŶeƌtialLAB͛s ǀalidatioŶ ƌefleĐt a larger number of heterogenous gait 

patterns from non-structured and longer trials to investigate the repeatability over time.  

The drift error was more pronounced in the ankle joint, as reported in [167], [174], [178]. 

Often the most distal segments are the ones that move the most during gait; therefore, they 

are more susceptible to fluctuations and signal distortions at heel-strike and toe-off timings 

[167]. With this study, it was verified that the ANN regression models may successfully be 

applied to minimize the bias in joint angle signals and to yield signals with excellent validity 

[174]. It is worth to note that these regression models were tuned to be user-independent 

and to generalize to speed variations aiming a versatile application of InertialLAB in biome-

chanical analysis.   

The proposed calibration procedure may be affected as follows. The differences in the real 

joint kinematics and the assumptions considered in the calibration may introduce a fixed bias. 
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Moreover, the effectiveness of the proposed calibration is affected by incorrect postures dur-

ing the stand-up steady-state.  

4.3.GaitShoe 

4.3.1.Critical Analysis of Related Work  

Research contributions related to shoe- or insole-based force sensor systems usually inte-

grate FSRs to measure the foot contacts on the ground and enable gait event detection given 

their low cost, low-power consumption, high flexibility and thinness to fit over an insole.  

Previous studies [25], [180] proposed a flexible insole-based system with thirty-two FSRs 

[180] and sixty-four pressure-sensitive sensors [25], respectively, to analyze the ground reac-

tion forces. Other researches [26], [181] developed a wireless shoe-based system including 

four FSRs (placed on the heel, first and fifth metatarsals, and toe) to detect gait events. They 

also incorporated an IMU to determine foot orientation. In Pappas et al. [182], three FSRs 

(placed on the heel, the first and fourth metatarsus of insole) and a gyroscope (placed on the 

heel of the shoeͿ ǁeƌe used to ŵeasuƌe foƌĐes eǆeƌted ďǇ the foot aŶd the foot͛s orientation 

relative to the ground, respectively. However, more research should be developed to (i) aug-

ment the linearity and durability of the force-based systems, (ii) avoid time-consuming cali-

bration procedures, (iii) to extend the validation to several daily walking conditions, and (iv) 

to provide real-time spatiotemporal parameters, such as step length and gait speed [25].  

Moreover, a number of commercial wearable force-based systems have been proposed, 

such as F-Scan system (Tekscan, Boston, USA), In-Shoe (Tekscan, Boston, USA), DynaFoot (Tech-

noConcept, France), Footswitch insole line (NoraxonTM, USA), Footwork insole (amcube, 

France) using FSRs and pedar® insole (novel.de) using capacitive sensors. These systems record 

dynamic pressure mapping and spatiotemporal gait parameters. Despite the well-established 

robustness and usability, these commercial solutions are quite expensive when considering 

their limited durability and the need for a user-specific insole. Furthermore, they do not pro-

vide an open-architecture for easy and direct integration into third-party systems, such as fur-

ther sensors and robotic assistive devices.  
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4.3.2.Methods 

GaitShoe consists of a wireless, stand-alone, cost-effective, low-power consumption, in-

strumented shoe. This wearable sensor system includes gait analysis tools designed for real-

time estimation of gait speed and gait event detection in walking scenarios, including variable 

gait speed and terrains at a relatively high sampling frequency (100 Hz). 

This sensor system advances the similar commercial systems with modular hardware and 

software architecture as follows. Except for the instrumented insole, the electronic interfaces 

of GaitShoe can be migrated to other shoes eǆteŶdiŶg the GaitShoe͛s appliĐatioŶ to diǀeƌgeŶt 

feet anatomy and without demanding a user-specific system for the gait event analysis.  

Hardware-in-the-loop 

Figure 4.5 represents a general system architecture of GaitShoe, which extends the instru-

mented shoes proposed in [50], and it is based on [144], [181]. GaitShoe includes a flexible 

insole-based system with four FSRs (FlexiForce A201 Sensor, TekscanTM), strategically placed 

on the heel, the first and fifth metatarsals, and toe/hallux, and one IMU (MPU-6050, Inven-

Sense, USA) in the instep of the foot. The number and location of force sensors fulfill a tradeoff 

between a holistic gait event detection [50], [181] and the minimal computational load of gait 

analysis. 

The selected FSRs are small (9.53 mm of diameter), thin (0.203 mm), flexible, with a suita-

ble force sensitivity (from 100 g to 10 kg), low-power consumption (1 mA/cm2 of applied 

force), and low-cost sensors. A voltage divider was implemented for FSR data acquisition (Fig-

ure 4.5), providing a linear output for the operating conditions.  

GaitShoe is formed by tǁo slaǀe iŶteƌfaĐes, oŶe peƌ foot, foƌ seŶsoƌs͛ data aĐƋuisition, user-

independent, on-body calibration, data processing, and transmission to a master interface. 

The master iŶteƌfaĐe is ƌespoŶsiďle foƌ slaǀe iŶteƌfaĐes͛ sǇŶĐhƌoŶizatioŶ, oǀeƌall data stoƌage 

in a micro SD card (8 GB of storage capacity) and data transmission to third-party systems via 

Bluetooth protocol (HC06 Serial Module). The time-effective data transmission between each 

slave and the master interface occurs through a bidirectional radio frequency communication 

protocol (NRF24L01+, Nordic Semiconductor ASA) to augŵeŶt the sǇsteŵ͛s eƌgoŶoŵy. The 

NRF24L01+ was selected given its low dimensionality (29x15x1.2 mm), low-power consump-

tion (<14 mA), transmission-effectiveness (2 Mbps with communication range < 70m) [183].  
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The Arduino Nano Atmega328P (running at 16 MHz) was the development board used for 

slave and master interfaces. It is a small (18x45 mm), mass (7 g), low-power consumption (19 

mA) development board, and has the resources required for (i) data acquisition from four FSRs 

(ADCs interface) and one IMU (I2C interface), (iii) data transmission (SPI interface for radio 

frequency modules and micro SD card, and RX/TX interface to connect to the Bluetooth mod-

ule).  

GaitShoe is powered by a standard 2000 mAh power-bank that ensures the autonomy of 

at least eight hours and presents a suitable capacity-size relation, easily plug and unplug for 

charging, and intuitive use for the user. 

For portability and easy donning and doffing, the hardware systems were fixed into 3D 

printed boxes. Further, adjustable straps attach the slave interfaces to diffeƌeŶt shoes͛ ŵod-

els, and the master interface is used as a watchband.  

 

Figure 4.5- GaitShoe: Hardware interfaces and human body positioning. 

Software-in-the-loop 

This subchapter presents the main software routines of GaitShoe, namely radio frequency 

communication, automatic calibration, and the gait analysis tools for gait speed estimation 

and gait event detection. Appendix E.2 describes more details regarding the programs imple-

mented in the master and slave interfaces.  

For wireless radio frequency communication, a double-channel communication protocol 

(losses rate < 0.5%, empirically verified as more robust than single-channel) was implemented 
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by including two RF modules in the master interface to communicate independently with each 

slave (each slave has one RF module). The frequency channel (default, 2462 MHz and 2484 

MHz) can be changed as needed to ensure the integrity of communication. The maximum 

packet structure was set to 32 bytes.  

GaitShoe endows two automatic, on-body calibration approaches for each sensor system 

that are carried out in the first 10 s of each trial. The IMU was calibrated as described for 

InertialLAB. The FSRs͛ ĐaliďƌatioŶ aiŵs to deal ǁith FSR ŵeasuƌe-dependency on the suďjeĐt͛s 

body mass and the variable sensibility of FSRs over time. Equation (4.5) describes the calibra-

tion of a new FSR value ( ிܰௌோ) considering a ratio between the maximum binary measure of 

FSR (255) and the maximum force (ܯ_ܴܵܨ𝐴𝑋) applied by the user on each FSR when he/she 

is standing-up for 10 s.  

𝐶ிௌோ = ிܰௌோ ∗ ʹͷͷܴܵܨ𝑀𝐴𝑋|ଶ55 (4.5) 

The gait event detection tool can segment in real-time up to six gait events: Heel Strike 

(HS), Foot Flat (FF), Middle Mid-Stance (MMST), Heel-Off (HO), Toe-Off (TO), and Middle Mid-

Swing (MMSW). For this purpose, three approaches were implemented in the slave interfaces 

using (i) the measures of four FSRs, (ii) the sagittal axis of the foot-mounted gyroscope, and 

(iii) the sensor fusion of FSRs’ ŵeasures and the foot angular velocity.  

First, the gait event detection-based FSR endows an adaptive tool that self-tuned the FSR-

ďased thƌesholds, ǁhiĐh aƌe Đoŵpaƌed to the ĐuƌƌeŶt FSR͛s ŵeasuƌes thƌough adaptiǀe deĐi-

sion rules implemented by a finite state machine (FSM). The tool was proposed in [39] to 

detect HS, FF, HO, and TO gait events, as illustrated in Figure 4.6.A. Three levels of thresholds 

(HIGH, MEDIUM, and LOW) were set, tailored in real-time every three consecutive gait cycles, 

that ĐoƌƌespoŶd to ϴϬ%, ϲϬ%, aŶd ϰϬ%, ƌespeĐtiǀelǇ, of the ŵiŶiŵuŵ ǀalue of the FSRs͛ ŵaǆ-

imum values (in the initial conditions those values were found in the calibration routine). 

Second, it was implemented an inertial sensor-based detection to overcome some of the 

inherent limitations of force-based sensors [53] and to extend the gait segmentation to the 

swing phase. This gait event detection tool consists of an FSM based on heuristic decision rules 

dependent on adaptive thresholds applied to the foot angular velocity in the sagittal plane 

(measured by IMU of GaitShoe). A detailed description of this tool is presented in Chapter 5 

and in [52].  
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Figure 4.6- Gait event detection-based FSR. A: FSM. B: Decision, where DEF-default state, FSR1- heel, FSR2- 1st 

metatarsal, FSR3- 5th metatarsal, FSR4- toe.  

Third, the sensor fusion of force-ground contact measures [50] with foot angular velocity 

measures [52] was implemented. The decision rules of both force-based and gyroscope-based 

detection were combined with OR condition to detect the HS, FF, MMST, HO, TO events by 

the first sensor whose algorithm conditions are satisfied. The MMSW event can only be iden-

tified by the gyroscope-based tool. 

The adaptability conferred to these three computational tools aims to handle the intra- and 

inter-subjective gait variability and to foster a reliable gait event detection in non-structured 

environments with variations of gait speeds and ground surfaces.  

The gait analysis tool for real-time gait speed estimation used the foot acceleration and 

angular velocity (measured by the IMU) and the timing information of the FF event. This event 

was used as the reset integration moment at each gait cycle by considering the zero-velocity 

update strategy [170]. This approach (i) takes advantage of the gait cyclical properties to mit-

igate the bias introduced by the integration, and (ii) avoids the subject-specific anthropomet-

ric calibration required in the human gait model-based methods, such as the pendulum model 

[184].  

The gait speed tool was organized as follows, as represented in Figure 4.7.A. First, the foot 

angle in the sagittal plane was estimated by applying the FF reset-based integration of the 

foot aŶgulaƌ ǀeloĐitǇ iŶ the sagittal plaŶe. SeĐoŶd, the useƌ͛s foot aĐĐeleƌatioŶ components 

(horizontal (𝐴௫) and vertical (𝐴௭) components) were computed as outlined in Equation (4.6), 

using the acceleration measures (X-axis (ܽ௫) and Z-axis (ܽ௭)), compensated by the gravity ac-

celeration (݃), and the estimated foot angle (𝜃).  
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𝐴௫ = ܽ௫ cos 𝜃 − ܽ௭ sin 𝜃 (4.6a) 𝐴௭ = ܽ௫ sin 𝜃 + ܽ௭ cos 𝜃 − ݃ (4.6b) 

Subsequently, the gait speed was estimated by applying the norm technique to the instan-

taneous velocity (ݒ௫ and ݒ௭ components), which were computed by integrating the useƌ͛s foot 

acceleration (𝐴௫ and 𝐴௭ components) in the time interval between every FF event, where the 

initial velocities were set to 0 m/s [185].  

 

Figure 4.7- A: Representation of IMU placement in shoe. Measured horizontal and vertical accelerations (ܽ௫ , ܽ௭) 

have to be corrected to the floor fixed frame (𝐴௫ and 𝐴௭) and the effect of gravity eliminated. B: User wearing 

GaitShoe and MVN BIOMECH. C: Ongoing tests. 

4.3.3.Experimental Validation  

An experimental validation was performed to investigate the operability of GaitShoe. A 

benchmarking analysis against MVN BIOMECH for gait speed was performed considering the 

reasons stated in Chapter 4.2.3 and the affordability of MVN to measure the gait speed. The 

validation of the gait event detection tool is presented in Chapter 5.  

Participants 

This validation involved the same healthy participants described in Chapter 4.2.3. The in-

clusion criteria were: body mass ranging from 45 to 100 kg; female participant wear 38-39 size 

sports shoes; and male subject wear 41-43 size sports shoes.  
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Protocol  

The participants wore GaitShoe considering the most appropriate size and the full lower-

limb configuration of MVN BIOMECH since this system does not allow a less instrumented 

configuration for the gait monitoring. The MVN BIOMECH sensors located on the feet were 

always positioned by the same person, who carefully positioned a visible mark on the 

GaitShoe cases to eŶsuƌe the ƌepeataďilitǇ of the seŶsoƌ͛s positioning, as depicted in Figure 

4.7.B. A hardware-based sync method (TTL sync) synchronized both systems.  

Each trial started with the calibration of the MVN BIOMECH in N-pose. Then, the participant 

stayed in the stand-up steady-state for 10 s to calibrate GaitShoe. For gait trials, the partici-

pants were asked to randomly perform 3 trials per self-selected gait speed (slow, normal, and 

fast) in level-ground as follows: forward walking on a 10 m flat surface; change the walking 

direction with a turning motion; and, forward walking to back to the initial position. 

Data Collection and Analysis  

The estimated gait speed of GaitShoe and MVN BIOMECH was collected at 100 Hz. The data 

analysis used the Matlab® for computing the RMSE in the averaged gait speed for both sys-

tems. Furthermore, statistical analysis with a significance level of 5% was conducted investi-

gating the hypothesis that the average gait speed monitored by both systems was equal. The 

data analysis did not cover the two first and last gait cycles to eliminate the acceleration and 

deacceleration periods, respectively.  

4.3.4.Results and Discussion  

During the experimental validation, the GaitShoe presented some design contributions re-

garding the MVN BIOMECH. First, the use of a fully automatic ;ǁithout ƌeƋuiƌiŶg useƌ͛s deŵo-

graphic data), shorter calibration. Second, when comparing to commercial systems, GaitShoe 

has advantageous relative to the modular and open-architecture able to operate as a stand-

alone solution and to be directly integrated into third-party systems. Moreover, it enables the 

use of a single IMU sensor for gait speed analysis; whereas, MVN BIOMECH always requires 

the usability of the full lower-limb configuration independently of the purpose of the gait anal-

ysis. This aspect makes the GaitShoe a more ergonomic system for the ambulatory gait speed 

analysis.  
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Table 4.3 presents the averaged results of 1340 gait cycles at a varying self-selected gait 

speed in ambulatory walking conditions, including turns. The gait speed estimation tool im-

plemented in GaitShoe overestimate the gait speed when compared to MVN BIOMECH͛s tool 

for the three self-selected speeds (for instance, for slow self-selected conditions, the MVN 

BIOMECH and GaitShoe monitored an averaged gait speed of  0.84 and 0.88 m/s, respectively). 

The RMSE increases, ǀaƌǇiŶg fƌoŵ Ϭ.Ϭϲϱ to Ϭ.ϭϵ ŵ/s, as the useƌ͛s self-selected gait speed 

augments.  

Nonetheless, the differences in the gait speed estimation of GaitShoe and MVN BIOMECH 

were not significant (p-value > 0.264, from the tested hypothesis that the average gait speed 

monitored by both systems was equal). This finding indicates that it is feasible to develop an 

accurate, self-contained gait analysis tool into a wearable development board using minimal 

inertial sensors, eliminating the need for complicated and usually expensive capture systems. 

Furthermore, the cyclic-based reset method showed to be useful to attenuate the unbounded 

growth of integral drift errors, as reported in [186].  

Table 4.3- Benchmarking analysis of gait speed estimation. Mean and standard deviation (std) of gait speed val-

ues monitored by Xsens and GaitShoe, and RMSE. 

Self-selected 
Speed 

Speed of  
MVN BIOMECH  

(m/s) 

Speed GaitShoe 
(m/s) 

p-value  

of equal 
means 

RMSE (m/s) 

Mean Std Mean Std  Mean Std 

Slow 0.84 0.085 0.88 0.04 0.264 0.065 0.06 

Normal 1.19 0.147 1.23 0.242 0.69 0.16 0.13 

Fast 1.82 0.089 1.91 0.26 0.304 0.19 0.16 

The outcomes of Table 4.3 indicate that the differences found in the averaged values across 

the slow (> 0.84 m/s), normal (> 0.19 m/s), and fast (> 1.82 m/s) self-selected speed are as 

expected. Moreover, the gait speed measures provided by both systems are according to the 

well-established findings reported by Winter [187] for slow, natural, and fast cadence in 

healthy conditions.  

The accuracy of the proposed gait speed estimation method is critically dependent on (i) 

the IMU͛s peƌfoƌŵance (e.g., offset, sensitivity drift), (ii) time-effective FF gait event detection, 

(iii) correct foot angle estimation, and (iv) the effects of relative movements between the 

shoe-mounted IMU case and the human foot. More representative gait patterns collected in 

inclined surfaces and stairs are needed.  
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4.4.MuscLAB and EMG System  

4.4.1.Introduction  

Considering the increased number of people with muscle weakness, the monitoring of mus-

cular activity becomes a necessity [158]. The surface EMG is the standard technique for mus-

cular activity monitoring by detecting the bioelectrical signal produced during muscle con-

traction through electrodes placed at specific locations on the surface of the muscle belly. 

Furthermore, the EMG system may contribute to the development of EMG-based assistive 

control strategy to explore the anticipative nature of EMG measures under gait training. 

Different commercial wearable EMG systems have been proposed such as FREEEMG (Bio-

engineering Corp., Italy), Myopac EMG unit (Myopac), MyoWare (Sparkfun, EUA), TrignoTM 

wireless EMG (Delsys Inc., USA), and myoMUSCLE (NoraxonTM, USA). However, surface EMG-

based system requires (i) careful electrode placement and excellent contact with a clean and 

hairless skin; (ii) electrodes with a conductive gel, enhances the detection of the electrical 

activity under the skin, that may cause skin irritation and discomfort for daily use; and, (iii) 

complex signal acquisition and processing. Furthermore, this sensor system is affected by the 

user’s sǁeatiŶg that can damage EMG-based muscular measures over time [188]. 

Although the EMG system usually presents high robustness and reliability, there is a current 

need for using easily applicable methodologies with a shortened installation and low-effort 

for the user and therapist [189], [190].  

4.4.2.Methods  

SmartOs integrates two customized systems, namely wired EMG system and MuscLAB, for 

monitoring the muscle activity up to 7 muscles aŶd thus eŶaďle aŶ oďjeĐtiǀe useƌ͛s ŵotoƌ 

condition analysis.  

To achieve a more ergonomic, cost-effective system for monitoring the muscular activity, 

SmartOs proposed a force-based wearable sensor system, the MuscLAB. It relies on mechano-

myography principle by measuring the muscle activity through variation of the mechanical 

pressure that the muscle contraction exerts on the force sensor. For this purpose, the force 

sensors were fixed to a compressible textile band robustly, which in turn, was attached to the 

surface of the target muscle. The design of MuscLAB is similar to the wearable sensor systems 

proposed in [191], [192]. 
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EMG system: Hardware and Software-in-the-loop 

The raw EMG signal measured from surface electrodes has a peak-to-peak magnitude 

range from 0 to 10 mV and response frequency limited from 0 to 500 Hz, with dominant fre-

quency from 50 to 150 Hz [157].  

Figure 4.8.A shows the wired surface EMG system, highlighting the developed hardware 

for EMG signal acquisition and processing. Each interface (55 x 53 mm) present the following 

electronic blocks. The first block includes an instrumentation amplifier (INA128p with offset 

= 50 uV, CMRR =120 dB) to oďtaiŶ the eleĐtƌiĐ poteŶtial of the ŵusĐle͛s aĐtiǀitǇ, ǁith aŶ aŵ-

plification gain factor of 50 to allow the first stage of signal amplification. The second block 

includes an active 2nd order bandpass filter (cut-off frequency from 20 to 500 Hz) and a notch 

filter (cut-off frequency of 50 Hz) to remove the baseline muscular bioelectrical activity and to 

attenuate the effect of motion artifacts and ambient noise, respectively. An offset voltage 

adjustment circuit was introduced to adjust the EMG signal for the operating range of the 

selected ADC interface. Next, an amplifier with a variable gain (through high-precision poten-

tiometer of ϭMΩ) was introduced to increase the signal resolution, allowing sigŶal͛s readabil-

ity for both healthy and subjects with muscular weakness. The last block introduces gain and 

limits the output signal from zero to the maximum voltage, using the ADC reference voltage. 

EMG system is powered by a standard 2000 mAh power-bank that enables autonomy of at 

least eight hours.  

 

Figure 4.8- A: Wired EMG system: Hardware interfaces and human body positioning. B: MuscLAB: Hardware 

interfaces and human body positioning.  

The EMG system was customized to include up to 7 hardware interfaces, which are man-

aged by the STM32F4-Discovery development board able to: (i) conduct digital acquisition of 
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the EMG signals at 1 kHz using ADC interfaces; (ii) perform an user-oriented EMG calibration, 

when needed; and, (iii) execute gait analysis tool to compute the EMG envelope. This tool 

consists of a digital 2nd order low-pass Butterworth filter with 1.6 Hz of cut-off frequency to 

compute the EMG envelope. It gives a measure of the power of the signal, namely the most 

significant amplitude of the EMG signal while producing a waveform that is easily analyzable 

and useful for real-time control and feedback. 

MuscLAB: Hardware and Software-in-the-loop 

MuscLAB (Figure 4.8.B) is a wearable muscular contraction-based force sensor system de-

signed to include up to 7 FSRs (406 Square FSR, Interlink Electronics®). These sensors can be 

integrated easily into user-adjustable and compressible textiles due to their flexibility and re-

duced thickness (0.42 mm). Additionally, the selected FSRs present a relative high dimension 

(38 x 38 mm) to make misplacement and shifting less critical. The hardware interface (53.5 x 

58.42 mm), incorporated into wearable 3D printed boxes, includes custom-made boards for 

force signal acquisition using a voltage divider and processing (1st order low-pass filter, cut-off 

frequency of 10 Hz).  

Additionally, MuscLAB has an STM32 Nucleo-32 development board (STMicroelectronics, 

running at 72 MHz) that runs up to 100 Hz routines for (i) digital data acquisition using ADC 

interfaces; (ii) on-body, automatic calibration; (iii) data storage in a memory SD card (using 

SPI interface of STM32); (iv) computing muscular voluntary contraction; and, (v) data trans-

mission to third-party systems via Bluetooth (using HC06 Serial Module). A 7.4V/900 mAh LiPo 

Battery powers the system.  

MuscLAB endows an automatic, on-body calibration tool, organized into two phases, to 

remove the possible offset in the FSRs͛ measures and to deal with useƌ͛s muscular contraction 

variability. In the first phase, the tool computes the offset (baseline pressure between the 

sensor and the muscle) as the mean value of FSR measures during the first 5 s of gait trial 

when the muscle is relaxed and subtracts it to the subsequent FSR outputs. In the next 10 s, 

while the subject is moving and contracting his/her muscle, the user-oriented muscle gain is 

determined as the maximum value of FSR measures during the 10 s. The gain is updated every 

10 s. The user-oriented muscle gains are computed to enable a posterior objective evaluation 

of the muscular strength across gait training sessions.  
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The FSR signal calibration enables to estimate the muscular voluntary contraction, i.e., the 

most significant component of mechanical muscle contraction, by considering a digital 2nd or-

der low-pass Butterworth filter with 1.6 Hz of cut-off frequency, as applied for EMG system. 

Lastly, MuscLAB endows a light-based feedback system to inform the user about the sys-

teŵ͛s operating state. The green and yellow LEDs are turned on together during the calibra-

tion. The green LED alone indicates the real-time monitoring and storage. If the green led 

turns off, it means an error occurred. The yellow LED alone warns the user for low battery.  

4.4.3.Experimental Validation  

The experimental validation of both systems involved 8 healthy subjects (3 females and 5 

ŵalesͿ ǁho sigŶed a ǁƌitteŶ iŶfoƌŵed ĐoŶseŶt to paƌtiĐipate iŶ this studǇ. The paƌtiĐipaŶts͛ 

mean age was 24.32 ± 1.09 years old, with a height of 1.72±0.12 m and body mass of 60.4 ± 

19.79 kg. Gastrocnemius medialis and tibialis anterior were the muscles chosen, given its rel-

evance in post-stroke gait analysis since stroke survivors commonly present weakness at tibi-

alis anterior and spasticity at gastrocnemius.  

EMG System: Protocol, Data Collection and Analysis 

An assessor carefully followed standard recommendations for surface electrodes assess-

ment [193]. This pƌoĐeduƌe assuƌes the ƌepeataďilitǇ of the seŶsoƌ͛s plaĐeŵeŶt aŶd ŵiŶiŵizes 

intra-subjects and intra-trials variability. Three surface electrodes were considered. One is a 

reference electrode that was placed on the center of the knee joint, which is an electrically 

neutral tissue [194]. The other two electrodes are used to measure the muscle electrical signal 

and were placed on top of it, separated by about 2 cm from each other [194]. The muscle sites 

were prepared by removing excess hair, and the skin was cleaned by mildly scrubbing with an 

alcohol wipe.  

The gain of the EMG channels was tuned regarding the level of muscular activity presented 

iŶ the useƌ͛s ŵusĐles. The participants were asked to perform motions under a treadmill as 

follows: keep 10 s in the stand-up steady-state pose; walking for around 40 s at a specified 

speed (1, 2 and 3 km/h); back to stand-up steady-state posture until reach 60 s. Each subject 

conducted 3 trials per speed. This experimental setup enables both static and dynamic mo-

tion assessments.  
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The EMG signal and EMG envelope were collected at 1 kHz. Signal-noise ratio was com-

puted for EMG signal in Matlab® (2017b, The Mathworks, USA) to inspect the effectiveness of 

the processing blocks of the EMG system.  

MuscLAB: Protocol, Data Collection and Analysis 

The effectiveness of MuscLAB for monitoring muscle activity was investigated employing a 

benchmarking analysis with wireless TrignoTM Avanti Sensors (Delsys, Natick, USA) during 

static and dynamic motions. Avanti Sensors are commercial EMG systems commonly applied 

in the scientific field for muscle activity monitoring.  

The sensors were positioned as follows. The Avanti Sensors were placed on the muscle 

belly considering the electrode placement instructions aforementioned. The FSRs of MuscLAB 

were placed on muscle point motor (where detectable muscle inflation occurs), strictly to the 

respective Avanti Sensors. Subsequently, the subjects were asked to sit on a chair to reduce 

the muscle activation (feet not touching the floor) for conducting the first calibration phase of 

the MuscLAB.  

In static trials, the participants conducted isometric contractions repeated 10 times per 

muscle. For dynamic motions, the participants performed 3 trials per self-selected gait speed 

(slow, normal, and fast) in level-ground to validate the MuscLAB robustness while the subject 

is moving.  

The EMG envelope (100 Hz) was computed using EMGWorks (Delsys͛ softǁaƌeͿ, and it was 

compared with muscular voluntary contraction measured by MuscLAB at 100 Hz. For bench-

marking analysis, the Pearson Correlation coefficient, signal delay, and NRMSE were com-

puted in Matlab® (2017b, The Mathworks, Natick, USA).  

4.4.4.Results and Discussion  

EMG System 

From the experimental validation, it was verified that the signal never saturates across dif-

ferent walking speeds, such that there is no loss of information. Furthermore, as illustrated in 

Figure 4.9, the EMG system performs as expected. It measured constant electrical muscle 

activation in steady-state pose (period 1 in Figure 4.9); it can measure the muscular activation 

correctly in dynamic motions with a repetitive pattern similarly to gait (period 2 in Figure 4.9); 
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it is able to discriminate the agonist and antagonist function among the gastrocnemius me-

dialis and tibialis anterior muscles during walking. 

The results presented in Table 4.4 indicate that the signal-noise ratio decreases as the gait 

speed increases, mainly for tibialis anterior muscle (from 19.21 dB to 10.31 dB). This finding 

suggests that the EMG system must be improved to minimize possible secondary motion ar-

tifacts, which may introduce noise in the EMG acquisition. Nonetheless, the achieved signal-

noise ratio values are satisfactory considering that the EMG system will be applied for condi-

tions that do not exceed 2 km/h of gait speed.  

 

Figure 4.9-Representative EMG signals from one male subject walking at 1 km/h. Top view: EMG signals of gas-

trocnemius (GAS) and tibialis anterior (TA) along with gait trial (1: steady-state pose; 2: walking period). Bottom 

view: EMG signal and envelope EMG signal of GAS.  

The signal-noise ratio of the EMG signals of the tibialis anterior was lower than the one 

achieved for gastrocnemius. Additionally, the muscle activation level of tibialis anterior was 

inferior to the one measured by gastrocnemius, as depicted in Figure 4.9. This finding is 
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related to the nature of the agonist/antagonist functions of these muscles [195]. Moreover, 

the real-time gait analysis tool correctly computed the EMG envelope, as showed in the bot-

tom view of Figure 4.9. The obtained envelope signal adequately highlights the most signifi-

cant components of the EMG signal for all considered static and dynamic walking conditions.  

In overall, it is possible to outline that the hardware and software of the EMG system were 

successfully achieved for muscular activity analysis.  

Table 4.4-Mean and standard deviation (std) values of signal-noise ratio (SNR), per gait speed, of EMG signals of 

the gastrocnemius (GAS) and tibialis anterior (TA) muscles.   

Muscle Speed (km/h) 
SNR (dB) 

Mean Std 

TA 

1.0 19.21 0.89 

2.0 17.11 1.22 

3.0 10.31 3.75 

GAS 

1.0 19.42 0.99 

2.0 18.84 1.13 

3.0 14.71 2.47 

MuscLAB 

From the experimental validation, it was observed that the proposed system enables a 

quicker attachment procedure regarding the EMG sensors.  

The results of Figure 4.10 indicate that the MuscLAB is able to detect the muscular activity 

in static and dynamic conditions. It also states that the MuscLAB can correctly monitor the 

agonist (concentric contraction) and antagonist (eccentric contraction) motions. However, the 

benchmarking analysis with the EMG envelope signal tracked by TrignoTM Avanti Sensors 

points out that there are deviations in the magnitude and timings of muscular activity signal.  

The results presented in Table 4.5 point out that the performance of MuscLAB was con-

sistent for both muscles. The RMSE is higher for dynamic motions (mean RSME < 24.6%) than 

for static ones (mean RSME < 9.57%), and tends to increase as the gait speed increases. The 

increment of the magnitude-based errors indicates that the effectiveness of MuscLAB is af-

fected by the dynamic nature of walking motions, and likely, improvements in the attachment 

of FSRs into textile and usability of MuscLAB are needed. On the other hand, the MusĐLAB͛s 

muscular activity signals become more similar (correlation coefficient increases) to the ones 

tracked by Avanti Sensors for dynamic conditions than for the static ones.  
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A delay (mean delay ranges from 144.01 to 163 ms) between the bioelectrical muscle ac-

tivity and the mechanical muscle activity (MuscLAB) was observed. Two reasons may explain 

this delay. The first lies on the biological muscle proprieties considering that the muscle activ-

ity started due to the presence of electrical signals, which in turns, activates the muscle, lead-

ing to a mechanical muscle contraction. Second, the displacements between the electrodes 

and the FSRs since both sensors were positioned in different places in the same muscle, may 

result in different activation times. The last aspect constitutes a limitation for benchmarking 

analysis related to surface muscle activation analysis.   

 

Figure 4.10- Representative muscular activity detected by MuscLAB and Avanti sensors from one female subject. 

Top and middle view: Muscular activity of tibialis anterior and gastrocnemius for static motion. Bottom view: 

Muscular activity of gastrocnemius muscle for dynamic motion at fast speed.  

In overall, the outcomes suggest that the MuscLAB has the potential for providing an evo-

lutive analysis of the muscular activity across gait training sessions. Nonetheless, the Mus-

cLAB cannot replace the forecast nature of EMG signals, that is ƌeleǀaŶt foƌ useƌ͛s ŵotioŶ 

intention recognition and time-effective control purposes. 
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Table 4.5- A benchmarking analysis of MuscLAB and Avanti sensors for muscular activity. Mean NRMSE, Pear-

son correlation coefficient (C), delay.  

Motion Speed Muscle RMSE (%) C Delay (ms) 

Static - 
TA 9.18 ± 3.40  0.65 ± 0.05 145.3 ± 35.1 

GAS 9.57 ± 2.66 0.65 ± 0.12 149.0 ± 46.72 

Dynamic Low 
TA 18.65 ± 7.48 0.75 ± 0.03 152 ± 41.67 

GAS 18.85 ± 6.76  0.74 ± 0.02 149.01 ± 40.15 

Dynamic Normal 
TA 22.78 ± 6.37 0.77 ± 0.05 147.4 ± 51.67 

GAS 23.57 ± 9.29 0.74 ± 0.03 163.02 ± 36.31  

Dynamic Fast 
TA 23.68 ± 4.23 0.75 ± 0.02 144.33 ± 50.97 

GAS 24.6 ± 1.35 0.77 ± 0.04 145.63 ± 50.62 

4.5.Conclusions  

The Wearable Motion Lab integrates a set of quickly and automatically calibrated, low-cost, 

easily wearable sensor systems to cover 10th-to-90th percentile of the male/female popula-

tion. The sensor systems enable the all-day monitoring of kinematic or muscular activity data 

in dynamic walking scenarios without interfering with the useƌ͛s ŵotioŶ and with autonomy 

for at least eight hours of records, as demanded.  

The open-architecture of the sensor systems contributes to their use as stand-alone and 

system-cooperative functioning in third-party systems, as SmartOs. The last feature enables 

providing real-time sensor data and feedback with minimal latency for (i) gait event detection 

(Chapter 5) (ii) locomotion mode recognition and prediction (Chapter 6), and (iii) assistive con-

trol strategies to provide a user-oriented gait training (Chapter 7). Moreover, the monitored 

kinematic and muscular activity data is being useful as objective outcomes (for computing 

spatiotemporal measures and kinematic and muscle synergies), and in the development of a 

tool for post-stroke disability locomotor analysis to support the clinical-based decision.  

The benchmarking analysis with commercial systems demonstrates that the developed 

sensor systems are purposeful for a user’s evolutive gait analysis in ambulatory scenarios, 

eliminating the need for high-complex and expensive capture systems.  
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Chapter 5 – Gait Event Detection  

This chapter outlines the relevance of gait event detection for human motion analysis and 

current challenges considering previous achievements in the literature. Moreover, it presents 

a novel, real-time, adaptive gait event detection tool (more detail described in [52]) involving 

inertial data measured by wearable sensors as InertialLAB and GaitShoe (Chapter 4), and its 

evaluation considering repeated measures from healthy subjects in non-controlled gait con-

ditions varying gait speed and terrain. A comparative analysis of the proposed tool and litera-

ture work is presented. The chapter ends with critical analysis and future challenges.  

5.1.Introductory Insight  

Gait event detection can potentially be applied in the design of personalized gait therapies 

and playing an integral role in the spatiotemporal gait evaluation. Different motion capture 

systems have been used to detect gait events. Most commonly, this analysis is conducted in a 

motion analysis laboratory with non-portable force platforms [39]. Consequently, these sys-

tems are not optimal to analyze consecutive gait cycles in free-mobility scenarios [101]. 

Current research suggests there is a need for assessing human events in non-structured 

conditions using wearable sensors. Force-based systems, such as foot-switches or FSRs, are 

generally considered the gold standard for detecting gait events [38]. However, these sensors 
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(i) can be unreliable when used in drop-foot gait due to their shifting weight during standing 

[162], [182], [196]–[198], and (ii) do not provide any information regarding the sub-phases of 

the swing phase [182], [196].  

To overcome the inherent limitations of force-based sensors, recent studies have explored 

the potentialities of inertial sensors, particularly isolated accelerometers [37], [197]–[199], 

isolated gyroscopes [36], [39], [40], [102], [200], [201], and IMUs [35], [101], [161], [188], 

[196], [202], [203] for real-time gait event detection. According to systematic review of Taborri 

et al. [160], gyroscopes provide better performance than other inertial quantities for moni-

toring human gait. Commonly, gyroscopes placed on the shank [35], [36], [39], [40], [101], 

[102], [196], [200] and on the foot [101], [161], [197], [198], [201], [202], [204] lead to reliable 

gait event detection. However, Aung et al. [198] demonstrated better performance with the 

sensor located on the foot rather than ankle or shank.  

5.2.Critical Analysis of Related Work 

Most of the available computational methods that use measurements from the gyroscope 

for gait segmentation (Table 5.1) are based on the definition of heuristic thresholds through 

a rule-based FSM [35], [36], [39], [40], [101], [102], [197]. The threshold-based FSM proposed 

in [39] was able to detect 98% of HS and TO events performed by healthy children in indoor 

and outdoor inclined and flat scenarios. Kotiadis et al. [203] showed that using the gyroscope 

and accelerometer data as inputs of the FSM resulted in the proper detection of HS, TO, and 

HO events on flat surface and staircase walking. Furthermore, Storm et al. [35] demonstrated 

that the threshold-based FSM could accurately segment (accuracy of 100%) the HS and TO 

events performed by healthy subjects free-walking in an indoor and outdoor urban environ-

ment.  

The use of FSM is mainly explained by its low computational demand and easy application 

[40]. Nevertheless, it has been reported that its performance can be affected by the high inter-

subject [201] and inter-step variability [202]. To surpass the limited generalization when pro-

cessing new datasets, previous studies [51], [159], [196], [205] introduced an updating layer 

for tailoring the thresholds endowed in the heuristic rules with the most recent state of the 

gait pattern.  
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The assessment of gait events proposed in the literature has been conducted in controlled 

environments (i.e., trials performed on treadmill or static walkways) and level-ground walking 

[26], [37], [102], [159], [161], [162], [197], [201]. When applied to real-life situations, previous 

gait analyses have mostly been restricted to two or three gait events [35]–[40]. Furthermore, 

evaluations have reported few repeated measures with different subjects, which is a prob-

lematic for evaluation of the reproducibility of the proposed computational methods under 

real-life applications.  

There is a need to find time-effective, inter-subject and inter-step versatile computational 

solutions that describe human gait in both controlled and real-life situations using few wear-

able sensors to be easily reproducible in different contexts. The absence of a quantitative 

computational benchmark for the assessment of human gait events is a concern in the reha-

bilitation research community.   

Table 5.1- Review of human gait segmentation tools only using gyroscope sensor.  

Study Tool Event /Phase Body Part 
Real- 

Time 
Results* 

Sabatini et al. [163] FSM ST, HO, SW, HS Foot Y H: < 35ms 

Catalfamo et al. [39] FSM HS, TO Shank N 
H: > 98 % 

H: < 75 ms 

Greene et al. [206] FSM HS, TO Foot, Shank N 
H: < 43 ms 

P: < 99 ms 

Lee et al. [36] FSM HS, TO Shank Quasi H: < 19 ms 

Abaid et al. [161] HHM  ST, HO, SW, HS Foot N P: > 92 % 

Gouwanda et al. [207] FSM HO, TO Shank Y H: > 94 % 

Mannini et al. [201] HHM  HS, FF, HO, TO Foot Y H: < 45 ms 

Bejarano et al.   [162] FSM HS, TO Shank Y H: >99 % 

Y: Yes; N: No; H: Healthy subjects; P: Pathological subjects; HHM: Hidden Markov Models 

HS: Heel Strike; FF: Flat Foot; HO: Heel-Off; TO: Toe-Off; ST: Stance; SW: Swing;  

*Results reported in the studies relative to detection delay (in ms) or detection accuracy (in %)  

5.3.Methods  

The proposed tool aims to address current challenges in gait event detection. First, the tool 

consists of an adaptive FSM to effectively detect the gait events in different daily locomotion 

activities, varying gait speeds and terrains, which represents a contribution to the current 

literature. Thus, the tool follows a threshold-based structure where a FSM detects the events 

and, in parallel, updates the thresholds used in the heuristic decision rules. 
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Second, the tool was designed to be a versatile tool able to detect six human gait events 

(HS, FF, MMST, HO, TO, and MMSW). It constitutes a state-of-the-art contribution, as previous 

analyses centered on the detection of HS, TO and MMSW events.  

Moreover, the tool only relies on single-axis of a wearable gyroscope plaĐed oŶ the user’s 

feet to minimize the number of sensors and to provide a more practical solution. The tool may 

use the gyroscope embedded on InertialLAB or GaitShoe to measure the foot angular velocity 

in the sagittal plane at 100 Hz. Through an empiric analysis (Figure 5.1.A), it was verified that 

the foot angular velocity presents a similar waveform under different terrains (namely, level-

ground, inclined surfaces, and staircases). This remark indicates the versatility of this kine-

matic data for gait detection across different ground surfaces [160]. 

5.3.1.Adaptive FSM  

Definition of Heuristic Decision Rules  

For the definition of the heuristic decision rules, the angular velocity signal was segmented 

into six moments that correspond to the six gait events to be detected. To determine the exact 

moments of HS, HO and TO events, two FSRs were placed on the heel and toe (Figure 5.3). HO 

and TO events were set as the decreasing moment (when the FSR signal decreases by 70% 

relative to its maximum) of the heel and toe FSR signal, respectively, whereas the HS event 

consisted of the increasing instant (when the FSR signal is 70% higher than its minimum) of 

the heel FSR. The ground truths for FF, MMST, and MMSW events were based on direct visual 

inspection of the video-based angular velocity with the IMU angular velocity; both were over-

lapped and synchronized by overlay tools of an open-source tracker. 

Figure 5.1.B depicts each gait event associated with the foot angular velocity signal, that is 

according to the literature, as follows. For the FF and MMST events, the angular velocity is 

almost steady at 0 rad/s until the HO event (that occurs after the zero-crossing)  [156], [163]. 

According to [156], [163], [208], the gyroscope signal reaches the global minimum at the TO 

event. Studies [163], [202], [208] report that during the swing phase, the peak value appearing 

in the gyroscope signal occurs at the moment of mid-swing (i.e., MMSW event).  
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Figure 5.1- A: Foot angular velocity along sagittal plane measured at different ground surfaces: level-ground, 

inclined surface (10°), and staircase. B: Angular velocity of the right foot along the sagittal plane and representa-

tion of six human gait events during one gait cycle performed by a healthy subject [52]. 

Table 5.2 presents the decision rules based on curve tracing techniques, such as adaptive 

thresholds crossing, local extrema detection (i.e., maximum and minimum angular velocity), 

and the evaluation of signal derivatives. HS was defined as the first instant in which the an-

gular velocity is within a range empirically determined to be close to the null angular velocity 

(HS_thrmean ± HS_thrstd = -0.5 ± 0.05) after the maximum value has occurred. FF was detected 

when the signal becomes approximately constant (n samples with the 1st derivative almost 

null) after the detection of the 1st minimum. MMST was defined as n samples after FF occurred 

(n corresponds to the duration of the last valid MMST). HO was defined as when the velocity 

becomes negative after a constant period. TO was the 2nd minimum detected by an adaptive 

threshold (MINthr in Figure 5.1.B). MMSW was determined as the maximum detected above 
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an adaptive threshold (MAXthr in Figure 5.1.B). The rules also have a condition that depends 

on stride time (STRIDE_TIME in Figure 5.1.B), which establishes adaptative intervals where the 

events shall occur and increases the robustness of the algorithm to changes in gait speed.  

Table 5.2- Decision rules with adaptive thresholds in generic form. C indicates condition. [52]  

C Decision Rule State 

1 

ሺgyro୬ > MAX୲୦୰ሻ AND ሺderivative୬ < Ͳሻ AND ሺderivative୬−ଵ > Ͳሻ AND ሺgyro୧୬ୢୣx − MAX୧୬ୢୣx ∈ [Ͳ.͹ ∗ STRIDE_TIMEP୰ୣv; ͳ.͵ ∗ ܵTRIDE_TIMEP୰ୣv]ሻ 

MAX / 

MMSW 

2 

(ሺHS_thr୫ୣa୬ − HS_thrୱ୲ୢ < gyro୬ < HS_thr୫ୣa୬ +HS_thrୱ୲ୢሻOR ͳst_gyro_min ሻ AND ͳst_gyro_max  AND ሺgyro୧୬ୢୣx − MAX୧୬ୢୣx ∈ [Ͳ; Ͳ.Ͷ ∗ STRIDE_TIMEP୰ୣv]ሻ) 

HS 

3 

ሺderivative୬  ≈ Ͳሻ AND |derivative୬| ≤ Ͳ.ʹ AND ͳst_gyro_min AND ሺgyro୧୬ୢୣx − MAX୧୬ୢୣx ∈ [Ͳ.ͳͷ ∗ STRIDE_TIMEP୰ୣv; ͳ.Ͳ ∗ STRIDE_TIMEP୰ୣv]ሻ) 
FF 

4 MMST_counter > ሺHO୧୬ୢୣxP୰ୣv − FF୧୬ୢୣxP୰ୣvሻ/ʹ MMST 

5 

ሺgyro୬ < Ͳሻ AND ሺderivative୬ < Ͳሻ AND ሺderivative୬−ଵ < ͲሻAND ሺderivative୬ >Ͳ.ͻ ∗ derivative୬−ଵሻ AND ሺgyro୧୬ୢୣx − MAX୧୬ୢୣx ∈ [Ͳ.͵ ∗ STRIDE_TIMEP୰ୣv; ͳ.Ͳ ∗STRIDE_TIMEP୰ୣv]ሻ) 

HO 

6 

ሺgyro୬ < MIN୲୦୰ሻ AND ሺderivative୬ = Ͳሻ AND ሺderivative୬−ଵ < Ͳሻ AND ሺgyro୧୬ୢୣx − MAX୧୬ୢୣx ∈ [Ͳ.ͷ ∗ STRIDE_TIMEP୰ୣv; ͳ.ͳ ∗ STRIDE_TIMEP୰ୣv]ሻ 
TO 

Adaptability and Finite State Machine 

Adaptability is a pivotal feature for developing a benchmark tool for gait analysis. Given 

gait pattern variability, the proposed tool inspects changes in the duration (using 

STRIDE_TIME adaptive parameter) and amplitude (using adaptive thresholds, MAXthr and 

MINthr) of angular velocity since these signal conditions may change with variations in gait 

speed and terrain. The adaptive parameters were initialized based on an empirical inspection 

of the angular velocity from distinct gait patterns.  

Figure 5.2.A shows the flowchart of the proposed computational tool executed via 

STM32F4-Discovery in each interaction at 100 Hz. The tool only starts the detection of gait 

events after the occurrence of the maximum peak of angular velocity.  

Since the algorithm uses real-time peak detection, it was necessary to smooth the gyro-

scope data through a digital 1st order low-pass exponential filter. Posteriorly, the filtered sam-

ple was analyzed in 3 different stages to make the FSM adaptable for different real-life walking 

situations. The first stage determines the 1st derivative by detecting when the velocity in-

creases (positive signal), decreases (negative signal) or becomes approximately zero.  
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Figure 5.2- A: Flowchart of the proposed adaptive computational method. B: FSM, where DEF is default state 

and R is reset state [52].  
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The second stage covers the minimum/maximum calculation, which is used to detect HS 

(after maximum), MMSW (maximum), FF (after 1st minimum) and TO (2nd minimum), given 

their dependency on the local extrema. A maximum angular velocity was only detected when 

the angular velocity was higher than the adaptive threshold (MAXthr), the previous signal de-

rivative is a positive value and the current signal derivative is negative soon after the signal 

derivative evaluation (gyroDER) is approximately zero (less than 0.01 rad/s – value set empir-

ically to address the signal fluctuations). A similar approach to detect the angular velocity min-

ima was applied using MINthr. The Max/Min detection stage also updates the MAXthr and 

MINthr thresholds (initialized as 0.7 rad/s and -2 rad/s, respectively) using the three previous 

valid strides, as in [52].  

The third stage updates STRIDE_TIME parameter based on the last three valid strides, as 

described in detail in [52]. Briefly, to compute a valid stride, the tool looks for rising periods 

where the angular velocity was higher than 0.4 rad/s with a positive derivative, and at this 

moment a duration at least 45% of the previous stride has passed (betweenRisesCounter in 

Figure 5.2.A). STRIDE_TIME is used to establish the adaptive ranges where the events must 

occur. This strategy tailors the algorithm to operate at distinct gait speeds properly and al-

lows the FSM to restart when an event is not detected (exit condition - E).  

The last stage implements the FSM through the switch statement presented in Figure 

5.2.B). The FSM includes six states, one for each gait event (MAX/MMSW, HS, FF, MMST, HO, 

TO), and two additional states (default state and reset state). The decision rules defined in 

Table 5.2, and the exit condition (E) are used to trigger the state transitions. The reset state is 

the first state to run, resetting all variables and setting the initial conditions. Next, the FSM 

transits to the default state and only leaves this state when rule (1) is true, transiting to MAX 

state, in the first detection, or to MMSW state, in the remaining situations. Lastly, the devel-

oped tool can also address situations in which the user stands for a period without walking. In 

this case, the algorithm resets after a pre-defined time (at least 5.0* STRIDE_TIME).   

5.3.2.Experimental Validation  

The gait event detection tool was validated using repeated measures of healthy gait pat-

terns recorded in controlled and real-life situations, as depicted in Figure 5.3. The subjects 

signed a written informed consent to participate in this study.  
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Figure 5.3- Validation of the gait event detection system under controlled (1) and real-life walking conditions (2-

flat and rough level-ground, 3-ramp, 4-stairs). The users wore two IMUs of InertialLAB (instep of the foot) and 

two FSRs attached to heel and toe by a yellow rubber strap [52].   

Controlled walking situations: Participants and Protocol  

This validation included 11 healthy volunteers (7 males and 4 females). The subjects pre-

sented an average age of 28.27 ± 4.17 years old, the height of 1.70 ± 0.08 m, and body mass 

of 69 ± 12.02kg. The participants were randomly divided into barefoot (6 subjects) and foot-

wear conditions (5 subjects). 

The participants conducted walking experiments on a treadmill at different speeds (1.5, 

2.5, 3.5, and 4.5 km/h) and slopes (0%, 5%, and 10%). The subjects were asked to perform 3 

trials of 30 seconds per condition. Furthermore, the participants were instructed to conduct 

walking trials at variable speeds. The subjects walked for 60 seconds and changed gait speed 

every 20 seconds according to the provided instructions (increasing from 1.5 km/h to 4.5 km/h 

and decreasing from 4.5 km/h to 2.5km/h).  

Real-life walking situations: Participants and Protocol  

The algorithm validation was extended to real-life indoor and outdoor environments to 

evaluate human locomotion in different conditions. For this matter, 9 healthy subjects (6 

males and 3 females) were involved, who wore their own sports-shoes. The paƌtiĐipaŶts͛ ŵeaŶ 

age is 27 ± 7.35 years old, and they presented a height of 1.70 ± 0.12 m and body mass of 

62.63 ± 9.39 kg.  

Three gait trials were randomly performed in the following scenarios: forward level-ground 

walking on a 20 m flat surface; forward level-ground walking on a rough surface (urban 

ground) along 30 m; descending and ascending an inclined ground (10°) and a 10 m rough 

surface; and climbing a staircase of 8 steps (height of 17 cm, depth of 31 cm, and step width 

of 110 cm). For each condition, the participants were asked to walk at three self-selected gait 

speeds: slow, normal, and fast.  



Chapter 5 – Gait Event Detection 

 

100 

 

Data Collection and Analysis  

The detected and reference gait events were collected at 100 Hz. The ground truths of HS, 

HO, and TO events came from two FSRs placed on the heel and toe (Figure 5.3). The reference 

FF, MMST, and MMSW events were found through visual inspection and based on the litera-

ture information [163], [202], [208].  

A total of 5657 steps from both feet were analyzed through Matlab® (2016a, The Math-

works, Natick, MA, USA). As performance metrics, the accuracy, the percentage of occurrence 

and duration of delays and advances were computed to assess the versatility and time-effec-

tiveness of the proposed tool. The time-effectiveness was only inspected for correct detec-

tions. Timing errors greater than 100 ms (a critical duration for motor rehabilitation purposes) 

were considered as a misdetection. 

Furthermore, the performance of the proposed tool was compared to a similar state-of-the-

art gait event detection algorithm (four-state Hidden Markov model (HMM) [201]) using the 

same dataset. The comparative analysis was limited to the gait events assessed in [201]; HS, 

FF, HO and TO events. Note that the two compared methods were tuned using different data 

collected in healthy subjects from treadmill forward-walking. Further details in [51] and [201].   

Lastly, two statistical analyses were carried out with a significance level of 5%. The first 

analysis investigates the accuracy and time-effectiveness of the proposed tool relative to the 

desired performance, i.e., 100% and zero ms, respectively. The second analysis is centered on 

the comparative analysis including two statistical tests; first, the accuracy of the proposed 

algorithm is higher thaŶ the oŶe ƌeaĐhed ďǇ the MaŶŶiŶi͛s tool; second, the delay and advance 

times of the proposed algorithm are lower than the one achieved ďǇ the MaŶŶiŶi͛s ŵethod. 

5.4.Results 

5.4.1.Adaptability  

The findings indicate that the algorithŵ’s adaptaďilitǇ proǀides a proper deteĐtioŶ (orange 

line in top view of Figure 5.4) even when the foot angular velocity varies with changes in speed 

from 1.5 km/h to 4.5 km/h (controlled situation) and from 1 ± 0.2 m/s to 2 ± 0.18 m/s (real-

life situations).  

The increased gait speed results in higher values of angular velocity with shorter stride du-

ration, supporting the need to update the thresholds of MAXthr, MINthr, and STRIDE_TIME, 
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respectively. In particular, by analyzing Figure 5.4, it is possible to conclude that the values of 

the adaptive thresholds (MAXthr and MINthr) increase or decrease when the magnitude of 

the maxima and minima are higher or lower, respectively.  

Also, the adaptive ranges, which are directly dependent on the value of the STRIDE_TIME 

(blue line in bottom view of Figure 5.4), change in accordance with these values. The algo-

ƌithŵ͛s adaptaďilitǇ ĐaŶ also addƌess ĐhaŶges iŶ the ŵagŶitude of the aŶgulaƌ ǀeloĐitǇ, ǁhiĐh 

may result from walking in overground (flat and rough ground) or on staircases. 

 
Figure 5.4- Gait detection for one subject (top view), walking at distinct speeds, with representation of adaptive 

thresholds (middle view) and adaptive ranges (bottom view) changing during the trial. Note that Ang Speed in-

dicates angular speed and Pts the value of the adaptive thresholds dependent on the STRIDE_TIME [52].   

5.4.2.Performance Metrics  

By analyzing Table 5.3, it was verified that the proposed tool is significantly accurate (p = 

0.0812) for the detection of all events at distinct conditions (e.g., speed, slope, footwear or 

barefoot) in the controlled situation (accuracy > 95.06%). TO and MMSW events exhibited 

lower accuracy (accuracies of 95.95% and 95.06 %, respectively) and had a higher occurrence 

of delayed detections (30.80% and 29.35%, respectively), likely due to the existence of local 

maxima and minima, respectively. Advanced detections were most observed for HO (18.62 ± 

9.63 ms) and TO (14.38 ± 12.83 ms) events.  
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Table 5.3- PeƌfoƌŵaŶĐe of pƌoposed tool aŶd MaŶŶiŶi͛s tool  

 Proposed tool MaŶŶiŶi’s tool 

 ACC (%) 
Delay Advance 

ACC (%) 
Delay Advance 

% ms % ms % ms % ms 

CONTROLLED SITUATIONS 

HS 100 12.4 6.28±12.0 11.86 10.25±12.0 95.07 19.71 40.29±8.9 79.98 19.77±18.1 

FF 99.37 6.23 4.36±5.1 9.21 9.18±17.8 92.37 9.16 52.76±20.7 90.31 20.84±19.6 

MMST 98.78 20.46 30.53±9.9 7.92 15.31±5.5 - - - - - 

HO 99.27 23.78 19.67±16.9 11.02 13.75±9.6 88.27 81.26 61.04±10.8 16.0 24.72±12.0 

TO 97.57 8.74 5.82±15.9 18.24 11.13±9.6 90.47 77.49 21.22±12.0 21.93 44.87± 8.5 

MMSW 94.71 7.41 4.54±4.3 0.29 1.75±4.5 - - - - - 

REAL-LIFE SITUATIONS: LEVEL-GROUND 

HS 100.0 0.8 1.90±9.1 1.2 4.01±1.9 93.07 25.68 55.23±10.1 74.32 17.80±3.67 

FF 99.24 2.8 2.22±8.56 1.6 1.19±9.46 91.32 34.42 46.05±8.65 63.40 23.15±2.56 

MMST 91.04 23.5 8.63±12.5 16.7 8.43±4.24 - - - - - 

HO 96.18 30.8 26.39±4.7 0 0.00 86.37 68.11 43.69±6.7 31.40 37.52±5.61 

TO 98.64 1.1 4.8±10.56 4.3 3.69±8.95 89.54 71.35 17.34±9.34 28.09 36.80±9.1 

MMSW 90.50 4.5 8.40±2.65 0.3 5.3±0.80 - - - - - 

REAL-LIFE SITUATIONS: INCLINED SURFACES 

HS 99.82 0 0.0±0.0 2.3 0.71±2.45 92.57 1.44 61.75±2.4 98.56 11.50±7.60 

FF 99.82 0 0.0±0.0 2.7 1.43±1.98 91.10 16.85 23.36±3.21 82.79 19.49±4.78 

MMST 91.87 22.7 18.79±3.2 18.67 2.14±0.67 - - - - - 

HO 96.17 28.9 16.43±12.3 1.6 0.71±0.56 85.47 85.89 38.11±6.54 13.80 48.32±4.81 

TO 97.13 0 0.0±0.0 5.3 6.43±5.7 88.94 88.11 14.49±4.0 11.58 30.79±3.58 

MMSW 90.12 3.7 8.63±2.56 0 0.0±0.0 - - - - - 

REAL-LIFE SITUATIONS: STAIRS 

HS 96.98 0 0.0±0.0 2.56 2.51±1.56 90.46 10.6 44.91±5.2 89.42 18.88±2.45 

FF 96.78 0 0.0±0.0 2.4 1.43±1.98 89.43 9.0 58.88±6.71 91.0 23.59±1.45 

MMST 92.79 27.41 16.79±1.2 12.67 22.2±0.67 - - - - - 

HO 93.98 24.6 23.6±7.3 0 0.0±0.0 81.67 80.0 67.39±8.92 18.57 52.35±4.67 

TO 95.89 0 0.0±0.0 3.3 6.43±5.7 85.47 79.59 24.94±2.60 20.41 45.97±4.60 

MMSW 90.79 2.63 2.63±3.16 0 0.0±0.0 - - - - - 
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The findings indicate that the proposed tool is significantly more accurate (p > 0.0526) in 

level-ground and inclined surfaces than in staircases (p < 0.05). However, in level-ground sur-

faces, the timing errors were significantly different than zero ms (p < 0.05), in contrast, to 

ramps (p > 0.0942) and staircases (p > 0.151).  

In the real-life walking situations, the HS was the most correctly detected event (accu-

racy>96.98%). On the other hand, MMSW was the least correctly detected event (accuracy > 

90.12%) due to the existence of local maxima. MMST was the earlier detected event (mean 

advances < 22.2±067 ms). HO was the most delayed gait event (mean delays < 26.39±4.67 

ms) due to possible instabilities of the signal during stance (not completely constant). The 

remaining gait events presented lower timing errors.  

Comparatively to MaŶŶiŶi͛s tool, the proposed tool showed significantly lower timing er-

rors (p = 0.9314) and a lower occurrence of misdetection (p = 0.9953) in controlled situations. 

Moreover, the proposed tool (accuracy>96.98%) is significantly more accurate (p > 0.9925) in 

real-life gait event analysis thaŶ ǁas MaŶŶiŶi͛s tool ;aĐĐuƌaĐǇ>ϴϱ.ϰϳ%Ϳ. MaŶŶiŶi͛s tool also 

demonstrated higher timing errors; delayed detections of HS (61.75 ± 2.4 ms) and HO events 

(67.39 ± 8.92 ms); advanced detections of the HO event (< 52.35 ± 4.67 ms).  

5.5.Discussion  

The novelty of the proposed gait event detection tool lies in using a single kinematic meas-

ure to detect six gait events in real-life scenarios, which include variations in gait speeds and 

surfaces. Consequently, the algoƌithŵ͛s adaptaďilitǇ pƌoǀed to ďe a keǇ featuƌe foƌ the suĐ-

cessful application of the proposed tool in real-life situations. Note that the validation only 

considered straight-line walking. 

In comparison with the literature regarding real-time gait event detection based on gyro-

scope signals, the proposed tool was able to conduct a more holistic gait segmentation by 

detecting six gait events instead of only detecting HS and TO events (the most commonly de-

tected events). Moreover, this tool was more accurate when compared with similar studies 

[36], [162], [200] conducted in controlled situations and on level-ground surfaces. 

So far, there has been no study able to detect the six gait events in both inclined surfaces 

and staircases. Catalfamo et al. [39] reported that their heuristic rules were able to segment 

the HS and TO events (accuracy of 98%) on inclined surfaces (indoor and outdoor 
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environments) with a delay of 25 ms and an advance of 75 ms. The presented adaptive method 

has shown to be more time-effective (advance errors lower than 6.43±5.7 ms and no ob-

served delayed timing errors), and similarly accurate (accuracy of 99.82% and 97.13% for HS 

and TO, respectively) on inclined surfaces. Moreover, in stair walking, the proposed tool 

achieved favorable performance in terms of accuracy (HS=96.98% > 95.5%; TO = 95.89% > 

93.1%) and time-effectiveness (HS=0.0±0.0 ms < 11±18 ms; TO=6.43±5.7 ms < 35±20 ms) 

when compared to study [40].  

Furthermore, through a comparison with the HMM proposed in [201] using the same da-

taset, it was verified that the proposed approach performs advantageously in the detection 

of HS (delays of 61.75>6.28 ms; advances of 19.77>10.25ms), FF (delays of 58.88>4.36 ms; 

advances of 23.59>9.18 ms), HO (delays of 67.39 > 26.39 ms; advances of 52.35>11.02 ms), 

and TO (delays of 24.94>5.82 ms; advances of 28.09>18.24 ms). This benchmark analysis high-

lights the benefits of the proposed computational method for the gait event detection field. 

5.6.Conclusions  
The proposed gait event detection tool has shown to be a time-effective, wearable strat-

egy attempting for minimal sensing input to provide a more practical solution for real-time 

and real-life gait analysis. The adaptability introduced provides more accurate gait analysis in 

different walking conditions, handles with inter-subject and inter-step variability. Moreover, 

the tool was robust in barefoot and footwear conditions even when different types (size, 

shape) of shoes were worn. This finding highlights the versatility of the proposed tool for dif-

feƌeŶt useƌ͛s foot ĐoŶditioŶs iŶ oppositioŶ to the foƌĐe-based sensors. Additionally, the inertial 

sensor-based detection showed to be more accurate when compared to FSR-based detection, 

as reported in [209], due to the inconsistency response of FSR signals across terrains. Overall, 

the use of IMUs may be advantageous over FSR for gait event detection.  

The gait segmentation plays an important role for useƌ͛s ŵotioŶ ƌeĐogŶitioŶ, as described 

in Chapter 6. Additionally, as the delay presented by the developed tool is lower than the 

response time of human physiological structures (128 ms [210]), the integration of this tool in 

real-time control is feasible. The tool has also been useful in the analysis of orthotic-based 

assisted gait, as considered in Chapter 7.  
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Chapter 6 – Daily Locomotion Mode Recognition and 

Prediction  

This chapter highlights the potential of the useƌ͛s ŵotioŶ iŶteŶtioŶ recognition in gait re-

habilitation, namely the contribution of recognition and prediction tools to timely classify lo-

comotion modes (LMs) and locomotion mode transitions (LMTs). Moreover, it presents the 

development and validation of an automatic, versatile, user-independent machine learning-

ďased tool foƌ useƌ͛s ŵotioŶ iŶteŶtioŶ ƌeĐogŶitioŶ aŶd pƌediĐtioŶ of different daily LMs and 

LMTs, based on minimal kinematic data from wearable sensors, namely InertialLAB described 

in Chapter 4, and applying the gait segmentation introduced in Chapter 5. The chapter ends 

with a critical analysis of the effectiveness of the developed gait analysis tool and future di-

rections.  

6.1.Introductory Insight  

Humans can perform distinct LMs in a variety of conditions and terrains in their daily rou-

tine. The classification of daily LMs and LMTs can be applied to tune the assistance provided 

by robotic assistive devices such as AOs aĐĐoƌdiŶg to the patieŶt͛s LM aŶd to generate smooth 

transitions, respectively [9]. The recognition and prediction of LMs and LMTs is a requirement 
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in user-oriented rehabilitation and assistance in daily-life scenarios [211]. For this purpose, it 

is necessary to develop automatic, user-independent tools capable of recognizing and predict-

ing the LM and LMTs [9].  

Multiple efforts have been made to develop automatic LM recognition tools. Part of them 

tackles pattern-recognition from EMG data [41], [212], [213]. However, EMG sensors present 

some drawbacks when compared to wearable kinematic sensors, such as the lengthy and ex-

pert-ďased iŶstallatioŶ, diffiĐultǇ foƌ keepiŶg theŵ attaĐhed duƌiŶg the useƌ͛s dailǇ loĐoŵo-

tion, and the shifting electrodes may change EMG patterns and degrade the classification over 

time [189], [211], [213]. To avoid these limitations, more cost-effective, wearable kinematic 

sensors, namely IMUs, have applied. 

6.2.Critical Analysis of Related Work 

Previous studies [189], [211], [214] have proposed LM recognition tools driven by IMU 

sensors and validated in able-bodied subjects. Jang et al. [214] and Li et al. [211] applied a 

threshold-based FSM to recognize three (level-ground walking, and stair ascent and descent) 

and five (level-ground walking, stair ascent and descent, and ramp ascent and descent) loco-

motion modes, respectively.  

On the other hand, Liu et al. [189] and Leuenberger et al. [215] employed machine learning 

approaches, namely the linear discriminant analysis (LDA) and the k-nearest neighbors (KNN), 

to recognize five (level-ground, stair ascent and descent, and ramp ascent and descent) and 

three (level walking, stair ascent, and stair descent) locomotion modes, respectively. Despite 

their contribution to accurate recognition tools, these works did not tackle the LM prediction 

problem, nor LMT classification, both demanded on robotic-based rehabilitation and assis-

tance.  

Considering the existing state-of-the-art [41]–[43] on predicting LMs and recognizing LMTs, 

some methodological drawbacks were observed. HuaŶg͛s ǁoƌk [41] used LDA and support 

vector machine (SVM) to recognize five LMTs (level-ground walking to stair ascent, ramp as-

cent, and stepping over an obstacle and stair descent and ramp descent to level-ground walk-

ing). Despite the successful classification, some factors are limiting this work; namely, the tool 

depends on EMG information, and transitions were recognized when one of the legs was 

already on the next terrain type. This transition assumption, also observed in [42], does not 
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lead to a genuine user-independent tool since the user is asked to start the terrain transition 

with a predefined limb and it may interfere with the natural gait flow. In contrast, Chen et al. 

[43] applied LDA for LMT recognition without imposing a predefined leg for performing the 

transition. Nevertheless, this tool was not prepared to recognize common LMTs between the 

level-ground and ramp.   

There is still a set of challenges to be pursued, as follows. First, to develop a more versatile 

tool for predicting and recognizing more daily LMs and LMTs. Second, to use discriminative 

sensor data measured by a minimal number of easily wearable sensors. Third, to allow the 

user to choose the leading limb to perform the LMT freely. The last challenge demands less 

cognitive effort from the user and enabling a more natural walk during daily activities.  

6.3.Methods 

The proposed tool tackles the challenges mentioned above. It consists of a versatile, auto-

matic recognition and prediction tool for classifying LMs and LMTs using kinematic data col-

lected from an easily wearable sensor system, namely the InertialLAB, that fosters a natural 

gait. The recognition and prediction tool aims at an efficient classification of the LMs com-

monly encountered in the daily life while covering different walking directions (i.e., forward, 

back, clockwise, and counter-clockwise) along with variations in gait speed and terrains (i.e., 

flat, ascending and descending stairs, climbing up and down ramp, stepping over obstacles). 

The tool also appƌoaĐhes tƌaŶsitioŶs fƌoŵ/to those teƌƌaiŶs usiŶg the useƌ͛s self-selected 

lower limb. Furthermore, the tool was designed to be user-independent, i.e., it was built in-

cluding data from different subjects instead of building a tool tuned per subject [42]. 

To develop the proposed tool, a machine learning-based framework, illustrated in Figure 

6.1, was designed for enabling the fast and systematic implementation, testing, and compari-

son of various state-of-the-art algorithms namely, feature selection and pre-processing meth-

ods, and machine learning classifiers (DA, KNN, random forest, and SVM) with the same data. 

The framework, implemented in Matlab® (2017b, The Mathworks, MA, USA), allows the au-

tomatic and replicated LM and LMT classification and a benchmark to identify an accurate 

classification tool for both recognition and prediction purposes. This framework considers the 

procedures reviewed in [47], which points out the contributions of machine learning classifiers 

for this application due to their generalization ability to accommodate the environmental and 
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subject variability and to be accurate for classifying newly available data [47]. Each stage of 

the proposed framework is explained in the following. 

 
Figure 6.1- Schematic of the machine learning-based framework.  

6.3.1.Data Acquisition 

The raw data table (Figure 6.1) included kinematic data, sampled at 200 Hz, namely the 

angle/orientation and angular velocity of lower limb segŵeŶts’ (thigh, shank, and foot) in 

the sagittal plane, and the angle and angular velocity of the torso in the sagittal and axial 

planes. For this purpose, the InertialLAB was used considering the IMUs positioning on the 

outer side of the thighs and shanks, on top of the feet, and one IMU on the torso. Data were 

filtered by a 1st order low-pass filter (exponential smoothing) with 0.5 as the smoothing factor.  

Participants  

Ten able-bodied subjects (6 males and 4 females) were included who signed an informed 

consent form before the tƌials. The paƌtiĐipaŶts͛ ŵeaŶ age ǁas Ϯϳ±ϳ.ϯϱ Ǉeaƌs old, ǁith a 

height of 1.70 ± 0.12 m and body mass of 62.63 ± 9.39 kg.  
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Protocol   

Before data collection, the InertialLAB was calibrated while the subject was in the upright 

standing position for 5 s. Then, the participants were asked to perform 9 trials per walking 

direction (3 trials per gait speed). The trials included different walking directions (forward, 

backward, clockwise, and counterclockwise) performed on a 10 m level-ground at 3 self-se-

lected gait speeds (slow, normal, and fast).  

Additionally, the subjects conducted 10 trials on four circuits at a self-selected gait speed. 

In the first circuit (Figure 6.2.A), they walked 2 m forward on level-ground; ascended the stair-

case; walked forward on level-ground for 2 m and stopped; and descended the staircase back 

to the starting position. This circuit included 3 LMs (level-ground walking (LW), stair ascent 

;SAͿ, aŶd staiƌ desĐeŶt ;SDͿͿ aŶd ϰ LMTs ;LW→SA, SA→LW, LW→SD, SD→LWͿ. The staiƌĐase 

had 8 steps each with 17 cm of height, 31 cm of depth and 110 cm width. On the second 

circuit, the participants walked 2 m forward on level-ground; ascended a ramp; walked for-

ward on level-ground for 2 m and stopped; and descended the ramp back to the starting po-

sition. The ramp was 10 m with 10° inclination. This circuit included 3 LMs (LW, ramp ascent 

;RAͿ, aŶd ƌaŵp desĐeŶt ;RDͿͿ aŶd ϰ LMTs ;LW→RA, RA→LW, LW→RD, RD→LWͿ. OŶ the Ϯ last 

circuits, the subjects walked forward 2 m on level-ground, step over an obstacle (SO), and 

walked forward 2 m (Figure 6.2.B). These circuits differ on the obstacle dimension. One circuit 

included an obstacle with 22 cm in height and 34 cm in depth; whereas, the other circuit in-

volved an obstacle with 34 cm in height and 22 cm in depth. The subjects could freely perform 

the LMTs with any leading leg to enable transition seamlessly between LMs.  

During the terrain transition, the participants performed transitional steps, which have a 

different meaning for recognition and prediction purposes. For recognition, a transitional step 

refers to the period from the instant that the leading limb left the prior terrain (last foot con-

tact) to the first moment that this limb touched the upcoming terrain (initial foot contact). For 

prediction, the transitional step is the step that precedes the ongoing transitional step (used 

in recognition). An experimenter walked alongside the subjects marking the transitional mo-

ments (vertical red line in (Figure 6.2) using a digital button, similarly to [42], [216]. A transi-

tional moment is a moment belonging to the transitional step considered for recognition.  
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Figure 6.2- Representation of two circuits highlighting the transitional step, the transitional moment, and the 

eǆploƌed tiŵe ǁiŶdoǁ͛s sizes foƌ ƌeĐogŶitioŶ aŶd pƌediĐtioŶ purposes using HS and TO events. A: Staircase. B: 

Obstacles.  

6.3.2.Feature Calculation  

The Feature Calculation stage aims to obtain a feature table that includes five types of 

features (the mean value, standard deviation value, range, and the values of the first and 

last positions) calculated per gait stride for each kinematic data of the raw data table, result-

ing in a total of 80 features. Previous published intent recognition tools have used such featu-

res [42], [216], [217]. Figure 6.3 presents the content of the feature table.  

 

Figure 6.3- Content of the feature table with 5 types of features per kinematic data. 

The gait stƌide͛s ďouŶdaƌies ǁeƌe defiŶed as the HS aŶd TO eǀeŶts (detected as described 

in Chapter 5 and in [51]) for recognition and prediction models, respectively, as illustrated in 

Figure 6.2. The TO was elected for prediction instead of HS event since it is a critical point for 
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transition (i.e., the beginning of the transitional step) [42] and it has achieved low prediction 

errors [218].  

Further, differeŶt tiŵe ǁiŶdoǁ’s sizes were investigated and established as fractions of 

the stride (namely, full-stride, 1/2, 1/3, 1/4, 1/5, and 1/6) to identify the most representative 

ǁiŶdoǁ͛s size foƌ ƌeĐogŶitioŶ aŶd pƌediĐtioŶ ŵodels. The fƌaĐtioŶs of the stƌide ǁeƌe aƌďitƌaƌǇ 

selected, as in [218], to explore segmentation approaches less dependent on external tools 

foƌ gait eǀeŶt deteĐtioŶ iŶ aŶ atteŵpt to ŵiŶiŵize Đuŵulatiǀe eƌƌoƌs. As the tiŵe ǁiŶdoǁ͛s 

size is based on fractions of the stride, it adapts automatically to gait speed variations instead 

of considering a fixed timing size.  

As depicted in Figure 6.2, for recognition and prediction models, the features were calcu-

lated from a time window that starts with the HS event and ends according to the selected 

stƌide͛s fƌaĐtioŶ, aŶd fƌoŵ a tiŵe ǁiŶdoǁ that staƌts aĐĐoƌdiŶg to the seleĐted stƌide͛s fƌaĐtioŶ 

and ends with the TO event, respectively.   

The feature table contains data from both legs [219]. There is evidence that bilateral fea-

tures improve intent recognition [216] and that walking, especially transitions, requires bilat-

eral coordination of the lower limbs. Two leg feature approaches were explored to study the 

relevance of discriminating the leading and opposite legs. The first approach considers the 

leading and opposite leg, whereas the second approach considers the left and right leg.  

6.3.3.Pre-Processing  

The Pre-Processing stage is relevant for improving features using normalization techniques 

and for identifying discriminative features to build the models.  

The features were normalized ďǇ the suďjeĐt͛s height siŶĐe the aŶthƌopoŵetƌiĐ sĐaliŶg fea-

tures reduce the variability of the feature table [47]. Additionally, different normalization 

techniques, namely centering, z-score standardization, and min-max scaling [220], were im-

plemented and compared.  

Furthermore, one filter feature selection method and one feature extraction method were 

implemented for identifying discriminative features. As the filter method, it was considered 

the analysis of variance (ANOVA)-based method that uses the minimum-redundancy maxi-

mum-relevancy (mRMR) algorithm to rank features in descending order according to their rel-

evance [221]. Afterward, the ANOVA, starting on the highest ranked feature, assessed which 

Đlasses aƌe distiŶguishaďle foƌ the featuƌe ĐoŶsideƌiŶg the featuƌe͛s ŵeaŶ aŶd ǀaƌiaŶĐe peƌ 
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class. This procedure was done until there are a set of features that distinguish between all 

classes.  

Regarding the feature extraction method, the principal component analysis (PCA) was im-

plemented ĐoŶsideƌiŶg the HoƌŶ͛s Paƌallel AŶalǇsis as a Đut-off criterium for extracting the 

number of components to retain [222]. A component is retained whether the associated ei-

genvalue is higher than 95th of the distribution of eigenvalues derived from the random data.  

6.3.4. Data Labeling  

In the Data Labeling stage, the processed feature table was labeled according to the LM or 

LMT from whereas it was collected, creating the labeled feature table. The labeling process 

ŵeƌged a pƌioƌi kŶoǁledge of the featuƌe͛s oƌigiŶ ǁith the tƌaŶsitioŶal ŵoŵeŶt ƌeĐoƌded duƌ-

ing gait trials. During the training, the labeled feature table is the ground truth on which the 

model bases its decisions. 

The framework was designed and implemented with 8 classification models for both 

recognition and prediction purposes (4 models for each one), following the classification 

scheme depicted in Figure 6.4. The features of the recognition and prediction databases were 

equally labeled as follows. The direction_ft database includes features from the trials varying 

the walking direction. This database contains 4 classes (i.e., forward, backward, counter-

clockwise, and clockwise), and the features were labeled according to these classes.  

The sts_trs_ft database contains two classes; the steady-state step, that considers all gait 

steps associated with the LMs; and transition step, that includes the gait steps related to 

LMTs. The features of the steady_state_type_ft database were labeled according to the five 

steady-state classes, one per LM (i.e., LW, SA, SD, RA, and RD). The database transi-

tion_type_ft includes features from transitional steps, which were labeled according to nine 

Đlasses: LW→SA; SA→LW; LW→SD; SD→LW; LW→RA; RA→LW; LW→RD; RD→LW; aŶd, SO. 

The period for crossing the obstacle (SO) refers to a transitional step from the first terrain (LW) 

to the second one (LW). 

6.3.5.Model Building  

The Model Building stage builds the classification models for recognition and prediction 

purposes. It may involve the application of wrapper and embedded feature selection methods 

and the optimization of the ŵodel͛s hǇpeƌpaƌaŵeteƌs.  
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Two wrapper feature selection methods were explored, the ͞ŵRMR plus forǁard seleĐ-

tioŶ͟ and ͞forǁard seleĐtioŶ plus ďaĐkǁard seleĐtioŶ͟. WheŶ usiŶg ͞ŵRMR plus forward se-

leĐtioŶ͟, the featuƌes ǁeƌe ƌaŶked thƌough the ŵRMR ŵethod aŶd a ĐlassifiĐatioŶ ŵodel ǁas 

built and evaluated using the highest rated feature. A feature was only kept when it increased 

the performance. This selection was made for every feature or until the classification model 

reached the maximum performance (Matheǁ͛s ĐoƌƌelatioŶ ĐoeffiĐieŶt equal to 1). When using 

͞foƌǁaƌd seleĐtioŶ plus ďaĐkǁaƌd seleĐtioŶ͟, the featuƌe that iŵpƌoǀes the peƌfoƌŵaŶĐe the 

most in combination with the already established feature set was added to the set. Afterward, 

the backward selection was used on the obtained feature set, and the process was inverted; 

the featuƌes ǁeƌe iteƌatiǀelǇ ƌeŵoǀed if theiƌ aďseŶĐe did Ŷot affeĐt the ŵodel͛s peƌfoƌŵaŶĐe. 

Moreover, four machine learning classifiers were implemented and compared; DA with lin-

ear and quadratic approaches; KNN, using both weighted and unweighted (regular) neighbor 

distances; random forest, and SVM, using linear, quadratic, cubic and Gaussian kernels. This 

comparison aims to identify the best-suited classifier for the LM and LMT prediction and 

recognition, given their prevalence in the literature [47]. 

The Đlassifiers’ hǇperparaŵeters were optimized for each selected feature dataset. The 

KNN and random forest were tuned by increasing the number of nearest neighbors (k) and 

the number of decision trees, respectively, starting with 1 until the performance reached the 

maximum value or started decreasing. For the SVM, the grid-search strategy ([-10 ; 10] inter-

val) was used to tune the box constraint parameter (C) and the kernel scale parameter (σ) for 

the Gaussian kernel. DA used the delta threshold set to 0, and gamma regularization set to 1. 

This stage produced 4 classification models (Figure 6.4) per recognition and prediction pur-

poses, as follows. The Direction Classification Model classified the gait step data according to 

the walking direction. If a gait step has been classified as forward, then it was classified as a 

steady-state step or a transitional step by the Steady-State/Transition Type Classification 

Model. If it has been classified as steady-state, the Steady-State Type Classification Model 

was used for the final classification. Otherwise, the final classification used the Transition Type 

Classification Model. This classification sequence was applied to build the recognition and 

prediction models. 
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Figure 6.4- SĐheŵatiĐ of the ĐlassifiĐatioŶ ŵodel͛s seƋueŶĐe foƌ ƌeĐogŶitioŶ aŶd pƌediĐtioŶ puƌposes. IdeŶtifi-
cation of databases and classes (marked at red). 

The implemented classification scheme (Figure 6.4) seems to be advantageous compared 

with the one proposed in [42], [216] since it demands fewer models, decreasing the compu-

tational load, and allows the easy incorporation of further LMs and LMTs, adding versatility to 

the framework to act as a benchmark tool.  

6.3.6.Model Evaluation  

For evaluating the built model, cross-validation methods were applied following a two-fold 

applicational goal. The first goal aims the hyperparameter tuning and comparison of the clas-

sification models using the different features and pre-processing techniques. In this case, the 

Model Evaluation was performed by 2-fold cross-validation for minimizing the computational 

ďuƌdeŶ assoĐiated ǁith the eǆhaustiǀe ŵodel͛s ĐoŵpaƌisoŶ. The second goal aims to evaluate 

the generalization capability of the final classification models using the leave-one-subject-out 

cross-validation [47].  

As performance metrics, Matheǁ’s ĐorrelatioŶ ĐoeffiĐieŶt (MCC) was used due to its good 

representative properties of unbalanced classes [223], as considered in this work. The accu-

racy was calculated foƌ ĐoŵpaƌiŶg the ƌesults ǁith the liteƌatuƌe͛s fiŶdiŶgs [47].  

6.4.Results and Discussion  

This section presents the results achieved for the final recognition and prediction tool built 

from the developed machine learning-based framework using the most effective techniques 

found for each stage. The comparative analysis of the different techniques explored in the 

framework is detailed in Appendix F. The findings presented in this subchapter allow investi-

gating whether kinematic data is enough to recognize and predict LMs and LMTs.  



Chapter 6 – Daily Locomotion Mode Recognition and Prediction 

115 

 

6.4.1.Evaluation of Recognition Tool 

The final recognition models were built using features calculated from a window size cov-

ering full-stride with the left/right approach and normalized by min-max scaling in [-1; 1] 

interval, the ͞ŵRMR plus forǁard seleĐtioŶ͟ method for feature selection, and the Gaussian 

SVM classifier (𝐶 = ͸Ͷ, 𝜎 = Ͷ).  

Table 6.1 summarizes the results by describing the number of classified steps, the number 

of selected features ďǇ ͞ ŵRMR plus foƌǁaƌd seleĐtioŶ͟ ŵethod, and the performance metrics, 

MCC and accuracy.  

Table 6.1- ReĐogŶitioŶ tool͛s peƌfoƌŵaŶĐe considering mean and standard deviation of MCC and accuracy (ACC) 

Recognition Model 
Number 

of steps 

Number of selected 

features 
MCC ACC (%) 

Direction 6064 43 0.998 ± 0.001 99.9 ± 0.4 

Steady-State/Transition 3170 69 0.817 ± 0.008 96.5 ± 0.12 

Transition Type 300 19 0.993 ± 0.011 99.6 ± 0.22 

Steady-State Type 2870 53 0.995 ± 0.001 99.8 ± 0.3 

 

As shown in Table 6.1, the number of used features was variable. Some features were 

selected for all recognition models, namely: (i) for left thigh, the last position of the sagittal 

angle and mean of the angular velocity; (ii) for left shank, the first position of the sagittal angle; 

(iii) for left foot, standard deviation of the sagittal angle, standard deviation  and range of the 

angular velocity; (iv) for right thigh, mean value of the angular velocity; and (v) for right shank, 

the mean value of the angular velocity.  

In particular, the features collected from the IMU placed on the back were exclusively 

used in the recognition models, as follows: standard deviation of the axial torso angle for 

Direction Recognition Model; mean of sagittal torso angular velocity for Transition Type 

Recognition Model; standard deviation of the axial torso angular velocity for Steady-State 

Type Recognition Model; and, mean, range and first position of the sagittal torso angle, first 

and last position of the sagittal torso angular velocity, mean and first position of the axial torso 

angle for Steady-State/Transition Recognition Model. The feature selection for the different 

models was consistent across subjects and involved features from all 7 IMUs.  

The Direction Recognition Model had near-perfect results (MCC = 0.998, accuracy = 

99.9%) with only few forward steps being classified as counter-clockwise or clockwise. This 
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model used 43 features from a total of 80. It shows that not all information is necessary for 

accurate classification of the walking direction.  

On the other hand, the Steady-State/Transition Recognition Model was less effective 

(MCC = 0.817, accuracy = 96.5%) even using more features (69 features). Previous studies [42], 

[218] reported that the inclusion of ramps as an LM introduced some error due to the similar-

ities between ramps and LW. This remark is according to the obtained results since all mis-

classifications involved the walking on or transitioning to ramps. The performance of Steady-

State/Transition Recognition Model may affect end-stage classification accuracy, i.e., the per-

formance of the Transition Type Recognition Model and Steady-State Type Recognition 

Model. 

The Transition Type Recognition Model was accurate (MCC = 0.993, accuracy = 99.6%), 

even when it was built with one-tenth of the steps and with the least number of features (19 

features) used in other models. This finding shows that it is possible to distinguish transition 

steps with high accuracy using a small number of kinematic features. The Steady-State Type 

Recognition Model had near-perfect results (MCC = 0.995, accuracy = 99.8%) using 53 fea-

tures. Errors were due to the classification of level walking steps as ramp steps and vice-versa.  

By comparing with the existing machine learning-based recognition tools based on kine-

matic data from wearable sensors, the proposed recognition tool can perform a more versa-

tile classification. So far, there is still any accurate recognition tool able to classify LMs and 

LMTs that considers different walking directions in LW (forward, back, clockwise, and counter-

clockwise) and terrains (LW, RA, RD, SA, and SD). Chan et al. [62] limited the recognition to SA 

and SD by using a less accurate tool (accuracy = 96.8%) than the one proposed in this work 

(accuracy = 99.8%). Further, the proposed recognition tool performs better when comparing 

to the one in [215], which identified the LW, SA, and SD with a sensitivity of 97%, 94%, and 

87%, respectively. 

The achieved results for recognizing steady-state steps in the LMs (LW, SA, SD, RA, and RD) 

are consistent with the ones reported in [43] (accuracy = 99.8% and accuracy = 99.7%, respec-

tively), where the lowest recognition accuracy occurred for RA. Nonetheless, this tool [43] did 

not define transitional steps as their class; instead, they set a boundary between LMs after 

which the upcoming LM was attributed. In contrast, the proposed tool recognizes the transi-

tional steps to allow some time to the robotic assistive device to timely generate smooth 

LMTs. 
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Lastly, it was observed that the most effective recognition tools proposed in the literature 

[41], [42] only recognized a LMT after the leading leg is already on the next terrain. In contrast, 

the proposed recognition tool recognizes an LMT before the leading leg reaches the second 

terrain type, without demanding any predefined leading leg, allowing a more natural walk in 

daily activities.  

6.4.2.Evaluation of Prediction Tool 

The final prediction models were built using features calculated over a window size of 1/4 

of the stride preceding the leading/opposite leg approach, normalized by min-max scaling in 

[-1; 1] interval, and selected by the ͞ŵRMR plus forǁard seleĐtioŶ͟ method. The prediction 

models were built using Gaussian SVM classifier (𝐶 = ͸Ͷ, 𝜎 = Ͷ). The findings suggest that 

the iŶteƌǀal fƌoŵ ϭ/ϰ stƌide͛s fƌaĐtioŶ to the toe-off event (likely from terminal stance phase 

to preswing phase) contains relevant information for the useƌ͛s ŵotioŶ pƌediĐtioŶ.   

Table 6.2 presents the results considering the number of classified steps, the number of 

selected features ďǇ ͞ŵRMR plus foƌǁaƌd seleĐtioŶ͟ ŵethod, and the performance metrics, 

the MCC and accuracy. 

Table 6.2- Prediction tool͛s peƌfoƌŵaŶĐe ĐoŶsideƌiŶg ŵeaŶ aŶd staŶdaƌd deǀiatioŶ of MCC and accuracy (ACC) 

Recognition Model 
Number 

of steps 

Number of selected 

features 
MCC ACC (%) 

Direction 6070 52 0.989±0.008 99.6±0.3 

Steady-State/Transition 3192 64 0.607±0.024 93.3±0.28 

Transition Type 316 38 0.887±0.0184 95.9±0.47 

Steady-State Type 2876 59 0.986±0.003 99.4±0.8 

The prediction models incorporate a different number of features by including features 

calculated from all IMUs of InertialLAB. This outcome indicates that the dimensionality reduc-

tion did not contribute to reducing the number of wearable sensors. Around eighteen fea-

tures (almost 25% of the total) were common to all models. The prediction models used more 

features than analogous recognition models. 

Some features were exclusively used in the prediction models, as follows: mean of the 

event foot angular velocity for Direction Prediction Model; first and last positions of the sag-

ittal torso angle, and standard deviation of the sagittal torso angular velocity for Steady-

State/Transition Prediction Model; mean angular velocity of the opposite shank, range of the 
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opposite foot angle, range of the sagittal torso angle, last position of the sagittal torso angular 

velocity for Steady-State Prediction Model. No specific feature was associated exclusively with 

the Transition Type Prediction Model, and there is no evidence for indicating the critical sen-

sors per prediction model.  

The Direction Prediction Model presented a near-perfect behavior (MCC = 0.989, accuracy 

= 99.6%), even when considering variations in gait speed. The misclassifications that occurred 

when forward steps were classified as counter-clockwise or clockwise and vice-versa, similarly 

to the recognition models. The model used 52 features from a total of 80 features, showing 

that there were still quite a few features irrelevant to the model. A previous turn system with 

IMUs reported results similar to the ones achieved in this work (accuracy> 97% vs. accuracy = 

99.6%, respectively) [219]. 

The Steady-State/Transition Prediction Model had the worst performance (MCC = 0.607, 

accuracy = 93.3%) while using most features (64 features). The use of an unbalanced sts_trs_ft 

database including a higher number of steady-state steps than transitional steps may explain 

this finding. The Transition Type Prediction Model was suitable (MCC = 0.887, accuracy = 

95.7%), mainly for SA->LW, SD->LW, RD->LW transitions. Moreover, the Steady-State Type 

Prediction Model has shown to be effective (MCC = 0.9857, accuracy = 99.4%) when using 59 

features.  

A previous study [42] developed a prediction system based on kinematic data and LDA that 

was able to classify LW, ramp, and stair steady-states with 99% accuracy. The proposed pre-

diction tool (accuracy = 99.4%) also matches this performance, suggesting it is more versatile 

(considers more LM and LMTs) and similarly effective, when compared with similar works. 

Moreover, the proposed tool was in part identical to study [216], by investigating kinematic 

data from the step that precedes the LMT. However, the presented prediction models are 

more accurate, more versatile by varying walking direction and speed on LW, and followed a 

lower complex prediction scheme than the one proposed in [216]. Furthermore, the devel-

oped approach is more practical considering daily application requirements given the faster 

time for wearing the IMUs and provided a less intrusive experience than the one reached with 

the tethered solution proposed in [216]. 

Other studies [218], [224] have combined EMG with kinematic sensors, addressing a neu-

romechanical sensor fusion for improving the steady-state and transition prediction. The sen-

sor fusion used in [224] was slightly more effective (accuracy = 0.95) in the transition 
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prediction problem than the proposed kinematic-based tool (accuracy = 93.3% for Steady-

State/Transition Prediction Model and accuracy = 95.9% for Transition Type Prediction 

Model). On the other hand, the developed transition prediction model was more accurate 

than the models described in [218] (accuracy = 88%), which used EMG sensors that also re-

ported uncomfortable usability [42]. 

6.4.3.Limitations 

The developed classification scheme requires accurate classification models throughout 

the classification sequence since classification errors would propagate from the initial to final 

classification stage. This means that the performance of both the Steady-State Type Classifi-

cation Model and Transition Type Classification Model depends on the effectiveness of Direc-

tion Classification Model and Steady-State/Transition Type Classification Model. In practice, 

the accuracy of Steady-State Type Classification Models and Transition Type Classification 

Models is lower than the one presented in Table 6.1 and Table 6.2 since it would be needed 

to add the classification error of Direction Classification Model and Steady-State/Transition 

Type Classification Model.  

Moreover, the reduced number of transitional steps might be underperformed the Steady-

State/Transition Prediction Model. 

The validation of the proposed recognition and prediction tool was limited to gait patterns 

obtained from a set of healthy subjects. The variation of walking direction and gait speed with 

terrains was not addressed in this thesis.  

6.5.Conclusions   

The benchmarking analysis using the developed machine learning-based framework con-

cluded that the min-max normalization within [-1; 1] interval, ͞ŵRMR plus forǁard seleĐ-

tioŶ͟ feature selection method, and Gaussian SVM classifier as the most accurate techniques 

for building recognition and prediction tool. The findings highlight the following concluding 

remarks. First, the discrimination of the leading and opposite legs is relevant for prediction. 

Second, the dimensionality reduction methods that depend on the built model outperformed 

the ones (as ANOVA and PCA) that do consider the classification model. The SVM͛s aďilitǇ to 

define more complex decision boundaries favors the useƌ͛s ŵotioŶ aŶalǇsis, as ƌeǀieǁed iŶ 

[47].  
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The developed automatic, user-independent recognition and prediction tool tuned with 

kinematic patterns correctly classify LMs and LMTs commonly encountered in daily life. The 

contribution of this work to the state-of-the-art is manifold; it proposes a more versatile tool 

that classifies several LMs and LMTs while covering different walking directions and terrains; 

it tackles the transition prediction problem only using kinematic data; and, it allows the user 

to self-select the leading limb for performing the transitional step. There is evidence that kin-

ematic data are appropriate for predicting LMs and LMTs one step before their occurrence.  

Moreover, the proposed tool was able to achieve generalization for a given set of healthy 

subjects. It may be applied to establish a recognition and prediction tool for a segment of the 

population of pathological end-users.   

There is still room for improving the decision-making from/to ramp by using environment 

awareness to infer the interaction between the user and the world [225]. Recent efforts are 

being made to update the useƌ͛s ŵotioŶ iŶteŶtioŶ tool of SŵaƌtOs ĐoŶsideƌiŶg the foƌeĐastiŶg 

nature of infrared laser sensor data, inspired by the human ability to adapt and transit among 

LMs considering the visualized upcoming terrain changes. The LM transition prediction tool 

based on a wearable infrared laser sensor showed in [54] to be accurate and time-effective 

(prediction time > 0.73 s) for LMTs in different terrains (level-terrain, stairs, and ramps).  

Lastly, the ability of the proposed tool for ĐlassifǇiŶg the useƌ͛s ŵotioŶ iŶteŶtioŶ will be 

extended for the high-level layer of the control architecture described in Chapter 7.  
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Chapter 7 – Assistive Control Strategies  

This chapter starts with an introductory insight into the assistive control strategies applied 

in robotic-based gait training. Then, it presents the implemented hierarchical control archi-

tecture, detailing the development and validation of the assistive control strategies ap-

proached in this thesis. The potential rehabilitation benefits of each assistive strategy are dis-

closed and discussed. Moreover, this chapter investigates the contributions of Feedback Error 

Learning (FEL) as a time-effective and adaptive low-level controller for SmartOs system. The 

chapter ends with a comprehensive concluding insight into the proposed assistive control 

strategies. 

7.1.Introductory Insight  

Gait rehabilitation involves a physical and cognitive relearning of how to move to carry out 

their needs successfully and in a safe manner [11]. AOs should foster such gait rehabilitation 

by endowing assistive control strategies designed to enable user-oriented and intuitive mo-

tor learning. While assisting and enabling long-term recovery of motor abilities, these control 

strategies have been reducing the burdens placed on short supply of therapies and other 

health care personnel [9]. 
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Previous neuroscience studies have demonstrated that repetition plays a significant role in 

potentiating motor relearning and functional reorganization [11]. Consequently, rehabilita-

tion intervention involving AOs towards repetitive locomotor movements for long-term train-

ing sessions, mainly when trajectory assistive strategies are applied [9], [31]. The trajectory 

control is a conventional assistive strategy that guides the AOs to move along repetitive and 

specific movements, based on predefined position or torque trajectories, similar to the way 

that theƌapists ŵoǀe patieŶt͛s legs duƌiŶg ŵaŶual assistaŶĐe [11], [29]. New directions include 

adjustment of trajectories aĐĐoƌdiŶg to the useƌs͛ ďodǇ ĐoŶditioŶs aŶd gait speed, approach-

ing the adaptive trajectory control to improve the useƌ͛s ŵoǀeŵeŶt ĐooƌdiŶatioŶ and enabling 

a natural gait pattern recovery [27], [28]. Central pattern generators, applying biological con-

cepts of the human motion control system, can be used for generating adaptive trajectories 

considering gait speed variations [226].  

Motor learning theories have also highlighted the needed for teaching more functional 

gait patterns, which allow neurologically impaired subjects to achieve a certain level of phys-

ical independence on daily living [11]. Consequently, assistive control strategies such as EMG-

based control [33], [227] and reflex-based control using neuromuscular bioinspired models 

[28], [228] have been proposed to foster user-oriented assistance during high-challenging and 

dynamic locomotor tasks.  

There is evidence that the effects͛ size of robotic-driven gait rehabilitation, such as the 

functional motor recovery ƌesult fƌoŵ the useƌ͛s ǀoluŶtaƌǇ paƌtiĐipatioŶ, depends on how 

compliant is the human-robot interaction [31], [229]. Impedance assistive strategies have 

been implemented by modulating the impedance of assistive devices to establish a symbiotic 

human-robot interaction, maintaining the interaction force below safe levels for the user 

while controlling the limb position according to the desired trajectories for the gait therapy 

[229]. 

Additionally, AAN control strategies, such as adaptive impedance control [29], [230], 

[231], AAN EMG-based control [232], [233], and energy-based control (making use of a phys-

iological signal of energy) [234] have been proposed to ensure an energetic-efficient assis-

tance for providing a more personalized and functional training [11], [27], [235]. These strat-

egies are able to automatically modify control parameters to tailor the assistance based on 

the individual useƌ͛s needs. 
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Note that different controllers, such as feedback control, model-based control, iterative 

learning control, and fuzzy control [236], may be used to ensure that the assistive devices 

track the desired assistance set by these assistive control strategies. 

Table 7.1 presents an overview of the assistive control strategies mostly applied in active 

assistive devices. Each of these strategies may be advantageous in some gait rehabilitation 

and assistance paradigms depeŶdiŶg oŶ the useƌ͛s disaďilitǇ leǀel aŶd theƌapeutiĐ puƌposes.  

Table 7.1- Summary of the control strategies applied to active assistive devices. Information obtained from [10], 

[11], [13], [45], [46], [237]. 

Control 

Strategy 
Principle Advantage Disadvantage 

Assistive  

Device (e.g.) 

Predefined 

Trajectory 

Control 

/ Adaptive 

Trajectory 

Control 

Impose  

repetitive 

trajectories  

- Useful for patients 

with severe motor 

pathology; 

- IŶĐƌease the leg͛s 
natural frequency; 

- Not encourage the sub-

jeĐt͛s paƌtiĐipatioŶ; 

- Not ĐoŶsideƌ the useƌ͛s 
movement intention; 

 

ATLAS;  

eLEGs; HAL; 

Mindwalker, 

SCKAFOS 

Impedance 

control / 

Adaptive  

impedance 

control 

Modify the  

impedance/ 

compliance 

of the  

assistance  

- Considers human-

robot interaction. 

- Encourage the 

useƌ͛s participation; 

- Considers the 

useƌ͛s disaďilities; 

- Inter/intra-subject  

difference affects the 

control modelling; 

 

Knee ortho-

sis by 

Daachi; 

Lokomat®; 

Orthosis by 

Hussain 

EMG-based 

Control 

Follow 

useƌ͛s  
motion  

intention 

based on 

EMG signals 

 

- Considers the 

useƌ͛s disaďilities; 
- TƌaĐks patieŶt͛s 

rehabilitation 

progress; 

- Encourage the 

useƌ͛s paƌtiĐipatioŶ; 

- Differences in muscular 

activity between users 

and motion tasks; 

- Requires repeated 

calibration to deal with 

muscular activity varia-

tion  

AAFO by P. 

Kao, AAFO 

by Ferris, 

Sharif Exo-

skeleton 

Introducing gait training variability improves the overall function motor performance and 

enables to accommodate the variability of the inter-and intra-subject needs. In this sense, the 

AOs should approach different assistive control strategies offering a multi-functional assistive 

system suitable for distinct kinds of therapies. 

Bioinspired control architectures, following the principles and organization of the human 

motion-control system, started to emerge [9], to efficiently approach user-oriented and AAN 

strategies and to provide a seamless and synergetic user-orthosis interaction for increasing 

brain plasticity [28]. Such architectures comprise the design of low-, mid-, and high-level 
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controls, distributed hierarchically to accounts with the physical interaction between the user, 

the environment, and the AO [9], [46]. 

The design and development of the hierarchical control architecture of SmartOs followed 

these research directions and the potentialities of each assistive control strategy, as following 

described in this chapter.  

7.2.Hierarchical Control Architecture   

SmartOs system endows a safe, hierarchical, closed-loop control architecture hierarchi-

cally structured into three-control levels, as illustrated in Figure 3.1. Both structure and the 

fusion of control and sensor feedback systems were bioinspired on the human motion-control 

system.  

The high-level, the perception layer, was designed to manage the gait analysis tools for 

useƌ͛s ŵotioŶ iŶteŶtioŶ ƌeĐogŶitioŶ (presented in Chapter 6), gait event detection (described 

in Chapter 5), gait speed estimation (given in Chapter 4), and useƌ͛s disability level recognition. 

It sets user-oriented gait trajectories. The mid-level, the translation layer, converts the user-

oriented trajectories into AO reference trajectories tailored by the current gait event and 

human-orthosis interaction when needed. Lastly, the low-level layer uses tracking controllers 

to geŶeƌate assistiǀe ĐoŵŵaŶds suĐh that the AOs͛ state tiŵelǇ tƌack the desired assistive. 

Currently, the control architecture endows low-level position-based and torque-based track-

ing controllers implemented through proportional integral derivative (PID) and FEL. 

Concerning the control frequency, the low-level was set to 1 kHz (high-frequency for 

achieving an effective human-machine tracking control loop) while the high- and mid-level to 

100 Hz (enough for human-machine gait analysis). All software routines of the low- and mid-

level controllers were implemented in C language in the STM32F407VGT microcontroller, 

whereas the high-level controllers, implemented in C++ language, are executed in the CCU, 

the Raspberry Pi 3.  

The architecture presents a modular design to be expandable for including further assistive 

control strategies as required for making SmartOs a multi-functional robotic-based gait train-

ing solution.  
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7.2.1.Overview of Proposed Assistive Control Strategies  

Currently, the control architecture includes four user-oriented, closed-loop assistive con-

trol strategies, implemented in the high- and mid-level controllers, as follows.  

(1) User-orthosis interaction-based control that controls the human-orthosis interaction to 

minimize the mechanical impedance of the AO to act like a passive device and follow 

the useƌ͛s ŵotioŶ iŶteŶtioŶs (chapter 7.3); 

(2) User-oriented trajectory control that controls the position-based trajectory of the hu-

man joint according to user-oriented trajectories (chapter 7.4); 

(3) Adaptive impedance control, an AAN control strategy that controls and adjusts the im-

pedance of the human-orthosis interaction, providing interactive and compliant training 

(chapter 7.5); 

(4) EMG-based Control that controls the assistance level of AOs based on the voluntary 

muscle contraction of the user, reflecting the useƌ͛s motion intentions (chapter 7.6).  

Figure 7.1 presents an overview of the hierarchical implementation of each control strat-

egy. Throughout this chapter, each assistive control strategy will be presented and validated 

involving healthy subjects to investigate their usability and time-effectiveness for real-time 

gait rehabilitation and assistance and to establish guidelines for their application in neurolog-

ical conditions.  

 

Figure 7.1- User-oriented assistive control strategies implemented in the hierarchical control architecture. 𝜏௥௘௙ , 

AO reference torque; 𝜏𝑖௡௧_௠௘௔௦, user-AO interaction torque; 𝜃௨௦௘௥ , user-oriented position trajectory; 𝜃௥௘௙, AO 

reference position trajectory; 𝜃௠௘௔௦, AO measured position trajectory; ݇, stiffness of the user-orthosis interac-

tion; ܩܯܧ, EMG envelops; ܭ, EMG-torque user-oriented parameter.  
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The control strategies were selected considering the therapeutic challenges proposed for 

SmartOs system in the post-stroke gait training, as listed in Table 7.2. In overall, these strate-

gies make the SmartOs suitable for distinct kinds of therapies to accommodate short- and 

long-term changes in motor capacities. All strategies enable gait speed variation from 0.5 to 

1.6 km/h (considering the mechanical limits of AOs) to enable high-challenging gait training 

within each strategy.  

Table 7.2- Summary of assistive control strategies applied to SmartOs  

Assistive 

control strategy 

Low-level 

Control* 
Principle Therapeutic Purpose 

User-Orthosis 

 Interaction-based 

Control 

Torque 

PID 

 

Useƌ͛s iŶteƌaĐtioŶ 

Useƌ͛s ŵotioŶ  
intentions 

 

- Useƌ͛s aĐtiǀe paƌtiĐipatioŶ  
encouragement  

- High-level of muscle strengthening  

- Familiarization period  

User-oriented  

Trajectory Control 

Position  

PID or FEL  

 

Repetitive  

movements  

 

- User-oriented repetitive gait training 

- Useƌ͛s natural gait pattern recovery 

- More symmetrical gait pattern 

Adaptive Impedance 

Control 

 

Torque 

PID  

 

Useƌ͛s iŶteƌaĐtioŶ 

Useƌ͛s iŶteŶtioŶs 

- Useƌ͛s natural gait pattern recovery 

- Long-term recovery of functional 

motor abilities 

- Energetic-efficient motor recovery 

- Useƌ͛s aĐtiǀe paƌtiĐipatioŶ  
encouragement  

- Increased muscular strength 

- Assistance level adjustment 

EMG-based 

Control 

 

Torque 

PID  

 

Useƌ͛s intentions 

 

-Long-term recovery of functional mo-

tor abilities 

- Increased muscular strength 

- Reduced muscular atrophy 

- Useƌ͛s aĐtiǀe paƌtiĐipatioŶ  
encouragement  

* Current low-level controllers implemented per assistive control strategy.  

7.2.2.Safety Measures aŶd AO’s AttaĐhŵeŶt MethodologǇ 

Different safety measures were included throughout the control architecture and applied 

for all assistive control strategies to safeguard the user and AO integrity. The first safety 

measure was regarding the mechanical limits, i.e., the range of motion of the AOs. The range 

of motion of PKO and PAFO was limited to [5; 98]° and [-18; 18]°, respectively. These intervals 

are contained within the range of motion of the useƌ͛s joiŶts so that the AOs do Ŷot Đoŵpƌo-

ŵise the useƌs͛ joiŶts iŶtegƌitǇ ďǇ applǇiŶg oǀeƌeǆteŶsioŶ oƌ oǀeƌ-flexion motions.  
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The control commands were limited to [-ϮϱϬϬ; ϮϱϬϬ], i.e., the ŵaǆiŵuŵ ǀalues of the AOs͛ 

pulse-width modulation, to avoid the controller instabilities. For this purpose, the hierarchical 

architecture includes a saturator. Additionally, the therapy is interrupted or stopped smoothly 

and safely when the user is touching on the ground to avoid a fall risk situation.  

Lastly, an adaptable attachment of the AOs ǁith the useƌ͛s loǁeƌ liŵďs aŶd joiŶts, ƌespeĐ-

tively, was considered ŵaǆiŵiziŶg the AO’s usaďilitǇ. The location of the braces was adjusted 

aĐĐoƌdiŶg to the useƌ͛s liŵď leŶgth, and the strap system enables the adjustment of AO to the 

useƌ͛s liŵď ǁidth. This attachment methodology makes the AOs suitable for subjects with dif-

ferent anthropometric features to cover 10th-to-90th percentile of the male/female population 

(height ranging from 1.50 m to 1.90 m and body mass ranging from 45 kg to 100 kg).  

A four-strap system was incorporated in the mechanical structure of the PKO, by placing 

two upper straps on the tight and two lower straps on the shank, as represented in Figure 7.2.A. 

The PAFO was attached to the human lower limb using a two-strap system placed on the useƌ͛s 

shank and a four-strap system built-in the PAFO͛s outsole placed on the useƌ͛s feet, as depicted 

in Figure 7.2.B. This outsole system was used on the non-assisted limb (i.e., limb without the 

PAFO) to minimize the gait asymmetry due to the height of the outsole placed on the assisted-

limb.  

Furthermore, the attachment system also aims to improve the user’s joiŶt aŶd AO aligŶ-

ment and consequently, to minimize the loss of mechanical power without obstruction or re-

sistance to the movement.  

 

Figure 7.2- AOs͛ attaĐhŵeŶt sǇsteŵ. A: Four-strap System (1-4). B: Two-strap System (1-2) and four-strap sys-

tem built-iŶ the PAFO͛s outsole (3). 
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7.2.3.Gravity Compensation  

The control architecture includes at the low-level layer a gravity compensation component 

to minimize the gravitational burden of the ǁeaƌaďle AOs͛ mass from the user [238]. The con-

trol architecture was designed to provide the gravity compensation torque when a user is 

wearing the PKO or PAFO.  

Methods  

Generally, the gravity compensation torques (ܩሺ𝜃ሻ) may be computed through the expres-

sion of the potential energy (ܲ), as given in Equation (7.1a), considering the Euler-Lagrange 

formulation. As the PKO and PAFO are a two-link articulated system (including an upper and 

lower link, here presented as link1 and link2, respectively), the potential energy (ܲ) of these 

AOs is described using Equation (7.1b). Consequently, the expression for computing the grav-

ity compensation torques can be written, as given in Equation (7.1c). 

ሺ𝜃ሻܩ = 𝜕ܲሺ𝜃ሻ𝜕𝜃   (7.1a) 

ܲ = ∑ 𝑖ܲଶ
𝑖=ଵ  (7.1b) 

ሺ𝜃ሻܩ = [  
 𝜕ܲ𝜕𝜃ଵ𝜕ܲ𝜕𝜃ଶ]  

 
 (7.1c) 

The gravity compensation is variable along with gait cycle given its dependency on the 

AO͛s joint angle, namely the angle of the upper and lower link, represented as 𝜃ଵ and 𝜃ଶ in 

Figure 7.3.A, respectively. For both AOs, the 𝜃ଶ was measured by the potentiometer embed-

ded on the AO. The 𝜃ଵ was got from IMU-based angle estimation, as described in Chapter 4.2. 

To monitor 𝜃ଵ in PKO, the IMUs were placed on the human center of mass and thigh (IMU1 

and IMU2 in Figure 7.3.A, respectively). For PAFO, the IMUs were placed on the thigh and 

shank (IMU2 and IMU3 in Figure 7.3.A, respectively). 

Overall, the gravity compensation torques were computed through Equation (7.2), where ݉ ƌepƌeseŶts the liŶk͛s ŵass, ݈ is the liŶk͛s leŶgth, ݈ܿ represents the length between the cen-

teƌ of AO͛s ƌotatioŶ to the ĐeŶteƌ of ŵass of the liŶk, 𝜃 is the link orientation, and ݃ the grav-

itational acceleration, 9.8 m/s2. As the actuation system is placed on the lower link, the 
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actuation system of AO can only generate the 𝑮ሺ𝜽𝟐ሻ gravitational torques. Consequently, 

the control architecture of SmartOs includes a partial gravitational compensation as it is not 

able to generate ܩሺ𝜃ଵሻ torques.     

ሺ𝜃ሻܩ = [ሺ𝜃ଶሻܩሺ𝜃ଵሻܩ]  [ሺ𝜃ଶሻܩሺ𝜃ଵሻܩ] = [ ݉ଵ݈݃ܿଵsin ሺ𝜃ଵ + 𝜃ଶሻ݉ଵ݈݃ଶ sinሺ𝜃ଶሻ + ݉ଵ݈݃ܿଵ sinሺ𝜃ଵ + 𝜃ଶሻ + ݉ଶ݈݃௖ଶ sinሺ𝜃ଶሻ]   (7.2) 

As depicted in Figure 7.3.B, the ܩሺ𝜃ଶሻ torques were converted into a gravity compensation 

command (ீݑ ) through a proportional gain (݇ሻ, as proposed in [230]. Subsequently, ீݑ  is 

summed to the control command (ݑ௖) to determine the total command (ݑ௧) to be provided 

by the AO͛s aĐtuatioŶ sǇsteŵ suĐh that it is able to compensate for the gravitational burden 

of the ǁeaƌaďle AOs͛ ŵass aŶd to assist as desiƌed.   

 
Figure 7.3- A: Gravity compensation strategy, highlighted for PKO. IMU1 and IMU2 were used in PKO for esti-

mating hip angle (𝜃ଵ), and IMU2 and IMU3 for determining the knee angle (𝜃ଵ) used in PAFO. For both AOs, the 𝜃ଶ was measured by potentiometer embedded on AO. B: Control architecture considering the gravity compen-

sation strategy (ܩሺ𝜃ଶሻ), with k gain empirically set to 100.   

Experimental Validation  

The effect of gravity compensation on assisted walking by PKO and PAFO was evaluated 

assuming that trials without gravity compensation require more effort from the user compar-

ing to those with gravity compensation. Consequently, the user’s phǇsiĐal effort (evaluated 

by EMG signals) and the user’s effort perĐeptioŶ was compared in the presence and absence 

of gravity compensation.  
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The validation involved 12 healthy subjects (7 males and 5 females), with age of 23.5 ± 1.78 

years old, the height of 1.71 ± 0.09 m, and the mass of 69.58 ± 10.23 kg.  

The participant started the experimental validation by wearing the AO (PAFO or PKO), two 

embedded IMUs (required for gravity compensation), and two EMG surface electrodes, the 

TrignoTM Avanti Sensors (Delsys, USA). For PAFO, the electrodes were placed on the tibialis 

anterior and gastrocnemius lateralis muscles; whereas the semitendinosus and vastus lateralis 

muscles were selected for PKO.   

Each subject was asked to perform a familiarization trial with the AO walking on the tread-

mill. Then, he/she stand still for 5 seconds for IMUs͛ ĐaliďƌatioŶ. Subsequently, each partici-

pant performed 4 trials of 60 seconds walking at 1.0, 1.3 and 1.6 km/h on a treadmill with the 

AO configurated with the user-orthosis interaction-based control strategy. The gravity com-

pensation was activated on the second and fourth trial without the knowledgeable of the user. 

At the end of each trial, the participants were asked about the felt effort during walking by 

answering (with a number of a scale range from one to five, where one is very low, and five is 

very high) to the following question: How do you quantify your effort in this trial?. The protocol 

was firstly performed for PAFO and posteriorly repeated for PKO.  

For evaluating the effects of gravity compensation, the EMG envelope (100 Hz) was com-

puted usiŶg EMGWoƌks ;DelsǇs͛ softǁaƌeͿ, and normalized within [0, 1] interval across gait 

speeds for the elected muscles (i.e., tibialis anterior, gastrocnemius lateralis muscles, semiten-

dinosus and vastus lateralis). Moƌeoǀeƌ, the useƌ͛s peƌĐeptioŶ ĐolleĐted at the eŶd of eaĐh 

trial was analyzed.  

Results and Discussion  

BǇ aŶalǇsiŶg the useƌ͛s ŵusĐulaƌ aĐtiǀitǇ ǀaƌiatioŶ aĐƌoss tƌials ǁith aŶd ǁithout gƌaǀitǇ 

compensation, a decreased of the user’s ŵusĐular effort in the presence of the gravity com-

pensation was noticed. For instance, Figure 7.4 presents the findings achieved for walking 

trials performed at 1 km/h, where the muscular activation of tibialis anterior and gastrocnem-

ius lateralis muscles was lower with gravity compensation (trial 4) than without gravity com-

pensation (trial 3). For gastrocnemius lateralis, the mean value of maximum muscular activa-

tion reduced from 21% to 14%, corresponding to an overall decrement of 33.3% of muscular 

effort in the presence of gravity compensation. In tibialis anterior muscle, a decrease of 37.1% 
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of the maximum muscle activation was observed when the gravity compensation was acti-

vated.  

 

 

Figure 7.4- Representative outcomes of gravity compensation effect. Normalized EMG envelope of tibialis ante-

rior and gastrocnemius lateralis muscles from one subject while walking with PAFO at 1.0 km/h. Identification of 

the maximum muscle activation across gait trials. The gravity compensation is only activated in trial 4. 

 

On the other hand, most of the participants were not able to differentiate trials with and 

without gravity compensation effect, as they considered that the applied effort across the 

trials was identical ;͞loǁ-to-ƌeasoŶaďle effoƌt͟ foƌ PAFO, aŶd ͞ƌeasoŶaďle effoƌt͟ foƌ PKOͿ. 

This finding may be explained by the lower gravity compensation torques (ܩሺ𝜃ଶሻ) supplied by 

the AOs (absolute maximum value round 2 Nm), which may be imperceptible by a healthy 

subject. Even so, three participants correctly perceived the gravity compensation effect by 

feeliŶg the AO ͞ŵoƌe lighteƌ͟. 

Overall, the developed computational mechanism to compensate the part of the AOs͛ ŵass 

shown to be relevant for reducing the useƌ͛s physical effort during walking. Nevertheless, 

there is still room for improvements through compensation of eŶtiƌe AOs͛ ŵass considering a 

mechanical compensation mechanism. 
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7.3.User-Orthosis Interaction Based Control  

7.3.1.Methods  

The user-orthosis interaction based control consists of a torque-based control that mini-

mizes the mechanical impedance of the AO to act as a passive device (although actuated). 

Under a research insight, this control strategy was implemented (i) considering a learning and 

development phase ;͞TeaĐh aŶd ReplaǇ͟Ϳ [11], where the trajectories and interaction torque 

are recorded to be applied in other control strategies posteriorly, (ii) for comparison purposes 

with different assistive control strategies, and (iii) to infer the impact of the robotic device in 

the useƌ͛s.  

Figure 7.5 depicts the hierarchical control architecture implemented in PKO and PAFO for 

user-orthosis interaction based control. This control strategy ensures that the AOs follows in-

tegrally the user’s ŵotioŶ iŶteŶtioŶs, which are processed at the high-level in terms of the 

user-AO interaction torque (𝜏𝑖௡௧ ) monitored by the strain gauges embedded on PKO and 

PAFO. Note that the interaction torque values describe the gravitational and inertial compo-

nents, as well as the torques produced by the user.  

The mid-level sets the AO reference torque (𝜏௥௘௙) to zero such that the user feels more 

freedom to move accordingly with his/her intentions and to emulate a passive mode. The low-

level consists of a PID controller to send a command (ݑ) to the actuation system using the 

PID control law presented in Equation (7.3), where ݁௞ and ݁௞−ଵ correspond to the current and 

previous between the reference (𝜏௥௘௙) and the measured interaction torque (𝜏𝑖௡௧).  

ݑ = ௣݁௞ܭ + 𝑖ܭ ∑ ݁௡∆ݐ + ௗ௞௡=ଵܭ ݁௞ − ݁௞−ଵ∆ݐ  (7.3) 

The PID was tuned with the Ziegler-Nichols method, with a similar procedure as was reported 

in [154]. This tuning considered the practical application of PKO and PAFO in a rehabilitation 

scenario to avoid abrupt movements that can cause discomfort to the user and to avoid oscil-

latioŶs aŶd oǀeƌshoot iŶ the aĐtuatoƌ͛s ƌespoŶse. The aĐhieǀed gaiŶs ǁeƌe:  ܭ௣ = ͻͲ  and ܭ𝑖 ௗܭ = = ͳ.ͷ.    
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Figure 7.5- Hierarchical control architecture of the user-orthosis interaction based control strategy. A: represents 

the strain gauge.   

7.3.2.Experimental Validation  

The experimental validation aimed to (i) test the effectiveness of the user-orthosis interac-

tion based control strategy in PKO and PAFO, (ii) investigate the usability of both AOs, and (iii) 

collect data for validating the gait event detection tool in assisted gait conditions and for tun-

ing parameters in adaptive impedance control.  

Participants 

The validation involved 12 healthy subjects (7 males and 5 females), with age of 23.5 ± 1.78 

years old, the height of 1.71 ± 0.09 m, and the body mass of 69.58 ± 10.23 kg. The participants 

gave informed consent to perform the trials and to use the collected data for research pur-

poses.  

Protocol  

The experimental protocol was applied for both PKO and PAFO, as follows. The participants 

started by wearing an IMU (embedded IMU of AO) instep of the foot, two FSRs placed on the 

heel and toe for ground truth in the gait event detection, and the AO (PKO or PAFO) mounted 

in the right human limb (knee or ankle joint, respectively).  
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The participants conducted a familiarization walking trial of 2 minutes per AO. The partici-

pant started the gait trials in standing position with both knee and ankle joints aligned to 

round 0°, enabling the IMU calibration. Subsequently, they were asked to perform 3 level-

ground walking trials of 2 minutes on a treadmill. These trails were carried out for distinct gait 

speed: 1.0, 1.3, and 1.6 km/h. The subjects cloud start the trial when they felt comfortable 

and cloud rest 2 minutes between the trials. Figure 7.6 shows a screenshot of a female subject 

performing this protocol. 

 

Figure 7.6- Screenshot of a female subject walking at 1.6 km/h. The participant is wearing the PKO at the knee 

joint, an IMU in the instep of the foot, and two FSRs placed on the heel and toe.  

Data Collection and Analysis   

The data were collected at 100 Hz and analyzed in Matlab® (2017b, The Mathworks, MA, 

USA). The sensor information (user-AO interaction torque, joint angle, foot angular velocity, 

and FSR measure at heel and toe) was monitored, together with the control architecture out-

puts (reference torque, measured interaction torque, aŶd ĐoŶtƌolleƌ͛s ĐoŵŵaŶdͿ. Fuƌtheƌ-

more, the subjects were asked about the comfort and safety felt during the trials. 

7.3.3.Results and Discussion  

The performance and effectiveness of the developed user-orthosis interaction based con-

trol strategy considered the inspection of the control outputs considering the user͛s interac-

tion and the feedback provided by the subjects during the trials.  

Figure 7.7 provides the control results of PAFO (Figure 7.7.A) and PKO (Figure 7.7.B), 

namely the reference control variable (reference torque, 𝜏௥௘௙), measured control variable (in-

teraction torque, 𝜏𝑖௡௧), control command (ݑ), and the AO͛s angle.  
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Figure 7.7- Representative outcomes of the user-orthosis interaction based control during walking trials. A: 

Male subject walking with the PAFO at 1.6 km/h. B: Male subject walking with PKO at 1.0 km/h. 

By analyzing the bottom view of Figure 7.7.A and Figure 7.7.B, it is possible to verify that 

the output of the control architecture, i.e., the control command time-effectively follows the 

user’s ŵotioŶ iŶteŶtioŶ measured by the interaction torque. 

Furthermore, it was observed that the AO’s angle trajectory (i.e., ankle angle and knee 

angle in Figure 7.7) is handled by the user-orthosis interaction torque regarding its magni-

tude. In the first seconds of the trial (before the participants start the walking trial), the user 

is not interacting with the AO (interaction torque value near to 0 Nm), and consequently, the 

angle trajectory keeps approximately constant. On the other hand, the increased useƌ͛s inter-

action with the AO (interaction torque varies) results in a ǀaƌiatioŶ iŶ the AO͛s angle trajectory. 

From the top view of Figure 7.7.A and Figure 7.7.B, it is possible to verify that as higher was 

the useƌ͛s iŶteƌaĐtioŶ, higher was the ROM of AO. The AOs͛ ƌaŶge of ŵotioŶ was not constant 
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during the trials, indicating that the subjects had the freedom to move in the direction of the 

human-orthosis interaction force, with minimized rigidity offered by the device.  

The ankle and knee angle trajectories are similar to the ones reported for healthy sub-

jects[239], and the interaction torque changes following the direction of the movement (in-

creases until maximum flexion and decreases until maximum extension).  

Concerning the AO͛s impact on walking, the participants reported that both AOs are com-

fortable to use and easy and safe to wear. When wearing the PAFO, no misalignments issues 

were observed. However, the misalignment of the PKO affected the therapy (requiring to 

readjust the PKO͛s usaďilitǇ aĐƌoss the tƌials) mainly for shorter subjects. With this assistive 

strategy, the participants perceived that they could control the AO͛s trajectory in the direction 

of his/her motion intentions.  

This strategy showed to be suitable for therapies that exclusively appƌoaĐhed the useƌ͛s 

motion intention, with low rigidity offered by the AOs. Thus, the subjects must present volun-

tary muscular contractions to interact with the device. The user’s ǀoluŶtarǇ effort provides 

ways to enhance the muscular strength and the useƌ͛s iŶǀolǀeŵeŶt for maintaining the motor 

learning function active. Nonetheless, this strategy does not take into consideration the 

useƌ͛s disaďilitǇ leǀel. 

Lastly, an analysis on the foot angular velocity at the sagittal plane was performed to in-

vestigate whether the walking assisted by AOs modifies the kinematic signal used in the gait 

event tool (see example in Figure 7.8). This analysis enables to verify that the foot angular 

velocity signal remains similar in waveform and magnitude to the one measured for non-as-

sisted conditions. This finding indicates that the gait event detection tool described in Chapter 

5 may be applied for gait assisted situations.  
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Figure 7.8- Foot angular velocity in the sagittal plane and FSRs (heel and toe) signals recorded from assisted 

walking with PAFO in the user-orthosis interaction based control at 1.4 km/h. 

7.4.User-Oriented Trajectory Control 

7.4.1.Methods  

The user-oriented trajectory control strategy was designed towards the parameterization 

of trajeĐtories aĐĐordiŶg to the users’ height and gait speed to enable a natural gait pattern 

recovery, as depicted in Figure 7.9.  

 

Figure 7.9- Hierarchical control architecture of the user-oriented trajectory control strategy, highlighting the low-

level PID controller.  

The high-level includes an user-oriented trajectory model based on a trajectory regression 

model [240] depeŶdeŶt oŶ the useƌ͛s height aŶd speed, joiŶt ;the kŶee oƌ aŶkleͿ to set aŶ 
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user-oriented position trajectory (𝜃ݎ݁ݏݑ) for the knee and ankle joints. For instance, Figure 7.10 

illustrates the variability of knee angle trajectory according to the desired gait speed and 

useƌ͛s height.  

 

Figure 7.10- Knee trajectories generated by the trajectory model [240] used at the high-level control. A: Knee 

trajectories generated for a subject with 1.5 m for different gait speeds. B: Knee trajectories generated for sub-

jects with different heights for 1 km/h.  

The mid-level controller sets the AO’s refereŶĐe positioŶ trajeĐtorǇ (𝜃௥௘௙) as the user-

oriented position trajectory (𝜃௨௦௘௥) parameterized according to the gait speed. As such, Equa-

tion (7.4), empirically found, sets the Number of Control Loops (NCL), each lasting 1 ms, that 

must occur to update the value of the reference trajectory. This speed-parameterization aims 

to ensure user-AO coordination. 

ܰ𝐶ܮ = −͵Ͷ.͸ʹ ∗ ݀݁݁݌ܵ ݐ𝑖ܽܩ + ͳͲ͹.͵ͳ (7.4) 

The low-level controller covers a position-based control loop to eŶsuƌe that the AO͛s aŶ-

gular position matches the user-oriented trajectory. Currently, both PID and  FEL controllers 

may be applied. The FEL controller is detailed described in Chapter 7.7 as well as a compara-

tive analysis among these low-level controllers. Regarding the PID controller, the used PID 

gains were:  ܭ௣ = ͻͲ  and ܭ𝑖 ௗܭ = = ͳ.ͷ, as described in Chapter 7.3. The PID controller im-

plements the control law presented in Equation (7.3) to compute the PID control command 

 where ݁௞ and ݁௞−ଵ correspond to the current and previous error between the reference ,(ݑ)

(𝜃௥௘௙) and measured (𝜃௠௘௔௦) angular position by a potentiometer embedded on the AO, as 

illustrated in Figure 7.9.  
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The experimental validation centered on investigating the effectiveness of the user-ori-

ented trajectory control strategy in PKO and PAFO by involving the participants and the pro-

tocol described in Chapter 7.3. However, in this experiment, the participants only wore PAFO 

or PKO, as depicted in Figure 7.11.  

 

Figure 7.11- Screenshot of a female subject walking at 1.0 km/h. The participant is wearing the PAFO at the ankle 

joint.  

The control architecture outputs (reference trajectory, measured trajectory, and control-

leƌ͛s ĐoŵŵaŶdͿ ǁeƌe collected at 100 Hz and analyzed in Matlab®. The participants were 

asked concerning the comfort and safety felt during the walking trials. 

7.4.2.Results and Discussion    

The user-oriented trajectory control was designed for therapies that ensure repetitive 

ŵoǀeŵeŶts of the useƌ͛s lower limbs. The experimental results indicate this strategy success-

fully foster a repetitive user-oriented gait trajectory at the knee and ankle joint, when the 

participants used the PKO and PAFO, respectively. Figure 7.12 depicts results from one trial 

with PAFO and PKO, highlighting the repeatability assistance fostered by this assistive strategy 

since the real knee and ankle angle trajectories followed the same pattern (similar waveform 

and magnitude) along with gait trial.  

Nonetheless, there is a delay (PKO: 260 ± 0.46 ms; PAFO: 260 ± 0.27 ms) between the user-

oriented trajectory and the real angle trajectory. This delay, approximately constant across 

the trial, may be caused by the mechanical response of AOs. Consequently, the PAFO to reach 

to lower extrema nor the PKO to achieve the desired maximum flexion. This delayed assis-

tance was also reported in the literature for this strategy [11]. Consequently, it was necessary 

to improve the time-effectiveness of the low-level controller of the user-oriented trajectory, 

as proposed in Chapter 7.7 [104]. 
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The participants rated the assistance as comfortable and safe, and they did not perceive 

the delayed assistance. However, due to the misalignment issues in the PKO, it was necessary 

to readjust the alignment between the PKO system and the knee joint across the trials.    

In general, this assistive strategy demonstrated to be suitable for therapies involving re-

petitive movements with a pre-defined, user-oriented trajectory. This strategy aims to emu-

late manual assistance therapy while relieving the heavy effort from the therapists [11]. The 

theƌapeutiĐ ďeŶefits iŶĐlude the iŵpƌoǀeŵeŶt iŶ the useƌ͛s movement coordination and 

more symmetrical gait.  

 

Figure 7.12- Representative outcomes of the user-oriented trajectory control strategy during walking trials. A: 

Female subject with 1.62 m walking with the PAFO at 1.2 km/h. B: Male subject with 1.75 m walking with PKO 

at 1.4 km/h. 

Nevertheless, this strategy is not adaptive nor approaches the AAN strategy; therefore, it 

presents some application limitations. First, the user-oriented trajectory does not consider 
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the variability of the disability level from patient to patient, and also for the same patient in 

the rehabilitation process [29]. Consequently, this control strategy is being updated to enable 

the real-time adjustment of the user-oriented trajectory, within a virtual tunnel, according to 

the useƌ͛s iŵŵediate Ŷeeds. Foƌ this puƌpose, the useƌ or the therapist can increase or de-

crease the trajectory by setting commands in the mobile graphical application, as illustrated 

in Figure 7.13. The high-level controller handlers these commands in as percentual gains that 

adjust the initially set trajectory.  

Second, this strategy does not provide ways for the user to interact with the devices. The 

inclusion of the biofeedback system may play an important role to ensure active participation 

of the patients in therapies. These limitations were also reported in the literature [11], [29], 

[241].   

 

Figure 7.13- Menu of mobile graphical application to adjust the user-oriented trajectory.  

7.5.Adaptive Impedance Control 

7.5.1.Related Work 

Cooperative and AAN gait therapies demand flexible interaction between the human and 

the assistive device. AAN strategies may endow controllers capable of modulating the imped-

ance of AOs to alloǁ patieŶt͛s natural variability, promote a compliant human-robot interac-

tion, and to eŶĐourage the user’s aĐtiǀe partiĐipatioŶ [31]. These strategies are able to re-

semble the manual assistance provided by a therapist, which is compliant and adaptive to the 

needs of the patients  [29], [241]. 
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Recent studies have proposed adaptive impedance control as an effective AAN strategy 

[11], [29]. The control relies on tailoring the ƌoďot͛s dynamic properties (stiffness and/or 

damping) ďased oŶ iŶdiǀiduals͛ aĐtiǀe joiŶt toƌƋue [29], [242]. The adaptive impedance control 

was firstly applied in the AAN robotic gait training through Lokomat®[238]. Moreover, Hussain 

et al. [29] implemented this control strategy in the powered orthosis using the interaction 

toƌƋue as aŶ iŶdiĐatioŶ of the suďjeĐt͛s effoƌt. Siŵilaƌ appƌoaĐhes ǁeƌe iŶtƌoduĐed iŶ [230], 

[231]; however, these studies did not validate the proposed strategy in the real environment.  

7.5.2.Methods 

This chapter presents the development of the adaptive impedance control strategy for 

PKO, as detailed described in [55]. This AAN strategy was implemented in a hierarchical con-

trol architecture (illustrated in Figure 7.14) to tailor the impedance behavior, namely the stiff-

ness of the human-orthosis interaction throughout the gait cycle and speed. The stiffness of 

the human-orthosis interaction was virtually modulated without introducing mechanical ap-

paratus, such as spring, reducing mechanical issues for PKO.  

 

Figure 7.14- Hierarchical control architecture of the adaptive impedance control. A- Potentiometer used to meas-

ure the real knee joint angle (𝜃௠௘௔௦), B- Strain gauge measured the user-orthosis interaction torque (𝜏𝑖௡௧), C- 

IMU measured the foot angular velocity for gait event detection tool. 
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The stiffness of the human-orthosis interaction ǁas iŶǀestigated iŶstated of AO͛s stiffŶess 

to make the AO more compliant and Đooperatiǀe to the user’s ŵotioŶ iŶteŶtioŶ (considering 

the stƌaiŶ gauges͛ ŵeasuƌesͿ, eŶĐouragiŶg the user’s partiĐipatioŶ aŶd the iŶtuitiǀeŶess of 

interaction. In wearable assistive devices, direct interaction with humans still is a critical con-

cern [243]. 

Stiffness Estimation  

The stiffness of the human-orthosis interaction was estimated as the slope of the linear 

regression of the human-orthosis interaction torque versus angle at the knee joint. This ap-

proach is based on the concept of quasi-stiffness, explored in [135].  

For that matter, healthy participants performed gait trials at different gait speeds wearing 

the PKO in user-orthosis interaction based control strategy, as described in Chapter 7.3.2. 

With this control strategy, there is no contribution of the orthosis͛ aĐtuatioŶ sǇsteŵ iŶ the 

locomotion, limiting the actuation of the mechanical properties. 

By applying the linear regression to the curve that relates the angle with the human-ortho-

sis interaction torque, the stiffness values and the gait events in which they should be tailored 

in the adaptive impedance control strategy were determined. The estimated stiffness values 

were normalized to [0; 1] interval through the participant-specific percentage of the maximum 

stiffness due to operating limits of the actuation technology empirically observed for stiffness 

values higher than 1.5 Nm. 

Hierarchical Control Architecture  

Figure 7.14 illustrates the hierarchical control architecture implemented for the adaptive 

impedance control strategy. The high-level defines the user-oriented trajectory (𝜃௨௦௘௥) ac-

ĐoƌdaŶtlǇ the useƌ͛s height aŶd gait speed, as described in Chapter 7.4.1. Furthermore, this 

control level estimates the stiffness of the user-AO interaction (݇) as the slope of the linear 

regression of the joint angle (𝜃௠௘௔௦) and user-AO interaction torque (𝜏𝑖௡௧), through the stiff-

ness estimation model. The stiffness is adaptively modulated for each user according to the 

configurated gait speed and detected gait event (using the detection tool presented in Chap-

ter 5). The stiffness adjustment takes into considering the useƌ͛s iŶteŶtioŶ and participation 

through 𝜏𝑖௡௧.  
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The mid-level starts by setting the AO’s refereŶĐe positioŶ trajeĐtorǇ (𝜃௥௘௙) as the user-

oriented position trajectory (𝜃௨௦௘௥) parameterized according to the gait speed, as indicated in 

(7.4). Subsequently, it defines the AO’s reference torque (𝜏௥௘௙) through the used impedance 

control law (Equation (7.5)), with reference and real position trajectory of AO (𝜃௥௘௙ and 𝜃௠௘௔௦, 

respectively) and the adaptable stiffness (݇) along gait cycle (damping and inertial moment 

were not considered in this scope). The potentiometer measured the real knee joint angle 

(𝜃௠௘௔௦).  

 𝜏௥௘௙ =  ݇. ሺ𝜃௥௘௙ − 𝜃௠௘௔௦ሻ (7.5) 

At the low-level, the tuned PID controller was applied to guide the human-orthosis inter-

action torque in the direction of the desired torque (𝜏௥௘௙). This level relies on the interaction 

torque values (𝜏𝑖௡௧) between the AO and the human, measured by the strain gauges embed-

ded in AO, to compute the torque errors (݁) that feed the PID controller.  

7.5.3.Experimental Validation  

The experimental validation aimed to test the effectiveness of adaptive impedance control. 

This control strategy was compared to user-oriented trajectory control to establish the bene-

fits of an AAN strategy for gait training regarding a non-AAN strategy.  

Participants 

Five healthy subjects (2 females and 3 males) with no history of neurologic disorders gave 

informed consent and participated in the study. The demographic characteristics of the in-

volved subjects are 26.80 ± 2.78 years old, the height of 1.68 ± 0.07 m, and the body mass of 

64.60 ± 8.5 Kg. 

Protocol 

The participants started by wearing the embedded IMU instep of the right foot and PKO. 

The subjects performed 3 level-ground walking trials of 2 minutes on a treadmill while wearing 

the PKO in the user-orthosis interaction based control to estimate the stiffness. The trials were 

carried out at different gait speeds: 1, 1.3, and 1.6 km/h.  

Regarding the comparative analysis of control strategies, the participants performed 3 

level-ground walking trials on a treadmill at different gait speeds: 1, 1.3, 1.6 km/h. In each 



Chapter 7-Assistive Control Strategies 

145 

 

trial, the participant walked 5 minutes in an assistive mode delivered by one control strategy, 

resting 2 minutes, and restarting the assisted walking with the other control strategy for 5 

minutes. The participants were randomly involved in both assistive modes not to influence 

their perception regarding the effects introduced per control strategy. During these experi-

ments, the subjects were encouraged to interact with the orthotic system, by following and 

opposing the reference trajectory. Figure 7.15 shows a screenshot of male subjects perform-

ing this protocol. 

 

Figure 7.15- Screenshot of an experiment conducted at 1.3 km/h with a male subject, wearing the PKO, assisted 

by adaptive impedance control, and an IMU placed on the right foot for gait event detection.  

Data Collection and Analysis 

Data from the strain gauges (user-PKO interaction torque), potentiometers (real knee an-

gle), and the control architecture values (useƌ͛s oƌieŶted tƌajeĐtoƌǇ, reference torque, meas-

uƌed toƌƋue, aŶd ĐoŶtƌolleƌ͛s ĐoŵŵaŶdͿ were collected at 100 Hz and analyzed in Matlab®.  

Additionally, at the end of experiments, each subject reported his/her perception regarding 

both control strategies considering: (i) freedom of movement, (ii) possibility or not to deviate 

from the imposed trajectory, and (iii) effort demanded during walking. Once more, the pa-

tients also indicated their insights concerning the applied attachment system, comfort, and 

safety felt during the experiments.  

7.5.4.Results and Discussion  

This subchapter firstly presents the estimated stiffness. Then, it provides the results 

achieved with the adaptive impedance control strategy and the comparison with user-ori-

ented trajectory control. 
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Estimated Stiffness  

Figure 7.16 provides the interaction torque vs. knee angle curve along three trials and the 

obtained linear regression (black lines). With the linear regression, different slopes were ob-

served in the curves related to the interaction torque versus the knee angle. These results 

indicate that the human-orthosis interaction stiffness varies through the gait cycle, mainly in 

four gait periods: (i) from HO to TO; (ii) from TO to MMSW; (iii) from MMSW to TS; and, (iv) 

from terminal swing (TS) to HO.  

 

Figure 7.16-Representative curve of the human-knee orthosis interaction torque vs knee angle of 3 gait trials of 

a male subject walking at 1.3 km/h on the treadmill. Black lines represent the linear regression on the curve, 

which changes for the identified gait events (TS - Terminal Swing) [55].  

Table 7.3 presents the mean and standard deviation values of the estimated stiffness across 

the subjects, per gait speed and gait period, and the stiffness values normalized per useƌ͛s 

body mass and in [0; 1] interval.  

Figure 7.17 illustrates the module of the stiffness values to provide a better interpretation 

of their variability with the gait speed and gait period. By analyzing Figure 7.17, it was ob-

served the similarity of the stiffness values in HO→TO and MMSW→TS periods, and 

TO→MMSW and TS→HO. This finding indicates that the human-orthosis interaction should 

be stiffer (higher impedance) to perform the HO event (start preparing the foot to swing 

phase) and MMSW event ;ĐhaŶge the liŵď͛s eǆĐuƌsioŶ fƌoŵ the fleǆioŶ to eǆteŶsioŶͿ.  
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Table 7.3- Module of the mean and standard deviation (std) values of the estimated stiffness, normalized in [0; 

1] interval. 

Gait speed 
(km/h) 

Gait Period 
Stiffness (N.m/°kg) Stiffness Normalized in 

[0;1] Mean Std 

1 

HO → TO 0.012 0.003 1.0 

TO → MMSW 0.0085 0.001 0.71 

MMSW→ TS 0.012 0.003 1.0 

TS → HO 0.008 0.002 0.71 

1.3 

HO → TO 0.020 0.005 0.95 

TO → MMSW 0.008 0.001 0.38 

MMSW→TS 0.021 0.004 1.0 

TS → HO 0.008 0.003 0.38 

1.6 

HO →TO 0.024 0.004 1.0 

TO → MMSW 0.008 0.001 0.33 

MMSW→ TS 0.023 0.004 0.96 

TS →HO 0.007 0.0005 0.29 

1.8 

HO → TO 0.036 0.002 0.92 

TO → MMSW 0.007 0.003 0.18 

MMSW→TS 0.039 0.004 1.0 

TS → HO 0.009 0.002 0.23 

 

On the other hand, the results indicate that the PKO should be compliant from the initial 

to middle-swing phase, and from the terminal swing to middle-stance phase given the low 

human-orthosis interaction values to achieve a high knee ROM.  

Furthermore, the results presented in Figure 7.17 show that the stiffness of the human-

orthosis interaction varies positively with the gait speed, i.e., higher gait speed requires more 

stiff ďehaǀioƌs. The stiffŶess͛s depeŶdeŶĐǇ oŶ speed ǁas ŵoƌe evident in moments that in-

volve high stiffness values (HO→TO and MMSW→TS).  

 

Figure 7.17-Module of the mean and standard deviation values of the estimated stiffness throughout gait cycle 

for different gait speeds [55]. 
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So far, no work has investigated the variation of the stiffness of the human-orthosis inter-

action throughout the gait cycle and speed. Previous studies focused on the investigation of 

the stiffness of the human joint to define how the mechanical systems (e.g., springs) attached 

to the orthosis have to emulate the dynamic properties of a healthy joint [111], [135], [244]. 

Nevertheless, the obtained findings are according to the ones presented in the literature re-

garding the stiffness variation with the gait speed (positively correlated) and gait cycle [30], 

[135], [245].  

Adaptive Impedance Control vs. User-Oriented Trajectory Control  

Figure 7.18 depicts representative outcomes of the adaptive impedance control and the 

user-oriented trajectory control.  

For the adaptive impedance control, as illustrated in Figure 7.18.A and Figure 7.18.B, the 

increase of the interaction torque leads to an augment of the real knee trajectory. Conse-

quently, the real knee trajectory may exceed the ROM of the reference trajectory with maxi-

mum values around 70°; hoǁeǀeƌ, it Ŷeǀeƌ eǆĐeeds the iŵposed liŵits foƌ PKO͛s ƌaŶge of ŵo-

tion due to the applied safety measures. The flexibility for deviating from the desired knee 

trajectories creates a ͞ǀirtual tuŶŶel͟ along the desired trajectory in the sagittal plane, as 

disclosed in [242].  

Additionally, Figure 7.18 shows the adaptability of the stiffness along the gait cycle, and 

that the user has more freedom to move when the user-PKO interface is less stiff (low stiff-

ness values). As the adaptive impedance control takes input in the form of human-orthosis 

interaction torque, it can adjust the PKO͛s assistaŶĐe to ŵeet the Ŷeeds of iŶdiǀidual suďjeĐts 

based on their voluntary participation and stage of gait rehabilitation. Hussain et al. [29] in-

vestigated a similar AAN gait training based on human-orthosis interaction; however, they 

involved a predefined position trajectory for all participants instated of a user-oriented posi-

tion trajectory.  

On the other hand, the results of the user-oriented trajectory control (for instance, Figure 

7.18.C in the timing interval from 48 to 53 s) indicate that the real knee trajectory is not af-

fected by the human-orthosis interaction torque independently of its magnitude. This finding 

suggests that the user-oriented trajectory control does not deliver an AAN gait training nor 

ĐoŶsideƌs the useƌ͛s paƌtiĐipatioŶ iŶ gait.  

 



Chapter 7-Assistive Control Strategies 

149 

 

 

Figure 7.18- Representative control outcomes of the gait trials assisted with PKO. A: Adaptive impedance control 

at 1 km/h. B: Adaptive impedance control at 1.6 km/h. C: User-oriented trajectory control at 1.6 km/h.  

  

The feedback provided by the participants followed the evidence presented above. In all 

cases, they reported that the adaptive impedance control delivers a more comfortable and 

natural motion, and also possibilities the deviation from the reference trajectory. As ex-

pected, the increasing freedom of movement was more pronounced when low stiffness val-

ues were involved in the adaptive impedance control, since the rigidity of the device is lower. 
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Moreover, the participants straightforwardly perceived that the impedance control allows 

more interaction comparatively to user-oriented trajectory control since, in this case, they 

could not deviate their limb from the set trajectory, and they felt the orthosis stiffer.  

The overall findings enhance the suitability of the adaptive impedance control as an AAN 

strategy for applications focused on guiding the useƌ͛s lower limb through user-oriented gait 

patterns while ĐoŶsideƌiŶg the useƌ͛s muscle effort and motion intention [11], [29]. Further-

more, this strategy favors the useƌ͛s aĐtiǀe physical participation.  

The possibility of adjusting and modulating the stiffness provides a way to tune the assis-

tance level in gait therapies in favor of the user’s Ŷeeds and disability level [29]. The stiffness 

was adjusted to decrease the human effort required for ensuring a successful knee joint move-

ment during walking. This evidence was reported in [29]. The cooperative user-orthosis inter-

action aligŶed ǁith assistaŶĐe͛s adaptaďilitǇ is a major step forward for the long-term recov-

ery of functional motor abilities.  

Nonetheless, the implementation of the proposed adaptive impedance control presents 

two main limitations. It depends two times on the precision of the position and torque sen-

sors. The impedance modulation was limited to stiffness, not considering the effect of damp-

ing nor inertia.  

7.6.EMG-based Control 

7.6.1.Related Work 

User-oriented assistive strategies could take into account the body condition of the user 

with information from biomedical sensors, namely EMG signals [246], [227], [247]. The major 

advantage of EMG-based control strategy is its aďilitǇ to prediĐt the user’s ŵotioŶ intention, 

as long as the muscles are not paralyzed or too weak to perform the movements. This assistive 

strategy provides a functional gait training to encourage the user’s muscular effort, and thus, 

avoid muscle atrophy [248].  

The EMG-based assistive strategies involve a user’s joint torque estimation method based 

on the acquired EMG signals from superficial muscles. Subsequently, the torque of the AO͛s 

actuator should timely track the estiŵated useƌ͛s joint torque. Most studies have applied a 

complex musculoskeletal model for joint torque estimation. Fleisher et al. [227] and Hassani 
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et al. [33] used the modified Hill-type muscle model. However, it requires complex methods 

and several calibration procedures to determine several parameters.  

On the other hand, more straightforward approaches based on the proportional method 

have been approached. Kawamoto et al. [249] proposed a simple calibration method that only 

requires the tuning of two proportional gains (one for flexion and one for extension) that 

relate the EMG signals with the torque generated at the knee joint by the flexion and exten-

sion muscles, respectively. This method stands, in the field of gait rehabilitation, for its sim-

plicity and real-time effectiveness.  

7.6.2.Methods 

This subchapter presents the EMG-based hierarchical control architecture implemented 

and validated with the PKO. Figure 7.19 provides an overview of the procedure carried out to 

achieve the EMG-based control, detailed described in [56].  

 

Figure 7.19- System Overview. A: Chosen muscles to acquire EMG signals (vastus lateralis and vastus medialis 

marked with red and green, and semitendinosus and semimembranosus marked with purple and pink, respec-

tively). B: EMG system used to obtain the EMG envelope. C: Proportional method implemented to find EMG-

torque parameters from a calibration routine for the useƌ͛s kŶee toƌƋue estiŵatioŶ. D: Hierarchical EMG-based 

control architecture. 
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First, the most significant muscles for controlling the knee motion were selected, consid-

ering a trade-off between performance and simplicity of the control strategy. Throughout a 

literature analysis, it was verified that two flexors (Semitendinosus and Semimembranosus) 

and two extensors (Vastus Lateralis and Vastus Medialis) contribute more to the knee joint 

movement during gait [32].  

Second, the EMG system detailed in Chapter 4.4 was used in the 4-channel configuration 

to obtain the EMG envelope signals for the four selected muscles. Third, the EMG envelope 

sigŶals aƌe theŶ used to estiŵate the useƌ͛s kŶee joiŶt toƌƋue (i.e., the torque generated at 

the knee joint by the knee flexion and extension muscles) through the proportional gain 

method. This stage endows an experimental calibration procedure to find the parameters able 

to ĐoŶǀeƌt the EMG eŶǀelope iŶto the useƌ͛s knee joint torque.  

Lastly, EMG-based control is eǆeĐuted suĐh that toƌƋue of the AO͛s aĐtuatoƌ should tƌaĐk 

the estiŵated useƌ͛s kŶee toƌƋue. Details ƌegaƌdiŶg the kŶee toƌƋue estiŵatioŶ aŶd EMG-

based control are disclosed below.  

 

Proportional Gain Method  

The proportional gain method [14] was implemented for estimating the useƌ͛s knee 

torque, given its simplicity for clinical applications, and it has a straightforward calibration 

procedure when compared to the musculoskeletal model-based methods.  

The proportional gain method aims to find two parameters (ܭ௙௟  and ܭ௘௫) that directly 

maps the EMG signals into knee torque values. The knee torque was estimated (𝜏̂𝐾௡௘௘) using 

Equation (7.6), where ܧ௙௟ሺݐሻ and ܧ௘௫ሺݐሻ represent the EMG envelope obtained from the flexor 

and extensor muscles, respectively; ܭ௙௟ and ܭ௘௫ are the parameters responsible for relating 

the envelope EMG signals from flexor and extensor muscle, respectively, to the knee torque; 𝜏̂௙௟ሺݐሻ is the estimated flexor torque; and, 𝜏̂௘௫ሺݐሻ is the estimated extensor torque. 

𝜏̂𝐾௡௘௘ ሻݐ௙௟ሺܧ௙௟ܭ = − ሻ ⟺ 𝜏̂𝐾௡௘௘ݐ௘௫ሺܧ௘௫ܭ = 𝜏̂௙௟ሺݐሻ − 𝜏̂௘௫ሺݐሻ 

(7.6) 

 

The determination of ݈݂ܭ parameter assumed that torque being generated by the PKO͛s 

actuator ሺ𝜏௠௘௔௦ሻ matches the flexor torque generated by the user (𝜏௙௟ሺݐሻ), represented in 

Equation (7.7a). Further, it considers that the estimated torque provided by the flexor muscle 
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(𝜏̂௙௟ሺݐሻ) attempts to match the torque being generated by the actuator ሺ𝜏௠௘௔௦ሻ, as given in 

Equation (7.7b). TheŶ, the eƌƌoƌ ďetǁeeŶ the aĐtuatoƌ͛s toƌƋue aŶd the estiŵated fleǆoƌ 

torque can be calculated using Equation (7.7c).  

𝜏௠௘௔௦ሺݐሻ =  𝜏௙௟ሺݐሻ (7.7a) 𝜏̂௙௟ሺݐሻ ≈  𝜏௠௘௔௦ሺݐሻ (7.7b) ݁ሺ݇ሻ =  𝜏௙௟ሺ݇ሻ − 𝜏̂௙௟ሺ݇ሻ =   𝜏௠௘௔௦ሺ݇ሻ −  𝜏̂௙௟ሺ݇ሻ (7.7c) 

 

Equation (7.8a) provides a way to define a performance function based on the error. Equa-

tion (7.8a) can be minimized by setting its derivative concerning ܭ௙௟  equal to zero, as shown 

in Equation (7.8b). Thus, ܭ௙௟ can be determined by the least square method, given in Equation 

(7.8c). 

ܬ =  ݁ଶሺ݇ሻ = ∑ሺ𝜏௠௘௔௦ሺ݇ሻ − 𝜏̂௙௟ሺ݇ሻሻଶ௞=଴ = ∑ሺ𝜏௠௘௔௦ሺ݇ሻ ௙௟ሺ݇ሻሻଶ௞=଴ܧ௙௟ܭ −  (7.8a) ݀ܭ݀ܬ௙௟ = −ʹ∑𝜏௠௘௔௦ሺ݇ሻܧ௙௟ሺ݇ሻ + ௙௟ܭʹ ௙௟ଶܧ∑ ሺ݇ሻ = Ͳ (7.8b) 

௙௟ܭ = ∑ 𝜏௠௘௔௦ሺ݇ሻܧ௙௟ሺ݇ሻ∑ܧ௙௟ଶ ሺ݇ሻ  (7.8c) 

 

The Equation (7.8c) can be rewritten considering Equation (7.7a), and consequently, the ܭ௙௟ parameter was computed through Equation (7.9).  

௙௟ܭ = ∑ 𝜏௙௟ሺ݇ሻܧ௙௟ሺ݇ሻ∑ܧ௙௟ଶ ሺ݇ሻ  (7.9) 

The same procedure was applied to determine ݔ݁ܭ  parameter. The determination of 𝑲ࢌ𝒍 and 𝑲ࢋ𝒙 parameters required an experimental calibration procedure, as reported in [14]. 

However, a new calibration method was endowed due to the mechanical instability of PKO 

while performing the calibration described in [14]. The proposed calibration considers general 

physical principles and the operating ƌaŶge of the PKO͛s torque values. This method computes 

the toƌƋue pƌoduĐed ďǇ the useƌ͛s kŶee ;𝜏𝐾௡௘௘) to support a known mass (݉ = constant) at a 

known knee angle (𝛼), as generally stated in Equation (7.10), where ݎ is the knee moment-

arm ܨ𝐾௡௘௘ ƌepƌeseŶts the applied foƌĐe ďǇ the useƌ͛s kŶee at a giǀeŶ aĐĐeleƌatioŶ ;ܽ).  𝜏𝐾௡௘௘ = 𝐾௡௘௘ܨ ∗ ݎ =  ݉ ∗ ܽ ∗  (7.10)  ݎ
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Consequently, during calibration, the useƌ͛s kŶee toƌƋue ǁas Đoŵputed ďǇ EƋuatioŶ ;ϳ.ϭ1), 

considering that the useƌ͛s kŶee kept still at a known angle (𝛼 = constant), that only exists the 

gravitational acceleration (9.8 m/s2), and known the length of the useƌ͛s leg fƌoŵ the hip to 

the ground (L).   

𝜏𝐾௡௘௘ = ݉ ∗ ͻ.ͺ ∗ ݎ =  m ∗ ͻ.ͺ ∗ L ∗ sin𝛼 (7.11) 

The calibration method was implemented in two stages, as illustrated in Figure 7.19.C. In 

the first stage, the user was standing with the knee flexed so only the flexion torque is consid-

ered (𝜏௙௟) and in the second stage, the user was seated in a chair with the knee extended, so 

only extension torque is considered (𝜏௘௫). For both stages, the eǆpeĐted useƌ͛s knee torque is 

known since the user has to keep the knee still at a known angle with a known mass attached 

to the foot. Surface electrodes were placed on the selected muscles to measure the EMG sig-

Ŷals that pƌoduĐed the useƌ͛s kŶee toƌƋue. When the desired torque was achieved, the enve-

lope EMG signals from the flexor and extensor muscles were recorded, enabling the determi-

nation of the 𝑲ࢌ𝒍 and 𝑲ࢋ𝒙 parameters through Equation (7.9). Subsequently, the user’s knee 

torque was estimated by Equation (7.6).  

EMG-Based Control  

Figure 7.20 presents the architecture control architecture implemented for EMG-based 

control. The high-level control infers the user’s ŵotioŶ iŶteŶtioŶ from EMG envelope signals 

,ሻݐ௙௟ሺܧ)  parameters (௘௫ܭ) and extension (௙௟ܭ) and computes user-oriented flexion (( ݐ௘௫ሺܧ

during the calibration phase, to be applied in the knee joint torque estimation posteriorly.  

The mid-level control estimates the knee joint torque using the proportional gain method 

law, presented in Equation (7.6). For this purpose, it uses the EMG envelopes and the cali-

brated parameters ܭ௙௟ and ܭ௘௫. Subsequently, this level sets the reference PKO torque (𝜏௥௘௙) 

equal to the estimated knee joint torque (𝜏̂𝐾௡௘௘) to ensuƌe that PKO folloǁs the useƌ͛s ŵotioŶ 

intention. The low-level implements a torque control through a PID controller law to track 

the error (݁௞) between the reference knee torque (𝜏௥௘௙) and real torque at the PKO͛s aĐtuatoƌ 

(𝜏௠௘௔௦), as given in Equation (7.3). 
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Figure 7.20- Hierarchical control architecture of the EMG-based control strategy [56].  

7.6.3.Experimental Validation 

The effectiveness of EMG-based assistive strategy was inspected and compared with other 

implemented intention-based strategy, the user-PKO interaction based control strategy.  

Participants 

Two healthy users (a male and a female) with demographic characteristics of 24.0 ± 0.0 

years old, the height of 1.685 ± 0.0919 m, and the body mass of 63.5 ± 14.8492 kg were in-

cluded. The participants gave informed consent to participate in the study and to use the col-

lected data for research purposes.  

Protocol  

The experiment started with the placement of the surface electrodes on the selected mus-

cles, Semitendinosus, Semimembranosus, Vastus Medialis, and Vastus Lateralis, following 

standard recommendations for surface electrodes assessment [193]. This procedure assures 

the ƌepeataďilitǇ of the seŶsoƌ͛s plaĐeŵeŶt aŶd ŵiŶiŵizes iŶtƌa-subjects and intra-trials vari-

ability. Three surface electrodes were used per muscle. One is a reference electrode that was 

placed on the center of the knee joint, which is an electrically neutral tissue [194]. The other 

two electrodes were placed on the muscle motor point, separated by about 2 cm from each 

other [194]. The gain of the EMG system was tuned regarding the level of muscular activity 
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pƌeseŶted iŶ the useƌ͛s ŵusĐles. The overall validation of the EMG-based strategy covers three 

phases, as presented in Figure 7.21.  

 

Figure 7.21- Experimental validation. A: Validation of calibration method. B: Validation of knee torque estimation 

method. C: Validation of EMG-based control [56].  

First, the proposed calibration method (to compute ܭ௙௟ and ܭ௘௫ሻ was validated, consider-

ing the set-up presented in Figure 7.19.C and Figure 7.21.A. The participants were asked to 

perform isometric contractions during 5 s (for flexion and extension motions), that enabled to 

acquire the EMG signals. The isometric movements were performed at different knee angles 

(𝛼), as indicated in Table 7.4. By varying the knee angle (𝛼), it was possible to achieve the 

desired torques (𝜏௙௟ and 𝜏௘௫) at the useƌ͛s knee joint, i.e., 8, 16, 24, and 32 Nm, as these torque 

values are within the raŶge of PKO͛s aĐtuatoƌ. Table 7.4 shows the knee angles covered to 

match the desired knee torque for a constant mass and knee force during the calibration pro-

cedure.  

Table 7.4- Biomechanical values used in the calibration procedure. 

Knee Joint Angle 

(𝛼, [°]) 

Moment-arm 

 ([m] ,ݎ)

Mass 

(݉, [Kg]) 

Force 

 (𝐾௡௘௘, [N]ܨ)

Desired torque 

(𝜏௙௟/𝜏௘௫, [Nm]) 

10.9  0.07  

10.7  104.86 

8 

22.4  0.15  16 

34.9  0.22  24 

49.7  0.30  32 
 

The second phase aims to evaluate the performance of the proportional gain method in 

knee torque estimation. The subjects were asked to walk on the treadmill at different speeds 

(1, 1.3 and 1.6 km/h) for 3 minutes, as shown in Figure 7.21.B. Each participant performed 3 

trials per gait speed. Two IMUs, placed on the human shank and thigh, were used as ground 
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truth to investigate if the muscles were activated properly through the gait cycle, with the 

emphasis in the knee flexion and extension.  

The third phase covers the validation of the EMG-based control using the PKO (Figure 

7.21.C). The participants walked 3 minutes on the treadmill at different speeds (1, 1.3 and 1.6 

km/h), performing 3 trials per speed. Moreover, the participants conducted the same proce-

dure wearing the PKO in user-PKO interaction based control.  

Data collection  

The desiƌed aŶd ƌeal useƌ͛s kŶee toƌƋue, knee joint angle (𝛼), estimated torque (𝜏̂𝐾௡௘௘), 

PKO͛s aĐtuatoƌs torque (𝜏௠௘௔௦), and the EMG signals (ܧ௙௟ሺݐሻ,  ሻ) were collected. Theݐ௘௫ሺܧ

NRMSE and phase delay between the reference torque (𝜏௥௘௙) and measured torque (𝜏௠௘௔௦) 

were inspected. Furthermore, during the EMG-based control, the users were asked if the PKO 

follows their intention to move. 

7.6.4.Results and Discussion  

Estimated 𝑲ࢌ𝒍 and 𝑲ࢋ𝒙 Parameters  

The  ܭ௙௟ and ܭ௘௫ parameters were computed by applying Equation (7.9) and considering 

the data collected during the experimental procedure proposed for the calibration method. 

The ܭ௙௟ and ܭ௘௫ parameters for the male subject were 24.3 and 46.7, respectively, and for the 

female subject, 27.9 and 25.26, respectively. The differences in the parameters highlight the 

needed for a user-specific calibration in an attempt to effectively address a user-oriented 

assistive strategy.  

Estimated Knee Torque  

The values of the estimated knee torques were similar to the expected ones, as observed 

in Figure 7.22.A. The results depicted in Figure 7.22.B also indicate that the knee joint torque 

was estimated properly, i.e., the knee flexion occurs when positive torques are estimated, and 

the knee extension occurs when negative torque values are estimated [250]. When there is 

aŶ iŶǀeƌsioŶ of the liŵď͛s eǆĐuƌsioŶ ;i.e., fƌoŵ fleǆioŶ to eǆteŶsioŶ, aŶd ǀiĐe-versa), the esti-

mated torque becomes zero at that moment (as illustrated in Figure 7.22.B as moment rever-

sal).  
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These findings indicate that the implemented proportional gain method and the proposed 

calibration procedure were effective for the knee torque estimation and relevant to deal 

ǁith diffeƌeŶt useƌ͛s phǇsiĐal ĐoŶditioŶs ;diffeƌeŶt paƌaŵeteƌs fouŶd foƌ suďjeĐts, ǁho diffeƌ 

in body mass and height).  

 

Figure 7.22- Representative results of the estimated knee torque for the male subject. A: Estimated knee torque 

vs. desired torque (actuator torque) during isometric contractions. B: Estimated knee torque and estimated knee 

angle by IMUs from a subject walking on the treadmill at 1.6 km/h [56].  

EMG-Based Control  

The EMG-based control achieved a mean NRMSE of 12% and a mean phase delay of 22 ms 

in a gait cycle ranging from 2.5 to 3.5 s (depends on gait speed), between the reference (𝜏௥௘௙) 

and measured (𝜏௠௘௔௦) torque. These results indicate that the implemented hierarchical con-

trol has the poteŶtial to traĐk the user’s ŵotioŶ iŶteŶtioŶs ǁith ŵiŶiŵal delaǇ. Furthermore, 

the subjects reported that their intentions were followed, allowing them to move forward 

freely.  

Figure 7.23 presents the results for both control strategies based on the useƌ͛s motion in-

tentions. The participants applied higher muscle activation in user-orthosis interaction 

based control, as indicated by the higher EMG measures of the flexor and extensor muscles 

(0.54 V and 0.35 V, respectively). The flexor and extension muscles activation is 52% and 31% 

higher in the user-orthosis interaction based control.  

On the other hand, the EMG-based control requires less effort from the user (EMG meas-

ure of the flexors and extensors was 0.26 V and 0.24 V, respectively) while correctly generating 

the gait patteƌŶ ďased oŶ the useƌ͛s ŵotioŶ iŶteŶtioŶ. Nonetheless, this evidence was limited 

to a set of gait patterns from two participants. 
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Figure 7.23- Representative results of control strategies of walking experiments in a treadmill at 1 km/h. A: EMG- 

based control. B: User-PKO interaction based control [56].  

The finding suggests that the EMG-based control strategy is more suitable for subjects with 

a moderate level of impaired gait function than the user-orthosis interaction based strategy, 

favoring therapies based on the user’s iŶteŶtioŶ. This strategy may be applied for gait thera-

pies that aim to enhance the muscular strength and functional motor ability. Furthermore, 

the useƌ͛s aĐtiǀe paƌtiĐipatioŶ in the gait therapy will maintain active both the motor relearn-

ing and control of the learned gait pattern.  

7.7.Low-Level Control Strategies  

7.7.1.Related Work 

Feedback and feedforward controllers play an important role in the low-level layer of the 

hierarchical control architectures. Feedback controllers, such as the PID, are the low-level con-

trollers mostly applied in AOs due to their feasibility and mathematical straightforwardness 

[10], [237], [251]. Nevertheless, the development of time-effective low-level controllers for 

AOs capable of providing low steady-state errors, emphasizing adaptiveness to different 
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walking scenarios without requiring system modeling (as in optimal and robust controls), be-

comes imperative.  

FEL control [252] has been applied to address these features. FEL, bioinspired on the learn-

ing process of the human motor cortex, is a hybrid control combining a feedback controller 

with a feedforward controller capable of learning the inverse dynamics of the AO using the 

feedback control command as the error signal for the learning (feedback error). The feedfor-

ward controller usually includes regression techniques to simplify and shorten the learning of 

the inverse dynamics for real-time and medical applications [253], [254]. The overall perfor-

mance of FEL beneficiates from the adaptive and anticipatory features of the feedforward con-

trol to adapt to ĐhaŶges iŶ AOs’ dǇŶaŵiĐs and enable time-effective fast movements while 

the feedback controller can compensate for disturbances [254].  

7.7.2.Methods 

Considering the potentialities of FEL controller comparatively to the solo PID, this chapter 

presents the real-time implementation of FEL control into the low-level layer of the hierarchical 

control architecture of SmartOs. In the scope of this thesis, the FEL was implemented and val-

idated as a position-based control loop considering the user-oriented trajectory assistive strat-

egy. As a low-level controller, the FEL runs at 1 kHz.  

FEL implies a feedback and a feedforward controller to command the AO in the desired 

way, as depicted in Figure 7.24. The PID feedback controller (previously presented) provides 

control commands and guarantees stability during the real-tiŵe learŶiŶg of the AOs’ iŶǀerse 

dynamics model and compensates disturbances when the learning phase is completed.  

An artificial neural network (ANN) was implemented as the feedforward controller [252] 

to learn the inverse dynamics of the AO taking the output of a PID command (feedback con-

troller) as an error signal [252], [253], [255]. The ANN was elected due to its proper estimation 

performance, good generalization, and its capability to map non-linearities [256]. Note that 

two inverse models were designed and implemented, one for PKO and one for PAFO. 

The ANN was implemented with Multi-Layer Perceptron structure and trained in real-time 

following a supervised learning method. As illustrated in Figure 7.24.B, each ANN has 3 layers 

as follows: the input layer with 3 neurons for the 3 inputs, the reference position (𝜃௥௘௙), speed 

(𝜃ሶ௥௘௙) and acceleration (𝜃ሷ௥௘௙); the hidden layer with 4 and 5 neurons for PKO and PAFO, re-

spectively; and, the output layer with 1 neuron, i.e., the feedforward command (ݑ௙௙). Bias 
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nodes were included in the hidden and output layers to increase the flexibility of the ANN to 

fit the input data.  

 

Figure 7.24- FEL control. A: FEL control loop for PKO. 𝜃௥௘௙ is the reference angle; 𝜃ሶ௥௘௙ is the reference angular 

velocity; 𝜃ሷ௥௘௙  is the reference angular acceleration 𝜃௠௘௔௦ is the measured angular position; ݁ is the position er-

ror; ݑ௙௕ is the feedback command; ݑ௙௙ is the feedforward command; ݑ is the final control command; A is the 

potentiometer and B is the actuator. B: ANN-based feedback controller.  

The backpropagation algorithm that includes a forward and a backward phase was used as 

a learning method. The forward phase predicts feedforward commands (ݑ௙௙) for the given 

inputs and based on the current weights. The backward phase updates the weights based on 

the gradient descent of the current feedback command (ݑ௙௕ Ϳ ĐoŶĐeƌŶiŶg the Ŷetǁoƌk͛s 

weights change. The stochastic gradient descent approach was implemented such that the 
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weights are updated based on inputs presented in a random order [257]. The Adaptive Mo-

ment Estimation optimizer [258] was applied to enable the stochastic gradient descent imple-

mentation in real-time and to meet the temporal requirement of 1 ms (1 kHz). This optimiza-

tion used adaptive learning rates per weight connection, providing adaptability to the ANN 

training and decreasing the training time.  

Table 7.5 presents the empirically found set-up for training the ANN for PKO and PAFO. 

These paƌaŵeteƌs͛ settiŶg ƌesulted fƌom a trade-off between the ANN performance and the 

real-time temporal requirements (1 kHz). For finding the ANN set-up for training phase, an 

empiric study was performed, varying the ANN͛s conditions as follows: (i) the number of hid-

den neurons ranged from 3 to 20; (ii) the initial weights in the hidden (ݓℎ𝑖ௗ) and output (ݓ௢௨௧) 

layers were modified through Equation (7.12) [259], where ܮ is the input neuron length, ܯ is 

the hidden neuron length, and 𝛼 = {1, 10, 100}; and, (iii) the learning rate ranged from 0.001 

to 0.00001.  

− ͳ𝛼√ܮ ≤ ℎ𝑖ௗݓ ≤ ͳ𝛼√ܮ 

− ͳ𝛼√ܯ ≤ ௢௨௧ݓ ≤ ͳ𝛼√ܯ 

(7.12) 

Table 7.5- ANN͛s setup foƌ tƌaiŶiŶg phase, namely the number of neurons in the hidden layer, the maximum 

learning rate, and the initial weights in the hidden (ݓℎ𝑖ௗ) and output (ݓ௢௨௧) layers. 

AO 
Hidden 

Neurons 
Initial Weights 

Learning Rate 

PKO 4 
−Ͳ.Ͳͷͺ ≤ ℎ𝑖ௗݓ ≤ Ͳ.Ͳͷͺ −Ͳ.Ͳͷ ≤ ௢௨௧ݓ ≤ Ͳ.Ͳͷ 

Adaptive 

;чϬ.ϬϬϬϭͿ 

PAFO 5 
−Ͳ.Ͳͷͺ ≤ ℎ𝑖ௗݓ ≤ Ͳ.Ͳͷͺ −Ͳ.ͲͶͷ ≤ ௢௨௧ݓ ≤ Ͳ.ͲͶͷ 

Adaptive 

;чϬ.ϬϬϬϬϭͿ 

For both training and recall phases, the input signals of ANN (𝜃௥௘௙ , 𝜃ሶ௥௘௙ , 𝜃ሷ௥௘௙ ) were nor-

malized between [-1; 1] to provide adaptability and versatility to the ANN. Moreover, it re-

duces the estimation error and accelerates the training phase [260]. As presented in Figure 

7.24.B, the predicted output of the ANN (ݑ௙௙) was denormalized to the maximum operating 

magnitude of the control commands, experimentally set to [-2500; 2500], i.e., to the maxi-

ŵuŵ ǀalues of the AOs͛ pulse-width modulation. 
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Moreover, in both training and recall phases, the computed feedback (ݑ௙௕) and feedfor-

ward (ݑ௙௙) commands are summed to get the total control command (ݑ) to be applied to the 

AOs. The total command was limited to [-2500; 2500] with a saturator (Figure 7.24.B) to pro-

tect the operability of AOs. When three gait cycles are performed, the contribution of the 

feedback control command (ݑ௙௕ሺ%ሻ) to the total control command (ݑ) is estimated, as given 

by Equation (7.13), considering ݑ௙௙ଶ  as the mean squared feedforward contribution.  

௙௕ሺ%ሻݑ = ͳͲͲ% × ݑ௙௙ଶݑ  (7.13) 

The training phase ends when the contribution of the feedback controller is equal or 

lower to 5% (ݑ௙௕ ≤ ͷ%) of the total control command since we empirically verified that the 

feedback contribution did not reach much lower than 5% of the total control command. Then, 

the recall phase starts, and the learned inverse dynamics models of PKO and PAFO are able to 

predict time-effective control commands to timely track the reference trajectory (𝜃௥௘௙) while 

the feedback controller is released from this task to compensate for disturbances. Details of 

the FEL tuning, i.e., the real-time training of the ANN are presented in Appendix G.  

7.7.3.Experimental Validation  

FEL control was validated in PKO and PAKO regarding its time-effectiveness and repeatabil-

ity along the time in order to investigate the possible inclusion of FEL as a low-level controller 

in SmartOs. Moreover, the presented validation considers the user-AO interaction to investi-

gate the FEL adaptability to changes in the dynamics due to the interaction with the user. 

Participants 

Two healthy subjects (a male and a female) with 25.5 ± 0.71 years old, the height of 1.69 ± 

0.1 m, and the body mass of 64.50 ± 14.84 kg. They gave their informed consent to take part 

in the experiment. 

Protocol   

The participants were asked to walk at 0.8, 1.0, and 1.2 km/h in level-ground on a treadmill 

with the PKO and PAFO. Each participant performed 3 trials with a duration of 5 minutes. 

Moreover, under the same conditions, the subjects were informed and asked to counteract 

the PKO and PAFO in the terminal stance and the initial stance phase, respectively, preventing 
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both AOs from increasing their position. The participants performed the disturbances in self-

selected gait cycles. These disturbances were selected since they are commonly prevalent 

during a gait therapy to study the FEL response to external perturbations to the user-AO in-

teraction.  

Data Collection and Analysis  

To evaluate the FEL performance while comparing with the single PID controller, the posi-

tion trajectory measured by the potentiometer (𝜃௠௘௔௦), the feedback (ݑ௙௕ ) and feedforward 

commands (ݑ௙௙), for PKO and PAFO, were collected. All signals were sampled at 100 Hz. The 

control commands were reported as AOs͛ pulse-width modulation values. Performance met-

rics as the phase delay (ms), the angular position error (°) and its normalized root mean square 

error (NRMSE (%)), and the feedback command contribution (ݑ௙௕ሺ%ሻ), were computed in 

Matlab.  

7.7.4.Results and Discussion  

The findings of FEL tuning indicate that the designed ANN was capable of correctly learning 

the inverse dynamics for both AOs. When the learning phase finished, the ANN can timely 

track the reference trajectory, discharging the feedback controller for this task. The learning 

phase lasted 90 s (approximately 25 gait cycles) and 315 s (approximately 70 gait cycles) for 

PKO and PAFO, respectively. These temporal differences are due to the different learning 

rates used in both cases (Table 7.5). 

Additionally, the running time of the FEL control loop (0.25 ms) is lower than the one re-

quired by the bioinspired control architecture of SmartOs (1 ms). These temporal findings sug-

gest that the techniques applied for approaching a real-time implementation were effective 

to avoid long-time periods in the training phase.  

FEL Evaluation in PAFO  

Table 7.6 presents the results of FEL performance, considering the user-PAFO interaction. It 

was observed a mean NRMSE of 6.51%, a mean phase delay of 25 ms and a mean contribution 

of 5.8% of the feedback controller to the total control command.  
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Table 7.6- Results (mean and std) of FEL and PID controllers achieved in gait trials with PAFO and PKO 

 
Speed 

(km/h) 
Control 

NRMSE 

(%) 

Delay 

(ms) 

𝒖ࢌ𝒃  
(%) 

PAFO 

0.8 
PID 22.28±0.14 250±0.28 - 

FEL 6.95±0.008 30±0.01 6.2±0.01 

1.0 
PID 24.28±0.18 260±0.27 - 

FEL 5.99±0.002 20±0.001 6.9±0.3 

1.2 
PID 26.99±0.17 250±0.28 - 

FEL 6.58±0.004 25±0.007 4.84±1.9 

PKO 

0.8 
PID 21.58±0.17 260±0.046 - 

FEL 5.55±0.04 15±0.007 6.94±0.67 

1.0 
PID 22.33±0.16 210±0.024 - 

FEL 5.69±0.04 1±0.004 6.1±0.95 

1.2 
PID 22.0±0.16 230±0.05 - 

FEL 6.37±0.013 22.5±0.004 6.52±0.23 

Figure 7.25 shows the consistency of FEL performance, presenting low position error and 

delay, and repetitive time-effective feedforward commands even when considering the user-

PAFO interaction under different gait speeds. The findings show that FEL can be used as an 

adaptive controller to deal with dynamics changes due to interaction with the user. It also 

yielded time-effective commands siŶĐe the AO͛s positioŶ aĐhieǀes the ƌefeƌeŶĐe positioŶ at 

least 40 ms before the reference position is updated (every 65 ms for 1.2 km/h, the more de-

manding condition).  

 

Figure 7.25- Representative results of PID control (A-C) at 0.8 km/h and FEL control (D-L) in the recall phase con-

sidering the user-PAFO interaction for 0.8, 1 and 1.2 km/h gait speeds. 
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Furthermore, the FEL performance was assessed in the presence of external disturbances 

(as marked in Figure 7.26 between 116 and 118 s). Such disturbances increased the position 

error due to the displacement between the reference and measured position. In response to 

this disturbance, the FEL control augments the feedback controller contribution (increases the 

PID command) while the feedforward command stayed periodic since the PAFO dynamics did 

not change. These outcomes demonstrate that the feedback control is charged to compen-

sate for disturbances while the feedforward control is charged to drive the desired move-

ment.  

 

Figure 7.26- Results of FEL control to external disturbances (marked at the dashed box) for 1 km/h.  

FEL Evaluation in PKO 

Regarding the validation of the user-PKO interaction, a mean NRMSE of 5.87%, a mean 

phase delay of 12.5 ms, and a mean contribution of 6.52% of the feedback controller were 

yielded. Moreover, Figure 7.27 shows that the feedback command increases once the position 

error grows (Figure 7.27.C) due to the external disturbance caused by the user to the normal 

gait pattern of the user-PKO interaction. The increased contribution of the feedback control 

aimed to prevent the FEL control from falling into an instability state. On the other hand, the 

feedforward controller command stayed periodic (Figure 7.27.B), as the reference signals and 

the learned inverse dynamics model did not change.  



Chapter 7-Assistive Control Strategies 

167 

 

 

Figure 7.27- Results of FEL control to external disturbances (marked by the dashed box) to the user-PKO interac-

tion for 1 km/h.  

Comparative Analysis to PID 

The FEL performance was compared with the low-level controller available in SmartOs sys-

tem. For the assistance provided by the PKO under all tested speeds, the PID control achieved 

a NRMSE around 22% and a phase delay of 230 ms. Consequently, it was verified that the FEL 

control decreased the NRMSE and phase delay in 16.5% and 93%, respectively. In the ankle-

foot assistance by PAFO, the PID achieved a mean NRMSE of 24% and a phase delay of 250 

ms for all speeds. For PAFO, the FEL control decreased by 17.5% and 90.7% the NRMSE and 

delay, respectively. 

 

The application of the FEL controller in AOs for gait rehabilitation constitutes an innovate 

research point. So faƌ, the FEL͛s use in real robotic assistive devices has been limited to upper 

liŵďs͛ assistaŶĐe ďǇ fuŶĐtioŶal eleĐtƌiĐal stiŵulatioŶ [254] and neuroprosthetics [253]. 

In overall, the FEL control can provide more accurate and time-effective assistance, with 

lower position error and phase delay than single PID control, which is relevant for the correct 

application of the user-oriented trajectory strategy in repetitive gait training. FEL control time-

effeĐtiǀelǇ adapts the AOs͛ ƌespoŶses to the ĐhaŶges iŶ the dynamics due to the nonlinear 

effects that arise from the user interaction with the device and compensated for random dis-

turbances. Therefore, FEL control is an adaptive and time-effective low-level controller for the 

AOs embedded in SmartOs, which may yield to an efficient gait rehabilitation. 

Nevertheless, more extended validation involving more subjects and assistive control strat-

egies is required to strengthen the robustness and the evidence of FEL low-level controller 
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considering subject-specific effects and control dynamic variability. Lastly, a benchmarking 

comparison with a hybrid controller should be approached.  

7.8.Conclusions  

The developed control architecture includes four different assistive control strategies, 

which approached different therapeutic goals to make the SmartOs a multi-functional assis-

tive system to accommodate for the variability of the inter-and intra-subject needs. The con-

trol architecture enables the inclusion of further assistive strategies to rise the SŵaƌtOs͛ ap-

plicability and expandability for distinct kinds of therapies. 

Note that the performance of these assistive control strategies is determined by the (i) 

precision of the sensors, (ii) the aĐtuatoƌ͛s toƌƋue pƌeĐisioŶ aŶd ďaŶdǁidth, ;iiiͿ AO͛s mechan-

ical response, and (iv) time-effectiveness of the low-level controller.    

The reduced number of participants and explored AOs limit the effect size of the proposed 

assistive control strategies. 
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Chapter 8 – Conclusions 

This chapter provides concluding remarks and main contributions by putting the results of 

the previous chapters into perspective. The future directions to increase the technological and 

clinical value of SmartOs system, as well as opportunities for further technical improvement, 

are also presented. 

8.1.Concluding Remarks and Main contributions  

This Ph.D. thesis proposes a smart, wearable active lower limb orthotic system, SmartOs 

system, to meet current challenges in gait rehabilitation and assistance towards a user-ori-

ented and repetitive gait training while fostering a real-time and objective assessment of the 

useƌ͛s motor condition. SmartOs system was designed, developed, and experimentally vali-

dated to function as a personalized assistive solution for stroke survivors that present im-

paired gait function and spastic gait.  

The conducted investigation and development actions, together with the obtained prom-

ising results through benchmarking analyses, contributed to the accomplishment of the ulti-

mate goal of this Ph.D. thesis, as follows.  

An user-centered design approach, considering the end-users͛ reports and clinicians͛ eǆ-

pertise, was applied throughout the SŵaƌtOs͛ system design and development (Objective 2). 
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In this sense, it is expected that the pathological end-users report positive acceptability and 

usability with SmartOs assistance.  

Chapter 3 disclosed that SmartOs combines in an innovative and interoperable manner 

wearable sensor systems, gait analysis tools, assistive control strategies into AOs such that 

they are able to time-effectively adapt the assistance according to real-time evaluation of the 

useƌ͛s Ŷeeds aŶd ŵotioŶ iŶteŶtioŶ. The modules combination was successfully established 

through a modular, deterministic framework (Objective 2), which demonstrated well-func-

tioning and met the real-time constraints. The framework endows a hierarchical combination 

of SŵaƌtOs͛ ŵodules to boost the reliability of personalized assistance and cooperation be-

tween the end-user, devices, and environment, as handled by the human motion-control sys-

tem, and thus, contributing to smart action of SmartOs.   

Moreover, the modular architecture (Objective 2) confers easy technological scalability 

that allows eǆteŶdiŶg the SŵartOs’ ĐliŶiĐal perspectives for novel therapeutic goals, different 

neurologically impaired end-useƌ͛s, eldeƌlǇ assistaŶĐe, aŶd eǀeŶ iŶtƌoduĐiŶg Ŷeuƌopƌosthesis 

to explore the physiological and cognitive opportunities that hybrid electrical and mechanical 

assistance may offer.  

In Chapter 4, a wearable motion lab with four stand-alone, self-calibrated, low-cost, wear-

able sensor systems was successfully developed. These sensor systems include real-time gait 

analysis tools for estimating biomechanical and muscular outcome measures (Objective 3), 

given their relevance in post-stroke gait recovery assessment according to International Clas-

sification of Functioning, Disability and Health (ICF). The benchmarking analysis with commer-

cial systems outlined that the developed sensor systems are purposeful for all-day monitor-

ing in real-world walking scenarios. Experimental findings indicate that the MuscLAB is an 

objective and easily applied method for providing an evolutive analysis of the muscular activ-

ity aĐƌoss gait theƌapies. Hoǁeǀeƌ, the MusĐLAB͛s outputs do Ŷot eŶdoǁ the foƌeĐast Ŷatuƌe 

of muscular electrical activity measured through EMG system, which plays a relevant role in 

prediction and control domains. 

The open-architecture approached in these sensor systems allows their application as 

stand-alone or combined into third-party systems with an extendable potential for a versatile 

ambulatory human gait analysis in healthy, pathological, and robotic-assisted conditions. This 

research initiative goes forward the orthosis domain, allowing the real-time and objective 
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eǀaluatioŶ of the useƌ͛s ŵotoƌ ĐoŶditioŶ to support the clinical-based motor diagnosis with 

more accurate information and to investigate the clinical evidence of AO-driven assistance.  

Furthermore, Chapter 5 presented a real-time gait event detection tool through an FSM 

that showed to be accurate to handle with inter-subject and inter-step variability when var-

ying gait speed, slope, climbing staircases, barefoot and footwear conditions (Objective 4). 

Features as lower computational load, simple usage (only using a small, wearable sensor 

from InertialLAB or GaitShoe), more holistic gait segmentation (up to six gait events) when 

compared with literature, together with the improved performance, makes the proposed de-

tection system suitable as a benchmark for real-time assessing human gait events.  

The research activities of this thesis also contributed with an automatic, user-independent 

machine learning-based recognition and prediction tool that accurately classified daily per-

formed LMs and LMTs (Objective 5), as stated in Chapter 6. This tool advances the state-of-

the-art by demonstrating that the exclusive use of kinematic data successfully allows (i) tack-

ling the transition prediction problem, (iii) predicting LMs and LMTs one step before their oc-

currence, and (iii) performing a more versatile classification while covering different walking 

directions (forward, back, clockwise, and counter-clockwise) with variations in gait speed and 

terrains (flat, ascending and descending stairs and ramp, stepping over obstacles). This finding 

suggests that the useƌ͛s ŵotioŶ iŶteŶtioŶ may be successfully achieved using more practical 

sensors for daily locomotion than EMG sensors.  

In Chapter 7, a hierarchical, closed-loop control architecture, prioritizing safety measures, 

was successfully achieved suĐh that AO͛s assistiǀe ĐoŵŵaŶds are based on the sensor feed-

ďaĐk, that tƌaĐks the useƌ͛s ŵotoƌ ĐoŶditioŶ aŶd his/heƌ iŶteƌaĐtioŶ ǁith AO, aŶd high-level 

gait aŶalǇsis tool foƌ deĐodiŶg useƌ͛s Ŷeeds aŶd iŶteŶtioŶ iŶspeĐtioŶ. This control architecture 

demonstrated a reliable performance for executing different user-oriented assistive control 

strategies in real-time ǁheŶ atteŵptiŶg to the useƌ͛s ŵotioŶ iŶteŶtioŶ aŶd paƌtiĐipatioŶ, as 

experimentally inspected. This research action transforms the SmartOs into a multi-functional 

assistive system within the healthcare domain to attain for the variability of the inter-and in-

tra-subject needs and to offer distinct kinds of therapies for post-stroke gait rehabilitation 

(Objective 6).  

Regarding the performance of these assistive strategies, the overall findings outline several 

concluding remarks that may guide the clinical therapies. The user-oriented trajectory strat-

egy is suitable for repetitive gait training with user-oriented movements (mainly when using 
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FEL controller). Consequently, it contributes to augment the useƌ͛s movement coordination, 

motor sequence relearning, and potentiating the useƌ͛s natural locomotor pattern recovery 

given the user-oriented trajectories. As relearning motor skills after a stroke requires a person 

to practice movements by repetition [261], this assistive strategy potentially addresses pa-

tients in an initial stage of gait therapy or with a high-to-moderate degree of disability. The 

inclusion of wearable biofeedback systems should be approached in gait therapies since this 

assistive strategy does Ŷot pƌoǀide aŶǇ ŵeĐhaŶisŵ to ĐoŶsideƌ oƌ ďoost the useƌ͛s participation.  

Moreover, SmartOs covers AAN gait training through adaptive impedance control that 

tailors the stiffness of the human-orthosis interaction, innovatively investigated to make the 

AO ŵoƌe Đoopeƌatiǀe to the useƌ͛s ŵotioŶ iŶteŶtioŶ. The stiffŶess adjustŵeŶt enables perma-

nent adaptability of the assistance level and thus the strength of motor memory over time. 

This strategy contributes to long-term efficient movements and functional motor ability.  

Furthermore, the user-orthosis interaction-based control and EMG-based strategy favour 

high-challenging motor therapies that iŶǀolǀe the useƌ͛s ŵotioŶ iŶteŶtioŶ aŶd phǇsiĐal effoƌt. 

The EMG-based control strategy is more suitable for subjects with a high-to-moderate level 

of impaired gait function since it requires lower physical effort from the user than the user-

orthosis interaction-based strategy. The findings pointed out that these strategies contribute 

to augment muscular strength, and improve functional locomotor ability. Nonetheless, these 

assistive strategies do not tailor the assistance according to the useƌ͛s disaďilitǇ leǀel. 

The adaptive impedance control, user-orthosis interaction-based control, and EMG-based 

strategy showed to be featured by the user’s active and voluntary participation in the ther-

apy. The involvement of cognitive processes results in beneficial effects on the control of 

learned motor behavior and muscle memory skills [262]. Further, it may accelerate the motor 

recovery.  

As the user-orthosis interaction-based control minimizes the mechanical impedance of the 

AO to act as a passive device, it was elected, in collaboration with clinicians, to be applied 

under spastic conditions.  

The reliability and time-effectiveness of these assistive control strategies is determined by 

the efficacy of the low-level controller. The promising results of the FEL controller highlight 

the potential of a hybrid low-level controller to more accurate and time-effective assistance 

with enough adaptability to the dynamic changes that arise from the user interaction, when 
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compared to the single feedback control, PID controller. Therefore, AOs should attempt to 

hybrid controllers as FEL.  

 

The overall results obtained during experimental and technical validation, proved the well-

functioning of the SmartOs system, reaching the Technology Readiness Level ϰ ͞TeĐhŶologǇ 

ǀalidated iŶ laď͟. At this level, SmartOs is functionally operative and is ready to be validated 

in the clinical environment, and a protocol has already been proposed, although not de-

scribed in this thesis. This clinical validation is itself innovative. The SmartOs-driven gait reha-

bilitation will contribute to a long-term biomechanical and functional gait recovery, augment-

ing the movement coordination, muscular strength, energetic efficiency locomotion, cognitive 

motor abilities, aŶd geŶeƌal useƌ͛s ǁellďeiŶg. The cognitive advances may be assessed through 

neuroimaging.  

8.2.Research Questions  

The research initiatives conducted in this thesis allow answering to the following RQs.  

• RQ1: Which are the key outcome measures to evaluate the functional motor recovery of 

stroke survivors upon orthotic-based gait rehabilitation?  

This RQ was answered in Chapter 2. There is evidence to apply outcome measures from the 

Activity ICF category, including spatiotemporal (mainly, gait speed, step length, stride dura-

tion), kinematic (flexion/extension of hip, knee, and ankle at different stages of the gait cycle, 

and range of motion), and functional (mainly, Time-Up-Go Test, 10 Meter Walking Test, and 

Berg Balance Scale) outcomes.  

• RQ2: What are the main assistive potentialities and scientific challenges to consider in 

the design of a wearable active orthotic system for robotic-based gait rehabilitation?  

This RQ was tackled in Chapter 2. When compared with manual gait rehabilitation and passive 

orthotic assistance, the main assistive potentialities of wearable AOs are: (i) provide an in-

tensive, repetitive therapeutic training according to a real-time evaluatioŶ of the useƌ͛s Ŷeeds 

(AAN approach); (ii) tailor the assistance to different motor activities and gait speed variations; 

(iii) incorporate the patient-active mode and the voluntary effort; (iv) long-term functional 
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motor recovery and enhanced motor learning; and, (vi) continuous and objective gait moni-

toring.  

Challenges in wearable AOs include the integration of the following technologies: (i) time-

effective assistive control strategies tailored according to the ĐuƌƌeŶt useƌ͛s Ŷeeds to deliver 

a personalized assistance, (ii) unobtrusive wearable biofeedback system approaching less-cog-

Ŷitiǀe effoƌt to aĐtiǀelǇ eŶĐouƌage the useƌ͛s paƌtiĐipatioŶ, ;iiiͿ ǁeaƌaďle seŶsoƌ sǇsteŵs aŶd 

easy to apply methodologies for real-time monitoring of the neuro-biomechaniĐal useƌ͛s ŵo-

tor condition, and (iv) tools foƌ the ƌeĐogŶitioŶ of useƌ͛s ŵotioŶ iŶteŶtioŶ aŶd ĐuƌƌeŶt patieŶt͛s 

disability level.  

Clinical challenges include the accomplishment of more clinical experiments with (i) a sig-

nificant number of participants, particularly patients that exhibit spasticity, (ii) repetitive func-

tional motor activities daily performed, and (iii) long-term AO͛s eǀideŶĐe evaluation with 

quantitative outcome measures.  

• RQ3: Can a single kinematic measure enable a time-effective detection of several gait 

events under distinct walking conditions?  

This RQ was tackled in Chapter 5. Experimental evidence demonstrated the exclusive use of 

foot angular velocity signal at the sagittal plane provided a time-effectiveness detection of 

six gait events in controlled and non-controlled gait conditions, varying gait speed and slopes, 

climbing staircases, and attending to inter-subject and inter-step variability.  

• RQ4: Is it possible to recognize and predict daily performed locomotion modes and loco-

motion mode transitions using a machine learning tool that exclusively deploys kine-

matic data? 

This RQ was answered in Chapter 6. The promising findings support the potential of using 

only the trunk and lower limb kinematic data (angular velocity and angle) to accurately rec-

ognize and predict daily performed locomotion modes and locomotion mode transitions. 

• RQ5: Which set of assistive control strategies will yield a multi-functional assistive sys-

tem addressing different gait therapies?  

Chapter 7 approached these RQs though the design and validation of distinct control strate-

gies. It was verified that (i) user-oriented trajectory control is indicated for repetitive training 

with user-oriented movements, potentially addressing the initial stage of gait therapy; (ii) 
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adaptive impedance control enables a promising AAN gait training with adaptive assistance 

level; and, (iii) EMG-based control and user-orthosis interaction-based control are promising 

for therapies driven by the useƌ͛s ŵotioŶ iŶteŶtioŶs aiming physical high-challenging gait 

therapies.  

 

• RQ6: Can feedback-error learning control, a low-level controller, provide proper real-

time performance to an active assistive lower-limb device? 

The findings outline that FEL is a time-effective low-level controller for AOs that beneficiates 

from the anticipatory and time-effective performance of the feedforward control in the cyclic 

task of walking while the feedback controller is suited to compensate for uncertain dynamics 

of the human-robot system.  

8.3.Future Directions  

In this section, some of the scientific and technical improvement opportunities that could 

be explored are highlighted. 

Future directions for technical improvements include: (i) Integrating the wearable bio-

feedback systems under development to encourage the high-intensity useƌ͛s phǇsiĐal paƌtiĐ-

ipation into the therapy to boost the overall motor recovery. (ii) Enhancing aesthetic and er-

gonomic issues in the Wearable Motion Lab by upgrading sensor systems with wireless tech-

nology and attenuating seŶsoƌs͛ ŵisaligŶŵeŶts. ;iiiͿ Extending the validation of GaitShoe and 

MuscLAB to further non-structured walking scenarios such as climbing stairs and slopes to 

investigate measurement repeatability under these daily locomotor tasks. (iv) Exploring the 

MusĐLAB͛s ƌespoŶse to the use of a foƌĐe seŶsoƌ aƌƌaǇ ƌatheƌ thaŶ a siŶgle seŶsoƌ to deal ǁith 

attachment problems and delayed muscular activity measurement. (v) Improving the joint 

angle estimation, by merging fusion-based methods with gait event resetting-based ap-

proaches to deal with the bias errors. (vi) Improving the overall performance of the user’s 

motion intention recognition and prediction tool by including more participants and more 

transitional steps to increase the user-independent character and accuracy of Steady-

State/Transition Classification Model, respectively. (vii) Combining variable walking direction 

and gait speed across different terrains; otherwise, the Direction Classification Model is only 

useful for level-ground. (viii) Utilizing FEL low-level controller with all assistive control 
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strategies aŶd optiŵiziŶg the AOs͛ ŵeĐhaŶiĐal response to achieve overall purposeful assis-

tance. (ix) Conducting more exhaustive validation of overall hierarchical control architecture 

focused on the potentialities of each assistive control strategy. (x) Developing a user-custom 

made attachment system for mitigating the misalignments ďetǁeeŶ the useƌ͛s aŶd AOs, 

mainly for PKO system to effectively obtain a user-centered device, making it more attractive.  

Future scientific challenges were also pointed out during the conducted research activities, 

as follows. (i) Investigate which type of biofeedback system, vibrotactile or visual, fosters a 

more intuitive and cooperative user-AO interface during assisted walking conditions. (ii) Study 

the effectiveness of MuscLAB as an easily and quickly applied methodology for assessing mus-

cle fatigue. (iii) Explore the affordability of tools for gait event prediction to tuŶe the AO͛s 

assistance when needed. (iv) Employ the machine learning-based framework presented in 

Chapter 6 for achieving a disability analysis tool supporting the clinical-based decision in post-

stroke conditions using kinematic and muscular activity data (e.g., spatiotemporal measures 

and kinematic and muscle synergies). (v) Complement the hierarchical control architecture 

with machine learning-based tools for incipient risk detection aŶd useƌ͛s ŵotioŶ iŶteŶtioŶ 

recognition and prediction for achieving a smooth movement transition and comfortable as-

sistance for end-users. (vi) Include recurrent NN into the machine learning-based framework 

given the ability of this NN to storage the temporal sequence of human gait that is embedded 

in the time-series of kinematic data. (vii) Advance the motion prediction problematic fusing 

kinematic motion data with environment aware data. (viii) Update current achievements of 

assistive control strategies, by introducing real-time adjustment of the user-oriented trajec-

tory in user-oriented trajectory strategy, AAN strategy in EMG-based control, and damping 

and inertia modulation in the adaptive impedance control. (ix) Explore energy-based control 

stƌategǇ ĐoŶsideƌiŶg the eǀaluatioŶ of the useƌ͛s eŶeƌgetiĐ effoƌt.  

Innovative aspects cover the evaluation of the reliability, through benchmark outcomes, of 

the SmartOs system and individual modules in clinical environment with stroke survivors. A 

wide-ranging analysis of the locomotor ability of the pathological users will be tackled for cre-

ating an open-source database with meaningful motion data for enabling the offline building 

and testing of gait analysis tools and control strategies.   

Lastly, long-term technical improvements aim to enable the SmartOs application in daily 

assistance and will strong-up the motor ability and offer the patients an adequate level of 

iŶdepeŶdeŶĐe to peƌfoƌŵ dailǇ loĐoŵotoƌ aĐtiǀities aŶd ƌaise the useƌ͛s ĐoŶfideŶĐe.  
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Appendix A- Methodologic Quality Assess-

ment 

This appendix provides information on the methodologic quality assessment of each in-

cluded study in Chapter 2.2 (see Appendix A.1) and Chapter 2.3 (see Appendix A.2) using the 

Cochrane risk-of-bias tool [74]. 

 

Appendix A.1 

Risk of bias assessment of the studies discussed in Chapter 2.2 using the Cochrane tool 

 

Figure A.1.1- Risk of bias graph. 
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Figure A.1.2- Risk of bias summary. 

 

Appendix A.2 

Risk of bias assessment of the studies discussed in Chapter 2.3 using the Cochrane tool 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.2.1- Risk of bias graph. 
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Figure A.2.2- Risk of bias summary. 
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Appendix B- Outcomes Measures in Post-

stroke Gait Rehabilitation  

This appendix provides additional information on outcome measures, categorized per ICF 

category, used in post-stroke orthotic-based rehabilitation, which were presented in Chapter 

2.2.  

 

Table B.1- Assessment protocol (goal, outcome measures, motion capture systems, and timing for assessment) 

in post-stroke orthotic-based rehabilitation. N/A means not available and (*) indicates the primary outcome.  
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Study 
Assessment 

goal 

Disease 

stage 
Orthosis  

Outcome measures Motion capture  

system 

Timing for  

assessment ICF category Description 

[95] Functional 

and dynamic 

balance 

Chronic  Conven-

tional AFO 

and metal 

AFO 

Activity  -Functional metrics: TUG, 10MWT, FAC, BBS.  

-Balance metrics: Weight-bearing asymmetry, 

timed balance test.  

6 DOFs motion plat-

form (MOTEK, Nether-

lands), Vicon system 

(Vicon, UK) 

End of treat-

ment: 35 

months 

[96] Walking 

ability 

Chronic Anterior AFO Body  

impairment 

-Impairment metrics: MAS.  N/A N/A  

Activity -Functional metrics: TUG, TUDS, BBS. 

[75] Gait pattern 

and sym-

metry  

Acute Hinged knee 

orthosis  

Body  

function 

-Muscle activity: electromyography. 4-camera system 

(Basler Scout, Basler 

AG, Germany), tele-

metric EMG device 

(Zebris Medical GmbH, 

Germany)  

-Baseline; 

-End of treat-

ment: 4 weeks  Activity -Spatiotemporal parameters: gait velocity, ca-

dence, step length, base width, stance, swing 

and double-support duration, and symmetry in-

dex.  

-Functional metrics: 6MWT, 10MWT (*), TUG, 

BBS. 

Participation - Participation metrics: satisfaction question-

naire with 9 questions concerned the orthotic 

fit, weight, durability, appearance, the effect on 

clothes and skin, the difficulty of donning, and 

related pain. 

[97] Balance and 

fall risk miti-

gation 

Chronic  Conven-

tional AFO  

Activity -Functional metrics: BBS.  

-Balance metric: postural stability measured by 

Biodex system.   

Biodex System (USA), 

movable balance plat-

form 

End of treat-

ment: 1 week  

[85] Knee joint 

ability 

Chronic  Conven-

tional AFO 

Activity -Spatiotemporal parameters: gait speed, step 

length. 

-Kinematic metrics of paretic limb: knee flexion 

and peak knee flexion angle. 

 

 

ELITE (BTS Bioengineer-

ing, Italy) with 8 infra-

red cameras 

End of treat-

ment: 6 trials  
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Study 
Assessment 

goal 

Disease 

stage 
Orthosis 

Outcome measures Motion capture 

system 

Timing for 

assessment ICF category Description 

[103] Walking 

ability  

Chronic Conven-

tional AFO 

Activity - Functional metrics: TUG, TUDS, FAC.   2 infra-red beams  End of treat-

ment: 9 months 

[98] Balance and 

walking abil-

ity 

Acute  Conven-

tional AFO 

Activity -Functional metrics: 10MWT (*), 6MWT, TUG, 

TUDS, FAC, BI, BBS.  

N/A -Baseline;  

-End of treat-

ment: 2, 9 and 

11 weeks  

[99] Long-term 

effect of 

walking abil-

ity  

Chronic  Conven-

tional AFO 

Activity -Functional metrics: 10MWT, TUG.   Footprints  N/A 

Participation - Participation metrics: perceived exertion scale 

(ranges from 6 to 20) to assess the activity in-

tensity of each trial for each test. 

[86] Immediate 

biomechani-

cal ability 

Acute  Conven-

tional AFO 

Activity -Spatiotemporal parameters: walking velocity 

(*), step length symmetry ratio, average step 

length, cadence.  

-Kinematics: thigh-to-vertical angle, shank-ver-

tical angle, maximum thigh-to-vertical angle of 

paretic limb, knee flexion of paretic limb.  

8-camera Vicon 612 

system (Oxford Met-

rics, UK), 2 AMTI 

BP400600 force plat-

forms 

-Baseline;  

-End of treat-

ment:  7 days  

Participation - Participation metric: EuroQol EQ-5D-5L29 

quality of life questionnaire. 

[94] Mediola-

teral foot-

placement 

ability  

Chronic  Non-rigid 

AFO 

Activity - Spatial metrics: mediolateral foot-placement 

between the ankle and the target line (0%, 15%, 

ϯϬ%, ϰϱ% suďjeĐt͛s leg leŶgthͿ foƌ eaĐh step; Điƌ-
cumduction.   

- Kinematic metrics: hip abduction/adduction 

angle, peak pelvic angle.  

8-camera digital mo-

tion capture system 

-Baseline;  

-End of treat-

ment:  6 trials  

[87] Initial ef-

fects on gait 

pattern 

Acute, 

chronic  

Conven-

tional AFO 

Activity -Spatiotemporal parameters: gait speed; ca-

dence; step length of paretic and non-paretic 

limb; stance duration of paretic and non-paretic 

 

  

GAITRite1 system End of treat-

ment:  1 month 
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Study 
Assessment 

goal 

Disease 

stage 
Orthosis 

Outcome measures Motion capture 

system 

Timing for 

assessment ICF category Description 

[88] Biomechani-

cal ability 

Chronic  Conven-

tional AFO 

Activity -Spatiotemporal parameters: walking velocity 

(*), step length, symmetry ratio based on step 

length.  

-Kinematic parameters: thigh and shank orien-

tations. 

-Kinetic indicators: knee and hip flexion/exten-

sion moments.  

3D motion analysis  -Baseline 

measures  

-End of treat-

ment: 3 months  

-Follow-up: 6 

months  

Body struc-

ture 

- Impairment metrics: MAS, Modified River-

mead Mobility Index. 

Participation - Participation measures: EuroQol (EQ-5D); in-

terviews to the clinicians and patients before 

and after their participation in the study.   

[89] Rear-foot 

motion gait  

Acute Anterior and 

posterior 

AFOs 

Body impair-

ment 

 - Impairment metrics: Brunnstrom scale, MAS. Vicon system (Vicon, 

UK) 

End of treat-

ment:  3 trials 

Activity -Spatiotemporal parameters: walking speed, 

step length, cycle time.  

-Kinematic metrics: angles of the rear-foot joint 

in three planes. 

[91] Biomechani-

cal ability 

Chronic  

 

Conven-

tional AFO  

Activity -Spatiotemporal parameters: step length nor-

malized to body height, cadence, gait velocity 

(*), stance and pre-swing time. 

-Kinematic metrics: hip extension and knee flex-

ion at toe-off. 

2 force platforms 

(Kistler, Switzerland), 

Vicon system (Oxford 

Metrics, UK) 

End of treat-

ment:  3 trials 

[90] Biomechani-

cal and mus-

cular ability 

Acute  Conven-

tional AFO 

and dynamic 

AFO  

Body func-

tion 

 -Muscular activity: EMG from tibialis anterior 

muscle. 

Myopac EMG unit (My-

opac), force plates, Vi-

con System (Oxford 

Metrics, UK)  

 

 

End of treat-

ment:  3 trials 

Activity -Temporal metric: gait velocity.  

- Kinematic metrics: ankle angle at initial contact 
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Study 
Assessment 

goal 

Disease 

stage 
Orthosis 

Outcome measures Motion capture 

system 

Timing for 

assessment ICF category Description 

[92] Double sup-

port 

changes re-

lated to gait 

speed 

Chronic Conven-

tional AFO 

Activity -Temporal metrics (*): gait speed; duration of 

stride initial double support, single support, and 

terminal double support. 

 -Kinetic metrics (*): mean force, and impulse 

(bodyweight*seconds) in the wholefoot, hind-

foot, forefoot, and toe during initial double sup-

port. 

Wheel, wireless force 

platform (pedar®) 

End of treat-

ment: 10 trials 

[93] Biomechani-

cal and mus-

cular ability  

Chronic Conven-

tional AFO 

and dynamic 

AFO 

Body func-

tion 

 -Muscle activity: co-activation index of gas-

trocnemius, tibialis anterior, biceps femoris, 

rectus femoris muscles. 

Stereo-photogrammet-

ric system (BTS Smart), 

infrared cameras, min-

iaturized EMG device 

(BTS FREEEMG 300) 

End of treat-

ment:  3 trials 

Activity -Spatiotemporal metrics: stride time, cadence, 

step length, stride length, percentage of swing 

phase and double stance phase;  

-Kinematic metrics: angle at initial contact, 

ROM, dorsiflexion peak during swing phase for 

ankle; knee flexion/extension ROM; and flex-

ion/extension ROM, flexion peak during swing 

phase, and pelvic frontal ROM for hip. 

[76] Over-

ground bal-

ance and 

walking abil-

ity 

Chronic Knee ortho-

sis 

Activity -Functional metrics: 10MWT, 6MWT, BBS, five-

time sit-to-stand test (5TSST), and Emory Func-

tional Ambulation Profile (EFAP).  

N/A -Baseline; End of 

treatment: 6 

weeks;  

-Follow-up: 

3months  
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Appendix C- Clinical Protocol on Post-Stroke 

Rehabilitation 

This appendix presents additional information on the results of the systematic review re-

lated to post-stroke orthotic-based rehabilitation and presented in Chapter 2.3, namely the 

inclusion and exclusion criteria and the clinical protocol.  
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Table C.1- Inclusion and exclusion criteria, and protocol outlined in the studies with post-stroke patients. 

Study Inclusion criteria Exclusion criteria Protocol 

[95] 

- Over 18 years of age.  

-Have a single unilateral ischemic or hemorrhagic 

stroke at least 3 months leading to hemiparesis. 

-Able to walk for 10 m with or without orthosis.   

-Able to maintain independent unsupported 

stance with and without an AFO for at least 90 s.   

-Daily using of AFO for at least 2 months.  

-Able to follow simple verbal instructions.  

N/A 

-Randomized cross-over trials. 

-Patients performed the posture-graphic test and functional tests, with 

and without AFO, while all subjects were wearing their own shoes.   

- The static test aimed to assess weight-bearing asymmetry while the 

subjects were instructed to stand on the force plate for 90 seconds. 

-Subjects performed 3 dynamic trials lasting 90 seconds, in which they 

were instructed to maintain balance without moving their feet.  

-Functional tests consisted on: BBS, TUG test, 10MWT, and FAC.  

[

105] 

-Over 18 years old. 

- Stroke at least 6 months (chronic-phase). 

-Spasticity of the gastrocnemius and soleus mus-

cles rated between 1 and 3 on the MAS, leading to 

foot-drop.  

N/A 

- 2 sessions of gait analysis at their self-selected gait speed without and 

with the use of the AFO and shoes, with a 10 minutes rest period.  

-Each condition was carried out in a 10 meters gait corridor, where the 

participants performed at least 8 successive gait cycles.  

-6 trials were carried out for each condition. 

[96] 

-Unilateral hemiplegic stroke patients capable of 

following simple verbal instructions.  

-Ability to walk on a level surface and to walk up 

and down stairs with or without assistive devices 

and without wearing an AAFO.  

-No systemic or local medical problems, other 

than stroke, that might affect walking mobility. 

-Clinically significant visual impair-

ment.    

-Ability to voluntarily dorsiflex the 

ankle against gravity, i.e., MRC 

sĐale ш ϯ, siŶĐe the AFO is iŶdi-
cated for the weakness of the an-

kle dorsiflexor.  

-Experiments were randomly performed with and without AAFO.  

- Participants who already had an AAFO were allowed to use the device.  

- Participants were requested to complete the TUG and TUDS tests. 

- During the testing process, 2 individuals stood by the participants, 1 

on each side, to prevent falls.  

- Participants could rest, generally 5 to 10 minutes, between each test. 

Total testing time ranged from 30 minutes to 1 h.  

[75] 

-Stroke at least 3 months. 

-Presence of paresis of leg muscles and/or a spas-

ticity pattern resulting in knee hyperextension.  

-Ability to walk independently with or without a 

walking aid.  

-Cognitive disorders preventing 

the understanding.  

-Ankle or foot contracture or lim-

ited ROM, or orthopaedic injury to 

the paretic or non-paretic limbs.  

-8-week prospective, randomized, controlled study with 2 groups.  

-First group received the orthosis during 4 weeks, and then, 4 weeks 

without using the orthosis. Second group only received orthosis after 4 

weeks for personal use for a 4-week period. 

-Measures were recorded at baseline, 4 and 8 weeks. 

[97] 

-Have spasticity at gastrocnemius and soleus.    

-Ability to walk safely without an assistive device.  
N/A 

- Patients were assessed with AFO and without AFO.  

-All assessments were made with footwear.  
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Study Inclusion criteria Exclusion criteria Protocol 

[

104] 

-Over 18 years old.  

-Have hemiplegia following a stroke at least 6 

months (chronic-phase).  

-Spasticity or weakness of quadriceps.  

-Knee hyperextension during the stance phase. 

-Ability to walk 10 meters without walking aids.  

-Prescription of a carbon KAFO in last 6 months. 

N/A 

-Patients performed 2 gait tests successively with (KAFO condition) and 

without orthosis (control condition) at their preferred walking speed, 

with a 10 minutes rest period.  

-Each condition was carried out in 10 meters for 6 trials.   

 

[106] 

-Over 18 years of age. 

- Had a stroke at least 6 months.  

-Maximum spasticity level of 3 in MAS. 

- Have FAC ranging 3 to 5.  

-Range of passive dorsiflexion up to at least 90°.  

-Have cognitive level to give informed consent, to 

understand and follow the directions of protocols. 

- Have comorbidities, orthopaedic 

or postural problems that could 

confound the outcomes. 

-Have used a dynamic AFO before. 

 

-Randomized controlled trials with (study condition) or without AFO 

(control), both with shoes.  

-All subjects underwent TUG test and TUDS test during 3-month follow-

up.   

 

 

[114] 

- Spasticity of gastrocnemius and soleus muscles 

less than 3 on MAS.  

-Ankle passive dorsiflexion >5º with the knee 

flexed to 90º. 

 

- Cannot stand for 10 seconds.  

-Motor or cardiovascular disease 

that might impair locomotion or 

other cognitive alteration that 

limits the participation in study.  

-Multicentre randomized controlled study over 90 days with 2 walking 

conditions: Chignon AFO (study group) or the standard AFO (control).  

- Participants underwent to 10MWT. 

-Standardized assessments were performed at the initial wearing time 

and at 30 and 90 days of follow-up. 

[85] 

- Over 18 years old.  

-Walk at least 10 meters. 

- No limitation in the ROM in lower limbs. 

- Plantarflexor spasticity MAS between 1 and 3.   

-Gait speed was higher than 1m/s.  

-Unable to give informed consent.  

-Significant cardiorespiratory or 

metabolic disease.   

- Patients were asked to walk with AFO or barefoot.  

- Subjects walked a distance of 10 meters to complete 2 gait cycles.  

- 6 trials were performed for each condition: 3 without the orthosis and 

3 with the orthosis/ footwear combination.  

[

103] 

- Aged 40 and 75 years old.   

-Have a first unilateral ischaemic or hemorrhagic 

stroke from the middle cerebral artery.  

- Ability to walk independently with shoes with 

and without orthosis.  

- Wearing an AFO for at least 6 months.  

N/A 

-Tests were randomly carried out with and without their AFO while the 

participants were wearing shoes, lasting 5 weeks to 6 months. 

- Patients walked the 10-meter walkway 3 times (comfortable speed).  

- Participants underwent TUG test, where was permitted to use a walk-

ing aid, but no physical help. The TUG was measured three times.  

-Subjects performed the TUDS test 3 times. 

 

 



Appendix C 

 

206 

 

Study Inclusion criteria Exclusion criteria Protocol 

[98] 

-Over 18 years of age.  

- Hemiplegia following a unilateral ischemic or 

hemorrhagic stroke at least 6 months. 

-Able to follow simple verbal instructions.  

-Suffering from severe compre-

hensive aphasia or neglect.   

-Present a complicated medical 

history, as cardiac, pulmonary, or 

orthopaedic disorders, that could 

interfere with testing.  

- Randomized controlled trial.  

- Effects were assessed 2 weeks after provision (baseline). Patients from 

early group were observed from week 3 while subjects from delayed 

group were analysed week 11.  

-Patients performed functional walk tests: 10MWT, 6MWT, TUG, TUDS, 

and they could use their usual assistive device.  

[99] 

-At least 6 months post-stroke.     

-Have an initial infarct within the past 10 years.  

-Patients wearing a thermoplastic AFO for at least 

6 months.  

N/A 

-Randomized crossover trials.  

-Trials with wearing and not wearing their AFO.  

-Patient walked on a 10 meters walkway and performed the TUG test. 

[107] 

- No prior experience with an AFO.  

-Have no expected change in medications for at 

least 6 months. 

-Have adequate stability at the ankle during 

stance.  

-Have a Functional Independence Measure score 

шϰ foƌ aŵďulation.  

-Can ambulate at least 10 meters with or without 

an assistive device.   

-Have history of falling more than 

once a week prior to the stroke.  

- Have fixed ankle contractures of 

10° of plantarflexion.  

-Gait speed greater than 1.2 m/s. 

-Morbid obesity.   

-Present conditions as myocardial 

infarction, congestive heart fail-

ure, demand pacemaker.  

-Randomized controlled trial, since 2005 to 2008, with 2 conditions: 

with and without a device.  

-Trials consisted of 2 consecutive phases of 6 weeks intervention.  

-During each visit, walking performance was tested at 0, 3, 6, 9, and 12 

weeks. 

 

[86] 

-Over 16 years old.   

-Have to be within 1 to 12 months after stroke; 

-Be able to walk with assistance but have difficulty 

flexing knee and extending hip during gait. 

N/A - Randomized controlled trial study. 

- Patients undergone a tri-dimensional gait analysis that was taken on 

two occasions: one before the AFO was fitted walking with shoes only 

(baseline session), and another 7 days later immediately after the AFO 

was fitted and tuned (tuning session). 

- Patients worn basic training shoes (rigid sole) for tuning session.  

-Were collected 10 trials at baseline and 7 immediately AFO tuning. 

[115] 

- Subjects ambulating faster than 0.8 m/s.  

-Subjects that needs physical assistance or exter-

nal support.   

N/A -Randomized trials. 

-Subjects were followed for 6 months, and assessed relatively to func-

tionality with activities of daily living, balance, and quality of life. 
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Study Inclusion criteria Exclusion criteria Protocol 

[

108] 

-Age 40 to 70 years. 

-A minimum of 24 months post-stroke. 

-Presence of hemiplegia after stroke. 

-Currently wearing or had an articulated AFO. 

-No major involvement of the contralateral limb. 

 

N/A 

-Subjects walked with standardized footwear in 4 conditions: i) shoes 

only; ii) conventionally AFO; iii) the same AFO realigned with the tibia 

vertical in the shoe-heel-height compensated AFO; and iv) the same 

AFO with ¾ length foot-plate -¾. 

- Data were collected from the walking in a 10 m-walkway at their nor-

mal self-selected walking speed with a minimum of 3 walking trials for 

each condition and speed, each lasting approximately 2 hours.   

- Subjects were instructed that they could rest as necessary. 

[94] 

- Over 18 years of age. 

- At least 1-year post-stroke. 

-Able to walk without any assistive device.  

-Currently using a non-rigid AFO. 

- Able to understand instructions.  

N/A 

-Randomized across trials.  

-Subjects performed 6 trials, walking back and forth across 10MWT.  

-Subjects were tested at the following randomized step widths: 0%, 

ϭϱ%, ϯϬ%, aŶd ϰϱ% suďjeĐt͛s leg leŶgth to assess the pƌesence or no of 

the circumduction. Participants should walk at a comfortable speed. 

[87] 

-Diagnosis of hemiparesis secondary to 

cerebrovascular accident with the duration of 

symptoms less than 6 weeks (Group 1) or more 

than 6 weeks (Group 2).  

-Ability to walk for 10 meters with or without as-

sistive devices.  

-Ability to follow simple instructions.  

-Stroke with more than one hemi-

sphere involvement.  

-Have a score of spasticity higher 

2 in MAS.   

-History of significant orthopaedic 

problems that would interfere 

with performing a gait analysis.  

- Randomized trials with 2 groups, Group 1 (acute) and Group 2 

(chronic), under 2 conditions (without and with AFO).  

- A patient could start walking 2 meters prior to stepping on the GAI-

TRite carpet, and to continue walking 2 meters past the end of carpet.  

- Participants were walked toward the end of the GAITRite at a self-

selected comfortable speed, with rest periods of 2 minutes. 

[109] 

 -Diagnosis of unilateral hemiparesis from the 

stroke at 6 months or more than 12 months.  

-Ability to stand without support for at least 1 min.  

-Ability to walk for 10 meters with or without 

assisted device.  

-No history of significant orthopedic problems.  

-Ability to follow instructions.  

N/A 

-Randomized trials, in which subjects were placed into two groups ac-

cording to the duration of hemiparesis.  

-Patients performed measurement tests, both wearing and not wearing 

an AFO on the affected foot. 
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Appendix D- SmartOs Framework:  Software 

Interfaces 

This appendix provides additional information on the software interfaces of the framework 

implemented for SmartOs͛ ŵodules iŶtegƌatioŶ, as described in Chapter 3.3.  

 

The CCU iŶteƌfaĐes all SŵaƌtOs͛ ŵodules aŶd gƌaphiĐal appliĐatioŶs aŶd iŵpleŵeŶts the 

high-level methods, running the Ubuntu Mate OS. Given the complexity of distributed sys-

tems, the CCU was implemented in C++ language, which allows: (i) object-oriented program-

ming; (ii) complete control over memory management; and (iii) scalability to expand the sys-

tem following a modular and standard software design. The POSIX Pthread Libraries were used 

that (i) allow for spawning a new concurrent process flow, (ii) are effective for a multi-core 

system, such as the Raspberry Pi 3, where the process flow can be scheduled to run on another 

processor thus gaining speed through parallel and distributed programming, and (iii) provide 

less operating system overhead. 

The software architecture of CCU was organized into five main software modules (classes), 

namely ExternalDevice, CentralController, HLController, SmartGaitAnalysis, and Log, de-

scribed in Table D.1. A task was assigned to each module such that when a new entry is added 

to the target queue, the task will wake to eǆeĐute the ŵodule͛s pƌoĐess. AdditioŶalitǇ, it ǁas 

implemented a queue per external device (i.e., graphical applications, LLOS, WML) of the CCU 

for handling with the messages exchange between CCU and its external devices.  

The temporal flow of processes occurs as follows. As the CCU is turned on, the main pro-

gram setups the hardware interfaces and activates the task of the CentralController. Subse-

quently, the CentralController activates the task of mobile graphical application, which is wait-

ing for messages from Bluetooth communication. The received messages are processed in the 

CentralController, which setups and activates the tasks of the selected modules in the mobile 

graphical application for running the configurated therapy. The therapy starts and stops ac-

cording to start and stop command messages, respectively, sent from the mobile graphical 

application. 
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Table D.1- Description of the main software modules of CCU 

Module Description 

External De-

vice 

- Base class for communication with external devices to CCU; Bluetooth for Mobile 

Graphical Application, Wi-Fi for Desktop Graphical Application, and serial commu-

nication for LLOS and WML.  

- Handle the communication with the external devices using handler_Msg task.  

- Contain tasks to handle with input (inMsg queue including command message) 

and output (outMsg queue including status and data messages) messages of the 

CCU. 

Central Con-

troller 

- Process the messages from/to Mobile Graphical Application by process_BTMsg 

task. 

- Setup and initialize all configurable modules according to the command messages.  

- Start and stop the therapy including the controllers, gait tools and gait monitoring.  

Smart Gait 

Analysis 

- Setup all gait analysis tools (i.e., gait eǀeŶt deteĐtioŶ, speed estiŵatioŶ, useƌ͛s ŵo-
tion intention recognition, risk analysis, disability level recognition). 

- Executes all gait analysis tools using SmartGaitAnalysis timer. 

- Each gait analysis tool must inherit GaitAlgorithm base class. 

- Each gait analysis tool is also a base class that includes a set of derived classes (e.g., 

GaitEventDetection_FSM_InertialLAB and GaitEventDetection_FSM_GaitShoe are 

derived classes that inherit from GaitEventDetection_FSM base class). 

HLController 

- Setup and manage the assistive control strategy using AssistiveStrategy task. 

- Runs the high-level controller using the AssistiveStrategy timer. 

- Stop the assistive control strategy, ensuring safety in isExitSafe class. 

Log 

- Base class for data logging in JSON file and Desktop Graphical Application. 

- Handle the communication with the Desktop Graphical Application, LLOS and 

WML.  

- Setup JSON file for local data storage in CCU memory.  

- Get all data from therapy (LLOS, WML, HLController, SmartGaitAnalysis) to store 

in JSON file and send externally for Desktop Graphical Application using Log task.  

- Monitor the battery status using batteryMonitor timer.  

 

The software framework of LLOS and WML followed the same design and was divided into 

three main software layers upon the hardware layer. First, the middleware layer incorporates 

the freeRTOS [147] real-time operating system and HAL libraries, namely STM32Fx HAL drivers 

(e.g., CAN, ADC, I2C, and SPI drivers). The freeRTOS provides the facilities for multitasking, 

concurrent programming towards the development of an effective framework and a set of 

libraries that allow easy definition and use of tasks, queues, and semaphores. The second 

layer, the application programming interface (API), provides the software interfaces (e.g., rou-

tines for initialization, configuration, runtime control, and data acquisition) for controlling and 

accessing to the SmartOs͛ ŵodules aiŵiŶg to Đƌeate a softǁaƌe appliĐatioŶ. LastlǇ, the appli-

cation layer centered on setting the timers, FreeRTOS tasks, and using the APIs for the easy 

integration of SŵaƌtOs͛ ŵodules. The programming language selected was C language. 



Appendix D 

 

210 

 

The software architecture of LLOS and WML was organized into four and three main soft-

ware modules, respectively. Figure 3.6 illustrates the main software modules and the flow of 

SŵaƌtOs͛ ŵessages thƌough these ŵodules. IŶ the External Communication module, incoming 

data and status messages from other modules (i.e., Embedded IMU Sensor, Orthotic System, 

or Wearable Sensor System) are sent to the CCU, and the command messages from the CCU 

are handled in the Management Unit module by Message_Handler task and sent to the Setup 

tasks (i.e., Control_Setup, IMU_Setup, Orth_Setup or SensorSystems_Setup). Two queues were 

implemented for the external communication with the CCU; one for the transmission of data 

(from Run callback functions) and status (from Setup tasks) messages to the CCU; and the 

other for receiving command messages from CCU to Setup tasks. All Setup tasks, Start and 

Stop functions act upon the reception of command messages. The Setup tasks specify intrinsic 

aspects of each module such as the number of sensors, type of sensor system, type of mid- 

and low-level controller, calibration routine time, among other aspects. The Start functions 

turn the hardware timer assigned to each module. Subsequently, all functionalities such as 

Control_Run, IMU_Run, Orth_Run, and SensorSystems_Run are periodically executed and han-

dled by a specific hardware timer ISR to accurately meet the real-time requirements. The 

IMU_Run and SensorSystems_Run callback functions include both sensor data acquisition and 

processing. The Control_Run callback function executes the mid- and low-level controls while 

acquires data from the embedded sensors on the AO. Additionality, the hardware timer as-

signed to each module is charged for activating the semaphore of the SendExternal tasks. Fur-

thermore, the priority of the real-time software interfaces was adjusted such that the hard-

ware timers were configurated to meet the hard-real-time requirements of LLOS and WML.  

The temporal flow of processes occurs as follows. When the development board of LLOS or 

WML is turned on, the main program setup and initializes all the configurated hardware inter-

faces (e.g., system clock, CAN, I2C, ADC, UART), the External Communication and the Manage-

ment Unit modules. Subsequently, the Embedded IMU Sensor, Orthotic System, and Wearable 

Sensor modules are configurated and run in accordance with the command messages from 

CCU received in the Receive_Message task and processed in Message_Handler task. Addition-

ally, the LLOS architecture receives real-time data messages from the high-level control loop 

(HLController module in CCU) during the therapy. 
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Appendix E- Software-in-the-loop: Inertial-

LAB and GaitShoe 

This appendix provides additional information on the software routines implemented in 

the InertialLAB and GaitShoe systems, both described in Chapter 4.  

 

Appendix E.1-InertialLAB 

As indicated in Figure E.1, the program starts by initializing the I2C communication to wake 

up the available IMUs. In the subsequent 10 seconds, several I2C readings are performed for 

conducting the calibration routine. Posteriorly, the real-time data acquisition starts using an 

interrupt service routine (Timer 2). It ensures the data reading and writing to a linked list every 

5 milliseconds (considering the maximum sampling frequency of 200 Hz). In the main program, 

the offsets are subtracted to the new angular velocity values, and the accelerometer readings 

are normalized according to the values found in the calibration routine. Then, the angle esti-

mation tool is executed. Lastly, the sample time, the gyroscope and accelerometer data of 

each IMU, and the estimated angles are stored in the USB flash drive, and these data is re-

moved from the linked list. 

 

Figure E.1- Flow chart of the software routines implemented in InertialLab, highlighting in (b) the sub-routine of 

angle estimation.  
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Appendix E.2-GaitShoe  

To easily manage the operating mode of GaitShoe, we designed and implemented a graph-

ical interface in Android studio, which communicates with the master interface through the 

Bluetooth ĐoŵŵuŶiĐatioŶ. WheŶ ŵasteƌ iŶteƌfaĐe ƌeĐeiǀes a ͞staƌt͟ ĐoŵŵaŶd, the iŶteƌƌup-

tion service routine embedded on each NRF24L01+ is triggered to synchronously start the data 

reception from the slave interfaces every 10 ms. The RF communication protocol and the op-

eƌatiŶg ŵode of slaǀe iŶteƌfaĐes eŶd ǁheŶ a ͞stop͟ ĐoŵŵaŶd is ĐoŶfiguƌated iŶ the gƌaphiĐal 

interface. Additionally, according to the commands selected in the graphical interface, the 

received information from both slaves can be stored in the SD card or transmitted to the in-

terface for real-time visualization.  

For each slave, as depicted in the flowchart of Figure E.2, the program starts by initializing 

the ƌeƋuiƌed sǇsteŵ͛s ĐoŶfiguƌatioŶ foƌ data aĐƋuisitioŶ aŶd tƌaŶsŵissioŶ. WheŶ the ǁiƌeless 

communication starts, as configured in the graphical interface, the software routines are ac-

tivated. In the subsequent 10 seconds (overflow controlled by Timer 1), the ADC and I2C read-

ings performed every 10 ms (ensured through the Timer 2) are used to calibrate the FSRs and 

the IMU. Afterward, the new sensory measures are adjusted according to the information 

found in the calibratioŶ ƌoutiŶe; FSRs͛ ŵeasuƌes aƌe adjusted usiŶg a sĐalaƌ ŵultipliĐatioŶ, the 

gyroscope offsets are corrected, and the accelerations are normalized. Subsequently, the foot 

angle is estimated using the angular velocity integration with gait cycle-based reset method 

[263] dependent on FF event. This angle estimation is required for the gait speed determina-

tion. Posteriorly, we implemented a gait event detection tool based on a single-axis, foot-

mounted gyroscope and FSRs. If the FF event is detected, the gait speed is estimated, and the 

values of speed and angle are reset. Lastly, the recorded and computed information is orga-

nized in a 25-byte wireless packet frame to be transmitted to the master interface at 100 Hz 

(ensured by Timer 2) using an NRF24L01+ RF module. This process ends as wireless communi-

cation is stopped.  
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Figure E.2- Flow chart of the software routines implemented in the slave interfaces of GaitShoe.  
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Appendix F- Performance Analysis of          

Machine Learning-Based Framework 

This appendix presents information related to the comparative analysis of the different 

techniques explored in some stages of the machine learning-based framework. Table F.1 sum-

marizes the purpose and conditions considered in the comparative analysis. 

 

Table F.1- EǆpeƌiŵeŶtal ĐoŵpaƌisoŶ of teĐhŶiƋues fƌoŵ fƌaŵeǁoƌk͛s stages  

Stage Purpose Condition 

Feature Calcula-

tion 

WiŶdoǁ͛s sizes ;full-stride, 1/2, 1/3, 1/4, 

1/5,1/6) 

KNN classifier (k=1)a using all 

features 

Feature leg approaches (left/right or leading/op-

posite) 

Pre-Processing 

(Feature norma-

lization) 

Normalization techniques (centering, z-score 

standardizing min-max scaling with [0; 1] inter-

val, min-max scaling with [-1; 1] interval) 

KNN classifier (k=1)a using all 

features  

Pre-Processing 

(Feature selec-

tion and extrac-

tion) 

1 feature extraction (PCA) and 3 feature selec-

tion methods (ANOVA-based method with 

ŵRMR, ͞ŵRMR plus foƌǁaƌd seleĐtioŶ͟, ͞foƌ-

ǁaƌd seleĐtioŶ plus ďaĐkǁaƌd seleĐtioŶ͟Ϳ 

KNN classifier (k=1)a using 

features normalized by min-

max scaling in [-1; 1] interval 

b 

Model Building 

9 machine learning classifiers (RF, linear and dy-

namic DA, regular and weighted KNN, SVM with 

linear, quadratic, cubic, and RBF kernels) 

Classifiers with all features 

normalized by min-max scal-

ing in [-1; 1] interval 

a Only KNN classifier was used given its fast training with reliable results 
b Previously reported as the best normalization technique 

Feature Calculation  

Results of the recognition models (Figure F.1) show that using the full- stride fraction with 

left/right approach outperforms (MCC = 0.907) all the other cases by a significant margin (MCC 

< 0.808). On the other hand, for prediction, the leading/opposite approach and 1/4 fraction 

of gait stride yielded the best results (MCC = 0.857). The findings suggest that both the feature 

leg approach and the time window size affeĐt the ŵodel͛s peƌfoƌŵaŶĐe, ďut these paƌaŵeteƌs 

depend on whether it is a recognition or prediction model. 



Appendix F 

215 

 

 

Figure F.1- Average performance of the procedures explored for the Feature Calculation in a) recognition and b) 

prediction models.  

Feature Normalization  

Figure F.2 shows that the min-max scaling with the interval [-1;1] yielded the best results 

for recognition (MCC = 0.852) and prediction (MCC = 0.728). It was chosen for the remaining 

analyses, as proposed in [264]. Overall, the normalization had a more positive effect in recog-

nition models (MCC > 0.711) than in the prediction ones (MCC > 0.630).  

 

Figure F.2- Average performance per feature normalization technique. 

Feature Selection and Extraction  

Figure F.3 shows that the feature selection and extraction methods performed better in 

recognition models (0.677 < MCC < 0.96) than in the prediction ones (0.589 < MCC < 0.87). 

The application of an adequate dimensionality reduction method improved the effective-

ness of the classifier compared to the inclusion of the entire dataset. This finding is according 

to the literature [47] since it results from the ability to create a compact set of uncorrelated 

featuƌes that still ĐhaƌaĐteƌize the oƌigiŶal data ǁithout ƌeduŶdaŶĐǇ. UsiŶg the ͞ŵRMR plus 

foƌǁaƌd seleĐtioŶ͟ ŵethod ;MCC > Ϭ.ϴϰϴϯͿ oƌ ͞foƌǁaƌd seleĐtioŶ plus ďaĐkǁaƌd seleĐtioŶ͟ 

(MCC > 0.8696), both feature selection methods, yielded similar results. However, the former 

is less computationally intensive, and while it selects a larger number of features than the 
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latter method (20 and 13 features, respectively), it was the selected method allowing a feature 

reduction of 75% from a total of 80 features. These sequential selection and ranking-based 

methods were used in [62], [215], [224]. In particular, the findings are consistent with [224], 

ǁho ĐoŶĐluded that the ŵRMR ǁas fasteƌ aŶd ŵoƌe effeĐtiǀe thaŶ the ͞foƌǁaƌd seleĐtioŶ͟ 

aŶd ͞ďaĐkǁaƌd seleĐtioŶ͟ ŵethods. 

On the other hand, the ANOVA was less effective (MCC < 0.677) due to the low number of 

features that were chosen (2 to 3 features) to discern between the classes.  

 

Figure F.3- Feature selection/extraction techniques: a) Average model performance per feature selection tech-

nique; b) Number of selected features by feature selection technique.  

Model Building  

Figure F.4 shows that the SVM classifier with the Gaussian kernel performed better than 

other classifiers for both prediĐtioŶ ;MCC = Ϭ.ϴϯϵͿ aŶd ƌeĐogŶitioŶ ;MCC = Ϭ.ϵϯϰͿ. The SVM͛s 

ability to define more complex decision boundaries by applying optimization instead of prob-

abilities, and its inherent flexibility to suit the data may explain this finding [47]. Previous lit-

erature indicates this classifier as the best, mainly when the Gaussian kernel is involved. Begg 

et al. [265] concluded that SVM performs better than ANN. Badesa et al. [266] noted that the 

SVM is more appropriate than LR, LDA, QDA, NB or KNN methods. Huang et al. [41] reported 

that SVM yielded better results than LDA to recognize six LMs and predict five LMTs.  

On the other hand, both DA models produced the worst classification performance (MCC < 

0.733), in contrast to [216] where the LDA performance was comparable to the SVM. Three 

reasons can explain this finding: LDA does not work well if the design is not balanced, such as 

the one in this study; LDA is not suitable for non-linear data, such as the kinematic data; and, 

LDA simplicity was perhaps not sufficient to discriminate the LMs and LMTs using the calcu-

lated features.  
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Due to the increased complexity of SVM, the built model took almost the double time to 

classify data comparing to other algorithms (Figure F.4). The KNN models took less time to 

classify data (< 6.5 ms) while presenting similar effectiveness (MCC > 0.807) to the Gaussian 

SVM (MCC > 0.839). This finding suggests that KNN models can potentially also be applied.  

 

Figure F.4- Average performance for each machine learning classifier across every database and subject: a) 

MCC; b) computational load (ms). 
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Appendix G- FEL Control Tuning 

This appendix provides information related to the tuning of the FEL low-level controller, in-

troduced in Chapter 7.7, namely the experimental procedure and the controller evolution dur-

ing FEL tuning.  

 

FEL Tuning: Experimental Procedure  

The tuning of FEL control focused on the feedforward controller. No tuning was made in the 

feedback controller since we used the already tuned PID control. The tuning of the feedforward 

controller consisted of the real-time training of the ANN by considering the normalized inputs 

randomly presented to the ANN (SGD approach) and the actual PID commands as the feedback 

error to be minimized. This procedure was separately performed for the PKO and PAFO with 

the respective reference trajectories adjusted with NCL for 1 km/h and 0.8 km/h (speeds ran-

domly selected), respectively.  

During the real-time training of the feedforward controller, the ANN is trying to learn the 

AOs͛ iŶǀeƌse dǇŶaŵiĐs ŵodels. CoŶseƋueŶtlǇ, the feedfoƌǁaƌd ĐoŵŵaŶds that contribute to 

the final command (ݑ) could lead the AOs to exceed their mechanical limits and compromising 

their integrity. Therefore, for the first training phase of the ANN, we decided to modify the 

original reference position trajectory. An offset of 15o was added to the original knee reference 

trajectory and smoothed the original ankle reference trajectory with an attenuation gain of 40 

% and 4o of offset. With this procedure, it is was possible to get the inverse dynamics models 

of PKO and PAFO while operating far from their mechanical limits.  

As illustrated in Figure G.1, the trajectory modification was possible since the normalized 

signals of the original and modified trajectory are equal. This finding shows that the ANN would 

ƌeĐeiǀe eƋual iŶputs iŶ ďoth situatioŶs. Note that the iŶitial AOs͛ aŶgulaƌ positioŶ ǁas set Đlose 

to the first value of the non-normalized input signals. 

The pre-trained ANNs were subsequently retrained using the original reference trajectories 

to get the final configuration for the ANNs. The pre-trained state is an important advantage to 

the clinical application once it may decrease the training time for new user-oriented trajecto-

ries, as reported in [254].  
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Figure G.1- Original (red) and modified (black) input signals for PKO (A-C non-normalized signals, D-F normalized 

signals) and PAFO (G-I non-normalized signals, J-L normalized signals).  

FEL Tuning: Results and Discussion  

AOs͛ state duƌiŶg FEL tuŶiŶg was evaluated considering the measured position trajectory, 

the control commands, and the angular position error. For instance, Figure G.2 presents the 

results achieved during the ANN training using the modified trajectory for the PKO at 1 km/h 

under three different periods of FEL control: Initial Phase, Middle Phase, and Final Phase.  

During the Initial Phase (first 11 seconds), the feedforward controller is starting to tune its 

ANN. Consequently, feedforward contribution to the final control command is not significant, 

being the PID control responsible for trucking the reference trajectory (Figure G.2.B). It is pos-

sible to see in Figure G.2.A that the measured trajectory is delayed 210 ms comparatively to 

the reference one. Hence, the angular position error varies from -20o to 20o, as demonstrated 

in Figure G.2.C. 

In the Middle Phase (after 40 s), the FEL controller is learning the inverse dynamics model 

of the PKO. Therefore, the measured trajectory starts to decrease its phase difference to the 

reference signal to a mean value of 6 ms (considering three gait cycles presented in Figure 

G.2.D). To correct this delay, the feedforward controller produces commands that when 

summed with PID commands lead the PKO to perform a trajectory with 10o more than the 

reference trajectory, as illustrated in Figure G.2.D. This happens because the ANN has not 

learned the inverse dynamics model with the best performance yet. Figure G.2.E highlights an 
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increase and decrease in the feedforward command and the PID command, respectively, rel-

ative to the Initial Phase. As depicted in Figure G.2.F, the position error decreased, varying 

from -20° to 10°. 

For the Final Phase (past 90 s), when the ANN already learned the inverse dynamics of the 

PKO, we verified that the FEL control has successfully aligned the PKO trajectory with the ref-

erence one (Figure G.2.G) and corrected the amplitude divergence previous observed. The 

position error decreased by 75% compared to the Initial Phase. In this phase, the feedback 

controller contribution was 4.4% (Figure G.2.K). At this time, the ANN is not able to start a new 

learning phase after the recall phase is reached.   

 

   

Figure G.2- FEL tuning over three periods: Initial Phase (A-C), Middle Phase (D-F), and Final Phase (G-I). Random 

example for PKO using the modified trajectory tuned for 1 km/h.   

In overall, the findings of FEL tuning indicate that the designed ANN was capable of cor-

rectly learning the inverse dynamics for both AOs. When the learning phase finished, the ANN 

can timely track the reference trajectory, discharging the feedback controller for this task. We 

observed that the learning phase lasted 90 s (approximately 25 gait cycles) and 315 s (approx-

imately 70 gait cycles) for PKO and PAFO, respectively.  

Additionally, it was verified that the run time of the FEL control loop (0.25 ms) is lower than 

the one required by the bioinspired control architecture of SmartOs (1 ms). These temporal 

findings suggest that the techniques applied for approaching a real-time implementation were 
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effective to avoid long-time periods in the training phase. Furthermore, few iterations were 

required to tune the pre-trained ANN. 

It is important mentioning that the modification made in the reference trajectory for the 

first learning moment protected the AOs. Figure G.2.D shows a practical situation, during the 

Middle Phase, where a 10°-deviation would put the device out of its lower operating limit (3°). 

The 10°-deviation did not damage the PKO since the added 15°-offset was enough to deviate 

the PKO from its lower mechanical limit (3°). A similar effect was observed in PAFO for the 

lower and upper limits. 
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