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Ortétese Inteligente e Vestivel para Assistir a Marcha Humana Debilitada

Resumo

O acidente vascular cerebral (AVC) é a terceira principal causa de incapacidade motora
adulta. A reabilitacdo da marcha com um treino repetitivo e orientado ao doente, possivel
com ortéteses ativas (OAs), potencia a recuperag¢ao da mobilidade. Contudo, é necessario
ajustar a reabilitacdo da marcha as atuais necessidades do sujeito, bem como integrar senso-
res vestiveis nas OAs para avaliar objetivamente a marcha.

Esta tese visa o desenvolvimento do SmartOs, um sistema ortético ativo, modular, e vesti-
vel, com o intuito de providenciar um treino de marcha repetitivo e orientado as necessidades
de doentes com AVC, e de avaliar a locomog¢ao do doente por meio de dados cinematicos e
musculares. Esta tese inclui cinco fases de investigagao.

Primeiro, foi desenvolvida uma estrutura modular para integrar, de forma inovadora e efi-
caz, sistemas sensoriais, ferramentas de analise da marcha, e estratégias de controlo nas OAs.
Segundo, foi desenvolvido um laboratério portatil de andlise de marcha com quatro sistemas
sensoriais, passiveis de serem utilizados em stand-alone ou combinados com sistemas exter-
nos. O benchmarking com sistemas comerciais demonstrou a potencialidade destes sistemas
sensoriais para a avaliacdo objetiva da locomocao. Terceiro, foi desenvolvida uma maquina de
estados com limites adaptativos para a deteg¢ao de eventos da marcha, a qual demonstrou ser
adequada como benchmarking para avaliacdo de eventos humanos da marcha. Quarto, foi
criada uma ferramenta de machine learning para o reconhecimento e previsdao de modos de
locomocgao e transi¢cdes. Esta ferramenta destaca-se pela classificacao precisa de direcdes e
terrenos com uso exclusivo de dados cinematicos. Por ultimo, foi desenvolvida uma arquite-
tura de controlo hierarquica com quatro estratégias de controlo. As estratégias de trajetéria
orientada ao sujeito e impedancia adaptativa fornecem um treino de marcha repetitivo e as-
sist-as-needed, respetivamente. As estratégias baseadas na eletromiografia e na interacdo ho-
mem-0OA contribuem para o fortalecimento muscular.

Em suma, os resultados indicam que o SmartOs estd funcional para futura aplicacdo em
ambiente clinico quer como uma solucdo de assisténcia personalizada, quer como uma ferra-

menta de avaliacdo da marcha de doentes com AVC.

Palavras-chave: assisténcia e reabilitagao da marcha, estratégias de assisténcia, ortoteses ati-
vas, reconhecimento de intencdo, sensores vestiveis
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Smart Wearable Orthosis to Assist Impaired Human Walking

Abstract

Stroke is the third leading cause of adult long-term motor disability. Gait rehabilitation ap-
proaching user-oriented and repetitive gait training has the potential for long-term mobility
recovery. Active orthoses (AO) can tackle these rehabilitation abilities. More research is
needed to foster gait rehabilitation oriented to the current user’s needs and to integrate wear-
able sensors into AOs for objective gait assessment.

This thesis aims the development of SmartOs, a smart, modular, wearable active lower limb
orthotic system, to foster user-oriented and repetitive gait training in impaired gait due to
stroke and to evaluate human motor condition using kinematic and muscular gait measures.
This work includes five research stages.

First, a modular framework was implemented to integrate into an innovative and effective
manner, wearable sensor systems, gait analysis tools, and control strategies into AOs. Second,
a wearable motion lab including four wearable sensor systems, with an open-architecture for
both stand-alone or third-party systems use, was successfully developed. The benchmarking
analysis with commercial systems outlined that the sensor systems are purposeful for objec-
tive evaluation of the user’s motor condition. Third, a gait event detection tool through a finite
state machine with an adaptive threshold-based structure was developed for detecting gait
events in daily locomotion. Results show that the tool is suitable as a benchmark for detecting
human gait events. Fourth, a machine learning-based recognition and prediction tool was
achieved to classify locomotion modes and transitions. This tool advances the state-of-the-art
by demonstrating that the exclusive use of kinematic data successfully classifies different
walking directions and terrains. The last research stage made the SmartOs a multi-functional
system through a hierarchical control architecture with four assistive control strategies. The
user-oriented trajectory and adaptive impedance controls foster repetitive and assist-as-
needed gait training, respectively. Both the EMG-based and user-orthosis interaction based
control contribute to muscle strengthening.

Findings indicate that SmartOs is functionally operative for a future clinical application as a
personalized assistive and gait assessment solution of stroke survivors.

Keywords: active orthoses, assistive control strategies, gait rehabilitation and assistance, mo-

tion intention recognition, wearable sensors
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Chapter 1- Introduction

Chapter 1 - Introduction

This Ph.D. thesis presents the research and development activities carried out during the
past four years in the scope of the Doctoral Program in Biomedical Engineering at the Univer-
sity of Minho. The research activities were mainly performed in Biomedical Robotic Devices
Lab included in the Center for MicroElectroMechanical Systems (CMEMS), a research center
of Department of Industrial Electronics from the University of Minho. Part of the research was
also developed in Neural Rehabilitation Group at Consejo Superior de Investigaciones Cientifi-
cas (CSIC) in Madrid, Spain.

The developed biomedical research is inserted into SmartOs project - Smart control of a
stand-alone active orthotic system. It proposes a personalized robotic technology combined
with a toxin-based intervention for long-term recovering of the functional motor abilities of
stroke survivors. SmartOs aims the development of a smart wearable orthotic system by com-
bining an active lower limb orthosis to assist as need during task-oriented gait training, with a
wearable motion lab for monitoring the user’s motion. This Ph.D. thesis addressed the first
development initiatives of the SmartOs project, which is in a development stage and prelimi-
nary validation.

The research activities completed in this Ph.D. thesis address the field of neurorehabilita-
tion robotics with a focus on human gait analysis and assistive control strategies towards per-
sonalized gait rehabilitation and assistance in post-stroke conditions using wearable active

orthotic devices.
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1.1.Motivation and Research Scope

Walking is the most daily performed human gait task, and it plays a relevant contribution
to the user’s active wellbeing. It consists of a repetitive sequence of lower limb motions to
move the body forward, maintaining postural stability [1], [2]. Neurological diseases, muscular
deformities, and peripheral injuries can compromise healthy human walking. The impaired
gait sequels tend to increase with the actual aging tendency. Currently, 21.3% of the Portu-
guese population is older adults [3]. In 2060, 30% of Europeans (172 million) will be over 65
years old (currently 17%).

According to the World Health Organisation, every year, 15 million people suffer a stroke
(20,000 in Portugal) [4]. Stroke is the third leading cause of motor disability [5]. This neurolog-
ical disease is responsible for long-term motor disability; 70% of stroke survivors exhibit mo-
tor impairments and remain permanently disabled [6]. Gait after stroke is often characterized
by an asymmetrical pattern, neuromotor impairment such as drop foot. About 35% of stroke
victims present lower limb spasticity [6], which has an incidence rate of 57.8 cases per million
inhabitants in Portugal [7]. Spastic gait may limit the biomechanical and functional motor abil-
ity at different daily tasks (e.g., walking, sitting, standing, jumping, climbing, and turnings). The
limited mobility commonly results on the dependence on others (i.e., social assistance), social
and work exclusion, early retirement (10% in the working-age), and costly medical assistance.
Stroke sequels represent a significant burden on health and social resources, growing steadily
in Europe due to demographic changes, costing around 1 million euros per year in 2020 [8].

Emerging therapies are necessary to help and improve the quality of life of the individuals
that face permanent motor disabilities. Clinicians have been recommending the physical re-
habilitation as the more appropriate strategy for the long-term biomechanical and functional
gait recovery of neurologically injured individuals, such as stroke survivors [9]. An appropriate
gait rehabilitation comprises user-oriented (i.e., according to the user’s driven requirements
and needs), task-oriented and repetitive gait training, and the encouragement of the user’s
participation in the therapy.

Various physical rehabilitation interventions have been proposed [9]-[12]. In particular,
gait rehabilitation driven by wearable assistive lower limb devices such as active orthoses
(AOs) are becoming a prominent assistive and augmented intervention [13]. They are capable

of acting in parallel with the human limb for fostering a user-oriented, task-oriented, and
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repetitive gait therapy while achieving a continuous objective assessment of the end-users
motor condition [14]. Moreover, AOs can improve current treatments due to its ability to
adapt the mechanical assistance according to real-time evaluation of the user’s needs, ad-
dressing an assist-as-needed (AAN) approach [15]. One major milestone was the develop-
ment of AAN strategies, in which a robotic assistive device only supplies as much assistance
as necessary for patients to accomplish a movement.

It is expected that the high degree of physical training with specific and repetitive motion
tasks fostered by AOs evokes brain plasticity, providing biomechanical advantages and a func-
tional compensation. This will improve the overall patient’s functional ambulation, movement
coordination, abnormal gait pattern prevention, muscular strength, balance control, energetic
efficiency locomotion, and general wellbeing [13]. Using AOs may enhance the cognitive abil-
ities, which in turns, may increase the user’s confidence and raise their levels of activity and
independence. Additionally, AOs can be designed to encourage the user’s participation in the
therapy; thus, accelerating the motor learning process [15].

The current need for physical therapy is expected to remain strong into the foreseeable
future, given the likely high prevalence of impaired gait and the reduced number of physical
therapists. Wearable assistive devices, such as AOs, may tackle these needs. They will contrib-
ute as a complementary rehabilitation tool to conventional physical therapy to strengthen the
long-term motor recovery and actuate in daily assistance to offer the patients an adequate
level of independence. Further, as AOs are challenged to emulate the skills of a trained ther-
apist, they may relieve and reinforce the repetitive and heavy work of physical therapists [16],

[17].

1.2.Problem Statement

To date, available AO-based rehabilitation interventions are not satisfying and present
poor usability and clinical evidence with pathological end-users. Despite the technological
efforts on AOs [18]—[22], they are still not able to foster assistance oriented to the current
user’s needs, motor tasks, and timely adaptive for dynamic daily environments nor to encour-
age the user’s participation.

The clinical evidence of AOs’ effectiveness in gait rehabilitation has been limited to short-

term clinical trials involving a reduced number of pathological end-users. There is no sufficient
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clinical evidence of the AOs’ potential to recover functional motor ability in daily performed
tasks. It is imperative to develop a significative evaluation on the usability and cognitive and
physical recovery effectiveness of AO-based rehabilitation and assistance.

Quantitative gait analysis is also a required topic for the clinical domain to objectively as-
sess the efficiency of AOs and to provide reliable, objective measures to support the clinical-
based motor diagnosis. Nowadays, prescription of rehabilitation interventions are not stand-
ardized and often depend on clinicians’ experience and subjective measures [23], [24]. More
efforts toward objective and easy to apply methodologies for assessing the motor function
and unified method to evaluate the effectiveness of AO-based therapy are needed.

More research is needed to boost the achievements expected with AO-based gait rehabil-
itation and assistance, as follows. First, to develop adaptive and compliant assistive control
strategies for timely and effective assistance’s adjustment according to the user’s needs. Sec-
ond, bioinspired control architectures, following organization principles of the human motion-
control system, started to emerge and constitute a relevant aspect for tackling the current
gap on AAN strategies [9]. For that matter, it is imperative that the control architecture of AOs
endows assistive control strategies, whose assistance is driven by gait tools able to detect
current gait event and to recognize the user’s motion intention and motor disability level [9],
[14]. The control architecture also has to be synchronized with easily wearable sensor systems
for objective gait monitoring and user’s needs evaluation [25], [26].

Research should transform the AOs into multi-functional assistive devices, able to provide
different assistive strategies and functionalities for post-stroke gait rehabilitation. Recent
studies suggest parameterizing the joints trajectories according to the users’ body conditions
and gait phases, instead of imposing predefined trajectories as currently applied. This oriented
assistive control strategy will contribute to improving the user’s comfort and movement co-
ordination [27], [28].

Considering the potentialities of the AAN gait training, current research directions [11], [29]
also sought to adapt the impedance behavior of the human-AO interaction by proposing
adaptive impedance control strategies. However, to achieve an AAN strategy, the dynamic
parameters of the human-AO interaction need to be tuned accordantly to the gait cycle and
speed [30]. Furthermore, active and natural interaction between user and AO is crucial for
promoting motor recovery and increasing brain plasticity [28]. The combination of user-ori-

ented assistive control strategies with biofeedback systems is an unsolved but necessary
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challenge to manage the human-robot interaction in free-living scenarios synergistically. This
combination can accelerate the motor learning process and boost the overall motor recovery
[11], [31].

Moreover, the electromyography-based control strategy is raising as one interesting strat-
egy to take into account the user’s motion intention encoded in electromyography (EMG) sig-
nals while encouraging the user’s participation to provide a functional gait training [32], [33].

Post-stroke gait impairments are usually related to one or several gait phases. Conse-
qguently, AOs should not only assist as much as needed but also assist when needed, i.e., to
assist in part of a gait cycle related to the target impairment employing gait-phase-based con-
trol strategy [34]. It is necessary to develop time-effective, versatile computational tools able
to detect the overall human gait events in both controlled and real-life situations using wear-
able sensors [35]—[40]. Furthermore, by analyzing the existing state-of-the-art [41]-[43], there
is still a set of challenges to be pursued in the user’s motion intention recognition; to develop
an user-independent and more versatile tool for predicting and recognizing several daily lo-
comotion modes and locomotion mode transitions.

Considering these shortcomings, future designs in AOs towards the direct interaction
among gait analysis tools, multiple sensors, and actuation, biofeedback, monitoring, and
power supply systems, while meeting the needs of effective assistive control strategies and
prioritizing safety mechanisms [9], [16], [44]-[46]. This multiple system integration will in-
crease the complexity of wearable AOs for ambulatory and user-oriented applications, de-

manding the development of interoperable, deterministic, modular frameworks.

This thesis considered the listed research challenges to bring new insights and innovative
research directions into the development of a wearable assistive orthotic system for fostering

user-oriented and repetitive gait training while fostering an objective gait monitoring.

1.3.Goal and Research Questions

The ultimate goal of this Ph.D. thesis is the development of a smart, modular, wearable
active lower limb orthotic system, named as SmartOs system, to foster user-oriented and
repetitive gait training in impaired gait due to stroke and to evaluate human motor condition

using real-time and objective kinematic and muscular gait measures.
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In the scope of this thesis, SmartOs system includes two wearable AOs for knee and ankle
assistance, synergistically interconnected with a wearable motion lab. This innovative combi-
nation allows tailoring in real-time the assistance according to the specific ambulatory re-
sponse of the user. AOs incorporate a hierarchical control architecture bioinspired on the
principles and organization of the human motion-control system to tackle an AAN approach.
The robotic assistance is based on the user’s motion intention and gait phase, both decoded
by gait analysis tools, which fuse biomechanical and muscular information from wearable
motion lab. The interconnection of sensor feedback, analysis and motor control describes the
smart nature of the SmartOs system for personalized gait rehabilitation and assistance. The
control architecture incorporates different user-oriented assistive control strategies that will
constitute an innovation action within the healthcare domain.

Furthermore, this thesis develops a modular, real-time, interoperable, power- and time-
effective framework to be easily extendable, enabling the inclusion of other modules such as
further AOs, sensor and biofeedback systems, assistive control strategies, and gait analysis
tools. The development of a modular wearable robotic technology follows a user-centered
design approach to maximize the user’s acceptability and usability and provide a reliable and

safe rehabilitation solution.

To achieve these ultimate goals, it is necessary to pursue the following objectives.

e Objective 1: To review related studies to post-stroke gait analysis and gait rehabili-
tation using wearable assistive orthoses. First, to identify the key outcome measures
and motion capture systems applied in post-stroke gait rehabilitation based on lower-
limb orthotic assistance. Second, to review the clinical evidence and methodologies
for the orthotic-based gait training. Gathered knowledge guided the designing of clin-
ical protocols for SmartOs-based gait training with neurologically impaired subjects.
The third literature analysis focuses on wearable AOs to identify the leading technolo-
gies involved, the main clinical achievements and discusses on AOs’ potential and chal-
lenges for gait rehabilitation. This review will serve as a base for the design of the
SmartOs system. Chapter 2 presents these three surveys.

Furthermore, critical reviews on gait event detection, user’s motion intention recogni-
tion, and assistive control strategies are addressed in Chapter 5, Chapter 6, and Chap-
ter 7, respectively, to identify the research directions that SmartOs should approach in

6
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these topics. This objective led to one published journal paper [47] and two journal

papers under review.

Objective 2: To set functionalities and conceptual design of SmartOs and to develop
modular, real-time, power- and time-effective framework to enable the SmartOs sys-
tem integration and expandability for further sensor and actuation systems, assistive
control strategies, and gait analysis tools. Chapter 3 addresses this objective that re-

sulted in two conference papers [48], [49] and two journal paper under review.

Objective 3: To design, develop, and validate the wearable motion lab and gait anal-
ysis tools for monitoring and assessing the post-stroke gait progression using biome-
chanical and muscular measures and metrics. Wearable motion lab aims to include a
set of self-calibrated, stand-alone, low-cost, wearable sensor systems to measure in
real-time the user’s motor condition. The sensor information will be the base for im-
plementing gait analysis tools to detect gait event, to recognize and predict the in-
tended motion, and to feed the closed-loop control architecture. Chapter 4 tackles this
objective. It led to one conference publication [50], one journal paper under review,

and one journal paper under elaboration.

Objective 4: To design, develop, and validate an adaptive, time-effective, real-time
gait tool for human gait event detection using a minimal number of wearable sensors
in an attempt to be easily reproducible under different contexts. The detected gait
events will be the base for gait cycle-based assistive control strategies and to compute
spatiotemporal metrics as relevant features for the user’s motion intention recogni-
tion tool. Chapter 5 addresses this objective. It led to one conference publication [51]

and one journal publication [52].

Objective 5: To design, develop, and validate an automatic, user-independent ma-
chine learning-based tool for user’s motion intention recognition and prediction of
different daily locomotion modes and locomotion mode transitions, based on the min-
imal kinematical data to improve the SmartOs usability. The classification of the user’s
motion intention will contribute to timely tuning the assistance provided by AOs ac-

cording to the user’s motion intention and to generate smooth transitions. Chapter 6
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approaches this objective. It led to two conference publications [53], [54] and one jour-

nal paper under review.

e Objective 6: To design, develop, and validate a hierarchical, closed-loop, control ar-
chitecture with a set of user-oriented assistive control strategies, such as user-ori-
ented trajectory control, adaptive impedance control, EMG-based control, to both at-
tain to different user’s needs and to become SmartOs a multi-functional assistive sys-
tem suitable for distinct kinds of therapies. Additionally, this goal aims to explore more
time-effective low-level tracking controls. Chapter 7 addresses this objective, which

led to four conferences publications [48], [55]-[57] and one paper under elaboration.

The proposed ideas describe the transdisciplinary research adopted in this thesis that will
contribute in the near future to use SmartOs as a robotic assistive technology for personalized
and repetitive gait rehabilitation to gaining functional autonomy and improving the quality of

life of the stroke survivors.

The following research questions (RQs) are proposed and expected to be answered:
e RQ1: Which are the key outcome measures to evaluate the functional motor recovery
of stroke survivors upon orthotic-based gait rehabilitation? This RQ is related to Objec-

tive 1 and is answered in Chapter 2.

e RQ2: What are the main assistive potentialities and scientific challenges to consider in
the design of a wearable active orthotic system for robotic-based gait rehabilitation?

This RQ is related to Objective 1 and is answered in Chapter 2.

e RQ3: Can a single kinematic measure enable a time-effective detection of several gait
events under distinct walking conditions? This RQ is related to Objective 4 and is an-

swered in Chapter 5.

e RQ4: Is it possible to recognize and predict daily performed locomotion modes and lo-
comotion mode transitions using a machine learning tool that exclusively deploys kine-

matic data? This RQ is related to Objective 5 and is answered in Chapter 6.
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e RQ5: Which set of assistive control strategies will yield a multi-functional assistive sys-
tem addressing different gait therapies? This RQ is related to Objective 6 and is an-

swered in Chapter 7.

e RQ6: Can feedback error learning control, a low-level controller, provide proper real-
time performance to an active assistive lower-limb device? This RQ is related to Objec-

tive 6 and is answered in Chapter 7.

1.4. Contribution to knowledge

This thesis contributes with a smart, wearable orthotic system, SmartOs, able to act and
cooperate closely with human beings. This technological solution includes wearable active
lower limb orthoses interconnected with a wearable motion lab and assistive control strate-
gies with impact in both rehabilitation and diagnostic domains.

The main contributions outlined of this Ph.D. thesis are, as follows.

e A systematic review on clinical methodologies and key outcome measures applied in

post-stroke gait rehabilitation using orthotic assistance (Chapter 2).

o A descriptive review highlighting the technical and clinical challenges and potentiali-
ties in wearable lower limb AOs (described in Chapter 2).

e Smart, wearable lower limb active orthotic system - SmartOs system - with a modular,
deterministic, power- and time-effective framework, following a user-centered design
approach (described in Chapter 3).

e Multi-modular wearable motion lab synchronizing a set of stand-alone, self-calibrated,
wearable sensor systems, namely an inertial sensor system (InertialLAB) and a wireless
instrumented shoe system (GaitShoe) to obtain quantitative lower limb kinematic
measures, and an EMG system and a muscular contraction-based force sensor system
(MuscLAB) to monitor muscular measures. These are economic sensor systems with ex-
tendable potentials for versatile human motion and posture analysis for both healthy
and pathological subjects (Chapter 4).

e Time-effective, versatile, real-time tool able to detect six gait events through a finite
state machine with adaptive thresholds (described in Chapter 5).

e Evidence highlighting the effectiveness of foot angular velocity signal at the sagittal

plane for gait event detection in controlled and non-controlled gait conditions, varying
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variations of gait speed and slopes, climbing staircases, and attending to inter-subject
and inter-step variability (described in Chapter 5).

e Automatic, user-independent, more versatile recognition and prediction machine-
learning tool using wearable kinematic sensors for classifying several daily performed
locomotion modes while covering different walking directions (forward, back, clockwise,
and counter-clockwise) with variations in gait speed and terrains (flat, ascending and
descending stairs and ramp, stepping over obstacles). The tool also classifies transitions,
with one gait step before their occurrence, from/to those terrains using the user’s self-
selected lower limb (described in Chapter 6).

e Findings supporting the potential of only using the trunk and lower limb kinematic data
to recognize and predict daily performed locomotion modes and locomotion mode
transitions (described in Chapter 6).

o Time-effective and adaptive low-level control, the Feedback Error Learning control,
innovatively explored in wearable lower limb orthotic devices, providing small steady-
state errors, the ability for disturbance compensation and adaptiveness to the user-AO
interaction (described in Chapter 7).

e Four user-oriented assistive control strategies to foster user-oriented gait training
while considering the user’s effort, intention, and participation. These strategies consti-
tute four different operation modes of AOs to approach distinct kinds of gait therapies,
as follows (described in Chapter 7). First, the user-oriented trajectory control enables a
user-oriented repetitive gait training, longer than the manual therapists’ assistance, en-
hancing motor coordination. Second, the adaptive impedance control provides an AAN
gait training through stiffness adjustment with variable challenging therapy strengthen-
ing muscle strength. The inclusion of an user-oriented trajectory into the impedance
control also enables the user to recover his/her natural gait pattern. Third, the EMG-
based control and user-orthosis interaction based control favour high-challenging mo-
tor therapies, contributing to high-level of muscle strengthening. However, the EMG-
based control strategy is more suitable for subjects with a high-to-moderate level of
impaired gait function since it requires lower physical effort from the user than the user-

orthosis interaction-based strategy.
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Under an assistive point of view, SmartOs contributes to a multi-functional orthotic system
by enabling the physical therapist to challenge the patient with different gait speeds and ther-
apies with variable physical effort and user’s participation. Moreover, it decreases the burden
of physical therapist work and tracks in real-time the user’s motion state. The wearable mo-
tion lab provides biomechanical and muscular gait measures that will support the clinical-
based diagnosis with more accurate information. This objective evaluation will also contribute
to fine-tuning treatments to the patient’s specific needs. In the future, it is expected that
SmartOs contributes to long-term functional, biomechanical, and energetic-efficient motor

recovery of stroke survivors.

During this thesis, scientific and technical support was provided to master students of dif-
ferent fields of engineering, contributing to five Master Dissertations on Industrial Electronics
and Computers, one Master Dissertation on Informatics Engineering, one Master Dissertation
on Biomedical Engineering, and three academic projects of the Master on Industrial Electron-
ics and Computers. These Master Students contributed to the work herein presented. More-
over, three Master Dissertation on Biomedical Engineering and one Master Dissertations on

Industrial Electronics and Computers are currently under co-guidance.

Furthermore, the work developed in this thesis played an important role in the scientific
research and development of SmartOs project and in actively specifying two accepted grant
proposals, as follows.

e SmartOs: Smart control of a stand-alone active orthotic system, project approved under
Individual National Grant Proposal - Projetos de Investigagdo Cientifica e Desenvolvi-
mento Tecnoldgico - with Cristina P. Santos as Principal Investigator. Currently sup-
ported by FEDER Funds through the Programa Operacional Regional do Norte and na-
tional funds from FCT.

e SmartOs: Smart control of a stand-alone active orthotic system project accepted under
Copromotion National Grant Proposal - Projetos de Investigacdo e Desenvolvimento
Tecnoldgico em Copromogdo, P2020 - with Orthos XXI as the leader company and Cris-

tina P. Santos as Principal Investigator of the research center.
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Lastly, this thesis contributed to the following prize awards:

e Best oral presentation and paper for the work entitled “EMG-based Motion Intention
Recognition for Controlling a Powered Knee Orthosis”, received at 19th IEEE Interna-
tional Conference on Autonomous Robot Systems and Competitions (ICARSC), Porto,

2019.

e Finalist at Healthy category of SantaCasa Challenge-Social Innovation with SmartOs pro-

ject, recognized by Santa Casa Misericdrdia de Lisboa, Lisboa, 2018.

e 15t Prize at Prémio Engenheiro Jaime Filipe with SmartOs project, recognized by Instituto

Nacional para a Reabilitagéo, Lisboa, 2017.

1.5.Publications

The work here described allowed the publication of the following journal articles, confer-
ence papers, and a book chapter. The contribution to the conference papers as the second
author relies on the conceptual design of the proposed solution or innovation, performing the

experimental validation, and supporting the paper elaboration and review.

Journal Articles

e Joana Figueiredo, Simdo Carvalho, Diogo Gongalves, Juan C. Moreno, Cristina P. San-
tos, “Machine Learning-Based Framework for Daily Locomotion and Transition Recog-
nition and Prediction: A Kinematic-Based Approach”, IEEE Journal of Biomedical and
Health Informatics, 2019 (submitted, under review) [IF = 4.2; Q1-Electrical and Elec-

tronic Engineering, Q1-Health Information Management].

e Joana Figueiredo, Pedro Nuno, Paulo Félix, Juan C. Moreno and Cristina P. Santos,
“Smart, Wearable, Active Orthotic System — SmartOs: A Gait Rehabilitation and Analy-
sis Framework”, Journal of Medical Systems, 2019 (submitted, under review) [IF = 2.4;
Q1- Healthy Informatics, Q1-Health Information Management, Q1-Computer Science
Applications, Q1-Medicine].

e Joana Figueiredo, Simao P. Carvalho, Jodo Paulo Vilas-Boas, Juan C. Moreno, Cristina
P. Santos, “Wearable Inertial Sensor System Towards Human Kinematic Gait Analysis:

Benchmarking Analysis to MVN BIOMECH”, Journal of Biomechanics, 2019 (submitted,
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under review) [IF = 2.57; Q1- Biomedical Engineering, Q1-Rehabilitation, Q1-Orthope-

dics and Sports Medicine].

Joana Figueiredo, Ana C. Matias, Fatima Pereira, Juan C. Moreno, Cristina P. Santos,
“Lower limb spastic gait management by combining botulinum toxin with orthotic
therapy: A systematic review”, Physical Therapy, 2018 (submitted, under review) [IF =

3.04; Q1- Physical therapy, Sports Therapy and Rehabilitation].

Joana Figueiredo, Ana C. Matias, Fatima Pereira, Juan C. Moreno, Cristina P. Santos,
“Outcome measures and motion capture systems for assessing lower limb orthosis-
based interventions after stroke: A systematic review”, Disability and Rehabilitation:
Assistive Technology, 2018 (submitted, under review) [IF = 1.1; Q2-Biomedical Engi-
neering, Q2- Physical therapy, Sports Therapy and Rehabilitation, Q2-Rehabilitation].

Joana Figueiredo, Paulo Félix, Juan C. Moreno, Cristina P. Santos, "Gait Event Detec-
tion in Controlled and Real-life Situations: Repeated Measures from Healthy Subjects”,
IEEE Transactions on Neural Systems & Rehabilitation Engineering, vol. 26, 2018. DOI:
10.1109/TNSRE.2018.2868094. [IF = 3.47; Q1- Biomedical Engineering, Q1-Computer
Science Applications, Q1-Medicine].

Joana Figueiredo, Cristina P. Santos, Juan C. Moreno, “Automatic Recognition of Gait
Patterns in Human Motor Disorders using Machine Learning: A Review”, Medical Engi-
neering & Physics, vol. 53, pp:1-12, 2018. DOI: 10.1016/j.medengphy.2017.12.006. [IF

= 1.78; Q2- Biomedical Engineering, Q2-Biophysics].

Conference Papers

Pedro Nuno Fernandes, Joana Figueiredo, Luis Moreira, Paulo Félix, Ana Correia, Juan
C. Moreno, Cristina P. Santos, “EMG-based Motion Intention Recognition for Control-
ling a Powered Knee Orthosis”, 19t IEEE International Conference on Autonomous Ro-

bot Systems and Competitions (ICARSC), Porto, 2019.

Simdo Carvalho, Joana Figueiredo, Cristina P. Santos, “Environment-Aware Locomo-
tion Mode Transition Prediction System”, 19" |EEE International Conference on Auton-

omous Robot Systems and Competitions (ICARSC), Porto, 2019.
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e Pedro Nuno Fernandes, Joana Figueiredo, Juan C. Moreno and Cristina P. Santos,
“Feedback-Error Learning for Gait Rehabilitation Using a Powered Knee Orthosis: First

Advances”, IEEE 6th Portuguese Meeting on Bioengineering (ENBENG), Lisbon, 2019.

« Cristiana Pinheiro, Daniel Sanz-Merodio, Joana Figueiredo, Cristina P. Santos, Elena
Garcia, “Kinematic and kinetic study of sit-to-stand and stand-to-sit movements to-
wards a human-like skeletal model”, IEEE 6th Portuguese Meeting on Bioengineering

(ENBENG), Lisbon, 2019.

e J. M. Lopes, Daniel Sanz-Merodio, Joana Figueiredo, Cristina P. Santos, Elena Garcia,
“Three-Link Inverted Pendulum for Human Balance Analysis: A Preliminary Study”, IEEE

6th Portuguese Meeting on Bioengineering (ENBENG), Lisbon, 2019.

e Luis Moreira, Daniel Sanz-Merodio, Joana Figueiredo, Cristina P. Santos, Elena Garcia,
“The Study of Gait Cycle Stability Using a Five-Link Inverted Pendulum Model: First De-

velopments”, IEEE 6th Portuguese Meeting on Bioengineering (ENBENG), Lisbon, 2019.

e Joana Figueiredo, Paulo Félix, Cristina P. Santos, Juan C. Moreno, “Real-Time human
gait segmentation based on adaptive tool using single-axis wearable gyroscope”, IX
Congreso Iberoamericano de Tecnologias de Apoyo a la Discapacidad (IBERDISCAP),

Bogota, 2017.

« Joana Figueiredo, Paulo Félix, Cristina P. Santos, Juan C. Moreno, “Towards Human-
Knee Orthosis Interaction Based on Adaptive Impedance Control Through Stiffness Ad-

justment”, 15th IEEE Conference on Rehabilitation Robotics (ICORR), London 2017.

« Joana Figueiredo, Diogo Gongalves, Juan C. Moreno, Cristina P. Santos, “Automatic
and Real-time Locomotion Mode Recognition of a Humanoid Robot”, 20th Interna-
tional Conference on Climbing and Walking Robots and Support Technologies for Mo-

bile Machines (CLAWAR), Porto, 2017.

e Paulo Félix, Joana Figueiredo, Cristina P. Santos, Juan C. Moreno, “Adaptive real-time
tool for human gait event detection using a wearable gyroscope”, 20th International
Conference on Climbing and Walking Robots and Support Technologies for Mobile Ma-
chines (CLAWAR), Porto, 2017.

e Joana Figueiredo, César Ferreira, Luis Costa, Jodo Sepulveda, Luis P. Reis, Juan C.
Moreno, Cristina P. Santos, “Instrumented Insole System for Ambulatory and Robotic
Walking Assistance: First Advances”, IEEE International Conference on Autonomous
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Robot Systems and Competitions (ICARSC), Coimbra, 2017. DOI: 10.1109/IC-
ARSC.2017.7964062.

e Paulo Félix, Joana Figueiredo, Cristina P. Santos, Juan C. Moreno, “Electronic Design
and Validation of Powered Knee Orthosis System with Wearable Sensors”, IEEE Inter-
national Conference on Autonomous Robot Systems and Competitions (ICARSC). Coim-

bra, 2017. DOI: 10.1109/ICARSC.2017.7964061

e Joana Figueiredo, Cristina P. Santos, Juan C. Moreno, “Assistive Locomotion Strategies
for Active Lower Limb Devices”, IEEE 5th Portuguese Meeting on Bioengineering

(ENBENG), 2017. DOI: 10.1109/ENBENG.2017.7889473.

e Paulo Félix, Joana Figueiredo, Cristina P. Santos, Juan C. Moreno, “Powered knee or-
thosis for human gait rehabilitation: First advances”, IEEE 5th Portuguese Meeting on

Bioengineering (ENBENG), Coimbra, 2017. DOI: 10.1109/ENBENG.2017.7889427.

Book Chapter
e Juan C. Moreno, Joana Figueiredo, José L. Pons, “Exoskeletons for lower-limb rehabil-
itation”, Chapter 7 in Rehabilitation Robotics: Technology and Application, Elsevier,

2018.

1.6.Thesis outline

This thesis is organized into eight chapters, as illustrated in Figure 1.1.

Chapter 2 is a comprehensive review on wearable lower limb orthotic devices, disclosing
the main reasons and advantages of their application in post-stroke gait rehabilitation and
assistance, the clinical methodologies and outcome measures applied in passive orthosis and
representative technical advancements in AOs.

Chapter 3 introduces the main functionalities and conceptual design of SmartOs system
and the development of the modular, interoperable, power- and time-effective framework
for integrating modules of SmartOs.

Chapter 4 presents the design and development of the hardware and software interfaces
of each wearable sensor system that formed the Wearable Motion Lab. The chapter provides
the experimental validation of each sensor system considering a benchmarking analysis with

commercial well-established solutions.
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Chapter 2: Research on Wearable Lower Limb

Assistive Orthotic Devices
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Figure 1.1- Graphical diagram of thesis organization.

Chapter 5 describes the development of a novel, real-time gait event detection able to de-
tect up to six gait events tool using minimal sensor kinematic information. It also investigates
the real-time effectiveness of the tool by including repeated healthy gait patterns collected in
controlled and non-controlled gait conditions.

Chapter 6 proposes a machine learning-based framework to find an accurate and general
motion intention recognition and prediction tool. It also explores the feasibility of only using
kinematic data for daily locomotion mode recognition and prediction.

Chapter 7 presents the hierarchical control architecture, detailing the methodologies, the
effectiveness from experimental evidence, and clinical potentialities of each assistive control
strategy. This chapter also provides a critical analysis of the most effective low-level controller
for SmartQOs system.

Chapter 8 presents a summary of the thesis’ key findings and contributions, together with

directions for future research and technical improvement opportunities.
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Chapter 2 — Research on Wearable Lower Limb Assis-

tive Orthotic Devices

This chapter aims to review wearable lower limb assistive orthotic devices, disclosing the
main reasons and advantages of their application in post-stroke gait rehabilitation and assis-
tance and representative advancements in the technology involved.

The chapter starts with an introductory insight on stroke sequels and highlighting the im-
pact of involving and complementing the conventional therapies with robotic-aid therapies,
namely wearable assistive orthotic devices.

Subsequently, this chapter presents three literature surveys. The first survey covers a sys-
tematic review focused on the outcome measures and motion capture systems applied in
post-stroke gait rehabilitation using lower-limb orthotic devices. The second systematic sur-
vey aims to review the clinical evidence and the key methodologies for the orthotic-based gait
training. The third literature analysis focuses on wearable AOs to identify the leading technol-
ogies involved and discusses on AOs’ potential in the rehabilitation domain. Each survey raises
the limitations presented in the associated field. This critical analysis will allow identifying the
scientific challenges in post-stroke gait rehabilitation with wearable AOs, aiming to face them

with the proposed SmartOs system.
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2.1.Introductory Insight

Stroke is one of the leading causes of motor disability in adults, where stroke survivors
might live with life-changing neurological consequences. It can lead to an impaired biome-
chanical performance (e.g., decreased gait speed, step length, and ankle dorsiflexion), asym-
metric gait pattern, postural instability, and abnormal motor conditions (e.g., equinus foot,
drop foot, and spastic gait) [7], [58]. Focal spasticity at plantar flexors is the main cause asso-
ciated to equinus foot [59]—[61]. The stroke victims also report difficulty to perform daily
functional tasks (e.g., walking, sitting, standing, jumping, climbing, and turnings) leading to
dependence on others (i.e., social assistance), and costly medical assistance.

Individuals that have suffered neurological diseases, such as stroke, often require physical
rehabilitation interventions to improve their motor ability and ambulation. Various lower limb
rehabilitation interventions have been proposed, such as (i) walking aids as canes and wheeled
walkers, (ii) manual training assisted by therapists, (iii) treadmill with partial body weight sup-
port, (iv) functional electrical stimulation, and (v) wearable assistive devices, namely orthoses
and exoskeletons [9]-[12], [62]. The walking aids consist of a simple rehabilitation not ori-
ented for the user’s motor condition and generally prescribed for people with low levels of
mobility impairment [9], [63]. Gait training realized by therapists requires exhaustive manual
assistance that may promote asymmetric rehabilitation. The gait training’s duration is limited
by the therapist’s fatigue and subjectively determined by the therapist’s experience [10].

On the other hand, previous studies [11], [14], [64]-[67] have reported that the arrange-
ment of body weight support-based treadmill systems with a static lower limb assistive device
(e.g., Lokomat and LOwer-extremity Powered ExoSkeleton) leads to positive rehabilitation ef-
fects, even for spastic gait in opposition to the manual training [11]. Nevertheless, the static
lower limb assistive systems present a limited rehabilitation to the clinical setting for relatively
brief training sessions, and to less-challenging locomotor tasks [12], [68].

Physical rehabilitation interventions that evoke brain plasticity and involve user-oriented,
task-oriented and repetitive gait training and encourage the user’s participation in the therapy
are challenging and needed [9]. Both functional electrical stimulation as neuroprosthetic de-
vices and wearable assistive robotic devices, as exoskeletons and AOs, may achieve such re-

habilitation.
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In last years, an exponential increase of researches on the lower limb exoskeletons and AOs
have been shown as they are becoming a prominent physical rehabilitation intervention for
fostering a user-oriented, task-oriented and repetitive gait rehabilitation in neurological con-
ditions. This mechanic-based assistance, with similar physical principles to the ones in the con-
ventional physical rehabilitation, does not constitute a physical burden for therapists and en-
able a practical use for the daily living assistance while meeting the requirements for an ob-
jective gait assessment [14].

Both exoskeletons and AOs are defined as active/powered mechanical devices with an an-
thropomorphic nature to fit the human body tightly and to work according to the human’s
motions [16]. In general, an exoskeleton is used to augment the strength and endurance of
the movements of an able-bodied user [16], [69]. AO is an assistive device applied to restore
or modify the structural and motor function of the neuromuscular and skeletal system to
achieve an overall recovery of the ambulatory ability of a person exhibiting impaired gait func-
tion due to neurologic or/and motor diseases/injuries [16], [69]. The development of an AO is
generally more difficult and challenging than the one addressed for an exoskeleton since AO
faces the daunting issue that the specific nature of a disability is widely variable between pa-
tients [16]. However, the term “exoskeleton is also used to refer to assistive devices when
they encompass the majority of the lower limbs” [16]. AOs have been designed only to assist
actively the motion of specific lower limb joint, mainly the knee and ankle joints, or a motor

condition [13], [16].

The investigation carried out in this Ph.D. thesis was centered on wearable lower limb as-
sistive orthotic devices, instead of static devices, for two reasons. First, there is evidence that
rehabilitation with functional and daily performed activities, only ensured by wearable de-
vices, outcomes a more effective and lasting functional motor recovery. Second, current
tendencies suggest the application of wearable orthotic devices has the advantage to assist
the users in accomplishing their desired activities [69], [70].

Due to the potential advantages of wearable AQs, it is crucial to present and discuss the
current state of this research area. Sub-Chapter 2.4 presents a review of the available techno-
logical designs of AOs, analyzing their application purposes and scenarios, and clinical evi-
dence. It also provides a critical analysis of the state-of-the-art disclosing future technical and

clinical challenges and new expected functionalities.
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Moreover, it is crucial to find unified measures that investigate post-stroke rehabilitation
to pave the way for further clinical research on AOs. Research should first identify the key
outcome measures and set benchmarks to objectively evaluate the clinical evidence in the
post-stroke rehabilitation based on wearable assistive devices. Such analysis is presented in
Sub-Chapter 2.2 in the format of a systematic review.

Lastly, the investigation should look for standardization of clinical protocols to contribute
to AOs’ prescription. Nonetheless, it was observed a brief clinical evaluation of AOs in post-
stroke rehabilitation, which in turns, also showed a lack of standardized clinical methodologies
in research with AOs. Sub-Chapter 2.3 presents a systematic review of the clinical protocols
and key methods to consider in post-stroke clinical interventions involving wearable assistive
devices.

Although the exclusive inclusion of passive orthosis in the two systematic analyses, the
reviewed knowledge may be transferred to better design the clinical protocols in AO research.
Note that passive devices assist or passively control the motion of the lower limb joints during

gait with direct physical resistance [17].

2.2. A Systematic Review of Outcome Measures for Post-stroke Clin-
ical Assessment

As with all available orthotic-based rehabilitation programs, the inclusion of outcome
measures has gained importance through the years, driven primarily by the need for the evi-
dence-based practice [71]. The outcome measures in post-stroke rehabilitation can be classi-
fied according to the World Health Organization’s International Classification of Functioning,
Disability and Health (ICF) into three categories, namely: body structure/impairment, activi-
ties, and participation [72], to approach a unified assessment.

Although numerous outcome measures for post-stroke motor function exist, it is not clear
which most accurately measure meaningful changes upon orthotic-based interventions. Ad-
ditionally, the analysis of motion capture systems applied for measuring the outcome
measures in clinical interventions has not received attention. This systematic review aims to
analyze the outcome measures used in orthotic-based gait rehabilitation of post-stroke pa-
tients towards identifying the key outcomes, the most applied motion capture systems and

the standard timing for assessment. This review sought to answer the following research
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questions: (i) Which are the most measured outcomes?; and, (ii) Are the motion capture sys-

tems used in post-stroke gait analysis wearable systems?.

2.2.1.Methods

This work follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyzes
(PRISMA) guidelines [73] to ensure transparency of the review. The literature search was con-
ducted until November 2017 in Web of Science, Scopus, MEDLINE, and Physiotherapy Evi-
dence Database using the following search strategy: [“stroke”] AND [“lower limb orthosis” OR
“ankle orthosis” OR “knee orthosis”] AND [“rehabilitation” OR “assistance” OR “gait training”]
AND [“outcomes” OR “gait measurements” OR “therapeutic scales” OR “clinical measures” OR
“clinical scales” OR “assessment” OR “measures”]. The search was limited to titles, keywords,
and abstracts.

The papers identified in this initial search were evaluated based on the following inclusion
criteria: (i) included participants in an acute or chronic stage of stroke; (ii) investigated the
rehabilitation effects using quantitative or participation measures; (iii) prescribed passive or
active wearable lower limb orthoses; and (iv) conducted randomized controlled clinical trials.
Articles were excluded if they: (i) used non-portable system associated with the orthotic de-
vice; and (ii) prescribed other treatment approaches besides the orthotic therapy namely,
functional electrical stimulation and brain computational interface. The methodologic quality

of each included study was assessed using the Cochrane risk-of-bias tool [74].

2.2.2.Results and Discussion

Figure 2.1 summarizes the literature search process of this review. From this analysis, 18
studies were included. The ankle-foot orthosis (AFO), mostly the conventional AFO configura-
tion (i.e., polymeric, non-articulated posterior leaf-spring AFO), was prescribed in 16 random-
ized trials (88.9%) whereas only two studies [75], [76] used the knee orthosis. From the full-
text article analysis, we verified that studies including active orthotic devices [19], [77]-[81]
did not accomplish randomized clinical trials, as such, they were not included in this analysis.

The included studies, as demonstrated in Appendix A.1, successfully performed the gener-
ation of the allocation sequence (100% lower risk of bias). They also present a low risk of bias
through incomplete data and selective reporting. However, studies assessment quality may

be affected by detection bias since a significant portion of the studies (83.3%) did not provide
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any information relating to whether the intended blinding of outcome assessors was con-
ducted or effective. Another factor that may affect the quality of the reported findings is the
high risk of attrition bias observed in 27.8% of studies due to the handling of incomplete out-

comes.

Records identified through
database searching

(n = 229)
Records after duplicates removed  }—— Duplicate records
(n=173) excluded (n = 56)

Records excluded

Records screened |
(n=124)

(n=173)

l

Full4estasticles Full-text articles excluded, with reasons (n = 31):
assessed for eligibility [~ | - Did not consist on an original research (n = 2):
(n=49) - Use hip assistive devices (n = 3):
Include non-wearable orthoses (n = 6):
- Include other treatment strategies (e.g., medication, FES) (n = 4);
- Not randomized controlled trials (n = 16);
Studies included in
qualitative synthesis
(n=18)

[ Included ] [ Eligibility ] [ Screening } [Identil’ication]

Figure 2.1- Flow chart of the literature search process.

The literature analysis found 39 outcome measures for assessing the orthosis-based gait
rehabilitation applied to 387 post-stroke survivors in the chronic or acute stage. This analysis
observed heterogeneity in the assessment protocol for selecting the outcome measures and
timings for assessment when considering similar assessment goals. Such heterogeneity was
also reported in previous systematic analyses [82]—-[84]. Appendix B lists the information ex-
tracted from 18 studies as well as the ICF category per outcome measure. The research ques-

tions were tackled according to this information as follows.

Which are the most measured outcomes?

There is evidence to apply outcome measures from the Activity ICF category, including bio-
mechanical (such as spatiotemporal, kinematic, and kinetic measures), functional and bal-
ance outcome measures, for assessing the post-stroke orthosis-based gait rehabilitation.

This review demonstrated that the spatiotemporal measures, namely gait speed [75], [85]—

[92], step length [75], [85]—[89], [91], [93], cadence [75], [86], [91], [93], and stride duration
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[75], [87], [89], [92], [93]) were the most monitored outcome measures. Gait speed was
pointed out as the primary outcome given its contribution for measuring the increased motor
function upon the orthotic-based intervention [86]. Lower limb kinematics, including flex-
ion/extension of hip, knee and ankle at different stages of the gait cycle, and range of motion
(ROM) of these joints, were the second most measured outcomes [85], [86], [88]-[91], [93],
[94] followed by functional metrics (mainly, Time-Up-Go Test, 10 Meter Walking Test, and
Berg Balance Scale [75], [76], [95]-[98]).

On the other hand, the impairment (mainly, Modified Ashworth Scale to assess the spas-
ticity level [88], [89], [96]) and body function outcome measures (such as electromyography
measures of tibialis anterior [75], [90], [93], biceps femoris [93], and rectus femoris muscles
[93]), both belonging to Body Structure ICF category, were the quantitative outcome
measures less inspected.

Furthermore, only four clinical trials investigated the applicability and usability of the or-
thotic-based gait rehabilitation for daily use through Participation outcome measures [75],
[86], [88], [99], using satisfaction questionnaires [75], perceived exertion scale [99], and Eu-
roQol EQ-5D-5L29 quality of life questionnaire [86], [88]. A systematic review centered on
assessing satisfaction with orthoses reported that objective measures continue to be more

discerning than patient self-reports [100].

Are the motion capture systems used in post-stroke gait analysis wearable systems?

Non-wearable motion capture systems recorded most of the outcome measures. These
systems are not able to analyze consecutive gait cycles nor the gait recovery in daily locomo-
tion activities [101], [102]. The studies used non-portable motion capture systems to monitor
the Activity outcome measures such as the force platforms (AMTI BP400600 platform [86],
GAITRite [87], Kistler platform (Switzerland) [91], pedar® platform [92] to measure the spati-
otemporal outcomes), optical motion systems (Vicon system (Oxford Metrics, UK) and ELITE
(BTS Bioengineering, Italy) to track spatiotemporal parameters and kinematic parameters),
and balance platforms (Biodex system [97]).

On the other hand, muscular activity outcomes were measured by wearable EMG systems,
such as telemetric EMG device (Zebris Medical GmbH, Germany) [75], wireless EMG (BTS
FREEEMG 300) [93], and the Myopac EMG unit (Myopac) [90].
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2.2.3. Clinical Highlights and Future Directions

There is evidence for assessing the effectiveness of orthosis-based gait rehabilitation after
stroke through Activity outcome measures, primarily the gait speed. Non-wearable motion
capture systems have mostly recorded these outcomes. The widespread use of Activity out-
come measures suggests that post-stroke rehabilitation mainly approaches the functional
ability or difficulty that an individual might experience in completing a given daily motor ac-
tivity. Participation outcome measures may introduce complementary information to the ob-
jective outcome measures. This clinical highlight may guide the clinical assessment in AO-
based gait rehabilitation, as the SmartOs.

To progress the evidence regarding orthotic-based rehabilitation in post-stroke conditions,
future researches are recommended to (i) approach a transparent declaration of blinded out-
come assessment, (ii) fully describe the methodologies used to collect outcome measures, (iii)
endow wearable motion systems, and (iv) include baseline and follow-up outcome complete-
ness to enable critical and reliable appraisal of the viability of the rehabilitation treatment
fostered by the lower limb orthosis. Furthermore, clinical studies involving active wearable
orthotic systems should follow a randomized trial approach, a relevant methodological proce-
dure in clinical trials. The heterogeneity found in this analysis highlights the need for some

agreement on assessing post-stroke rehabilitation towards a unified clinical methodology.

2.3.A Systematic Review of Clinical Protocol and Evidence on Post-
Stroke Rehabilitation using Wearable Passive Orthoses

Given the prevalence and wide diversity of wearable orthotic devices in the health care
system, it is still needed to set clinical methodologic guidelines and benchmarks for the re-
search in orthotic-based rehabilitation in terms of clinical protocol design (e.g., physical activ-
ities, and frequency and duration of therapy) and clinical evidence analysis.

This systematic review aims to analyze the clinical protocol and key methodologies in post-
stroke orthotic-based rehabilitation and the clinical effects. For this purpose, this systematic
review seeks to answer the following questions: (i) What are the main inclusion and exclusion
criteria?; (ii) Which are the key methodologies for designing the clinical protocol in the ortho-
sis-related studies?; (iii) Which are clinical interventions endowed in orthosis-related studies?;

and, (iv) What is the clinical evidence of passive orthosis in post-stroke gait recovery?.
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2.3.1.Methods

This work follows the PRISMA guidelines [73]. A comprehensive literature search was car-
ried out until January 2017 through the databases Web of Science, Scopus, MEDLINE, and
Physiotherapy Evidence Database. The keywords explored during the electronic search,
through AND and OR operators, are: [“stroke”] AND [“lower limb orthosis” OR “ankle orthosis”
OR “knee orthosis”] AND [“rehabilitation” OR “assistance” OR “gait training”] AND [“effects”
OR “evidence”] AND [“protocol” OR “experiment” OR “clinical test”]. The search for such key-
words was limited to titles, abstracts, and keywords.

The studies identified in this initial search were evaluated based on the main following in-
clusion criteria: (i) assessed the effect of the wearable ankle or knee orthosis in rehabilitation;
(i) involved at least 5 participants in an acute or chronic stage of stroke; and, (iii) described
the experimental design included randomized trials. Articles were excluded if they: (i) used
non-portable orthotic devices; and (iii) prescribed other treatment approaches besides the
orthotic therapy. The Cochrane risk-of-bias tool [74] was employed to assess the methodolog-

ical quality of the included studies in terms of sources bias.

2.3.2.Results and Discussion

Figure 2.2 illustrates the literature search process of this review. From the specified search
strategy and after removal of duplicates using Mendeley, 20 randomized studies were ana-
lyzed, which involved 1154 post-stroke patients. This review does not investigate clinical re-
marks regarding AO-based rehabilitation given the lack of randomized clinical methodology
and the inclusion of a few participants (less than 3).

Concerning the methodological quality of the included studies (presented in Appendix A.2),
there is a low risk of selection bias (100% of random sequence and 75% allocation conceal-
ment) and outcomes reporting bias (100%). On the other hand, there is an unclear risk of bias
related to the blinding of participants, personnel and outcome assessors. Another factor that
may affect the quality of the reported findings is the high risk of attrition bias observed in 35%
of studies due to the handling of incomplete outcomes.

The research questions were tackled according to the information extracted from 20 stud-

ies (listed in Appendix C) as follows.
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Records identified through
database searching
(n = 448)

Records after duplicates removed |— Duplicate records
(n=213) excluded (n = 233)

v

Records excluded

Recordsscreened |
(n=166)

(n=213)

l

Full-text articles
assessed for eligibility =" | - Did not consist on an original research (n = 2);
(n=47) - Use hip assistive devices (n=3);
Include non-wearable orthoses (n = 9);
Include other treatment strategies (e.g., medication, FES) (n =4);
Not randomized controlled trials (n = 7);
Did not include stroke patients (n = 2)

Full-text articles excluded, with reasons (n = 27):

Studies included in
qualitative synthesis
(n=20)

[ Included ] [ Eligibility ] [ Screening ] [Identiﬁcation]

Figure 2.2- Flow chart of the literature search process.

What are the main inclusion and exclusion criteria?

Diverse inclusion and exclusion criteria were observed according to the rehabilitation goal.
Nonetheless, the main inclusion criteria were: (i) suffered a single unilateral ischemic or hem-
orrhagic stroke [95], [98], [103] at least 6 months ago [86], [99], [103]-[107]; (ii) presented
hemiplegia [75], [86], [95], [96], [104], [105], [108]; (iii) able to walk with the AFO or knee
ankle foot orthosis (KAFO) safely, (iv) had not undergone any surgical procedures in recent
months; and, (v) patients over 18 years old [85], [86], [94], [95], [98], [104]—[106]. Moreover,
the participants should present a cognitive level sufficient to give informed consent, as also
cognitive, visual, hearing, cardiac, and respiratory functions should be appropriate such that
the patient is able to understand and follow the protocols [87], [94], [95], [98], [106], [109].

The studies excluded patients that presented additional orthopaedic or neurological defi-
cits to the paretic or non-paretic limbs [75], [87], [98], [109], and morbid obesity that might

impair the locomotion [107].

Which are the key methodologies for designing the clinical protocol in the orthosis-related

studies?
Findings suggest that the design of the clinical protocol should approach the following

methodologies. First, carry out randomized trials for enhancing the statistic quality and
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properness of the clinical evidence. Second, before performing the clinical trials, the research-
ers or therapist must concede a familiarization period (ranging from 5 days to 2 weeks) to the
participants that did not usually wear the prescribed orthosis such that they become familiar
with the device and thus do not mis-analyze the adaptation period. Third, use of footwear
during the assessments with and without orthosis to allow a more reliable comparison be-
tween the presence and absence of orthotic assistance, discarding the eventual corrective

effect of footwear [86], [97], [103], [105], [106], [108], [110]-[112].

Which are clinical interventions endowed in the orthosis-related studies?

There is evidence that functional tests were the most endowed clinical interventions to
investigate the functional locomotor recovery of post-stroke patients upon orthotic-based re-
habilitation. In overall, the post-stroke participants underwent functional tests, such as 10
Meter Walking [75], [85]—[87], [94], [95], [98], [99], [103]-[105], [108], [113], [114]; Timed Up
Go [95], [96], [98], [99], [103], [106], [113]; Timed Up and Down Stairs [96], [98], [103], [106];
and, Berg Balance Scale [95], [113]. Participants could rest, generally, from 2 to 10 minutes
between each trial [87], [96], [104], [105], [108].

Each session usually lasted from 30 to 60 minutes. There is no consensus for the repeata-
bility of the clinical intervention. It can present a short-term duration for 6 trials [85], [94],
[104], [105] or can last for variable long-term periods: 8-week [75], 12-week [98], [107], [114],
24-week [99], [115], and 30-week [113].

What is the clinical evidence of passive orthosis in post-stroke gait recovery?

This systematic review found that the clinical evidence of post-stroke rehabilitation based
on orthotic devices depend on the patient’s disability level, the timing for prescribing orthosis
and its configuration, and the underwent clinical intervention.

A dynamic KAFO [104] used for six trials and a hinged soft KAFO [75] applied for four weeks
decreased knee hyperextension during the stance phase (i.e., reduces the genu recurvatum)
[75], [104]. The dynamic KAFO increased gait speed and stride length [104].

The short-term and long-term therapy with AFOs improved (i) walking speed [85]-[87],
[96], [103], [104], [109], [114], [116]; (ii) step length of the paretic limb [85]-[87], [105], [116];
(iii) peak ankle dorsiflexion at swing phase [94], [105], [114], and peak keen flexion [85], [114].
These kinematic achievements were related to the correction of foot-drop and equinus foot.
Furthermore, AFO-based rehabilitation slightly enhanced motor ability regarding Timed Up
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and Down [86], [95], [96], [103], Timed Up and Down Stairs [96], [103], and 10 Meter Walking
Test [95], [114] and postural balance in Berg Balance Scale [86], [95]-[97].

2.3.3.Clinical Highlights and Future Directions

Orthotic-based gait rehabilitation may depend on the design of the clinical protocol, dura-
tion of the gait training, and the wearable orthosis configuration. An early prescription of an
orthotic device can lead to more efficient locomotion recovery compare to a delayed one.
Passive wearable orthoses can rectify abnormal motor conditions and lead to beneficial ef-
fects on the spatiotemporal outcomes. Nonetheless, the functional motor ability recovery
upon passive orthosis-based rehabilitation was not prominent nor was the main clinical
achievement. Metallic and rigid orthoses are less recommended to achieve an overall func-
tional motor recovery.

Future researches are recommended to describe the clinical protocol following methodo-
logic guidelines entirely, to investigate the long-term effects, and to endow clinical interven-
tions with motor activities daily performed. Clinical studies involving wearable AOs should fol-
low a randomized trial approach and engage further participants for a significative analysis of

their clinical evidence, mainly for functional motor recovery.

2.4. Wearable Active Orthotic Devices: A Descriptive Review on Po-
tentialities, Current Solutions, and Challenges

Although passive orthotic devices are often prescribed to improve gait deficiencies, they
do not include active elements to accommodate for changing walking conditions or functional
tasks [17], neither to face the intra- and inter-subject variable nature of motor disability [16].
On the other hand, technological directions on wearable AOs have pursued personalized,
user-oriented, task-oriented and repetitive gait training focused on restoring function loco-

motor ability to perform daily motion activities [14].

2.4.1.Wearable AOs Potentialities

Wearable AOs are becoming an increasingly prominent clinical intervention to provide a
long-term functional motor recovery through the replacing or restoring of a portion of the
mechanical work performed by the biological muscle-tendons acting at the joints during loco-

motion [117]. They are challenged to partly emulate the skills of a trained therapist and to
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actively and safely assist the human legged mobility following an AAN approach while enabling
a natural and compliant interaction with the biological muscle-tendons [16], [17], [118] and
a continuous gait monitoring [9], [119]. AAN physical rehabilitation paradigm means to assist
the participant only as much as is needed to accomplish the desired motion activity [120].
AOs have been designed to exhibit a set of features, advanced regarding passive orthotic
devices, such as: (i) provide an intensive and repetitive therapeutic training according to a
real-time evaluation of the user’s needs and disability level [9], [121]; (ii) tailor the mechanical
assistance to accommodate different motor activities of higher metabolic energy consump-
tion and gait speed variations [121]; (iii) incorporate the patient-active mode by taking into
account the participant’s active intention and the voluntary efforts [31], [120]; (iv) encourage
the user’s participation in the therapy since his/her active and high-intensity physical partici-
pation may facilitate the motor learning process and, thus, accelerating and enhancing the
gait recovery [11], [15], [31], [118], [122]; and (v) adapt the mechanical assistance ensuring a
compliant human-AQ interaction through the real-time adjustment of the human-AO dynam-

ics [123].

2.4.2.Current Wearable AOs

Advances in actuation, energy storage, miniaturized sensing, and embedded computa-
tional technology have led to the development of wearable assistive robotic devices [9]. This
descriptive review was limited to wearable AOs that provide some means of augmenting
power and oriented assistance of lower limb joints. AOs endowing active components that
merely lock and unlock joints of an orthosis or those are not portable and do not stand-alone
mechanically (e.g., treadmill-based devices, and AOs using tethered sources for power or com-
puting) are not discussed. When compared to tethered assistive devices, the wearable AOs
that could be worn during untethered functional locomotor activities, focusing on specific
daily activities, which may benefit rehabilitation with the more considerable evidence and
largest effect sizes [76].

Table 2.1 describes the wearable AOs (Figure 2.3) with focus on the actuation and sensor
systems, the current development stage, application and clinical studies carried out. To date,
wearable AOs are mostly in a scientific development stage with a limited commercial offer

by Ottobock®© [124]. The application of AOs with mechanical assistance at hip and knee joints
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was divergence, including various locomotor system diseases, such as spinal cord injury (SCl),
stroke, and poliomyelitis; whereas, ankle AOs were mainly applied to prevent drop-foot gait.

The issue of portability is one of the significant factors that limit the application of AOs
outside of clinical therapy. The AOs’ mass is a relevant feature for increasing the AOs’ usability
and affordability as well as the user’s acceptance. From the results extracted, it was verified a
variable body mass; Arizona Univ. AAFO weights 1.75 kg [18], [19]; the Univ. of Illinois Active
AFO weights 1 kg plus the mass of the power supply system [20]; the body mass of most of
the AOs varies from 2 to 3 kg [21], [22], [78], [125]; the mass of the knee AOs rounds 3.7 kg
[76], [126], [127]; Achilles mass is 6.7 kg [128]; and, the heavier system has 12 kg [129].

Figure 2.3- Wearable AOs. A:Vanderbilt Powered Orthosis [129]; B: C-Brace KAFO [124]; D: Tibion PK100 Knee
orthosis [127]; E: LISSI Active AFO [130]; F:Achilles [128]; G:Michigan Active AFO [21], [131]; H:Arizona State Univ.
AAFO [18], [19]; I:Univ. of lllinois Active AFO [20]; J:Yonsei University Active AFO [78].

Independently of the application, the design considerations for wearable AOs must account
for compact, lightweight, time-effective actuation systems to provide net power to move the
joints, and sensor systems and a control architecture to define the needed assistance to be
applied to move the weakened limbs in desired gait patterns [120], [132]. Figure 2.4 shows
the on-body location of the actuation system and sensor systems of the reviewed wearable

AOs in this survey.
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Table 2.1- Wearable AOs: actuation system, sensor system, application, development stage, and developed clinical studies.

Actuation System Sensor system Application Clinical Study
Wearable AO Actuated joint Sensor [Stage] Participants Effectiveness
Actuator - i Measurement Goal
Hip Knee Ankle (Location) [Total Mass]
Vanderbilt Powered Potentiometer Hip and knee angle SCI 1 paraplegic male -High degree of step-to-
Orthosis [129] Electri A A (Actuator) [RS] subject (35 years; step repeatability of hip
ectric -
Accelerometer NI [12 kg] 1.85 m, 73 kg) with and knee trajectories
(Thigh) T10 complete SCI - Increased gait speed
C-Brace KAFO [124] IMU (Knee) Knee orientation Poliomyelitis,
Gait event detection Incomplete SCI
(lesion between
Electric - A P L1 and L5). No NI NI
spasticity.
[CA]
[NI]
Load cell (Feet) Gait initiation . " 1 male subject with - Facilitated controlled
Poliomyelitis . . . :
. poliomyelitis (54- knee flexion/extension
SCKAFO [126] Electric - A P [RS] )
years; 1.68 m; 68 -Gait pattern closer to
[3.6 kg] .
kg) the normal gait
. A Force sensor (Feet) Gait event detection  Post-stroke 3 post-stroke pa- -Improved sit-to-stand
Tibion PK100 Knee orthosis . . . . .
[127] Electric - A - Encoder (Actuator) Knee angle [RS] tients in chronic - Improved gait speed
[3.7 kg] stage after a 4 week-training
Force sensor (Feet) Gait event detection 3 chronic stroke Improved balance
Encoder (Actuator) Knee angle survivors (2 males, (12.6% for BBS), and
EMG Tibialis-anterior and ~ Post-stroke 1female; 54.7 + functional mobility
Tibion Knee orthosis [76] Electric - A - (Tibialis-anterior gastrocnemius mus-  [RS] 15.9 years; 1.67 £ (12.0% for 6MWT and
and gastrocnemius) cular activity [3.7 kgl 0.9m; 97.5+5.97 16.7% for Emory Func-
Force sensor (Feet)  Gait event detection kg) tional Ambulation)
Encoder (Actuator) Ankle angle
Force sensor (Feet) Gait event detection  Drop foot
. . . [RS]
Univ. of lllinois Active AFO Pneu-
. - - A [1 kg plus - -
[20] matic
power supply]
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Actuation System Sensor system Application Clinical Study
Wearable AO Actuated joint Sensor [Stage] Participants Effectiveness
Actuator . Measurement Goal
(Location) [Total Mass]
IMU (Ankle) Ankle angle
EMG Tibialis-anterior and
- . . Drop foot
LISSI Active AFO [130] Electric (T|b|a||s-anter|9r gastrocneml-us. mus- [RS] i i
and gastrocnemius) cular activity
Force sensor (Feet) Gait event detection (N1
Encoder (Actuator) Ankle angle
Angle sensor Gait event detection 1 plantarflexor im- Active AFO:
(Ankle) paired male subject - provides functional as-
(51years; 1.75 m; sistance during gait and
] L. . Drop foot . . .
Univ. of lllinois Active AFO Pneu- Force sensor (Feet) [RS] 86 kg) and 1 dorsi- increased stance times
[133] matic NI] flexor impaired fe- -prevented the drop
male subject (37 foot and maintained toe
years; clearance during swing.
1.57 m; 62 kg)
EMG sensors (so- EMG-based control
leus, tibialis ante- Neurologically
Michigan Active AFO [21], Pneu- rior, vastus lat- injured patients
[131]* matic eralis, medial ham- [RS] i i
strings) [2.9 £1.3 kg]
Load Cell (Actuator) Actuator’s force
Potentiometer (Ac- Ankle angle Prevented toe-drag dur-
tuator) Drop foot ing the swing phase
IPEC AFO [134] :::c Encoder (Actuator) Ankle angle [RS] 1 SCl subject
Force sensors Gait event detection  [NI]
(Feet)
Pneu- Encoder (Actuator) Ankle angle Drop foot 1 subject with right Prevented the drop foot
matic Force sensors -Gait event detection  [RS] drop foot (80 kg)
compli- (Feet) -Ankle torque [NI]
SMAFO [135] ant**
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Actuation System Sensor system Application Clinical Study
Wearable AO Actuated joint Sensor [Stage] Participants Effectiveness
Actuator - . Measurement Goal
Hip Knee Ankle (Location) [Total Mass]
Drop foot
Achilles [128] SEA - - A Encoder (Actuator) Ankle angle [RS] - -
[6.7 kg]
Potentiometer Ankle angle 2 male subjects AO with variable-imped-
(Actuator) with unilateral drop  ance:
Force sensor (Feet) Gait event detection ~ Drop foot foot (62 years; 1.79 - provides more benefits
. [RS] -1.77m; 79 - 95 kg) for the treatment of
MIT Active AFO [22]* SEA - - A
[2.6 kg plus drop foot compared to
power supply] passive orthoses;
-Kinematic pattern
closer to healthy gait.
Encoder (Actuator) Ankle angle 3 stroke survivors (2 -Increased cadence, an-
Force sensors Gait event detection Post-stroke male, 1 female; kle range of motion and
Arizona State Univ. AAFO SEA ey ! &
(18], [19] - - A (Feet) [RS] 5246.93 years; push-off power;
’ [1.75 kg] 84.67 £7.3kg; - Key ankle gait metrics
1.71+16.6 m) closer to healthy values.
Force sensors Gait event detection 3 male hemiplegic -Prevents drop foot;
o 3 i (Feet) Drop foot patients with drop -Prevents toe drag;
Yonsei University Active . . .
AFO [78] SEA - - A [RS] foot (51+2.3 years, -Higher improvement in
[2.8 kg] 1.64+4.2 m, step length and gait
63.5+5.7 kg) speed than passive AFO
Foot-switches Gait event detection, 1 post-stroke pa- -Increased stride length,
(Feet) gait speed, stride du- tient in the chronic moments of the joints;
. . . . Post-stroke .
Univ. of Medical Sciences SEA ration [RS] stage - Improved standing and
Active AFO [80] Encoder (Actuator) Ankle angle NI] (45 years, 1.78 m, walking abilities com-

83 kg)

pared to the passive or-
thosis

P — Passive; A — Active; - Not addressed; CA — Commercially Available; RS — Research Stage; NI: not indicated; *- Unclear the presence of tethered components

** Pneumatic compliant: Pneumatic stiffness adjustment

BBS: Berg balance scale; 6MWT: six-minute walk test.
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Actuation Systems

Ankle AO

Sensor Systems
Inertial Measurement Unit
e Potentiometer
e Encoder
® Load Cell
== Force Sensors

* EMG

Figure 2.4- Overview of the on-body location of the actuation system and sensor systems considering the re-

viewed wearable AOs in Table 2.1.

Actuation Systems

The design principles of the actuation system, such as output force/torque, efficiency, and
portability, has a crucial significance for the wearable AOs since they generally determine their
performance. Actuation systems, such as electric motors, pneumatic muscle actuators, and
series elastic actuator (SEA) were applied to move the AO by converting a source of energy
into mechanical motion. Table 2.1 shows that the application of pneumatic and SEA actuators
in wearable AOs centered on ankle assistance; whereas the electric actuators presented a
more versatile lower-limb application. Further, some AOs combine passive and active me-
chanical joints, both approaching the sagittal plane. This literature analysis indicates that ac-
tual wearable AOs do not endow hydraulic actuators.

Electric actuators convert the electrical energy into mechanical torque. For most gait-
related applications, they integrate an electric motor (e.g., direct current (DC) motors) and a
harmonic drive to achieve the desired torques and control the provided torque and speed
[136], [137]. As described in Table 2.1, electric actuators are the elected actuators for most
wearable AOs, including the commercial AO. They are easily controllable and meet the criteria
of necessary power with compact and portable solutions for wearable devices. Their main
drawback is the low power-to-weight ratio, being essential to connect them to harmonic drive
gears. Novel lightweight electric actuators are needed.

Pneumatic actuators include variable volume pressure chambers to convert a pressurized
gas into mechanical torque. They provide a set of inherent benefits over electric ones, such as

high force-to-weight ratio without the need of gearboxes, faster response time, smooth
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actuation, and enable backdrivability [69], [137], [138]. Nevertheless, the control is more com-
plex, and electric actuators are 92% more power efficient for robot-assisted walking applica-
tions [69]. Furthermore, this actuation technology showed to be bulky and is commonly asso-
ciated with tethered systems [139]-[141].

Alternative compliant actuation systems to these conventional technologies are under in-
vestigation, such as SEA. SEA combine compliant structures (e.g., a spring) in the electro-me-
chanical actuators to convert compression of springs into mechanical torque [17], [69], [137].
SEA has essential features for wearable AOs since it can exhibit low impedance, low friction,
shock tolerance, acceptable dynamic range, and may enable the user to feel more comfortable
assistance [80]. Nonetheless, the use of these actuators in wearable AOs faces a limitation
about the spring constant of the elastic element that is fixed, i.e., limited bandwidth [18], [22].
Research on compact and highly efficient mechanisms that allow varying the stiffness of series
elastic components, a compromise between minimal endpoint impedance and high force con-
trol bandwidth, is needed.

Table 2.2 summarizes the advantages and disadvantages of each actuator.

Table 2.2-Advantages and disadvantages of actuators. Information obtained from [17], [69], [137].

Actuator Advantage Disadvantage
. - Heavy
- Easily controllable . . ) .
. . - Requires gear reduction to achieve the desired
Electric - Power efficient
torque
- Portable )
- Noisy
- Silent - Low control bandwidth
- Precise - Big dimensions (bulky)
Pneumatic - Resistant to rough environments - Power lost in pressure drops
-High ratio actuator power to weight - Issues on internal friction and leakage, intrinsic
- High efficiency noise
- High force fidelity o . .
. - Limited bandwidth (constant spring)
SEA - Low impedance

. - Stability limitations
- Low friction

Sensor systems

Active assistive devices rely on sensor systems’ feedback to control the system according
to the motion activity and to determine the assistance required by the user. The integration
of the sensors on AOs has been limited to control purposes, including encoders [18], [80],
[127], [130], [134], [135], potentiometers [22], [129], [134] and Inertial Measurement Units

(IMUs) [124] for angle and angular speed estimation, and load cells [21], [125], [126] for motor
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torque estimation and user-AQO interaction torque estimation. To supplement the information
available from AOs, EMG sensors [117], [142] for muscle activity analysis, and force sensors
such as foot-switches and force sensitive resistors (FSRs) [20], [22], [78], [80], [127], [130],
[132], [134], [135], for gait event detection, have been placed on the user’s body. There is a

common use of wearable sensors in wearable AOs.

Clinical Evidence

Preliminary, short-term clinical trials with neurological patients have been carried out to
investigate the clinical effectiveness of wearable AOs. They involved patients with sequelae of
SCI [129], [134] and poliomyelitis [126], stroke survivors in the chronic stage [18], [19], [76],
[80], [127], and subjects with drop foot gait [22], [78], [135].

The studies had small sample sizes, varying from 1 to 3 participants, which may limit the
effectiveness and robustness of their study findings. Inspection of the protocol designs across
studies revealed non-detailed clinical protocols on clinical interventions and outcome
measures, and there are considerable variations in the duration and frequency of sessions
performed. The most applied outcome measures used to assess the capabilities of an AO for
gait rehabilitation (to re-train the user’s walking capability) and gait assistance (to bring the
patient’s walking ability closer to that of healthy subjects) are: walking speed, ROM, gait sym-
metry, and step cadence [143].

The effectiveness of AO-based therapy is an open matter of research [143]. The Tibion
knee orthosis improved gait function in stroke survivors in terms of increased gait speed, sit-
to-stand activity, balance, and functional walking ability [76], [127]. The gait training delivered
by active AFOs, with actuation systems based on pneumatic and SEA, successfully prevented
drop foot gait and maintained toe clearance during swing [22], [78], [133]-[135]. Conse-
guently, these active AFOs augmented push-off power [18], [19] and increased stance timing
[133], stride length [80], and cadence [18], [19]. Furthermore, the active AFO-based improve-
ments in walking ability were more apparent and closer to healthy gait than the ones achieved
by the passive orthoses [18], [19], [22], [78], [80].

In overall, the findings of these pilot clinical studies support that the motor learning
boosted by the AO-based repetitive gait training has the potential to augment and extend the

effect sizes of the functional motor recovery when compared to the passive orthosis.
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2.4.3.Discussion on Technological and Clinical Challenges

To date, AOs proposed in the scientific field are still not able to foster personalized, user-
oriented assistance and timely adaptive for dynamic daily environments nor to encourage the
user’s participation. Current technological challenges in wearable AOs include the integration
of following technologies: (i) polyvalent, time-effective assistive control strategies tailored
accordantly to the current user’s needs and user-AO interface sensing to deliver a personal-
ized assistance, (ii) unobtrusive wearable biofeedback system approaching less-cognitive ef-
fort to actively encourage the user’s participation, (iii) wearable sensor systems and easy to
apply gait analysis methodologies for the real-time monitoring of the user’s needs evaluation
and neuro-mechanical user’s motor condition, and (iv) tools for the recognition of user’s mo-
tion intention and current patient’s disability level. Moreover, the approaches for modeling
the human-AO interaction is not yet taking into account the symbiotic interaction between
the user and the AO, a critical factor for ensuring compliant and efficient assistive control
strategies [69].

These challenges are key innovation points that will be addressed by SmartOs system to-
wards a repetitive, user-oriented gait therapy [14], [118]. For this matter, SmartOs aims to
combine in an interoperable manner wearable sensor systems, biofeedback systems, and gait
analysis tools into an AO such that it has the ability to adapt the delivered mechanical work
according to a real-time evaluation of the user’s needs while encouraging the user’s participa-
tion in the therapy.

Despite much progress in robotic technologies, there is still needed to develop lightweight,
compact AOs with a unique mechanical design, that reduces its mass and overall dimensions
for lower metabolic expenditure and AOs with lightweight, compliant, low-power, easily con-
trollable actuation systems that behaviours like human joints [10]. Computational mecha-
nisms for AOs’ mass compensation are proposed in SmartOs to be more compatible with the
user’s minimal metabolic requirements.

The challenges in sensor systems go through the development and integration of modular
wearable time-effective sensor systems, easily flexible to incorporate a wide range of sensors,
in a way that they provide quantitative and repeatable long-term assessments. To accomplish
the AAN approach, current directions suggest that AOs should have a close-communication

with sensor systems to enable the evaluation of the therapy in free-living environments [25],
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[26], [144]. To address the previous two challenges, SmartOs pursues the development of a
wearable motion lab with a set of modular sensor systems for the biomechanical and muscular
motion analysis. It will enable the real-time, ambulatory monitoring of the neuro-biomechan-
ical user’s motor condition and decoding the user intended movement.

Studies have demonstrated that biofeedback systems can complement gait training in post-
stroke conventional therapy by enhancing balance, gait symmetry, and weight bearing [145]—
[147]. Nonetheless, the integration of wearable biofeedback systems (not limited to non-am-
bulatory rehabilitation as explored in [148]) with wearable AOs still has to be approached for
encouraging and motivating the patient to improve gait pattern. SmartOs aims to tackle this
problematic.

The increased complexity of AOs, given the combination of sensors, actuation, and biofeed-
back systems, control strategies, and computational tools for gait analysis, demands the de-
velopment of frameworks with features such as modularity, interoperability, scalability, de-
terminism, and effective response. Moreover, the design of bioinspired control architectures,
following design principles based on human motor control, started to emerge [9]. The design
of the framework and control architecture of SmartOs follows these technological challenges
while guaranteeing users’ safety.

C-Brace [124] is the closest solution of a personalized gait training therapy, by endowing
technologies able to assess the user’s motor condition and to determine how many assistance
is needed. However, C-Brace does not apply methodologies to stimulate the user’s participa-
tion in the motor activities as it is not indicated for patients with spasticity, a motor condition
commonly observed after a stroke [149]. There a common limitation for the application of
AOs in the presence of spasticity (Miller, Zimmermann, & Herbert, 2016). SmartOs proposes
innovative initiatives on the combined use of pharmacologic interventions with AOs in spas-
tic gait recovery, which is boosted by task-specific therapy and stretching during daily activi-
ties [11], [31], [68].

Recent tendencies have suggested the application of soft robotic devices that use soft ma-
terials such as textiles and elastomers to assist in a more comfortable, unobtrusive, and com-
pliant means [7]. Nevertheless, further technological advances are needed since current soft
robots include an off-board actuation unit comprising the ambulatory assistance [7], [150], or
they require that the user wears the actuation system via a heavy backpack frame with a mass

of 10.64 kg [151].
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There are a set of challenges to be tackled regarding the short-term clinical trials with AOs
performed with a limited number of participants. First, more controlled clinical research con-
sidering randomized trials is needed to determine AOs’ clinical effectiveness and usefulness,
which would also strengthen the literature in general support of AOs use for functional gait
rehabilitation [152].

Second, there is a lack of the clinical evidence of AOs for the functional motor recovery,
reducing the metabolic cost of the user, and the average muscular generated torques by the
user. A literature review previously underlined the need for a standardized methodology to
benchmark the AOs ability for gait rehabilitation and assistance [143]. Future clinical protocols
should include a significant number of participants, who will undergo repetitive functional
tests and locomotor activities daily performed, and consider quantitative outcome
measures, such as Activity and Impairment ICF outcomes, and the patients and clinicians’ per-
ception through Participation outcome measures.

Third, clinical trials comprising long-term evaluation with several follow-up assessment
timings are needed to investigate the long-term motor recovery. A long-term benchmark anal-
ysis with passive devices and other conventional rehabilitation therapies is an avenue to be
approached considering homogenous control and study groups involving a significant number
of participants.

Fourth, more research is needed to investigate (i) the adaptation of the user to powered
assistance and (ii) the interaction of the device with the user’s body, considering the physical
interaction (i.e., how the lower limbs successful accomplish the desired motion) and neural
interaction (i.e., how the nervous system will respond to the provided assistance) [143].

Further clinical challenges cover a significative evaluation regarding the usability, and the
possible cognitive and physical burden regarding the AOs’ use on daily living environments.
The delineated clinical trials for SmartOs followed these challenges to achieve long-term, high-
quality research towards gaining higher levels of clinical evidence of AOs’ use and effects. Such
clinical step may support the clinical decision for a more informed prescription of physical

rehabilitation therapy.
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2.5.Conclusions

Wearable AOs are promisor assistive devices to meet the requirements of a suitable phys-
ical rehabilitation intervention including a user-oriented, task-oriented, and repetitive gait re-
habilitation in neurological conditions while enabling an objective gait assessment. Advances
in these assistive devices may offer great potential for post-stroke gait rehabilitation, contrib-
uting to transformative changes in functional motor ability to perform daily locomotor activi-
ties, biomechanical performance, and boost cognitive motor control ability.

This literature research identified a set of technological and scientific challenges in weara-
ble AOs, such as mechanical designs, actuation systems, sensor systems, assistive control
strategies to strengthen their position as personalized rehabilitation or gait analysis tool. The
survey allowed to conclude that the AO should endow a modular, time-effective framework
able to combine, in an interoperable manner, wearable sensor systems, and biofeedback sys-
tems into an AO. Furthermore, real-time, robust gait analysis tools for recognizing user’s mo-
tion intention and disability level have to been introduced into control architectures of AOs,
considering the current directions for bioinspired and AAN control architectures. The AO de-
sign has to be fully wearable, lightweight, comfortable, and tightly shape the user’s body. Ad-
ditionally, there is an actual needed for personalized, long-term training solutions to treat
spastic gait condition.

Lastly, there are still missing clinical studies considering a significant number of participants
with stroke sequels. More efforts are needed towards a unified clinical methodology ap-
proaching functional motor exercises and using objective metrics to assess the long-term ef-
fectiveness of AO-based gait therapy. The gathered information in Chapter 2.2 and Chapter
2.3 may guide the designing of the clinical protocols attending to the actual demand for a
benchmark scheme.

The design and development of SmartOs system, presented in Chapter 3, pursue to con-
sider the highlighted scientific challenges and know-how. Continuous user involvement is es-
sential in the design and development of personalized solutions, as proposed by SmartOs, en-

suring that they match user needs and desires, as well as capabilities.
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Chapter 3 — SmartOs System: Conceptual Design, Func-

tionalities and Framework

This chapter describes the conceptual design and functionalities of SmartOs system, con-
sidering the gathered knowledge in Chapter 2. This information enabled to identify all Smar-
tOs’ modules for designing the modular framework in an interoperable and time-effective
manner. Moreover, this chapter presents the performance evaluation of the modular frame-

work considering a technical validation of the developed hardware and software interfaces.

3.1.Introductory Insight

Current technological and scientific directions on wearable AOs include the integration of
wearable sensor and biofeedback systems and assistive control strategies driven by gait anal-
ysis tools for recognizing user’s motion intention and motor disability [14]. SmartOs system
addressed these directions. It includes wearable AOs linked to a full-lower limb Wearable Mo-
tion Lab (with biomechanical and muscular sensors) and a Wearable Biofeedback System. This
innovative combination is advantageous over the state-of-the-art, and turns SmartQOs an af-

fordable system that can be applied for gait rehabilitation and ambulatory gait analysis.
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For this purpose, a modular framework was designed and developed to approach a time-
effective and robust integration of the identified SmartOs’ modules. Further the SmartOs sys-
tem integration, the framework allows the SmartOs system expandability for further gait anal-
ysis tools, assistive strategies, and sensor, biofeedback and actuation systems. The framework
followed the bioinspired principles of a hierarchical control architecture to timely tune the
assistive level delivered by AOs according to the evaluation of the user’s needs, motion inten-
tions and user-AOs interaction tracked in real-time by the Wearable Motion Lab and decoded
by the Gait Analysis Tools. Finally, the framework includes mobile and desktop applications
for the intuitive configuration of the SmartOs’ modules and functionalities and visual moni-

toring of the user-AOs motion, respectively.

3.2.Conceptual Design and Functionalities

SmartOs is a new multi-functional, modular, wearable active orthotic assistive system
able to act and cooperate closely with human beings to approach AAN rehabilitation. Conse-
qguently, the design of SmartOs followed the functional and technical end-users driven re-
quirements to increase the user’s acceptability and to foster a reliable and safe gait rehabili-
tation. End-users and clinicians have been involved in consolidating a set of requirements that
has triggered and fine-tuned the development of SmartOs.

The clinical initiatives of SmartOs approach (i) task-oriented and repetitive gait training ac-
cording to the user’s needs; (ii) long-term biomechanical, energetic-efficient and functional
motor recovery; (iii) abnormal gait pattern correction, in particular, drop foot gait; (iv) encour-
aging the user’s active participation in the gait training and thus accelerating gait recovery and
likely enabling a cognitive ability improvement; and, (iv) objective gait analysis of the user’s
motor condition by tracking biomechanical and muscular information. Figure 3.1 presents the
conceptual design of SmartOs, highlighting the included modules to fulfil these clinical func-

tionalities.
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Figure 3.1- SmartOs conceptual design.

Wearable Motion Lab includes a set of stand-alone, low-cost, self-calibrated wearable sen-
sor systems, detailed described in Chapter 4, to monitor the immediate user’s muscular-bio-
mechanical data during daily performed locomotor tasks. The sensors’ information allows tai-
loring in real-time the personalized therapies according to the specific user’s motor condition

and is the base for the implementation of the gait analysis tools, as summarizes Table 3.1.

Table 3.1-Application of sensor data monitored by the Wearable Motion LAB in the Gait Analysis tools

Wearable Motion LAB . .
Gait Analysis Tool

Sensor system Sensor Data
Force-ground contacts Gait event detection
] Foot’s kinematics (angle, angular speed, Gait speed estimation
GaitShoe . ) o
acceleration) Joint angle estimation
User’s disability level recognition
MuscLAB Lower limb muscles’ activation User’s disability level recognition

Surface EMG

Kinematics (angle, angular speed, acceler- Joint angle estimation
ation) of lower limb joints (ankle, knee, hip)  User’s disability level recognition
and segments (foot, shank, thigh, trunk) User’s motion intention recognition

InertialLAB

Risk/incipient falls detection

SmartOs incorporates a set of automatic, time-effective Gait Analysis Tools to detect gait
events (described in Chapter 5), to recognize user’s motion intention (described in Chapter 6)
and disability level, and to detect incipient falls and other risk situations. These gait tools are
processed into the Hierarchical Control Architecture, detailed presented in Chapter 8, to
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generate user-oriented assistive commands. This architecture also endows safety mecha-
nisms to safeguard the joint integrity, which may interrupt the assistance as and when
needed. Furthermore, SmartOs embodies two sources of Wearable Actuation Systems, the
AOs and the wearable biofeedback system, and two user-friendly Graphical Applications, de-

scribed below.

3.2.1.Wearable Actuation Systems

Currently, SmartOs’s framework integrates two AOs, the ankle (PAFO) and knee (PKO)
right-side modules of the lower-limb H2-exoskeleton (Technaid S.L., Spain). Figure 3.2.A illus-
trates the two AOs that only assistance in the sagittal plane for gait speed ranging from 0.5 to
1.6 km/h. Each AO has the following embedded sensors: (i) precision potentiometer (resolu-
tion of 0.5°), the angle position sensor; (ii) strain gauges (four strain gauges connected in a
full Wheatstone bridge, resolution of 1 Nm), the user-AO interaction torque sensor; and, (iii)
hall effect sensor, used to track the motor’s angular speed, the motor’s current and torque.
PAFO also integrates two FSRs at the heel and toe to measure the ground reaction force.
Moreover, three IMUs (MPU-6050, InvenSense, USA) were integrated into AOs for gravity
compensation and gait event analysis.

The actuation system consists of an electrical actuator (flat brushless DC motor EC60-100
W, Maxon) coupled to a gearbox, the CSD20-160-2A strain wave gear (Harmonic Drive), with
a ratio of 160:1, providing an average torque of 35 Nm and peak torques of 180 Nm. The
brushless DC motor was selected given its advantages in the DC motors category for wearable
applications, including higher efficiency, more torque density, reduced noise, and reduced
electromagnetic interference. The mechanical structure is made of stainless steel and type
7005 aluminum. More technical details regarding the AOs can be found in [48], [154].

The Control Area Network (CAN) was used to establish the communication among the AOs
and the Hierarchical Control Architecture, given its strict determinism, data collision avoid-
ance, optimized data transfer, and multiple-access points that allow new AOs to be easily con-
nected to the physical layer [153].

Additionally, SmartOs includes a Wearable Biofeedback System with a minimum-to-null
cognitive and physical effort for fostering time-discrete vibrotactile/tactile and visual stimuli.
Vibrotactile and visual stimuli have been explored. The wearable vibrotactile stimuli-based

waistband (actuation system formed by a coin eccentric rotating mass vibrotactile motor and
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DRV2605 haptic drivers (Adafruit®, USA)) will provide time-discrete vibrotactile stimuli in the
lower trunk (at navel and spine zones) and paretic limb. For visual stimuli, the ORA-2 aug-

mented reality glasses (Optinvent, France) is being used.

Vibrotactile Motor

i ( CAN Cable Vibrotactile system

STM32F4-Discovery Yy

@) Electronic board of battery @ Potentiometer @ ORA-2 Smart Glasses
LiFePO4 battery @ Motor & Gearbox

© AO: PAFO & PKO © Strain Gauge

(® Embedded IMU

Figure 3.2- Wearable Actuation System: A: Wearable AOs. B: Wearable Biofeedback System.

3.2.2.Graphical Applications

Two user-friendly graphical applications (Figure 3.3) were designed and developed to ena-
ble the intuitive use and full abstraction from low-level interfaces and technical aspects of the
SmartOs’ modules in both laboratory and clinical context. The applications, integrated into
SmartOs via wireless technology, were designed to be intuitive in terms of usability consider-
ing the therapist and technical as possible users. Furthermore, the applications enable easy

integration of any new modules or settings.
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Figure 3.3- Main menus of Graphical Applications. A: Mobile Graphical Application. B: Desktop Graphical
Application.

The Mobile Graphical Application enables the intuitive set-up of all SmartOs’ modules, al-
lows the system’s configuration to different subjects and therapies, and provides the sys-

tem’s status for end-users. This application fulfills requirements such as (i) streamlined and
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guided interaction for a fast, natural, walk-through navigation, and (ii) use of explicit graphical
components for being more easily user’s understandable. It was developed in Android oper-
ating system (tested in multiple devices, ranging from Android 5.0 to 8.1.) following configu-
rations dependencies and with a protection layer such that the therapies are configured with-
out allowing invalid functional configurations that might compromise the physical integrity of
both the user and system. All messages are transmitted via Bluetooth protocol to the central
controller unit of SmartOs. Each application’s layout was made up of Widgets declared in An-
droid XML vocabulary. Figure 3.3.A presents a set of menus available in this application.

The Desktop Graphical Application (Figure 3.3.B) was developed using Qt platform. It fo-
cuses on real-time monitoring at 100 Hz of all data generated along with therapy in a dash-
board design tailored to the user. Additionally, it manages all collected data over therapy ses-
sion and user’s information for logging in JavaScript Object Notation (JSON) format into a local
database, the SQLite. This application was designed considering minimal input from the user,
automatic displaying, and human-readable visualization graphical tools. The WiFi protocol was
used to establish communication with the central controller unit of SmartOs.

Both applications were scored with “Good” to “Excellent” range of intuitiveness and ease
of use and navigation according to the System Usability Scale questionnaire by eight non-

technical users. More results are presented in [155].

3.3.Modular Framework for SmartOs’ Modules Integration

In this thesis, it was designed, developed, and validated a modular, real-time, interopera-
ble, power- and time-effective, fully wearable framework to enable an effective and safety

integration and interaction of SmartOs modules.

3.3.1.Framework Requirements

The framework should consider the ambulatory functionality of SmartOs, which opens a
set of new requirements as follows. First, the framework should embody wearable modules
to be usable by end-users with different heights, body mass, and morphologies. Second, it is
desirable that the framework is power-effective using a wearable power supply unit able to
supply at least eight hours for prolonged recording sessions. Third, the framework should be
modular in terms of hardware and software interfaces to facilitate the integration of more

stand-alone modules and functionalities. Fourth, the framework should provide a time-
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effective communication between all modules and include software interfaces capable of hit-
ting all real-time deadlines with small latency (determinism). Additionally, the framework
should be hierarchically structured and should respect the distinct real-time constraints of
the hierarchical control architecture. This lead to the development of the framework with a
non-centralized architecture.

Furthermore, the framework should include a central storage unit for data logging. Lastly,
it should provide intuitive interaction with SmartOs’ functionalities and modules and visual
feedback regarding therapy progress. The integration of mobile and desktop graphical appli-

cation allows fulfilling these two requirements.

3.3.2.Framework with Non-centralized Architecture

The framework was designed following a non-centralized architecture, including different
development boards for managing the SmartOs’ modules. This architecture includes a single
Central Controller Unit (CCU) for running Gait Analysis Tools, high-level controllers of Hierar-
chical Control Architecture, and the external communication with the Graphical Applications.
Moreover, the architecture includes development boards with less-computational perfor-
mance, namely: (i) Low-Level Orthotic System (LLOS) that handles the AQOs, the low- and mid-
level controllers of Hierarchical Control Architecture, and embedded IMU sensors; (ii) Weara-
ble Motion LAB (WML) that manages the Wearable Motion Lab, namely InertialLAB, GaitShoe,
MuscLAB and EMG system; and (iii) Wearable Biofeedback System (WBS) that handles the
biofeedback systems. The interfaces of WBS are out of the scope of this thesis.

Figure 3.4.A presents the developed non-centralized architecture. The separation of the
low-level from the high-level modules favours the management of the SmartOs’ performance
by not affecting the hard-real-time requirements of the low-level modules. Also, a hierarchical
safety mechanism can be easily controlled in case of a system failure at any part of the Smar-

tOs’ framework. Moreover, this approach emphasizes the expandability of the framework.
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Figure 3.4- A: Representation of SmartOs non-centralized architecture and interfaces for SmartOs integration.
B: LLOS interfaces for AOs and embedded sensors. C: WBS interfaces. D: WML interfaces including GaitShoe
and InertialLAB. E: WML interfaces including MuscLAB and EMG system.

3.3.3.Framework: Hardware Interfaces

This subchapter provides an overview of the hardware interfaces developed for integrating
SmartOs’ modules. The CCU includes a Raspberry Pi 3 (Raspberry Pi Foundation, UK), a single-
board computer with a quad-core processing unit (1.2 GHz, 64 bit CPU) and 1 GB of RAM. The
built-in wireless LAN and Bluetooth connectivity were used for communicating with desktop
and mobile graphical applications, respectively. Three universal serial bus (USB) ports embed-
ded in the board were used for serial port communication with LLOS, WML, and WBS. The
available peripherals for SmartOs” modules communication together with the high-speed ca-
pabilities and low-dimensionality (56x85x16 mm) made the Raspberry Pi 3 suitable for CCU.

The LLOS’ hardware interface (Figure 3.4.B, 65x96x31 mm) integrates a CAN interface (us-
ing XT90 connector) and inter-integrated circuit (12C) interface (using USB connector) to in-
terface with the AOs and IMUs (MPU-6050, InvenSense, USA), respectively.

The WML (Figure 3.4.C and D, 65x100x34 mm) includes the I?C interface (using ethernet
connector) for communication with the InertialLAB, the serial peripheral interface (SPI) to
control the radiofrequency (RF) module (NRF24L01+) for wireless communication with
GaitShoe, and analog-to-digital converter (ADC) interface (using 2-pin connector) for Mus-
cLAB and EMG system. LLOS and WML include a Universal Asynchronous Receiver/Transmitter
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(UART) interface (set at 230400 bps) in the direct memory access mode for high-performance
communication with the CCU using USB converter (FT232RL FTDI) given its easy plug-in with
the USB ports of Raspberry Pi 3.

The hardware interfaces of LLOS and WML are handled by the wearable STM32F4-Discov-
ery development board (STMicroelectronics, Switzerland) a power-cost effective solution
centralized on the STM32F407VGT microcontroller (ARM® Cortex®-M4 32-bit core), running
at 168 MHz. SmartOs’ framework takes advantage of features of this board, such as high-
speed embedded memories (flash memory up to 1 Mbyte and SRAM up to 192 Kbytes), a
number of 1/Os and peripherals with standard communication interfaces (CAN, SPI and 12C).
Lastly, this development board presents an acceptable dimensionality (80x100x25 mm) for
wearable applications as this one.

The power supply system (Figure 3.4.A) includes a lithium iron phosphate battery (LifePO4,
22.4 VDC, 12 Ah), which enables at least 8 hours of autonomy, and a hardware interface to
power up all SmartOs’ modules with 5 V. The battery’s body mass (781 g) and dimensions

(161x49x47 mm) are acceptable to be used on the user’s back.

3.3.4.Framework: Software interfaces

This sub-chapter discloses a general overview of the framework software interfaces. A
more detailed description is provided in Appendix D.

A specific SmartOs’ communication protocol with a standardized message structure was
defined to (i) establish the communication with/from CCU; (ii) exchange data between the
SmartOs’ modules with efficiency; (iii) allow for easier integration of any new module; and,
(iv) facilitate the detection and reporting of errors and warnings. Three types of SmartOs mes-
sages were specified: (i) command messages to set-up any configurable aspect of the Smar-
tOs’ modules; (ii) data messages containing data from the sensors, controls, and/or gait anal-
ysis tools; and, (iii) status messages briefing about the executed commands, including success
messages, error messages, and current status of SmartOs (e.g., battery level). The command
messages follow a top-down approach from the mobile graphical application to CCU, and from
this to the LLOS and WML, as illustrated in Figure 3.5. On the other hand, status and data
messages have a bottom-up approach, except for some LLOS configurations for specific assis-

tive control strategies.

50



Chapter 3- SmartOs: Conceptual Design, Functionalities, and Framework

The CCU interfaces all SmartOs’ modules and graphical applications and executes the high-
level methods on Ubuntu Mate OS. Given the complexity of distributed systems, the CCU was
implemented in C++ language, which allows: (i) object-oriented programming; (ii) complete
control over memory management; and (iii) scalability to expand the system following a mod-
ular and standard software design. The POSIX Pthread Libraries were used.

The software architecture of CCU (depicted in Figure 3.5) was organized into five main soft-
ware modules (classes), namely ExternalDevice (communication with external devices to
CCU), CentralController (setup, start and stop all configurable modules), HLController (man-
ages and executes high-level controllers), SmartGaitAnalysis (handles and executes gait anal-

ysis tools), and Log (data logging in JSON file and Desktop Graphical Application).
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3 _cxtDevice -WML SmartGaitAnalysis -logging”
| -inMsg# 14 -LLOS ! HLController -WML -batteryMonitor®
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Figure 3.5- Software architecture of CCU. Diagram of main classes in CCU and flow of SmartOs’ messages be-
tween CCU and its external devices.

For the software architecture of LLOS and WML (Figure 3.6), the programming language
selected was C language. The middleware layer of this architecture incorporates the freeRTOS
real-time operating system and hardware abstraction layer (HAL) libraries, namely STM32Fx
HAL drivers (e.g., CAN, ADC, I12C, and SPI drivers). The freeRTOS provides the facilities for mul-
titasking, concurrent programming towards the development of an effective framework and

a set of libraries that allow easy definition and use of tasks, queues, and semaphores.
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Figure 3.6- Software architecture of LLOS and WML and flow of SmartOs messages.

The software architecture of LLOS and WML endows four and three main software mod-
ules, respectively, as follows. External Communication handlers the communication from/to
CCU; Management Unit handles command messages and, in the LLOS, it executes the mid-
and low-level controls; Embedded IMU sensor manages the sensor data acquisition and pro-
cessing from IMUs; Orthotic system setups, starts and stops AOs; and, Wearable Sensor Sys-
tem setups, starts and stops all wearable sensor systems and manages sensor data acquisition
and processing. The priority of the real-time software interfaces was adjusted such that the
hardware timers were configured to meet the time requirements of LLOS and WML.

The real-time processes of the CCU, WML, and LLOS are executed to meet the time require-
ments listed in Table 3.2. The data acquisition and processing of InertialLAB, GaitShoe, Mus-
cLAB, and embedded IMUs of LLOS are executed every 10 ms (100 Hz), attending to the fact

that the high energy frequencies of human biomechanical gait data ranging from 0.25 to 25
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Hz [156]. On the other hand, we set the data acquisition and processing of the EMG system

(WML) to 1 kHz since the bandwidth of EMG measures may reach up to 500 Hz [157].

All data messages are exchanged every 10 ms, except the data messages from CCU to LLOS,

that contain data of high-level controllers timing-specified according to the gait speed. Addi-

tionally, the mid-level control loop runs at 100 Hz attending to the usually applied frequency

for gait application [156]; whereas the low-level control loop runs at 1 kHz, a frequency ten

times higher than the mid-level controller, to minimize the delayed actuator response. Finally,

all status and command messages present an asynchronous operating rate given their singular

occurrence during the therapy configuration or random occurrence during real-time therapy.

Table 3.2- SmartOs’ time requirements for real-time therapy.

SmartOs Software Required
Software Routine
Modules Modules Time (ms)
Embedded IMU IMU_Run 10.0
Sensor IMU_SendExternal 10.0
Orth_Run 10.0
LLOS Orthotic system
Orth_SendExternal 10.0
Management Control_Run* 1.0
Unit Control_SendExternal 10.0
InertialLAB_Run 10.0
InertialLAB_SendExternal 10.0
Wearable GaitShoe_Run 10.0
WML
Sensor System GaitShoe_SendExternal 10.0
EMG_Run 1.0
EMG_SendExternal 10.0
HLController AssistiveStrategy (Data Messages, CCU — LLOS)**  51; 58; 65; 72
Log Log (Data Messages, CCU — Desktop Application)  10.0
ccu
handlerMsg (Data Messages, CCU <> Mobile
ExternalDevice Asynchronous

Application)

*The hard-real-time conditions are presented since Control_Run includes the mid-level and low-level controllers

running at 10 ms and 1 ms, respectively.

** Timing-specified according to the gait speed

3.3.5.Framework: Performance Evaluation

The performance of the framework was inspected through a technical validation concern-

ing computational and energetic effectiveness. This evaluation aims to verify whether the
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proposed non-centralized architecture comprises the real-time computational and energetic
performance of SmartOs system since the use of several development boards may introduce

some latency and may increase power consumption.

Validation Setup

The validation was performed along 50 gait cycles with the experimental setup defined for
the LLOS and WML modules, as follows. For LLOS, the setup included the (i) PAFO configurated
with user-oriented trajectory control strategy (described in Chapter 7.4) at the maximum gait
speed (1.6 km/h), (ii) right foot IMU running the gait event detection tool (described in Chap-
ter 5), (iii) two IMUs executing the gravitational compensation (described in Chapter 7.2.3).
The setup of WML included the InertialLAB, GaitShoe, and EMG system. As the use of EMG
system and MuscLAB is mutually exclusively in SmartOs system, the WML'’s validation involved
the EMG system given its higher computational demanding when compared to MuscLAB.

The validation duration (50 gait cycles) was set to consider a sufficiently long period to
investigate the variability of the framework along the gait cycle, instantaneous effects, and

the ramp-up time.

Data Collection and Performance Metric

During the validation, power consumption measures, involving current consumption and
power consumption, and computational time measures, including (i) call periods of the timers
(all routines named as Run) and tasks (all routines named as SendExternal), and (ii) latency of
tasks and timers, were collected for a posterior analysis. A current sensor (INA219) was con-
nected to the development boards of LLOS and WML by 12C interface to measure the current
and power consumed by the LLOS and WML during the experiment. The computational time
measures were collected by setting the available timers to 1 us, so the call periods and latency
of Run and SendExternal procedures of LLOS and WML could be validated. This approach was
preferred to available time measurement tools to add the less overhead possible to the real-
hard time processes of LLOS and WML.

The mean, standard deviation, maximum, and minimum values of the collected computa-
tional and consumption measures were computed to evaluate the framework performance
under real-time conditions. The standard deviation metrics enables to analyze the framework

performance’s variability along the gait cycle, whereas the maximum and minimum values
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were determined to investigate the occurrence of instantaneous effects. Moreover, the root
mean square error (RMSE) of all call periods was determined considering the measured call

period and the defined call period (listed in Table 3.2).

Results and Discussion

Table 3.3 and Table 3.4 present the results of the computational performance of LLOS and
WML, respectively. This evaluation only considered the timers and tasks evocated repeatedly
in real-time to investigate the effects of a non-centralized architecture during real-time ther-
apy.

By analyzing Table 3.3, lower RMSE values (0.005 < RMSE < 0.289 ms) related to the call
period measures were reported, indicating that the time requirements of LLOS (listed in Table
3.2) were met. Further, there is variability in the call period times along the gait cycle, as
shown by maximum and minimum values presented in Table 3.3. This variability was more
evident during the system initialization. The time variability was mostly observed for SendEx-
ternal task when compared to the respective Run routine likely due to highest execution pri-

ority of Run routines than SendExternal tasks.

Table 3.3- Computational performance evaluation of LLOS. Mean, standard deviation (STD), maximum

(Max), and minimum (Min) time values, and RSME of the call period of tasks and timers of LLOS.

Software Software Measure
. .. Mean + STD Max Min RMSE
Module Routine Description
(ms) (ms) (ms) (ms)
Call period 9.999+0.005 10.189 9.963 0.005
+ -
MU Run Latency 1.585+0.016 1.686 1.499
Embedded - Acq_Proc 1.575 £ 0.016 1.622 1.490 -
IMU Sensor Latency

Callperiod  9.998+0.035 10.459 9.560 0.035
latency  0.088+0.039 0415 0007 -
Callperiod  9.999+0.011 10310 9.942 0.011
. Orth_Run
Orthotic latency  0.009 +0.0004 0.015 0009 -
system Call period 9.998 £+0.053 10.406 9.565 0.053
E
Orth_SendExternal —— "~ 0021+0.03 0370 0011 -
Call period  0.999+0.0005 1.010  0.993 0.0005
latency  0219+0.013 0255 0008 -

IMU_SendExternal

Control_Run

Management ML_LL 0.079 £ 0.062 0.255 0.003 -
Unit Latency
Control_ Call period 9.998 +0.289 10.738 8.213  0.289
SendExternal Latency 0.081 +0.243 0.311  0.015 -

Figure 3.7 presents a graphical distribution of the LLOS’ computational performance as an

instance of the higher-complexity moments of LLOS along the gait cycle.
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Figure 3.7- Graphical distribution of the LLOS’ computational performance. Mean and standard deviation values

marked at red and blue, respectively.
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The latencies obtained for tasks and timers are relatively lower than the respective call
periods. This finding indicates that (i) the time execution of the software interfaces of LLOS is
lower than the available time, (ii) non-hierarchical architecture does not compromise LLOS
performance, and (iii) there is room to add more mid- and low-level controls or embedded
sensors to the LLOS. The latency of IMU_Run (1.585 * 0.016 ms) was mainly responsible for
IMU data acquisition and processing (Acq_Proc Latency = 1.575 £ 0.016 ms). On the other
hand, the latency of executing the mid- and low-level controls (0.079 + 0.062 ms) is half of the
one spent in Control_Run (0.219 + 0.013 ms).

Moreover, a latency of 0.243 ms was observed for the command messages send from high-
level control (running in CCU) to mid-level (executed in LLOS) given the non-centralized archi-
tecture. However, the introduced latency due to the non-centralized architecture did not
compromise the time requirements of high- and mid-level controls (both configurated to be
executed every 10 ms).

Regarding the WML, the low RMSE values (0.0006 < RMSE < 0.008 ms) obtained during
experimental validation indicate that the developed interfaces of WML met the defined time
requirements. The results presented in Table 3.4 also show the existence of variability in the
call period times along the gait cycle, mostly for SendExternal tasks given their lowest execu-
tion priority when compared to Run routines. Note that for Run routines, the maximum call
period times never overcome the defined time requirements.

InertialLAB was the sensor system with higher latency for Run routines likely due to higher
complexity for data processing (described in Chapter 4.2). The latencies obtained for tasks
and timers are relatively lower than the own call periods suggesting that (i) the time execution
of the software interfaces of WML does not compromise the WML performance, and (ii) there
is still room to add sensor systems to the WML.

In overall, the computational evaluation points out that the STM32F4-Discovery develop-
ment board provides the resources required for computational effectiveness of LLOS and
WML, as well as enables the inclusion of further modules. Additionally, the developed soft-
ware interfaces were capable of hitting all real-time deadlines with small latency (determin-

ism).
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Table 3.4- Computational performance evaluation of WML. Mean, standard deviation (STD), maximum (Max),

and minimum (Min) time values, and RSME of the call period of tasks and timers of WML.

Measure
Software
Mean + STD Max Min RMSE
Routine Description
(ms) (ms) (ms)  (ms)
Call period 9.999 + 0.0005 10.0 9.999 0.0006
InertialLAB_Run Latency 2.751+0.004 3.039 2.725 -
Acq_Proc Latency 2.740 £ 0.004 3.029 2.714 -
Call period 9.999+0.008 10.596 9.971  0.008
InertialLAB dExt /
nertiallAB_SendExterna Latency 001340002 0015 00 -
Call period 9.999 + 0.0005 10.0 9.999 0.0006
GaitShoe_Run Latency 0.154 + 0.0003 0.154 0.153 -

Acq_Proclatency ~ 0.144£0.0005 0144 0.143 -

Call period 9.999+0.003  10.068 9.996 0.003

GaitShoe_sendExternal Latency 0.009+0.002 0033 0.007 -
Call period 0.999+0.0004 1.0 _ 0.999 0.0007

EMG_Run Latency 0.133£0.0005 0.33 0132 -

Acq_Proc Latency 0.122 £ 0.0004 0.123 0.122 -

Call period 9.999 + 0.0005 10.0 9.999 0.0006

EM E /
G_SendExterna Latency 0.054 + 0.002 0.095 0.051 -

Table 3.5 presents the power consumption evaluation of LLOS and WML during 50 gait
cycles. Both current consumption and power consumption were higher for WML than LLOS
given the higher number of sensor systems, peripherals and development board’s resources
activated in WML. The variability of power consumption along the experiment was more pro-
nounced for LLOS than WML.

Moreover, the results presented in Table 3.5 report that the inclusion of further develop-
ment boards, for achieving the non-centralized architecture, increases the current consump-
tion (around 100 mA). Nonetheless, this increment was not sufficiently high to comprise the
energetic performance of the SmartOs system since the total current consumption (around

100 mA\) is quite inferior to the capacity of the SmartOs’ power supply system (12 Ah).
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Table 3.5- Power consumption evaluation of LLOS and WML. Mean, standard deviation (STD), maximum (Max),

and minimum (Min) values of the current and power consumed.

Current Consumption (mA) Power Consumption (mW)
Mean £ STD Max Min Mean + STD Max Min
LLOS 22.72+15 23.9 17.2 66.76 £ 4.4 70 51
WML 76.18 £ 0.04 76.3 76 222.99+0.03 223 221

3.4.Conclusions

For achieving the gait rehabilitation and analysis challenges proposed for SmartOs system,
a modular, real-time, power- and time-effective framework was developed. It was designed
following a user-centered design approach given the relevance of continuous user involve-
ment in the development of personalized solutions, such as SmartOs. All interfaces of the
framework are wearable.

Overall, the developed hardware and software interfaces of the framework shown to be time-
and power-effective. The technical validation, in real-time conditions, emphasized that the in-
creased latency and power consumption, as a result of the non-centralized architecture, did not
compromise the framework performance. This finding indicates that the hierarchical interaction
between AOs with the wearable sensor systems (described in Chapter 4), gait analysis tools
(Chapter 5 and Chapter 6), and assistive control strategies (presented in Chapter 7), was suc-
cessfully achieved through a non-centralized architecture. Moreover, there is still room to ex-
pand the SmartOs system with other stand-alone modules to attempt to the user’s require-
ments as needed.

Lastly, the integration of the mobile and desktop graphical applications allows an intuitive
interaction with SmartQOs’ functionalities and modules and visual feedback regarding therapy

progress.
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Chapter 4 — Wearable Motion Lab

This chapter starts with an introductory insight into the relevance of human gait analysis
and the use of wearable sensors for this application. It presents the Wearable Motion Lab,
outlining the hardware and software developed for the InertialLAB, GaitShoe, MuscLAB, and
EMG system. Moreover, it describes the gait analysis tools implemented in each sensor system
to monitor relevant biomechanical and muscular measures and metrics for the post-stroke
gait rehabilitation assessment. The chapter ends with a concluding analysis of performance

and challenges of Wearable Motion Lab.

4.1.Introductory Insight

Human gait analysis has the potential to be applied as an automatic and objective assess-
ment tool of human gait condition. Clinical gait analysis may contribute (i) to better under-
stand the etiology of gait abnormalities supporting the clinical-based diagnosis with objective
and timeless information, (ii) to foster better treatment decisions, (iii) to recognize walking
risk situations, and (iv) to improve clinical follow-up [158], [159]. Furthermore, real-time gait
analysis may be applied in the design of personalized gait therapies by tuning the assistance
according to the patient-specific needs [101], [159]-[162], and eventually at home for moni-

toring the quality of walk (to forecast any forthcoming abnormality of user’s gait).
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In the context of gait rehabilitation, human gait analysis may involve the systematic study
and monitoring of distinct biomechanical information such as spatiotemporal, kinematic, and
kinetic gait data, and physiologic parameters such as muscular activity [1].

Most commonly, the human gait analysis is conducted in a motion analysis laboratory with
expensive but highly accurate sensor systems, such as optical motion systems and force plat-
forms. Nevertheless, these motion capture systems are non-portable [39], only operating in
controlled environments and reducing equal access to healthcare [163]. Consequently, they
do not analyze consecutive gait cycles for long-term mobility scenarios [101].

Current challenges include the development of wearable motion labs with cost-effective,
robust, unobtrusive, easily wearable sensor systems for all-day and any-place real-time gait
monitoring without interfering with the user’s movement [26], [158]. Technological advances
have made these sensors smaller, lighter, cheaper, and with low-power consumption, making
them suitable for long-term and outdoor ambulatory applications [39].

Diverse wearable sensor systems have been developed to enable the evaluation of the hu-
man biomechanical and muscular status in a free-living environment, such as (i) force-based
systems to monitor the feet contacts on the ground (i.e., the gait events) for a posterior de-
termination of temporal parameters, (ii) inertial sensor-based systems to monitor the lower
limb kinematics, and (iii) EMG sensor systems to track muscular activation for a posterior
muscle weakness evaluation.

This chapter presents a Wearable Motion Lab given the potentialities of human gait anal-
ysis, mainly for personalized AO-based gait rehabilitation purposes. The Wearable Motion Lab
integrates a set of stand-alone, self-calibrated, low-cost, ergonomic, wearable sensor sys-
tems to measure in real-time the user’s motor condition. In particular, it includes an inertial
sensor-based system (InertialLAB) and a wireless instrumented shoe system (GaitShoe) to
track lower limb biomechanical measures, and an EMG system and a muscular contraction-
based force sensor system (MuscLAB) to monitor muscular measures.

The design of these wearable sensor systems addressed five main requirements. First, the
hardware systems should embed compact, low-cost, and efficient electronic components to
produce a cost-effective wearable system. Second, the sensor system should incorporate an
easy-wearing system to cover 10™-to-90t" percentile of the male/female population (height
ranging from 1.50 m to 1.90 m and body mass ranging from 45 kg to 100 kg). Third, software

routines should follow a modular, open-architecture to provide real-time kinematic and
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muscular information to third-party systems. Fourth, the sensor system should endow a
prompt calibration routine with a minimum-to-null effort. Lastly, the system’s autonomy

should last for at least eight hours for accommodating prolonged recording sessions.

4.2.InertialLAB

4.2.1.Critical Analysis of Related Work

Research contributions related to the ambulatory human gait analysis may involve inertial
sensor-based systems with IMUs [158]. The IMU-based systems proposed in the research
community have to deal with three main challenges as follows: (i) automatic, user-independ-
ent calibration to avoid the use of time-consuming calibration methods [164], [165]; (ii) relia-
ble computational tools, eventually combined with biomechanical models, for the real-time
angle estimation [166]; and (iii) technical matters to deal with sensor’s misalignments [167],
[168]. Moreover, there is an emergent need to make the IMU-based systems easily calibrated
solutions [25], [26], [144].

On the other hand, commercial IMU-based solutions such as MVN BIOMECH (Xsens, Neth-
erlands), RIABLO (CoReHab, Italy), G-walk (BTS Bioengineering Corp., Italy) (i) are high-cost sys-
tems, (ii) usually require non-wearable processing units to run the joint angle estimation, (iii)
do not directly and easily provide the real-time biomechanical data to third-party devices or
algorithms (for instance, human motion intention recognition tools), and (iv) do not offer a fully

wearable integration into further sensor and actuation systems.

4.2.2.Methods

A cost-effective wearable inertial sensor system, the InertialLAB, was developed for real-
time tracking of three-dimensional (3D) angular velocity and 3D-acceleration up to 6 lower
limbs and trunk segment, and joint angles in the sagittal plane up to 6 lower limb joints.

As a gait analysis tool, InertialLAB includes a low computational joint angle estimation
method to enable its execution in a wearable board for a more practical ambulatory analysis.
The joint angle estimation was implemented at a relatively high sampling frequency (< 200
Hz) to meet the computational requirements of high-performance tools, such as the motion

intention recognition and control architectures [9].
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Hardware-in-the-loop

Figure 4.1.A illustrates the hardware architecture of InertialLAB. It is scalable as desired up
to seven IMUs, placed on the back, thigh, shank, and foot segments, as suggested by [169],
[170]. The MPU-6050 (InvenSense, USA), that combines a 3-axis MEMS accelerometer (+ 8 g)
and a 3-axis MEMS gyroscope (+ 2000 2/s), was selected given its small size (15x20x2 mm) and
mass (0.009 kg), and low admissible current consumption (3.8 mA). A magnetometer was not
included to avoid the complications related to the magnetic field in rehabilitation scenarios as
treadmill [165].

A multi-channel board (80x80x25 mm) to enable multi-channel recording (TCA9548A 12C
multiplexer) was developed. Each IMU communicates with development board
(STM32F407VGT) through 12C protocol (up to 400 kHz) using USB cables in the spiral form to
meet the anthropometry requirements and to enable an easy plug and unplug solution.

The STM32F407VGT development board (80x100x25 mm) has the resources required for
a time-effective (up to 200Hz) acquisition and processing. Additionally, it communicates with
an attached USB flash drive (4GB of storage capacity, write speed of 8MB/s) to store the col-
lected data. A standard 2000 mAh power-bank powers InertialLAB. It ensures the autonomy

of at least eight hours, considering that the InertialLAB consumption reaches up to 25 mAh.

@ Multi-channel

board
GER Gl I
f

| TCAYSISA12C
/| multiplexer = B
d 5 ="

CPU Board

3K

Power-bank

Figure 4.1- A: Hardware architecture of InertialLAB. B: Orientation of the segment (red arrow and the associated
numbers) and joint angles (green circles and the associated numbers) in the stand-up steady-state and direction

of the joint rotation.
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Each IMU, the development board and multi-channel boards were fixed in 3D printed boxes
and attached to the human using adjustable straps (Figure 4.1.A) aiming for easy usability and
portability. This approach also minimizes the sensor’s relative motion to the human’s seg-

ments to avoid fluctuations in the IMU measures.

Software-in-the-loop

The software routines may run up to 200 Hz in the STM32F407VGT for real-time monitoring
and calibration of kinematic data, and gait analysis tool for segment orientation estimation
and joint angle estimation in the sagittal plane (more details in Appendix E.1).

An automatic, user-independent, on-body calibration routine was proposed. This calibra-
tion takes place on the first 10 s of each trial, simultaneously for all IMUs, while the user is
wearing the IMUs in the stand-up steady-state. Equation (4.1) was used to calculate the gy-
roscope’s calibrated value (Cpq;ye) for each new sample (N q1,¢), considering the gyroscope’s
scale factor (Srqctorr), and the gyroscope offset per axis (Oyy,) as the mean of gyroscope’s

raw values for 10 s [171].

Cvalue = (Nvalue * Sfactor) - Ogyro (4'1)
The calibration of accelerometer consists of its normalization using the positive and nega-

tive component of the acceleration vector (||A||), as the maximum and minimum values for

the normalization, respectively [171]. Equation (4.2) presents the determination of the norm

R
of the acceleration vector (||A||), considering the acceleration measures of each axis (4, 4,,

and A,).

4]l = (a2 + 23 + 22) 2

The segment orientation was estimated by inertial data fusion-based methods, namely the
complementary and Kalman filters [172]. The complementary filter was implemented using
0.98 and 0.02 as the gains of the gyroscope and accelerometer contribution, respectively. The
gains were found by an empiric trial-error procedure considering a tradeoff of the short-term
reliability of gyroscope-based estimation and long-term reliability of accelerometer to mini-
mize the drift that would arise from an entire contribution to the gyroscope. The Kalman filter

is more complex, more computationally expensive than the complementary filter, but it was
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explored given its effective response [172]. After a parameter tuning, the Kalman filter was
implemented using the noise covariance matrix Q, and the measurement covariance matrix

R, as described in Equation (4.3).

0 = [o.%05 o.o(())os] (4.3a)

The gait analysis tool for joint angle estimation followed a trigonometry-based method
dependent on the segments’ orientation values (07,unk, Ornighs Osnank » Oroot) and the as-
sumption that, in the stand-up steady-state, the segment and joint orientations are as de-
scribed in Figure 4.1.B. Additionally, it was considered that leg segment angles vary from [-
270; 180]°, the other segments vary from [-180; 180]°, and the joint angles vary from [-180;
180]°. Taking these aspects into consideration, the hip (8;;), knee (Oxpe.) and ankle (O4pkie)
angles were estimated using the formulas described in Equation (4.4).

Oankie () = —90 = Osnank + Oroor
Oknee(®) = Ornigh — Oshank (4.4)
Onip(®) = —(Orrunk — Ornign — 180)

The use of sensor fusion methods for joint angle estimation may be highly sensitive to in-
ternal and external sensor errors. Consequently, the effectiveness of empiric models for drift
error compensation was explored to be applied in InertialLAB upon joint angle estimation tool.
A software tool was implemented to identify a well-fitted, user-independent, joint-dependent
regression model for improving the joint angle estimations of InertialLAB to minimize the drift
errors. Different machine learning-based regression models (artificial neural network (ANN),
decision tree, and support vector machine) were explored considering the InertialLAB’s joint
angles and joint angular velocities as inputs and the MVN BIOMECH’s joint angles as the target
measurements. All variables were normalized using the min-max method within [-1; 1].

After a comparative analysis using 31500 observations in 5-fold cross-validation, the two-
layer shallow ANN with 5 neurons in the hidden layer was the best-fitted regression model
to predict the hip, knee and ankle angles (R=0.92, R?=0.94, and R?= 0.87, respectively).

Lastly, a light-based feedback system was developed using the light-emitting diodes (LEDs)

available in the development board to inform the user about the InertialLAB’s state. The green
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LED is on during the calibration routine whereas the blue LED is on during data acquisition and

storage. The red LED warns the user for the occurrence of some error.

4.2.3.Experimental Validation

A benchmarking analysis of InertialLAB against the MVN BIOMECH [173] was performed
to assess the operability and effectiveness of InertialLAB in free-walking conditions. The MVN
BIOMECH was included for two-fold reasons. First, it is a well-established wearable inertial
system able to monitor all kinematic data monitored by the InertialLAB (angular velocity, ac-
celeration, and joint angles). Second, it is a wearable solution able to track the human gait in
ambulatory scenarios like those explored in this work in opposition to camera-based motion
systems. Additionally, literature’s results report that MVN BIOMECH quantifies lower-limb
joint angles with an excellent validity and fair-to-excellent reliability for overground walking

[174], [175] and climbing stairs [175] when compared to camera-based motion systems.

Participants
The benchmarking analysis included 11 able-bodied subjects (7 males and 4 females) who

signed a written informed consent to participate in this study. The participants’ mean age was

24.53 + 2.09 years old, with a height of 1.71+0.10 m and body mass of 59.3 + 17.37 kg.

Protocol and Data Collection

The participants wore their sport-shoes and 7 IMUs in the configuration depicted in Figure
4.2.A. To ensure the repeatability of the sensor’s alignment in the leg, the assessor identified
and marked the lateral side at the middle of the thigh and shank segments [176]. For the trunk
and foot segments, the assessor identified the lower back position (near to the center of mass)
aligned with the spinal cord and the instep position aligned with the navicular bone, respec-
tively. The sensors of InertialLAB and MVN BIOMECH were placed on these positions by the
assessor, who used the double holder straps of InertialLAB to ensure that its sensors are
aligned and fixed over the IMUs of MVN BIOMECH. A hardware-based sync method (TTL sync)
synchronized both systems.

Each trial started with the calibration of the MVN BIOMECH in N-pose (stand upright on a
horizontal surface with back straight). Then, the participant stayed in the stand-up steady-
state for 10 s to calibrate InertialLAB. Subsequently, the participants were asked to randomly
perform 3 trials per self-selected gait speeds (slow, normal, and fast) on a 10 m-flat surface.
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Additionally, the subjects randomly conducted 10 gait trials by ascending and descending on
two terrains (a staircase and a ramp, Figure 4.2.B), at a self-selected gait speed. The staircase
had 8 steps with 17 cm of height, 31 cm of depth and 110 cm width. The ramp was 10 m with

10° inclination. Furthermore, the participants conducted 9 trials with 180° turns as illustrated

in Figure 4.2.C.
End  Start
A
Gait ;‘
A |
\ Turn \/
A B C

Figure 4.2- A: Usability of InertialLAB (black boxes) and MVN BIOMECH (orange boxes). B: Ongoing gait trials in

flat terrain and staircase. C: Turns set-up.

Data Collection and Analysis

The data (3D angular velocity, 3D acceleration, and sagittal joint angles) were collected at
100 Hz, the maximum rate allowed by MVN BIOMECH. The Matlab® (2017b, The Mathworks,
USA) was used for the benchmarking analysis of these kinematic measures as follows, without
considering the acceleration and deacceleration zone. First, the correlation coefficient (p) and
cross-approximate entropy (XApEn [177]) were computed for assessing the waveform similar-
ity and dissimilarity/asynchrony, respectively, and the normalized root mean square error
(NRMSE) was computed as a magnitude-based deviation measure. Second, the ratio among
the InertialLAB’ drift error and the MVN BIOMECH’s drift error (Drift Ratio) was computed to
investigate the drift error in the joint angle estimations. The drift error was calculated as the
slope of the linear trend of the joint angle signals [164]. For trials including turns, the percent-
age of the increment of drift with the 180°-turn was computed to compare the drift error
before and after the turning. Lastly, Bland-Altman plots were used to assess the effect of re-

gression models for drift error reduction.
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4.2.4.Results

The following technical remarks were observed during the experiments. MVN BIOMECH’s
performance was highly dependent on the calibration’s environment. The power supply sys-
tem of MVN BIOMECH was replaced every 60 min in daily recording sessions; whereas, no
charging periods were needed for the InertialLAB. Moreover, from video modeling and analy-
sis tools of an open-source optic tracker, a comparable performance between the comple-
mentary filter and Kalman filter (differences were lower than 0.2° with RMSE < 6.5°) was ob-
served for the segment orientation. Thus, the complementary filter was used for segments’
orientation estimation, given its inherent lower computation load when compared with the
Kalman filter. The InertialLAB software routines were executed with a mean computation time
of 2.4 + 0.47 ms, with 95% of the samples computed within 3.1 ms. Furthermore, the IMU
placed on the foot was the less effective sensor in magnitude (mean NRMSE < 0.115 and <0.10
of foot IMU and remaining sensors, respectively) and waveform similarity (0.81 < p <0.87 for
foot IMU and 0.89 < p <0.95 for remaining sensors) as the speed increases.

The benchmarking analysis relied on the kinematic data monitored by InertialLAB to evalu-
ate its operability at self-selected gait speeds (slow: 0.83 £ 0.11 m/s, normal: 1.09 + 0.16 m/s,
and fast: 1.59 + 0.17 m/s) throughout three non-structured terrains (flat, staircase and ramp).

Table 4.1 shows that the error of the gyroscope embedded on the InertialLAB increases
with the gait speed. On the other hand, the InertialLAB’s angular velocity signals become
more similar (p increases) and synchronous (XApEn decreases) to those of MVN BIOMECH as
the speed increases. The acceleration signals of InertialLAB presented a similar performance
in magnitude (0.114 < NRMSE < 0.117) and waveform correlation (0.721 < p < 0.73) when the
gait speed varies. Comparing with MVN BIOMECH, the gyroscope and accelerometer of the

InertialLAB performed better in stair ascend and descend.

Table 4.1- Benchmarking Analysis for 3D Angular Velocity. Mean NRMSE, p, XApEn.

Terrain Speed NRMSE P XApEn
Low 0.08 £ 0.012 0.859+0.062  0.069 +0.017
Flat Normal 0.103 £0.017 0.863+0.082  0.052 +0.058
Fast 0.104 +0.018 0.871+0.037 0.043 £0.079
Ramp ascend Normal 0.117 £0.024 0.857+0.078 0.051 £ 0.029
Ramp descend Normal 0.103 £0.026 0.807£0.139  0.057 £0.049
Stair ascend Normal 0.082 +0.047 0.925+0.076  0.051 £ 0.032
Stair descend Normal 0.083 £ 0.037 0.903+0.057 0.062 +0.026
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The findings stated in Table 4.2 indicate that the waveform similarity between the Inertial-
LAB’s joint angles and MVN BIOMECH’s joint angles increases as the speed increases (p in-
creases from 0.899 to 0.909; XApEn reduces from 0.082 to 0.075). The joint angle signals of
the InertialLAB tracked in ramp and stairs tend to be more correlated (increment of mean p
from 0.898 to 0.944) and less dissimilar (reduction of mean XApEn from 0.082 to 0.051) with
the paired joint angles of MVN BIOMECH, as illustrated in Figure 4.3.
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Figure 4.3- Representative time series of hip (1%t column), knee (2" column) and ankle (3™ column) angles in
sagittal plane from all subjects wearing the InertialLAB (red) and MVN BIOMECH (black) at low (1% row), normal
(2" row), and fast (3" row) speed in flat terrain, and at self-selected speed for ascend ramp (4" row), and de-

scend ramp normal (5% row).
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However, an offset in the absolute values (drift error) is evident. The InertialLAB’s drift

error was more pronounced in the ankle joint, and it tends to increase with the gait speed

and when walking in a ramp. Moreover, the findings indicate that turns affect the joint angle

estimations of both systems, but with double effect in the InertialLAB (drift error increased

59.72% and 27.46% for InertialLAB and MVN BIOMECH, respectively, after turns).

Table 4.2- Benchmarking analysis for the sagittal joint angle. Mean and standard deviation values of NRMSE, p,

XApEn, Drift Ratio per speed and terrain (RA- ramp ascend, RD-ramp descend, SA-stair ascend, SD-stair descend).

) Drift Ratio
Terrain Speed NRMSE p XApEn -
Hip Knee Ankle
Low 0.066 +0.01 0.898 £ 0.042 0.082 +0.021 2.7 2.8 3.9
Flat Normal 0.067 £0.008  0.905 £+ 0.049 0.080+0.014 32 25 4.1
Fast 0.070 £0.009  0.909 + 0.063 0.075 £0.012 35 3.2 4.9
RA Normal 0.086 +£0.012  0.936 £ 0.08 0.051 £0.020 54 46 5.5
RD Normal 0.084 £0.011  0.931+0.035 0.053 £0.025 6.5 5.6 6.9
SA Normal 0.098 +0.007 0.930+£0.013 0.057 £0.013 4.7 4.0 4.2
SD Normal 0.088£0.004 0.944+0.014 0.061 £ 0.027 26 23 3.7

NRMSE values do not reflect the drift errors of both sensor systems

Furthermore, the Bland-Altman plots illustrated in the top view of Figure 4.4 indicate the

presence of a bias in the joint angles estimated from fusion-based methods given the non-

zero mean difference values (-4.54, 2.67, and -3.98 for the hip, knee, and ankle, respectively).
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Figure 4.4- Bland-Altman plots of InertialLAB’ angle estimations (top view) and the joint angle predictions by the

ANN (bottom view) against the angles of MVN BIOMECH. The red horizontal lines represent the mean difference

and the 95% limits of agreement (i.e., mean difference + 1.96 SD of the difference).
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In opposition, the mean difference is closer to 0° after ANN regression model application
(bottom view of Figure 4.4), suggesting that the bias, such as the drift error, is approximately

null for the ANN’s joint angle predictions.

4.2.5.Discussion

InertialLAB Design Analysis

Concerning the design, the InertialLAB presents the following contributions. First, the use
of an automatic, user-independent, on-body calibration in the first 10 s of the data monitor-
ing avoids higher time-consuming calibration methods [164], [178] and demands less effort
for the user and assessor. Second, InertialLAB advances similar commercial systems by pre-
senting a modular and open-architecture with the possibility of full customization to operate
as a stand-alone solution for general human motion analysis or gait phase detection as in [52]
and to be directly integrated into third-party systems, particularly in AOs [179]. Such modu-
larity will enable a prompt integration of the software routines into other processing units,
limiting the changes to the peripheral devices’ configuration routine.

Third, the power supply unit of InertialLAB is more advantageous than the one of MVN
BIOMECH regarding the durability and usability (power unit of 20x20x100 mm vs. two power
units of 60x50x150 mm), which favors its daily application.

Furthermore, the gait analysis tools were executed by a wearable board (80x100x25 mm)
when compared to MVN BIOMECH (higher-dimensionality board such as a personal computer)
and the one (200x137x55 mm) used in [178]. This allows a more practical application of Iner-

tialLAB for ambulatory gait analysis.

Kinematic Gait Analysis

The carried out validation extends the one presented in previous studies [164], [167],
[178] by analyzing the joint angles and also the 3D-angular velocity and 3D-acceleration with
gait patterns from non-structured real-world scenarios to better assess the reliability and re-
peatability of InertialLAB.

The increased magnitude-based errors in the gyroscope and accelerometer with gait
speed may be explained by the increment of the IMUs’ attachment instability as speed in-
creases, especially considering the positioning of InertialLAB over MVN BIOMECH. Further-

more, the performance of the IMUs embedded on the InertialLAB was better in climbing stairs
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than in flat terrain and ramp. Two reasons may explain it. First, it may result from a shorter
walked distance in the staircase comparing to other terrains. Second, climbing stairs may deal
with a slight impact interaction with the ground, resulting in lower secondary motions of the
IMUs than in other terrains.

The proposed joint angle estimation tool is fairly simple, but it presents a high waveform
similarity when compared with MVN BIOMECH, while considering different terrains (flat,
stairs, and ramp). Previous studies [174], [175] reported an excellent waveform similarity (>
0.9) with MVN BIOMECH for walking [174], [175], jumping activity [174] and climbing stairs
[175]. Tadano et al.[167] have shown high correlations (p > 0.78) in a 5m-flat surface. The
InertialLAB presented a comparable performance in a 10m-flat surface (mean p = 0.905 for
three joints). According to [167] and [174], the high correlation in joint angle time-series (p >
0.898 for the three terrains) can be interpreted as a high reliability and excellent validity of
the InertialLAB, respectively.

There is evidence of the presence of offset-based errors in the InertialLAB’s joint angle es-
timations. Previous works also reported offset-based errors for the lower limb joint angle es-
timation when using the Kalman filter for short distance trials [164], [167], [178]. Liu et al.
[164] reported a maximum RMSE of 16.6° for trials with 3 strides; Beravs et al. [178] outlined
a mean error lower than 5° when one subject walked 30 steps; and Tadano et al. [167] found
a mean RMSE ranging from 7.88° to 10.14° from a gait analysis along 5 m. On the other hand,
the errors reported in the InertialLAB’s validation reflect a larger number of heterogenous gait
patterns from non-structured and longer trials to investigate the repeatability over time.

The drift error was more pronounced in the ankle joint, as reported in [167], [174], [178].
Often the most distal segments are the ones that move the most during gait; therefore, they
are more susceptible to fluctuations and signal distortions at heel-strike and toe-off timings
[167]. With this study, it was verified that the ANN regression models may successfully be
applied to minimize the bias in joint angle signals and to yield signals with excellent validity
[174]. It is worth to note that these regression models were tuned to be user-independent
and to generalize to speed variations aiming a versatile application of InertialLAB in biome-
chanical analysis.

The proposed calibration procedure may be affected as follows. The differences in the real

joint kinematics and the assumptions considered in the calibration may introduce a fixed bias.
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Moreover, the effectiveness of the proposed calibration is affected by incorrect postures dur-

ing the stand-up steady-state.

4.3.GaitShoe

4.3.1.Critical Analysis of Related Work

Research contributions related to shoe- or insole-based force sensor systems usually inte-
grate FSRs to measure the foot contacts on the ground and enable gait event detection given
their low cost, low-power consumption, high flexibility and thinness to fit over an insole.

Previous studies [25], [180] proposed a flexible insole-based system with thirty-two FSRs
[180] and sixty-four pressure-sensitive sensors [25], respectively, to analyze the ground reac-
tion forces. Other researches [26], [181] developed a wireless shoe-based system including
four FSRs (placed on the heel, first and fifth metatarsals, and toe) to detect gait events. They
also incorporated an IMU to determine foot orientation. In Pappas et al. [182], three FSRs
(placed on the heel, the first and fourth metatarsus of insole) and a gyroscope (placed on the
heel of the shoe) were used to measure forces exerted by the foot and the foot’s orientation
relative to the ground, respectively. However, more research should be developed to (i) aug-
ment the linearity and durability of the force-based systems, (ii) avoid time-consuming cali-
bration procedures, (iii) to extend the validation to several daily walking conditions, and (iv)
to provide real-time spatiotemporal parameters, such as step length and gait speed [25].

Moreover, a number of commercial wearable force-based systems have been proposed,
such as F-Scan system (Tekscan, Boston, USA), In-Shoe (Tekscan, Boston, USA), DynaFoot (Tech-
noConcept, France), Footswitch insole line (Noraxon™, USA), Footwork insole (amcube,
France) using FSRs and pedar® insole (novel.de) using capacitive sensors. These systems record
dynamic pressure mapping and spatiotemporal gait parameters. Despite the well-established
robustness and usability, these commercial solutions are quite expensive when considering
their limited durability and the need for a user-specific insole. Furthermore, they do not pro-
vide an open-architecture for easy and direct integration into third-party systems, such as fur-

ther sensors and robotic assistive devices.
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4.3.2.Methods

GaitShoe consists of a wireless, stand-alone, cost-effective, low-power consumption, in-
strumented shoe. This wearable sensor system includes gait analysis tools designed for real-
time estimation of gait speed and gait event detection in walking scenarios, including variable
gait speed and terrains at a relatively high sampling frequency (100 Hz).

This sensor system advances the similar commercial systems with modular hardware and
software architecture as follows. Except for the instrumented insole, the electronic interfaces
of GaitShoe can be migrated to other shoes extending the GaitShoe’s application to divergent

feet anatomy and without demanding a user-specific system for the gait event analysis.

Hardware-in-the-loop

Figure 4.5 represents a general system architecture of GaitShoe, which extends the instru-
mented shoes proposed in [50], and it is based on [144], [181]. GaitShoe includes a flexible
insole-based system with four FSRs (FlexiForce A201 Sensor, Tekscan™), strategically placed
on the heel, the first and fifth metatarsals, and toe/hallux, and one IMU (MPU-6050, Inven-
Sense, USA) in the instep of the foot. The number and location of force sensors fulfill a tradeoff
between a holistic gait event detection [50], [181] and the minimal computational load of gait
analysis.

The selected FSRs are small (9.53 mm of diameter), thin (0.203 mm), flexible, with a suita-
ble force sensitivity (from 100 g to 10 kg), low-power consumption (1 mA/cm? of applied
force), and low-cost sensors. A voltage divider was implemented for FSR data acquisition (Fig-
ure 4.5), providing a linear output for the operating conditions.

GaitShoe is formed by two slave interfaces, one per foot, for sensors’ data acquisition, user-
independent, on-body calibration, data processing, and transmission to a master interface.
The master interface is responsible for slave interfaces’ synchronization, overall data storage
in a micro SD card (8 GB of storage capacity) and data transmission to third-party systems via
Bluetooth protocol (HCO6 Serial Module). The time-effective data transmission between each
slave and the master interface occurs through a bidirectional radio frequency communication
protocol (NRF24L01+, Nordic Semiconductor ASA) to augment the system’s ergonomy. The
NRF24L01+ was selected given its low dimensionality (29x15x1.2 mm), low-power consump-

tion (<14 mA), transmission-effectiveness (2 Mbps with communication range < 70m) [183].
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The Arduino Nano Atmega328P (running at 16 MHz) was the development board used for
slave and master interfaces. It is a small (18x45 mm), mass (7 g), low-power consumption (19
mA) development board, and has the resources required for (i) data acquisition from four FSRs
(ADCs interface) and one IMU (I°C interface), (iii) data transmission (SPI interface for radio
frequency modules and micro SD card, and RX/TX interface to connect to the Bluetooth mod-
ule).

GaitShoe is powered by a standard 2000 mAh power-bank that ensures the autonomy of
at least eight hours and presents a suitable capacity-size relation, easily plug and unplug for
charging, and intuitive use for the user.

For portability and easy donning and doffing, the hardware systems were fixed into 3D
printed boxes. Further, adjustable straps attach the slave interfaces to different shoes’ mod-

els, and the master interface is used as a watchband.
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Figure 4.5- GaitShoe: Hardware interfaces and human body positioning.

Software-in-the-loop

This subchapter presents the main software routines of GaitShoe, namely radio frequency
communication, automatic calibration, and the gait analysis tools for gait speed estimation
and gait event detection. Appendix E.2 describes more details regarding the programs imple-
mented in the master and slave interfaces.

For wireless radio frequency communication, a double-channel communication protocol

(losses rate < 0.5%, empirically verified as more robust than single-channel) was implemented
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by including two RF modules in the master interface to communicate independently with each
slave (each slave has one RF module). The frequency channel (default, 2462 MHz and 2484
MHz) can be changed as needed to ensure the integrity of communication. The maximum
packet structure was set to 32 bytes.

GaitShoe endows two automatic, on-body calibration approaches for each sensor system
that are carried out in the first 10 s of each trial. The IMU was calibrated as described for
InertialLAB. The FSRs’ calibration aims to deal with FSR measure-dependency on the subject’s
body mass and the variable sensibility of FSRs over time. Equation (4.5) describes the calibra-
tion of a new FSR value (Nggg) considering a ratio between the maximum binary measure of
FSR (255) and the maximum force (FSR_MAX) applied by the user on each FSR when he/she
is standing-up for 10 s.

255

C =N _— .
FSR FSR * FSRyaxlyec (4.5)

The gait event detection tool can segment in real-time up to six gait events: Heel Strike
(HS), Foot Flat (FF), Middle Mid-Stance (MMST), Heel-Off (HO), Toe-Off (TO), and Middle Mid-
Swing (MMSW). For this purpose, three approaches were implemented in the slave interfaces
using (i) the measures of four FSRs, (ii) the sagittal axis of the foot-mounted gyroscope, and
(iii) the sensor fusion of FSRs’ measures and the foot angular velocity.

First, the gait event detection-based FSR endows an adaptive tool that self-tuned the FSR-
based thresholds, which are compared to the current FSR’s measures through adaptive deci-
sion rules implemented by a finite state machine (FSM). The tool was proposed in [39] to
detect HS, FF, HO, and TO gait events, as illustrated in Figure 4.6.A. Three levels of thresholds
(HIGH, MEDIUM, and LOW) were set, tailored in real-time every three consecutive gait cycles,
that correspond to 80%, 60%, and 40%, respectively, of the minimum value of the FSRs’ max-
imum values (in the initial conditions those values were found in the calibration routine).

Second, it was implemented an inertial sensor-based detection to overcome some of the
inherent limitations of force-based sensors [53] and to extend the gait segmentation to the
swing phase. This gait event detection tool consists of an FSM based on heuristic decision rules
dependent on adaptive thresholds applied to the foot angular velocity in the sagittal plane
(measured by IMU of GaitShoe). A detailed description of this tool is presented in Chapter 5
and in [52].
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Event Decision Rule Transition
:g *QR? < e
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HO FSR1 < LOW AND FSR2 > HIGH AND ©
FSR3 > HIGH AND FSR4 < MEDIUM
o FSR1 < LOW AND FSR2 < LOW AND (a)
FSR3 < LOW AND FSR4 < LOW

Figure 4.6- Gait event detection-based FSR. A: FSM. B: Decision, where DEF-default state, FSR1- heel, FSR2- 1%

metatarsal, FSR3- 51 metatarsal, FSR4- toe.

Third, the sensor fusion of force-ground contact measures [50] with foot angular velocity
measures [52] was implemented. The decision rules of both force-based and gyroscope-based
detection were combined with OR condition to detect the HS, FF, MMST, HO, TO events by
the first sensor whose algorithm conditions are satisfied. The MMSW event can only be iden-
tified by the gyroscope-based tool.

The adaptability conferred to these three computational tools aims to handle the intra- and
inter-subjective gait variability and to foster a reliable gait event detection in non-structured
environments with variations of gait speeds and ground surfaces.

The gait analysis tool for real-time gait speed estimation used the foot acceleration and
angular velocity (measured by the IMU) and the timing information of the FF event. This event
was used as the reset integration moment at each gait cycle by considering the zero-velocity
update strategy [170]. This approach (i) takes advantage of the gait cyclical properties to mit-
igate the bias introduced by the integration, and (ii) avoids the subject-specific anthropomet-
ric calibration required in the human gait model-based methods, such as the pendulum model
[184].

The gait speed tool was organized as follows, as represented in Figure 4.7.A. First, the foot
angle in the sagittal plane was estimated by applying the FF reset-based integration of the
foot angular velocity in the sagittal plane. Second, the user’s foot acceleration components
(horizontal (A4,) and vertical (A,) components) were computed as outlined in Equation (4.6),
using the acceleration measures (X-axis (a,) and Z-axis (a,)), compensated by the gravity ac-

celeration (g), and the estimated foot angle (8).
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Ay, = a,cosf —a,sinf (4.6a)

A, = a,sinf+a,cosf —g (4.6b)

Subsequently, the gait speed was estimated by applying the norm technique to the instan-
taneous velocity (v, and v, components), which were computed by integrating the user’s foot
acceleration (A, and A, components) in the time interval between every FF event, where the

initial velocities were set to 0 m/s [185].

Figure 4.7- A: Representation of IMU placement in shoe. Measured horizontal and vertical accelerations (a,, a,)
have to be corrected to the floor fixed frame (4, and A4,) and the effect of gravity eliminated. B: User wearing

GaitShoe and MVN BIOMECH. C: Ongoing tests.

4.3.3.Experimental Validation

An experimental validation was performed to investigate the operability of GaitShoe. A
benchmarking analysis against MVN BIOMECH for gait speed was performed considering the
reasons stated in Chapter 4.2.3 and the affordability of MVN to measure the gait speed. The

validation of the gait event detection tool is presented in Chapter 5.

Participants

This validation involved the same healthy participants described in Chapter 4.2.3. The in-
clusion criteria were: body mass ranging from 45 to 100 kg; female participant wear 38-39 size

sports shoes; and male subject wear 41-43 size sports shoes.
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Protocol

The participants wore GaitShoe considering the most appropriate size and the full lower-
limb configuration of MVN BIOMECH since this system does not allow a less instrumented
configuration for the gait monitoring. The MVN BIOMECH sensors located on the feet were
always positioned by the same person, who carefully positioned a visible mark on the
GaitShoe cases to ensure the repeatability of the sensor’s positioning, as depicted in Figure
4.7.B. A hardware-based sync method (TTL sync) synchronized both systems.

Each trial started with the calibration of the MVN BIOMECH in N-pose. Then, the participant
stayed in the stand-up steady-state for 10 s to calibrate GaitShoe. For gait trials, the partici-
pants were asked to randomly perform 3 trials per self-selected gait speed (slow, normal, and
fast) in level-ground as follows: forward walking on a 10 m flat surface; change the walking

direction with a turning motion; and, forward walking to back to the initial position.

Data Collection and Analysis

The estimated gait speed of GaitShoe and MVN BIOMECH was collected at 100 Hz. The data
analysis used the Matlab® for computing the RMSE in the averaged gait speed for both sys-
tems. Furthermore, statistical analysis with a significance level of 5% was conducted investi-
gating the hypothesis that the average gait speed monitored by both systems was equal. The
data analysis did not cover the two first and last gait cycles to eliminate the acceleration and

deacceleration periods, respectively.

4.3.4.Results and Discussion

During the experimental validation, the GaitShoe presented some design contributions re-
garding the MVN BIOMECH. First, the use of a fully automatic (without requiring user’s demo-
graphic data), shorter calibration. Second, when comparing to commercial systems, GaitShoe
has advantageous relative to the modular and open-architecture able to operate as a stand-
alone solution and to be directly integrated into third-party systems. Moreover, it enables the
use of a single IMU sensor for gait speed analysis; whereas, MVN BIOMECH always requires
the usability of the full lower-limb configuration independently of the purpose of the gait anal-
ysis. This aspect makes the GaitShoe a more ergonomic system for the ambulatory gait speed

analysis.
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Table 4.3 presents the averaged results of 1340 gait cycles at a varying self-selected gait
speed in ambulatory walking conditions, including turns. The gait speed estimation tool im-
plemented in GaitShoe overestimate the gait speed when compared to MVN BIOMECH’s tool
for the three self-selected speeds (for instance, for slow self-selected conditions, the MVN
BIOMECH and GaitShoe monitored an averaged gait speed of 0.84 and 0.88 m/s, respectively).
The RMSE increases, varying from 0.065 to 0.19 m/s, as the user’s self-selected gait speed
augments.

Nonetheless, the differences in the gait speed estimation of GaitShoe and MVN BIOMECH
were not significant (p-value > 0.264, from the tested hypothesis that the average gait speed
monitored by both systems was equal). This finding indicates that it is feasible to develop an
accurate, self-contained gait analysis tool into a wearable development board using minimal
inertial sensors, eliminating the need for complicated and usually expensive capture systems.
Furthermore, the cyclic-based reset method showed to be useful to attenuate the unbounded

growth of integral drift errors, as reported in [186].

Table 4.3- Benchmarking analysis of gait speed estimation. Mean and standard deviation (std) of gait speed val-

ues monitored by Xsens and GaitShoe, and RMSE.

Self-selected vavp;fgn::sm [ (R0 ﬁfvaf:uau RMSE (m/s)
Speed (m/s) (m/s) means

Mean Std Mean Std Mean Std

Slow 0.84 0.085 0.88 0.04 0.264 0.065 0.06

Normal 1.19 0.147 1.23 0.242 0.69 0.16 0.13

Fast 1.82 0.089 1.91 0.26 0.304 0.19 0.16

The outcomes of Table 4.3 indicate that the differences found in the averaged values across
the slow (> 0.84 m/s), normal (> 0.19 m/s), and fast (> 1.82 m/s) self-selected speed are as
expected. Moreover, the gait speed measures provided by both systems are according to the
well-established findings reported by Winter [187] for slow, natural, and fast cadence in
healthy conditions.

The accuracy of the proposed gait speed estimation method is critically dependent on (i)
the IMU’s performance (e.g., offset, sensitivity drift), (ii) time-effective FF gait event detection,
(iii) correct foot angle estimation, and (iv) the effects of relative movements between the
shoe-mounted IMU case and the human foot. More representative gait patterns collected in

inclined surfaces and stairs are needed.
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4.4.MuscLAB and EMG System

4.4.1.Introduction

Considering the increased number of people with muscle weakness, the monitoring of mus-
cular activity becomes a necessity [158]. The surface EMG is the standard technique for mus-
cular activity monitoring by detecting the bioelectrical signal produced during muscle con-
traction through electrodes placed at specific locations on the surface of the muscle belly.
Furthermore, the EMG system may contribute to the development of EMG-based assistive
control strategy to explore the anticipative nature of EMG measures under gait training.

Different commercial wearable EMG systems have been proposed such as FREEEMG (Bio-
engineering Corp., Italy), Myopac EMG unit (Myopac), MyoWare (Sparkfun, EUA), Trigno™
wireless EMG (Delsys Inc., USA), and myoMUSCLE (Noraxon™, USA). However, surface EMG-
based system requires (i) careful electrode placement and excellent contact with a clean and
hairless skin; (ii) electrodes with a conductive gel, enhances the detection of the electrical
activity under the skin, that may cause skin irritation and discomfort for daily use; and, (iii)
complex signal acquisition and processing. Furthermore, this sensor system is affected by the
user’s sweating that can damage EMG-based muscular measures over time [188].

Although the EMG system usually presents high robustness and reliability, there is a current
need for using easily applicable methodologies with a shortened installation and low-effort

for the user and therapist [189], [190].

4.4.2.Methods

SmartOs integrates two customized systems, namely wired EMG system and MuscLAB, for
monitoring the muscle activity up to 7 muscles and thus enable an objective user’s motor
condition analysis.

To achieve a more ergonomic, cost-effective system for monitoring the muscular activity,
SmartOs proposed a force-based wearable sensor system, the MuscLAB. It relies on mechano-
myography principle by measuring the muscle activity through variation of the mechanical
pressure that the muscle contraction exerts on the force sensor. For this purpose, the force
sensors were fixed to a compressible textile band robustly, which in turn, was attached to the
surface of the target muscle. The design of MuscLAB is similar to the wearable sensor systems

proposed in [191], [192].
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EMG system: Hardware and Software-in-the-loop

The raw EMG signal measured from surface electrodes has a peak-to-peak magnitude
range from 0 to 10 mV and response frequency limited from 0 to 500 Hz, with dominant fre-
guency from 50 to 150 Hz [157].

Figure 4.8.A shows the wired surface EMG system, highlighting the developed hardware
for EMG signal acquisition and processing. Each interface (55 x 53 mm) present the following
electronic blocks. The first block includes an instrumentation amplifier (INA128p with offset
=50 uV, CMRR =120 dB) to obtain the electric potential of the muscle’s activity, with an am-
plification gain factor of 50 to allow the first stage of signal amplification. The second block
includes an active 2" order bandpass filter (cut-off frequency from 20 to 500 Hz) and a notch
filter (cut-off frequency of 50 Hz) to remove the baseline muscular bioelectrical activity and to
attenuate the effect of motion artifacts and ambient noise, respectively. An offset voltage
adjustment circuit was introduced to adjust the EMG signal for the operating range of the
selected ADC interface. Next, an amplifier with a variable gain (through high-precision poten-
tiometer of 1MQ) was introduced to increase the signal resolution, allowing signal’s readabil-
ity for both healthy and subjects with muscular weakness. The last block introduces gain and
limits the output signal from zero to the maximum voltage, using the ADC reference voltage.
EMG system is powered by a standard 2000 mAh power-bank that enables autonomy of at

least eight hours.
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Figure 4.8- A: Wired EMG system: Hardware interfaces and human body positioning. B: MuscLAB: Hardware

interfaces and human body positioning.

The EMG system was customized to include up to 7 hardware interfaces, which are man-

aged by the STM32F4-Discovery development board able to: (i) conduct digital acquisition of
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the EMG signals at 1 kHz using ADC interfaces; (ii) perform an user-oriented EMG calibration,
when needed; and, (iii) execute gait analysis tool to compute the EMG envelope. This tool
consists of a digital 2" order low-pass Butterworth filter with 1.6 Hz of cut-off frequency to
compute the EMG envelope. It gives a measure of the power of the signal, namely the most
significant amplitude of the EMG signal while producing a waveform that is easily analyzable

and useful for real-time control and feedback.

MuscLAB: Hardware and Software-in-the-loop

MuscLAB (Figure 4.8.B) is a wearable muscular contraction-based force sensor system de-
signed to include up to 7 FSRs (406 Square FSR, Interlink Electronics®). These sensors can be
integrated easily into user-adjustable and compressible textiles due to their flexibility and re-
duced thickness (0.42 mm). Additionally, the selected FSRs present a relative high dimension
(38 x 38 mm) to make misplacement and shifting less critical. The hardware interface (53.5 x
58.42 mm), incorporated into wearable 3D printed boxes, includes custom-made boards for
force signal acquisition using a voltage divider and processing (1°t order low-pass filter, cut-off
frequency of 10 Hz).

Additionally, MuscLAB has an STM32 Nucleo-32 development board (STMicroelectronics,
running at 72 MHz) that runs up to 100 Hz routines for (i) digital data acquisition using ADC
interfaces; (ii) on-body, automatic calibration; (iii) data storage in a memory SD card (using
SPI interface of STM32); (iv) computing muscular voluntary contraction; and, (v) data trans-
mission to third-party systems via Bluetooth (using HCO6 Serial Module). A 7.4V/900 mAh LiPo
Battery powers the system.

MuscLAB endows an automatic, on-body calibration tool, organized into two phases, to
remove the possible offset in the FSRs” measures and to deal with user’s muscular contraction
variability. In the first phase, the tool computes the offset (baseline pressure between the
sensor and the muscle) as the mean value of FSR measures during the first 5 s of gait trial
when the muscle is relaxed and subtracts it to the subsequent FSR outputs. In the next 10 s,
while the subject is moving and contracting his/her muscle, the user-oriented muscle gain is
determined as the maximum value of FSR measures during the 10 s. The gain is updated every
10 s. The user-oriented muscle gains are computed to enable a posterior objective evaluation

of the muscular strength across gait training sessions.
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The FSR signal calibration enables to estimate the muscular voluntary contraction, i.e., the
most significant component of mechanical muscle contraction, by considering a digital 2" or-
der low-pass Butterworth filter with 1.6 Hz of cut-off frequency, as applied for EMG system.

Lastly, MuscLAB endows a light-based feedback system to inform the user about the sys-
tem’s operating state. The green and yellow LEDs are turned on together during the calibra-
tion. The green LED alone indicates the real-time monitoring and storage. If the green led

turns off, it means an error occurred. The yellow LED alone warns the user for low battery.

4.4.3.Experimental Validation

The experimental validation of both systems involved 8 healthy subjects (3 females and 5
males) who signed a written informed consent to participate in this study. The participants’
mean age was 24.32 + 1.09 years old, with a height of 1.72+0.12 m and body mass of 60.4
19.79 kg. Gastrocnemius medialis and tibialis anterior were the muscles chosen, given its rel-
evance in post-stroke gait analysis since stroke survivors commonly present weakness at tibi-

alis anterior and spasticity at gastrocnemius.

EMG System: Protocol, Data Collection and Analysis

An assessor carefully followed standard recommendations for surface electrodes assess-
ment [193]. This procedure assures the repeatability of the sensor’s placement and minimizes
intra-subjects and intra-trials variability. Three surface electrodes were considered. One is a
reference electrode that was placed on the center of the knee joint, which is an electrically
neutral tissue [194]. The other two electrodes are used to measure the muscle electrical signal
and were placed on top of it, separated by about 2 cm from each other [194]. The muscle sites
were prepared by removing excess hair, and the skin was cleaned by mildly scrubbing with an
alcohol wipe.

The gain of the EMG channels was tuned regarding the level of muscular activity presented
in the user’s muscles. The participants were asked to perform motions under a treadmill as
follows: keep 10 s in the stand-up steady-state pose; walking for around 40 s at a specified
speed (1, 2 and 3 km/h); back to stand-up steady-state posture until reach 60 s. Each subject
conducted 3 trials per speed. This experimental setup enables both static and dynamic mo-

tion assessments.
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The EMG signal and EMG envelope were collected at 1 kHz. Signal-noise ratio was com-
puted for EMG signal in Matlab® (2017b, The Mathworks, USA) to inspect the effectiveness of

the processing blocks of the EMG system.

MuscLAB: Protocol, Data Collection and Analysis

The effectiveness of MuscLAB for monitoring muscle activity was investigated employing a
benchmarking analysis with wireless Trigno™ Avanti Sensors (Delsys, Natick, USA) during
static and dynamic motions. Avanti Sensors are commercial EMG systems commonly applied
in the scientific field for muscle activity monitoring.

The sensors were positioned as follows. The Avanti Sensors were placed on the muscle
belly considering the electrode placement instructions aforementioned. The FSRs of MuscLAB
were placed on muscle point motor (where detectable muscle inflation occurs), strictly to the
respective Avanti Sensors. Subsequently, the subjects were asked to sit on a chair to reduce
the muscle activation (feet not touching the floor) for conducting the first calibration phase of
the MuscLAB.

In static trials, the participants conducted isometric contractions repeated 10 times per
muscle. For dynamic motions, the participants performed 3 trials per self-selected gait speed
(slow, normal, and fast) in level-ground to validate the MuscLAB robustness while the subject
is moving.

The EMG envelope (100 Hz) was computed using EMGWorks (Delsys’ software), and it was
compared with muscular voluntary contraction measured by MuscLAB at 100 Hz. For bench-
marking analysis, the Pearson Correlation coefficient, signal delay, and NRMSE were com-

puted in Matlab® (2017b, The Mathworks, Natick, USA).

4.4.4.Results and Discussion

EMG System

From the experimental validation, it was verified that the signal never saturates across dif-
ferent walking speeds, such that there is no loss of information. Furthermore, as illustrated in
Figure 4.9, the EMG system performs as expected. It measured constant electrical muscle
activation in steady-state pose (period 1 in Figure 4.9); it can measure the muscular activation

correctly in dynamic motions with a repetitive pattern similarly to gait (period 2 in Figure 4.9);
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it is able to discriminate the agonist and antagonist function among the gastrocnemius me-
dialis and tibialis anterior muscles during walking.

The results presented in Table 4.4 indicate that the signal-noise ratio decreases as the gait
speed increases, mainly for tibialis anterior muscle (from 19.21 dB to 10.31 dB). This finding
suggests that the EMG system must be improved to minimize possible secondary motion ar-
tifacts, which may introduce noise in the EMG acquisition. Nonetheless, the achieved signal-
noise ratio values are satisfactory considering that the EMG system will be applied for condi-

tions that do not exceed 2 km/h of gait speed.
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Figure 4.9-Representative EMG signals from one male subject walking at 1 km/h. Top view: EMG signals of gas-
trocnemius (GAS) and tibialis anterior (TA) along with gait trial (1: steady-state pose; 2: walking period). Bottom

view: EMG signal and envelope EMG signal of GAS.

The signal-noise ratio of the EMG signals of the tibialis anterior was lower than the one
achieved for gastrocnemius. Additionally, the muscle activation level of tibialis anterior was

inferior to the one measured by gastrocnemius, as depicted in Figure 4.9. This finding is
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related to the nature of the agonist/antagonist functions of these muscles [195]. Moreover,
the real-time gait analysis tool correctly computed the EMG envelope, as showed in the bot-
tom view of Figure 4.9. The obtained envelope signal adequately highlights the most signifi-
cant components of the EMG signal for all considered static and dynamic walking conditions.

In overall, it is possible to outline that the hardware and software of the EMG system were

successfully achieved for muscular activity analysis.

Table 4.4-Mean and standard deviation (std) values of signal-noise ratio (SNR), per gait speed, of EMG signals of

the gastrocnemius (GAS) and tibialis anterior (TA) muscles.

SNR (dB)
Muscle Speed (km/h)

Mean Std

1.0 19.21 0.89

TA 2.0 17.11 1.22
3.0 10.31 3.75

1.0 19.42 0.99

GAS 2.0 18.84 1.13
3.0 14.71 2.47

MuscLAB

From the experimental validation, it was observed that the proposed system enables a
quicker attachment procedure regarding the EMG sensors.

The results of Figure 4.10 indicate that the MuscLAB is able to detect the muscular activity
in static and dynamic conditions. It also states that the MuscLAB can correctly monitor the
agonist (concentric contraction) and antagonist (eccentric contraction) motions. However, the
benchmarking analysis with the EMG envelope signal tracked by Trigno™ Avanti Sensors
points out that there are deviations in the magnitude and timings of muscular activity signal.

The results presented in Table 4.5 point out that the performance of MuscLAB was con-
sistent for both muscles. The RMSE is higher for dynamic motions (mean RSME < 24.6%) than
for static ones (mean RSME < 9.57%), and tends to increase as the gait speed increases. The
increment of the magnitude-based errors indicates that the effectiveness of MuscLAB is af-
fected by the dynamic nature of walking motions, and likely, improvements in the attachment
of FSRs into textile and usability of MuscLAB are needed. On the other hand, the MuscLAB’s
muscular activity signals become more similar (correlation coefficient increases) to the ones

tracked by Avanti Sensors for dynamic conditions than for the static ones.
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A delay (mean delay ranges from 144.01 to 163 ms) between the bioelectrical muscle ac-
tivity and the mechanical muscle activity (MuscLAB) was observed. Two reasons may explain
this delay. The first lies on the biological muscle proprieties considering that the muscle activ-
ity started due to the presence of electrical signals, which in turns, activates the muscle, lead-
ing to a mechanical muscle contraction. Second, the displacements between the electrodes
and the FSRs since both sensors were positioned in different places in the same muscle, may
result in different activation times. The last aspect constitutes a limitation for benchmarking

analysis related to surface muscle activation analysis.
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Figure 4.10- Representative muscular activity detected by MuscLAB and Avanti sensors from one female subject.
Top and middle view: Muscular activity of tibialis anterior and gastrocnemius for static motion. Bottom view:

Muscular activity of gastrocnemius muscle for dynamic motion at fast speed.

In overall, the outcomes suggest that the MuscLAB has the potential for providing an evo-
lutive analysis of the muscular activity across gait training sessions. Nonetheless, the Mus-
CLAB cannot replace the forecast nature of EMG signals, that is relevant for user’s motion

intention recognition and time-effective control purposes.
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Table 4.5- A benchmarking analysis of MuscLAB and Avanti sensors for muscular activity. Mean NRMSE, Pear-

son correlation coefficient (C), delay.

Motion Speed Muscle RMSE (%) C Delay (ms)
TA 9.18 +3.40 0.65 +0.05 145.3+35.1
Static -
GAS 9.57 £ 2.66 0.65+0.12 149.0 £ 46.72
TA 18.65+7.48 0.75+£0.03 152 +41.67
Dynamic Low
GAS 18.85 +6.76 0.74 £0.02 149.01 £ 40.15
TA 22.78 £ 6.37 0.77 £0.05 147.4 £ 51.67
Dynamic Normal
GAS 23.57£9.29 0.74 £0.03 163.02 + 36.31
TA 23.68 £4.23 0.75+0.02 144.33 £+ 50.97
Dynamic Fast
GAS 24.6 +1.35 0.77 £0.04 145.63 £ 50.62
4.5.Conclusions

The Wearable Motion Lab integrates a set of quickly and automatically calibrated, low-cost,
easily wearable sensor systems to cover 10™-to-90t™ percentile of the male/female popula-
tion. The sensor systems enable the all-day monitoring of kinematic or muscular activity data
in dynamic walking scenarios without interfering with the user’s motion and with autonomy
for at least eight hours of records, as demanded.

The open-architecture of the sensor systems contributes to their use as stand-alone and
system-cooperative functioning in third-party systems, as SmartOs. The last feature enables
providing real-time sensor data and feedback with minimal latency for (i) gait event detection
(Chapter 5) (ii) locomotion mode recognition and prediction (Chapter 6), and (iii) assistive con-
trol strategies to provide a user-oriented gait training (Chapter 7). Moreover, the monitored
kinematic and muscular activity data is being useful as objective outcomes (for computing
spatiotemporal measures and kinematic and muscle synergies), and in the development of a
tool for post-stroke disability locomotor analysis to support the clinical-based decision.

The benchmarking analysis with commercial systems demonstrates that the developed
sensor systems are purposeful for a user’s evolutive gait analysis in ambulatory scenarios,

eliminating the need for high-complex and expensive capture systems.
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Chapter 5 — Gait Event Detection

This chapter outlines the relevance of gait event detection for human motion analysis and
current challenges considering previous achievements in the literature. Moreover, it presents
a novel, real-time, adaptive gait event detection tool (more detail described in [52]) involving
inertial data measured by wearable sensors as InertialLAB and GaitShoe (Chapter 4), and its
evaluation considering repeated measures from healthy subjects in non-controlled gait con-
ditions varying gait speed and terrain. A comparative analysis of the proposed tool and litera-

ture work is presented. The chapter ends with critical analysis and future challenges.

5.1.Introductory Insight

Gait event detection can potentially be applied in the design of personalized gait therapies
and playing an integral role in the spatiotemporal gait evaluation. Different motion capture
systems have been used to detect gait events. Most commonly, this analysis is conducted in a
motion analysis laboratory with non-portable force platforms [39]. Consequently, these sys-
tems are not optimal to analyze consecutive gait cycles in free-mobility scenarios [101].

Current research suggests there is a need for assessing human events in non-structured
conditions using wearable sensors. Force-based systems, such as foot-switches or FSRs, are

generally considered the gold standard for detecting gait events [38]. However, these sensors
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(i) can be unreliable when used in drop-foot gait due to their shifting weight during standing
[162], [182], [196]—-[198], and (ii) do not provide any information regarding the sub-phases of
the swing phase [182], [196].

To overcome the inherent limitations of force-based sensors, recent studies have explored
the potentialities of inertial sensors, particularly isolated accelerometers [37], [197]-[199],
isolated gyroscopes [36], [39], [40], [102], [200], [201], and IMUs [35], [101], [161], [188],
[196], [202], [203] for real-time gait event detection. According to systematic review of Taborri
et al. [160], gyroscopes provide better performance than other inertial quantities for moni-
toring human gait. Commonly, gyroscopes placed on the shank [35], [36], [39], [40], [101],
[102], [196], [200] and on the foot [101], [161], [197], [198], [201], [202], [204] |lead to reliable
gait event detection. However, Aung et al. [198] demonstrated better performance with the

sensor located on the foot rather than ankle or shank.

5.2.Critical Analysis of Related Work

Most of the available computational methods that use measurements from the gyroscope
for gait segmentation (Table 5.1) are based on the definition of heuristic thresholds through
a rule-based FSM [35], [36], [39], [40], [101], [102], [197]. The threshold-based FSM proposed
in [39] was able to detect 98% of HS and TO events performed by healthy children in indoor
and outdoor inclined and flat scenarios. Kotiadis et al. [203] showed that using the gyroscope
and accelerometer data as inputs of the FSM resulted in the proper detection of HS, TO, and
HO events on flat surface and staircase walking. Furthermore, Storm et al. [35] demonstrated
that the threshold-based FSM could accurately segment (accuracy of 100%) the HS and TO
events performed by healthy subjects free-walking in an indoor and outdoor urban environ-
ment.

The use of FSM is mainly explained by its low computational demand and easy application
[40]. Nevertheless, it has been reported that its performance can be affected by the high inter-
subject [201] and inter-step variability [202]. To surpass the limited generalization when pro-
cessing new datasets, previous studies [51], [159], [196], [205] introduced an updating layer
for tailoring the thresholds endowed in the heuristic rules with the most recent state of the

gait pattern.
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The assessment of gait events proposed in the literature has been conducted in controlled
environments (i.e., trials performed on treadmill or static walkways) and level-ground walking
[26], [37], [102], [159], [161], [162], [197], [201]. When applied to real-life situations, previous
gait analyses have mostly been restricted to two or three gait events [35]-[40]. Furthermore,
evaluations have reported few repeated measures with different subjects, which is a prob-
lematic for evaluation of the reproducibility of the proposed computational methods under
real-life applications.

There is a need to find time-effective, inter-subject and inter-step versatile computational
solutions that describe human gait in both controlled and real-life situations using few wear-
able sensors to be easily reproducible in different contexts. The absence of a quantitative
computational benchmark for the assessment of human gait events is a concern in the reha-

bilitation research community.

Table 5.1- Review of human gait segmentation tools only using gyroscope sensor.

Real-
Study Tool Event /Phase Body Part . Results*
Time
Sabatini et al. [163] FSM ST, HO, SW, HS Foot Y H: < 35ms
H:>98 %
Catalfamo et al. [39] FSM HS, TO Shank N
H:<75ms
H: <43 ms
Greene et al. [206] FSM HS, TO Foot, Shank N
P: <99 ms
Lee et al. [36] FSM HS, TO Shank Quasi H:<19ms
Abaid et al. [161] HHM ST, HO, SW, HS Foot N P:>92%
Gouwanda et al. [207] FSM HO, TO Shank Y H:>94 %
Mannini et al. [201] HHM HS, FF, HO, TO Foot Y H: <45 ms
Bejarano et al. [162] FSM HS, TO Shank Y H:>99 %

Y: Yes; N: No; H: Healthy subjects; P: Pathological subjects; HHM: Hidden Markov Models
HS: Heel Strike; FF: Flat Foot; HO: Heel-Off; TO: Toe-Off; ST: Stance; SW: Swing;
*Results reported in the studies relative to detection delay (in ms) or detection accuracy (in %)

5.3.Methods

The proposed tool aims to address current challenges in gait event detection. First, the tool
consists of an adaptive FSM to effectively detect the gait events in different daily locomotion
activities, varying gait speeds and terrains, which represents a contribution to the current
literature. Thus, the tool follows a threshold-based structure where a FSM detects the events

and, in parallel, updates the thresholds used in the heuristic decision rules.
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Second, the tool was designed to be a versatile tool able to detect six human gait events
(HS, FF, MMST, HO, TO, and MMSW). It constitutes a state-of-the-art contribution, as previous
analyses centered on the detection of HS, TO and MMSW events.

Moreover, the tool only relies on single-axis of a wearable gyroscope placed on the user’s
feet to minimize the number of sensors and to provide a more practical solution. The tool may
use the gyroscope embedded on InertialLAB or GaitShoe to measure the foot angular velocity
in the sagittal plane at 100 Hz. Through an empiric analysis (Figure 5.1.A), it was verified that
the foot angular velocity presents a similar waveform under different terrains (namely, level-
ground, inclined surfaces, and staircases). This remark indicates the versatility of this kine-

matic data for gait detection across different ground surfaces [160].

5.3.1.Adaptive FSM

Definition of Heuristic Decision Rules

For the definition of the heuristic decision rules, the angular velocity signal was segmented
into six moments that correspond to the six gait events to be detected. To determine the exact
moments of HS, HO and TO events, two FSRs were placed on the heel and toe (Figure 5.3). HO
and TO events were set as the decreasing moment (when the FSR signal decreases by 70%
relative to its maximum) of the heel and toe FSR signal, respectively, whereas the HS event
consisted of the increasing instant (when the FSR signal is 70% higher than its minimum) of
the heel FSR. The ground truths for FF, MMST, and MMSW events were based on direct visual
inspection of the video-based angular velocity with the IMU angular velocity; both were over-
lapped and synchronized by overlay tools of an open-source tracker.

Figure 5.1.B depicts each gait event associated with the foot angular velocity signal, that is
according to the literature, as follows. For the FF and MMST events, the angular velocity is
almost steady at 0 rad/s until the HO event (that occurs after the zero-crossing) [156], [163].
According to [156], [163], [208], the gyroscope signal reaches the global minimum at the TO
event. Studies [163], [202], [208] report that during the swing phase, the peak value appearing

in the gyroscope signal occurs at the moment of mid-swing (i.e., MMSW event).
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Figure 5.1- A: Foot angular velocity along sagittal plane measured at different ground surfaces: level-ground,
inclined surface (10°), and staircase. B: Angular velocity of the right foot along the sagittal plane and representa-

tion of six human gait events during one gait cycle performed by a healthy subject [52].

Table 5.2 presents the decision rules based on curve tracing techniques, such as adaptive
thresholds crossing, local extrema detection (i.e., maximum and minimum angular velocity),
and the evaluation of signal derivatives. HS was defined as the first instant in which the an-
gular velocity is within a range empirically determined to be close to the null angular velocity
(HS_thrmean+ HS_thrstg = -0.5 £ 0.05) after the maximum value has occurred. FF was detected
when the signal becomes approximately constant (n samples with the 15t derivative almost
null) after the detection of the 15t minimum. MMST was defined as n samples after FF occurred
(n corresponds to the duration of the last valid MMST). HO was defined as when the velocity
becomes negative after a constant period. TO was the 2"¥ minimum detected by an adaptive

threshold (MIN¢, in Figure 5.1.B). MMSW was determined as the maximum detected above
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an adaptive threshold (MAXzr in Figure 5.1.B). The rules also have a condition that depends
on stride time (STRIDE_TIME in Figure 5.1.B), which establishes adaptative intervals where the

events shall occur and increases the robustness of the algorithm to changes in gait speed.

Table 5.2- Decision rules with adaptive thresholds in generic form. C indicates condition. [52]

(9 Decision Rule State
(gyro, > MAXy,r) AND (derivative, < 0) AND (derivative,_; > 0) AND MAX /
! (8yT0index — MAXindex € [0.7 * STRIDE_TIMEpyy; 1.3 * STRIDE_TIMEp ¢y ]) MMSW

((HS_thryean — HS_thrgy < gyro, < HS_thryean +
2 HS_thrgq)OR 1st_gyro_min) AND 1st_gyro_max AND HS
(gyr0index — MAXingex € [0; 0.4 * STRIDE_TIMEp,,]))

(derivative,, = 0) AND |derivative,| < 0.2 AND 1st_gyro_min AND

(gyT0index — MAXindex € [0.15 * STRIDE_TIMEp,¢y; 1.0 * STRIDE_TIMEpe, 1)) FF

4 MMST_counter > (Hoindexprev - FFindexPrev)/2 MMST

(gyro, < 0) AND (derivative,, < 0) AND (derivative,_; < 0)AND (derivative, >
s 0.9 derivative,_;) AND (gyr0ingex — MAXingex € [0.3 * STRIDE_TIMEp,ey; 1.0 * HO
STRIDE_TIMEp,c,]))
(gyro, < MIN,,) AND (derivative, = 0) AND (derivative,_, < 0) AND
(8YT0index — MAXindex € [0.5 * STRIDE_TIMEpyey; 1.1 * STRIDE_TIMEp ey ])

TO

Adaptability and Finite State Machine

Adaptability is a pivotal feature for developing a benchmark tool for gait analysis. Given
gait pattern variability, the proposed tool inspects changes in the duration (using
STRIDE_TIME adaptive parameter) and amplitude (using adaptive thresholds, MAXthr and
MINthr) of angular velocity since these signal conditions may change with variations in gait
speed and terrain. The adaptive parameters were initialized based on an empirical inspection
of the angular velocity from distinct gait patterns.

Figure 5.2.A shows the flowchart of the proposed computational tool executed via
STM32F4-Discovery in each interaction at 100 Hz. The tool only starts the detection of gait
events after the occurrence of the maximum peak of angular velocity.

Since the algorithm uses real-time peak detection, it was necessary to smooth the gyro-
scope data through a digital 1°t order low-pass exponential filter. Posteriorly, the filtered sam-
ple was analyzed in 3 different stages to make the FSM adaptable for different real-life walking
situations. The first stage determines the 1% derivative by detecting when the velocity in-

creases (positive signal), decreases (negative signal) or becomes approximately zero.
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2

Max/Min
Detection

v

STRIDE
Calculation

v

FSM

END

YES |Update Stride Duration
Stride =
60%*mean(Strides(n-3:n))

betweenRisesCounter
>0.45*STRIDE(n-1)
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Y
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Figure 5.2- A: Flowchart of the proposed adaptive computational method. B: FSM, where DEF is default state

and R is reset state [52].
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The second stage covers the minimum/maximum calculation, which is used to detect HS
(after maximum), MMSW (maximum), FF (after 1t minimum) and TO (2" minimum), given
their dependency on the local extrema. A maximum angular velocity was only detected when
the angular velocity was higher than the adaptive threshold (MAX:,), the previous signal de-
rivative is a positive value and the current signal derivative is negative soon after the signal
derivative evaluation (gyroDER) is approximately zero (less than 0.01 rad/s — value set empir-
ically to address the signal fluctuations). A similar approach to detect the angular velocity min-
ima was applied using MINwr. The Max/Min detection stage also updates the MAXthr and
MINthr thresholds (initialized as 0.7 rad/s and -2 rad/s, respectively) using the three previous
valid strides, as in [52].

The third stage updates STRIDE_TIME parameter based on the last three valid strides, as
described in detail in [52]. Briefly, to compute a valid stride, the tool looks for rising periods
where the angular velocity was higher than 0.4 rad/s with a positive derivative, and at this
moment a duration at least 45% of the previous stride has passed (betweenRisesCounter in
Figure 5.2.A). STRIDE_TIME is used to establish the adaptive ranges where the events must
occur. This strategy tailors the algorithm to operate at distinct gait speeds properly and al-
lows the FSM to restart when an event is not detected (exit condition - E).

The last stage implements the FSM through the switch statement presented in Figure
5.2.B). The FSM includes six states, one for each gait event (MAX/MMSW, HS, FF, MMST, HO,
TO), and two additional states (default state and reset state). The decision rules defined in
Table 5.2, and the exit condition (E) are used to trigger the state transitions. The reset state is
the first state to run, resetting all variables and setting the initial conditions. Next, the FSM
transits to the default state and only leaves this state when rule (1) is true, transiting to MAX
state, in the first detection, or to MMSW state, in the remaining situations. Lastly, the devel-
oped tool can also address situations in which the user stands for a period without walking. In

this case, the algorithm resets after a pre-defined time (at least 5.0* STRIDE_TIME).

5.3.2.Experimental Validation

The gait event detection tool was validated using repeated measures of healthy gait pat-
terns recorded in controlled and real-life situations, as depicted in Figure 5.3. The subjects

signed a written informed consent to participate in this study.
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N JaeaNae

Figure 5.3- Validation of the gait event detection system under controlled (1) and real-life walking conditions (2-
flat and rough level-ground, 3-ramp, 4-stairs). The users wore two IMUs of InertialLAB (instep of the foot) and

two FSRs attached to heel and toe by a yellow rubber strap [52].

Controlled walking situations: Participants and Protocol

This validation included 11 healthy volunteers (7 males and 4 females). The subjects pre-
sented an average age of 28.27 + 4.17 years old, the height of 1.70 + 0.08 m, and body mass
of 69 + 12.02kg. The participants were randomly divided into barefoot (6 subjects) and foot-
wear conditions (5 subjects).

The participants conducted walking experiments on a treadmill at different speeds (1.5,
2.5, 3.5, and 4.5 km/h) and slopes (0%, 5%, and 10%). The subjects were asked to perform 3
trials of 30 seconds per condition. Furthermore, the participants were instructed to conduct
walking trials at variable speeds. The subjects walked for 60 seconds and changed gait speed
every 20 seconds according to the provided instructions (increasing from 1.5 km/h to 4.5 km/h

and decreasing from 4.5 km/h to 2.5km/h).

Real-life walking situations: Participants and Protocol

The algorithm validation was extended to real-life indoor and outdoor environments to
evaluate human locomotion in different conditions. For this matter, 9 healthy subjects (6
males and 3 females) were involved, who wore their own sports-shoes. The participants’ mean
age is 27 + 7.35 years old, and they presented a height of 1.70 + 0.12 m and body mass of
62.63 + 9.39 kg.

Three gait trials were randomly performed in the following scenarios: forward level-ground
walking on a 20 m flat surface; forward level-ground walking on a rough surface (urban
ground) along 30 m; descending and ascending an inclined ground (10°) and a 10 m rough
surface; and climbing a staircase of 8 steps (height of 17 cm, depth of 31 cm, and step width
of 110 cm). For each condition, the participants were asked to walk at three self-selected gait
speeds: slow, normal, and fast.
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Data Collection and Analysis

The detected and reference gait events were collected at 100 Hz. The ground truths of HS,
HO, and TO events came from two FSRs placed on the heel and toe (Figure 5.3). The reference
FF, MMST, and MMSW events were found through visual inspection and based on the litera-
ture information [163], [202], [208].

A total of 5657 steps from both feet were analyzed through Matlab® (2016a, The Math-
works, Natick, MA, USA). As performance metrics, the accuracy, the percentage of occurrence
and duration of delays and advances were computed to assess the versatility and time-effec-
tiveness of the proposed tool. The time-effectiveness was only inspected for correct detec-
tions. Timing errors greater than 100 ms (a critical duration for motor rehabilitation purposes)
were considered as a misdetection.

Furthermore, the performance of the proposed tool was compared to a similar state-of-the-
art gait event detection algorithm (four-state Hidden Markov model (HMM) [201]) using the
same dataset. The comparative analysis was limited to the gait events assessed in [201]; HS,
FF, HO and TO events. Note that the two compared methods were tuned using different data
collected in healthy subjects from treadmill forward-walking. Further details in [51] and [201].

Lastly, two statistical analyses were carried out with a significance level of 5%. The first
analysis investigates the accuracy and time-effectiveness of the proposed tool relative to the
desired performance, i.e., 100% and zero ms, respectively. The second analysis is centered on
the comparative analysis including two statistical tests; first, the accuracy of the proposed
algorithm is higher than the one reached by the Mannini’s tool; second, the delay and advance

times of the proposed algorithm are lower than the one achieved by the Mannini’s method.

5.4.Results

5.4.1.Adaptability

The findings indicate that the algorithm’s adaptability provides a proper detection (orange
line in top view of Figure 5.4) even when the foot angular velocity varies with changes in speed
from 1.5 km/h to 4.5 km/h (controlled situation) and from 1 + 0.2 m/sto 2 + 0.18 m/s (real-
life situations).

The increased gait speed results in higher values of angular velocity with shorter stride du-

ration, supporting the need to update the thresholds of MAXr, MINw, and STRIDE_TIME,
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respectively. In particular, by analyzing Figure 5.4, it is possible to conclude that the values of
the adaptive thresholds (MAXthr and MINthr) increase or decrease when the magnitude of
the maxima and minima are higher or lower, respectively.

Also, the adaptive ranges, which are directly dependent on the value of the STRIDE_TIME
(blue line in bottom view of Figure 5.4), change in accordance with these values. The algo-
rithm’s adaptability can also address changes in the magnitude of the angular velocity, which
may result from walking in overground (flat and rough ground) or on staircases.

Human Gait Segmentation

-
o
1

= Angular Speed
= Gait Events

Ang Speed (rad/s)
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Figure 5.4- Gait detection for one subject (top view), walking at distinct speeds, with representation of adaptive
thresholds (middle view) and adaptive ranges (bottom view) changing during the trial. Note that Ang Speed in-
dicates angular speed and Pts the value of the adaptive thresholds dependent on the STRIDE_TIME [52].

5.4.2.Performance Metrics

By analyzing Table 5.3, it was verified that the proposed tool is significantly accurate (p =
0.0812) for the detection of all events at distinct conditions (e.g., speed, slope, footwear or
barefoot) in the controlled situation (accuracy > 95.06%). TO and MMSW events exhibited
lower accuracy (accuracies of 95.95% and 95.06 %, respectively) and had a higher occurrence
of delayed detections (30.80% and 29.35%, respectively), likely due to the existence of local
maxima and minima, respectively. Advanced detections were most observed for HO (18.62 +

9.63 ms) and TO (14.38 + 12.83 ms) events.
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Table 5.3- Performance of proposed tool and Mannini’s tool

Proposed tool

Mannini’s tool

Delay Advance Delay Advance
ACC (%) % | ms % | ms ACC (%) % | ms % | ms
CONTROLLED SITUATIONS

HS 100 124 6.28+12.0 11.86 | 10.25%£12.0 95.07 19.71 40.29+8.9 79.98 19.77+£18.1
FF 99.37 6.23 4.3615.1 9.21 9.18+17.8 92.37 9.16 52.76+20.7 90.31 20.84+19.6
MMST 98.78 20.46 | 30.5349.9 7.92 15.3145.5 - - - - -

HO 99.27 23.78 | 19.67+16.9 | 11.02 | 13.7519.6 88.27 81.26 | 61.04+10.8 16.0 24.72+12.0
TO 97.57 8.74 5.82+15.9 18.24 | 11.1349.6 90.47 77.49 | 21.22+12.0 21.93 44.87+ 8.5
MMSW 94.71 7.41 4.54+4.3 0.29 1.75£4.5 - - - - -

REAL-LIFE SITUATIONS: LEVEL-GROUND

HS 100.0 0.8 1.9049.1 1.2 4.01+1.9 93.07 25.68 | 55.23+10.1 74.32 17.80+3.67
FF 99.24 2.8 2.22+8.56 1.6 1.1949.46 91.32 34.42 | 46.05+8.65 63.40 23.15+2.56
MMST 91.04 23.5 8.63+12.5 16.7 8.43+4.24 - - - - -

HO 96.18 30.8 26.3944.7 0 0.00 86.37 68.11 43.6916.7 31.40 37.52+5.61
TO 98.64 1.1 4.8+£10.56 4.3 3.69+8.95 89.54 71.35 17.3449.34 28.09 36.80+9.1
MMSW 90.50 4.5 8.40+2.65 0.3 5.3+0.80 - - - - -

REAL-LIFE SITUATIONS: INCLINED SURFACES

HS 99.82 0 0.0+0.0 2.3 0.71+2.45 92.57 1.44 61.75+2.4 98.56 11.50+7.60
FF 99.82 0 0.0£0.0 2.7 1.43+£1.98 91.10 16.85 | 23.3643.21 82.79 19.49+4.78
MMST 91.87 22.7 18.7913.2 18.67 | 2.14+0.67 - - - - -

HO 96.17 28.9 16431123 | 1.6 0.71+0.56 85.47 85.89 | 38.11+6.54 13.80 48.32+4.81
TO 97.13 0 0.0£0.0 5.3 6.4315.7 88.94 88.11 14.49+4.0 11.58 30.7943.58
MMSW 90.12 3.7 8.63+2.56 0 0.0+0.0 - - - - -

REAL-LIFE SITUATIONS: STAIRS

HS 96.98 0 0.0£0.0 2.56 2.51+1.56 90.46 10.6 44.9145.2 89.42 18.88+2.45
FF 96.78 0 0.0£0.0 2.4 1.43£1.98 89.43 9.0 58.88+6.71 91.0 23.59+1.45
MMST 92.79 27.41 | 16.79+1.2 12.67 | 22.2+0.67 - - - - -

HO 93.98 24.6 23.617.3 0 0.0£0.0 81.67 80.0 67.39+8.92 18.57 52.35+4.67
TO 95.89 0 0.0£0.0 3.3 6.43+5.7 85.47 79.59 | 24.94+2.60 20.41 45.97+4.60
MMSW 90.79 2.63 2.63+3.16 0 0.0£0.0 - - - - -
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The findings indicate that the proposed tool is significantly more accurate (p > 0.0526) in
level-ground and inclined surfaces than in staircases (p < 0.05). However, in level-ground sur-
faces, the timing errors were significantly different than zero ms (p < 0.05), in contrast, to
ramps (p > 0.0942) and staircases (p > 0.151).

In the real-life walking situations, the HS was the most correctly detected event (accu-
racy>96.98%). On the other hand, MMSW was the least correctly detected event (accuracy >
90.12%) due to the existence of local maxima. MMST was the earlier detected event (mean
advances < 22.2+067 ms). HO was the most delayed gait event (mean delays < 26.39+4.67
ms) due to possible instabilities of the signal during stance (not completely constant). The
remaining gait events presented lower timing errors.

Comparatively to Mannini’s tool, the proposed tool showed significantly lower timing er-
rors (p =0.9314) and a lower occurrence of misdetection (p = 0.9953) in controlled situations.
Moreover, the proposed tool (accuracy>96.98%) is significantly more accurate (p > 0.9925) in
real-life gait event analysis than was Mannini’s tool (accuracy>85.47%). Mannini’s tool also
demonstrated higher timing errors; delayed detections of HS (61.75 £ 2.4 ms) and HO events

(67.39 £ 8.92 ms); advanced detections of the HO event (< 52.35 £ 4.67 ms).

5.5.Discussion

The novelty of the proposed gait event detection tool lies in using a single kinematic meas-
ure to detect six gait events in real-life scenarios, which include variations in gait speeds and
surfaces. Consequently, the algorithm’s adaptability proved to be a key feature for the suc-
cessful application of the proposed tool in real-life situations. Note that the validation only
considered straight-line walking.

In comparison with the literature regarding real-time gait event detection based on gyro-
scope signals, the proposed tool was able to conduct a more holistic gait segmentation by
detecting six gait events instead of only detecting HS and TO events (the most commonly de-
tected events). Moreover, this tool was more accurate when compared with similar studies
[36], [162], [200] conducted in controlled situations and on level-ground surfaces.

So far, there has been no study able to detect the six gait events in both inclined surfaces
and staircases. Catalfamo et al. [39] reported that their heuristic rules were able to segment

the HS and TO events (accuracy of 98%) on inclined surfaces (indoor and outdoor
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environments) with a delay of 25 ms and an advance of 75 ms. The presented adaptive method
has shown to be more time-effective (advance errors lower than 6.4315.7 ms and no ob-
served delayed timing errors), and similarly accurate (accuracy of 99.82% and 97.13% for HS
and TO, respectively) on inclined surfaces. Moreover, in stair walking, the proposed tool
achieved favorable performance in terms of accuracy (HS=96.98% > 95.5%; TO = 95.89% >
93.1%) and time-effectiveness (H5=0.0+0.0 ms < 11+18 ms; TO=6.4315.7 ms < 35+20 ms)
when compared to study [40].

Furthermore, through a comparison with the HMM proposed in [201] using the same da-
taset, it was verified that the proposed approach performs advantageously in the detection
of HS (delays of 61.75>6.28 ms; advances of 19.77>10.25ms), FF (delays of 58.88>4.36 ms;
advances of 23.59>9.18 ms), HO (delays of 67.39 > 26.39 ms; advances of 52.35>11.02 ms),
and TO (delays of 24.94>5.82 ms; advances of 28.09>18.24 ms). This benchmark analysis high-

lights the benefits of the proposed computational method for the gait event detection field.

5.6.Conclusions

The proposed gait event detection tool has shown to be a time-effective, wearable strat-
egy attempting for minimal sensing input to provide a more practical solution for real-time
and real-life gait analysis. The adaptability introduced provides more accurate gait analysis in
different walking conditions, handles with inter-subject and inter-step variability. Moreover,
the tool was robust in barefoot and footwear conditions even when different types (size,
shape) of shoes were worn. This finding highlights the versatility of the proposed tool for dif-
ferent user’s foot conditions in opposition to the force-based sensors. Additionally, the inertial
sensor-based detection showed to be more accurate when compared to FSR-based detection,
as reported in [209], due to the inconsistency response of FSR signals across terrains. Overall,
the use of IMUs may be advantageous over FSR for gait event detection.

The gait segmentation plays an important role for user’s motion recognition, as described
in Chapter 6. Additionally, as the delay presented by the developed tool is lower than the
response time of human physiological structures (128 ms [210]), the integration of this tool in
real-time control is feasible. The tool has also been useful in the analysis of orthotic-based

assisted gait, as considered in Chapter 7.
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Chapter 6 — Daily Locomotion Mode Recognition and

Prediction

This chapter highlights the potential of the user’s motion intention recognition in gait re-
habilitation, namely the contribution of recognition and prediction tools to timely classify lo-
comotion modes (LMs) and locomotion mode transitions (LMTs). Moreover, it presents the
development and validation of an automatic, versatile, user-independent machine learning-
based tool for user’s motion intention recognition and prediction of different daily LMs and
LMTs, based on minimal kinematic data from wearable sensors, namely InertialLAB described
in Chapter 4, and applying the gait segmentation introduced in Chapter 5. The chapter ends
with a critical analysis of the effectiveness of the developed gait analysis tool and future di-

rections.

6.1.Introductory Insight

Humans can perform distinct LMs in a variety of conditions and terrains in their daily rou-
tine. The classification of daily LMs and LMTs can be applied to tune the assistance provided
by robotic assistive devices such as AOs according to the patient’s LM and to generate smooth

transitions, respectively [9]. The recognition and prediction of LMs and LMTs is a requirement
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in user-oriented rehabilitation and assistance in daily-life scenarios [211]. For this purpose, it
is necessary to develop automatic, user-independent tools capable of recognizing and predict-
ing the LM and LMTs [9].

Multiple efforts have been made to develop automatic LM recognition tools. Part of them
tackles pattern-recognition from EMG data [41], [212], [213]. However, EMG sensors present
some drawbacks when compared to wearable kinematic sensors, such as the lengthy and ex-
pert-based installation, difficulty for keeping them attached during the user’s daily locomo-
tion, and the shifting electrodes may change EMG patterns and degrade the classification over
time [189], [211], [213]. To avoid these limitations, more cost-effective, wearable kinematic

sensors, namely IMUs, have applied.

6.2.Critical Analysis of Related Work

Previous studies [189], [211], [214] have proposed LM recognition tools driven by IMU
sensors and validated in able-bodied subjects. Jang et al. [214] and Li et al. [211] applied a
threshold-based FSM to recognize three (level-ground walking, and stair ascent and descent)
and five (level-ground walking, stair ascent and descent, and ramp ascent and descent) loco-
motion modes, respectively.

On the other hand, Liu et al. [189] and Leuenberger et al. [215] employed machine learning
approaches, namely the linear discriminant analysis (LDA) and the k-nearest neighbors (KNN),
to recognize five (level-ground, stair ascent and descent, and ramp ascent and descent) and
three (level walking, stair ascent, and stair descent) locomotion modes, respectively. Despite
their contribution to accurate recognition tools, these works did not tackle the LM prediction
problem, nor LMT classification, both demanded on robotic-based rehabilitation and assis-
tance.

Considering the existing state-of-the-art [41]—[43] on predicting LMs and recognizing LMTs,
some methodological drawbacks were observed. Huang’s work [41] used LDA and support
vector machine (SVM) to recognize five LMTs (level-ground walking to stair ascent, ramp as-
cent, and stepping over an obstacle and stair descent and ramp descent to level-ground walk-
ing). Despite the successful classification, some factors are limiting this work; namely, the tool
depends on EMG information, and transitions were recognized when one of the legs was

already on the next terrain type. This transition assumption, also observed in [42], does not
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lead to a genuine user-independent tool since the user is asked to start the terrain transition
with a predefined limb and it may interfere with the natural gait flow. In contrast, Chen et al.
[43] applied LDA for LMT recognition without imposing a predefined leg for performing the
transition. Nevertheless, this tool was not prepared to recognize common LMTs between the
level-ground and ramp.

There is still a set of challenges to be pursued, as follows. First, to develop a more versatile
tool for predicting and recognizing more daily LMs and LMTs. Second, to use discriminative
sensor data measured by a minimal number of easily wearable sensors. Third, to allow the
user to choose the leading limb to perform the LMT freely. The last challenge demands less

cognitive effort from the user and enabling a more natural walk during daily activities.

6.3.Methods

The proposed tool tackles the challenges mentioned above. It consists of a versatile, auto-
matic recognition and prediction tool for classifying LMs and LMTs using kinematic data col-
lected from an easily wearable sensor system, namely the InertialLAB, that fosters a natural
gait. The recognition and prediction tool aims at an efficient classification of the LMs com-
monly encountered in the daily life while covering different walking directions (i.e., forward,
back, clockwise, and counter-clockwise) along with variations in gait speed and terrains (i.e.,
flat, ascending and descending stairs, climbing up and down ramp, stepping over obstacles).
The tool also approaches transitions from/to those terrains using the user’s self-selected
lower limb. Furthermore, the tool was designed to be user-independent, i.e., it was built in-
cluding data from different subjects instead of building a tool tuned per subject [42].

To develop the proposed tool, a machine learning-based framework, illustrated in Figure
6.1, was designed for enabling the fast and systematic implementation, testing, and compari-
son of various state-of-the-art algorithms namely, feature selection and pre-processing meth-
ods, and machine learning classifiers (DA, KNN, random forest, and SVM) with the same data.
The framework, implemented in Matlab® (2017b, The Mathworks, MA, USA), allows the au-
tomatic and replicated LM and LMT classification and a benchmark to identify an accurate
classification tool for both recognition and prediction purposes. This framework considers the
procedures reviewed in [47], which points out the contributions of machine learning classifiers

for this application due to their generalization ability to accommodate the environmental and
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subject variability and to be accurate for classifying newly available data [47]. Each stage of

the proposed framework is explained in the following.

Data Acquisition * Do if used

Only Training
Raw Data Table
Y Only Testing

Feature Calculation

Feature Table

Pre-Processing

[ Normalization ]

LFiltel‘ Selection* |[ Filter Extraction* |
(Filter Method)

Processed Feature Table

Data Labeling
Labeled Feature Table
Model Building
Hyperparameter Filter Selection*
Optimization (Wrapper or Embedded Method)
Labeled Feature Table [~ Built Model 1
Model Evaluation Classification
v
Model’s Performance Metric Classification Result

Figure 6.1- Schematic of the machine learning-based framework.

6.3.1.Data Acquisition

The raw data table (Figure 6.1) included kinematic data, sampled at 200 Hz, namely the
angle/orientation and angular velocity of lower limb segments’ (thigh, shank, and foot) in
the sagittal plane, and the angle and angular velocity of the torso in the sagittal and axial
planes. For this purpose, the InertialLAB was used considering the IMUs positioning on the
outer side of the thighs and shanks, on top of the feet, and one IMU on the torso. Data were

filtered by a 15t order low-pass filter (exponential smoothing) with 0.5 as the smoothing factor.

Participants

Ten able-bodied subjects (6 males and 4 females) were included who signed an informed
consent form before the trials. The participants’ mean age was 27+7.35 years old, with a

height of 1.70 £ 0.12 m and body mass of 62.63 + 9.39 kg.
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Protocol

Before data collection, the InertialLAB was calibrated while the subject was in the upright
standing position for 5 s. Then, the participants were asked to perform 9 trials per walking
direction (3 trials per gait speed). The trials included different walking directions (forward,
backward, clockwise, and counterclockwise) performed on a 10 m level-ground at 3 self-se-
lected gait speeds (slow, normal, and fast).

Additionally, the subjects conducted 10 trials on four circuits at a self-selected gait speed.
In the first circuit (Figure 6.2.A), they walked 2 m forward on level-ground; ascended the stair-
case; walked forward on level-ground for 2 m and stopped; and descended the staircase back
to the starting position. This circuit included 3 LMs (level-ground walking (LW), stair ascent
(SA), and stair descent (SD)) and 4 LMTs (LW->SA, SA—>LW, LW-SD, SD->LW). The staircase
had 8 steps each with 17 cm of height, 31 cm of depth and 110 cm width. On the second
circuit, the participants walked 2 m forward on level-ground; ascended a ramp; walked for-
ward on level-ground for 2 m and stopped; and descended the ramp back to the starting po-
sition. The ramp was 10 m with 10° inclination. This circuit included 3 LMs (LW, ramp ascent
(RA), and ramp descent (RD)) and 4 LMTs (LW—>RA, RA->LW, LW->RD, RD—>LW). On the 2 last
circuits, the subjects walked forward 2 m on level-ground, step over an obstacle (SO), and
walked forward 2 m (Figure 6.2.B). These circuits differ on the obstacle dimension. One circuit
included an obstacle with 22 cm in height and 34 cm in depth; whereas, the other circuit in-
volved an obstacle with 34 cm in height and 22 cm in depth. The subjects could freely perform
the LMTs with any leading leg to enable transition seamlessly between LMs.

During the terrain transition, the participants performed transitional steps, which have a
different meaning for recognition and prediction purposes. For recognition, a transitional step
refers to the period from the instant that the leading limb left the prior terrain (last foot con-
tact) to the first moment that this limb touched the upcoming terrain (initial foot contact). For
prediction, the transitional step is the step that precedes the ongoing transitional step (used
in recognition). An experimenter walked alongside the subjects marking the transitional mo-
ments (vertical red line in (Figure 6.2) using a digital button, similarly to [42], [216]. A transi-

tional moment is a moment belonging to the transitional step considered for recognition.
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Figure 6.2- Representation of two circuits highlighting the transitional step, the transitional moment, and the
explored time window’s sizes for recognition and prediction purposes using HS and TO events. A: Staircase. B:
Obstacles.

6.3.2.Feature Calculation

The Feature Calculation stage aims to obtain a feature table that includes five types of
features (the mean value, standard deviation value, range, and the values of the first and
last positions) calculated per gait stride for each kinematic data of the raw data table, result-
ing in a total of 80 features. Previous published intent recognition tools have used such featu-

res [42], [216], [217]. Figure 6.3 presents the content of the feature table.

raw data table

Plane Sagittal Coronal 16 Kinematic feature “able
Data Angle & . Angle & - Data i
Angular Velocity | Angular Velocity Kinematic data Features
Thigh. Sl}an.k. Torso thigh angle mean
Limb | Foot (x2 limbs) thigh_angle_std

& Torso
Qg Thigh Angle thigh angle range

feature list thigh_angle first
1. Mean value thigh_angle_last
2. Standard deviation value (std) (..)
3. Range = Maximum — Minimum 80 features
. 5 Feature :
4. Value at first position (first)
. types

Value at last position (last)

Figure 6.3- Content of the feature table with 5 types of features per kinematic data.

The gait stride’s boundaries were defined as the HS and TO events (detected as described
in Chapter 5 and in [51]) for recognition and prediction models, respectively, as illustrated in

Figure 6.2. The TO was elected for prediction instead of HS event since it is a critical point for
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transition (i.e., the beginning of the transitional step) [42] and it has achieved low prediction
errors [218].

Further, different time window’s sizes were investigated and established as fractions of
the stride (namely, full-stride, 1/2, 1/3, 1/4, 1/5, and 1/6) to identify the most representative
window’s size for recognition and prediction models. The fractions of the stride were arbitrary
selected, as in [218], to explore segmentation approaches less dependent on external tools
for gait event detection in an attempt to minimize cumulative errors. As the time window’s
size is based on fractions of the stride, it adapts automatically to gait speed variations instead
of considering a fixed timing size.

As depicted in Figure 6.2, for recognition and prediction models, the features were calcu-
lated from a time window that starts with the HS event and ends according to the selected
stride’s fraction, and from a time window that starts according to the selected stride’s fraction
and ends with the TO event, respectively.

The feature table contains data from both legs [219]. There is evidence that bilateral fea-
tures improve intent recognition [216] and that walking, especially transitions, requires bilat-
eral coordination of the lower limbs. Two leg feature approaches were explored to study the
relevance of discriminating the leading and opposite legs. The first approach considers the

leading and opposite leg, whereas the second approach considers the left and right leg.

6.3.3.Pre-Processing

The Pre-Processing stage is relevant for improving features using normalization techniques
and for identifying discriminative features to build the models.

The features were normalized by the subject’s height since the anthropometric scaling fea-
tures reduce the variability of the feature table [47]. Additionally, different normalization
techniques, namely centering, z-score standardization, and min-max scaling [220], were im-
plemented and compared.

Furthermore, one filter feature selection method and one feature extraction method were
implemented for identifying discriminative features. As the filter method, it was considered
the analysis of variance (ANOVA)-based method that uses the minimum-redundancy maxi-
mum-relevancy (mRMR) algorithm to rank features in descending order according to their rel-
evance [221]. Afterward, the ANOVA, starting on the highest ranked feature, assessed which

classes are distinguishable for the feature considering the feature’s mean and variance per
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class. This procedure was done until there are a set of features that distinguish between all
classes.

Regarding the feature extraction method, the principal component analysis (PCA) was im-
plemented considering the Horn’s Parallel Analysis as a cut-off criterium for extracting the
number of components to retain [222]. A component is retained whether the associated ei-

genvalue is higher than 95%™ of the distribution of eigenvalues derived from the random data.

6.3.4. Data Labeling

In the Data Labeling stage, the processed feature table was labeled according to the LM or
LMT from whereas it was collected, creating the labeled feature table. The labeling process
merged a priori knowledge of the feature’s origin with the transitional moment recorded dur-
ing gait trials. During the training, the labeled feature table is the ground truth on which the
model bases its decisions.

The framework was designed and implemented with 8 classification models for both
recognition and prediction purposes (4 models for each one), following the classification
scheme depicted in Figure 6.4. The features of the recognition and prediction databases were
equally labeled as follows. The direction_ft database includes features from the trials varying
the walking direction. This database contains 4 classes (i.e., forward, backward, counter-
clockwise, and clockwise), and the features were labeled according to these classes.

The sts_trs_ft database contains two classes; the steady-state step, that considers all gait
steps associated with the LMs; and transition step, that includes the gait steps related to
LMTs. The features of the steady_state_type_ft database were labeled according to the five
steady-state classes, one per LM (i.e., LW, SA, SD, RA, and RD). The database transi-
tion_type_ft includes features from transitional steps, which were labeled according to nine
classes: LW—>SA; SA—>LW; LW->SD; SD>LW; LW->RA; RA->LW; LW->RD; RD->LW; and, SO.
The period for crossing the obstacle (SO) refers to a transitional step from the first terrain (LW)

to the second one (LW).

6.3.5.Model Building

The Model Building stage builds the classification models for recognition and prediction
purposes. It may involve the application of wrapper and embedded feature selection methods

and the optimization of the model’s hyperparameters.
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Two wrapper feature selection methods were explored, the “mRMR plus forward selec-
tion” and “forward selection plus backward selection”. When using “mRMR plus forward se-
lection”, the features were ranked through the mRMR method and a classification model was
built and evaluated using the highest rated feature. A feature was only kept when it increased
the performance. This selection was made for every feature or until the classification model
reached the maximum performance (Mathew’s correlation coefficient equal to 1). When using
“forward selection plus backward selection”, the feature that improves the performance the
most in combination with the already established feature set was added to the set. Afterward,
the backward selection was used on the obtained feature set, and the process was inverted;
the features were iteratively removed if their absence did not affect the model’s performance.

Moreover, four machine learning classifiers were implemented and compared; DA with lin-
ear and quadratic approaches; KNN, using both weighted and unweighted (regular) neighbor
distances; random forest, and SVM, using linear, quadratic, cubic and Gaussian kernels. This
comparison aims to identify the best-suited classifier for the LM and LMT prediction and
recognition, given their prevalence in the literature [47].

The classifiers’ hyperparameters were optimized for each selected feature dataset. The
KNN and random forest were tuned by increasing the number of nearest neighbors (k) and
the number of decision trees, respectively, starting with 1 until the performance reached the
maximum value or started decreasing. For the SVM, the grid-search strategy ([-10 ; 10] inter-
val) was used to tune the box constraint parameter (C) and the kernel scale parameter (o) for
the Gaussian kernel. DA used the delta threshold set to 0, and gamma regularization set to 1.

This stage produced 4 classification models (Figure 6.4) per recognition and prediction pur-
poses, as follows. The Direction Classification Model classified the gait step data according to
the walking direction. If a gait step has been classified as forward, then it was classified as a
steady-state step or a transitional step by the Steady-State/Transition Type Classification
Model. If it has been classified as steady-state, the Steady-State Type Classification Model
was used for the final classification. Otherwise, the final classification used the Transition Type
Classification Model. This classification sequence was applied to build the recognition and

prediction models.
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Figure 6.4- Schematic of the classification model’s sequence for recognition and prediction purposes. Identifi-
cation of databases and classes (marked at red).

The implemented classification scheme (Figure 6.4) seems to be advantageous compared
with the one proposed in [42], [216] since it demands fewer models, decreasing the compu-
tational load, and allows the easy incorporation of further LMs and LMTs, adding versatility to

the framework to act as a benchmark tool.

6.3.6.Model Evaluation

For evaluating the built model, cross-validation methods were applied following a two-fold
applicational goal. The first goal aims the hyperparameter tuning and comparison of the clas-
sification models using the different features and pre-processing techniques. In this case, the
Model Evaluation was performed by 2-fold cross-validation for minimizing the computational
burden associated with the exhaustive model’s comparison. The second goal aims to evaluate
the generalization capability of the final classification models using the leave-one-subject-out
cross-validation [47].

As performance metrics, Mathew’s correlation coefficient (MCC) was used due to its good
representative properties of unbalanced classes [223], as considered in this work. The accu-

racy was calculated for comparing the results with the literature’s findings [47].

6.4.Results and Discussion

This section presents the results achieved for the final recognition and prediction tool built
from the developed machine learning-based framework using the most effective techniques
found for each stage. The comparative analysis of the different techniques explored in the
framework is detailed in Appendix F. The findings presented in this subchapter allow investi-

gating whether kinematic data is enough to recognize and predict LMs and LMTs.
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6.4.1.Evaluation of Recognition Tool

The final recognition models were built using features calculated from a window size cov-
ering full-stride with the left/right approach and normalized by min-max scaling in [-1; 1]
interval, the “mRMR plus forward selection” method for feature selection, and the Gaussian
SVM classifier (C = 64, 0 = 4).

Table 6.1 summarizes the results by describing the number of classified steps, the number
of selected features by “mRMR plus forward selection” method, and the performance metrics,

MCC and accuracy.

Table 6.1- Recognition tool’s performance considering mean and standard deviation of MCC and accuracy (ACC)

Number Number of selected

Recognition Model McCC ACC (%)
of steps features
Direction 6064 43 0.998+0.001  99.9+0.4
Steady-State/Transition 3170 69 0.817 £+0.008 96.5+0.12
Transition Type 300 19 0.993+0.011  99.6+0.22
Steady-State Type 2870 53 0.995+0.001  99.8+0.3

As shown in Table 6.1, the number of used features was variable. Some features were
selected for all recognition models, namely: (i) for left thigh, the last position of the sagittal
angle and mean of the angular velocity; (ii) for left shank, the first position of the sagittal angle;
(iii) for left foot, standard deviation of the sagittal angle, standard deviation and range of the
angular velocity; (iv) for right thigh, mean value of the angular velocity; and (v) for right shank,
the mean value of the angular velocity.

In particular, the features collected from the IMU placed on the back were exclusively
used in the recognition models, as follows: standard deviation of the axial torso angle for
Direction Recognition Model; mean of sagittal torso angular velocity for Transition Type
Recognition Model; standard deviation of the axial torso angular velocity for Steady-State
Type Recognition Model; and, mean, range and first position of the sagittal torso angle, first
and last position of the sagittal torso angular velocity, mean and first position of the axial torso
angle for Steady-State/Transition Recognition Model. The feature selection for the different
models was consistent across subjects and involved features from all 7 IMUs.

The Direction Recognition Model had near-perfect results (MCC = 0.998, accuracy =

99.9%) with only few forward steps being classified as counter-clockwise or clockwise. This
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model used 43 features from a total of 80. It shows that not all information is necessary for
accurate classification of the walking direction.

On the other hand, the Steady-State/Transition Recognition Model was less effective
(MCC=0.817, accuracy = 96.5%) even using more features (69 features). Previous studies [42],
[218] reported that the inclusion of ramps as an LM introduced some error due to the similar-
ities between ramps and LW. This remark is according to the obtained results since all mis-
classifications involved the walking on or transitioning to ramps. The performance of Steady-
State/Transition Recognition Model may affect end-stage classification accuracy, i.e., the per-
formance of the Transition Type Recognition Model and Steady-State Type Recognition
Model.

The Transition Type Recognition Model was accurate (MCC = 0.993, accuracy = 99.6%),
even when it was built with one-tenth of the steps and with the least number of features (19
features) used in other models. This finding shows that it is possible to distinguish transition
steps with high accuracy using a small number of kinematic features. The Steady-State Type
Recognition Model had near-perfect results (MCC = 0.995, accuracy = 99.8%) using 53 fea-
tures. Errors were due to the classification of level walking steps as ramp steps and vice-versa.

By comparing with the existing machine learning-based recognition tools based on kine-
matic data from wearable sensors, the proposed recognition tool can perform a more versa-
tile classification. So far, there is still any accurate recognition tool able to classify LMs and
LMTs that considers different walking directions in LW (forward, back, clockwise, and counter-
clockwise) and terrains (LW, RA, RD, SA, and SD). Chan et al. [62] limited the recognition to SA
and SD by using a less accurate tool (accuracy = 96.8%) than the one proposed in this work
(accuracy = 99.8%). Further, the proposed recognition tool performs better when comparing
to the one in [215], which identified the LW, SA, and SD with a sensitivity of 97%, 94%, and
87%, respectively.

The achieved results for recognizing steady-state steps in the LMs (LW, SA, SD, RA, and RD)
are consistent with the ones reported in [43] (accuracy = 99.8% and accuracy = 99.7%, respec-
tively), where the lowest recognition accuracy occurred for RA. Nonetheless, this tool [43] did
not define transitional steps as their class; instead, they set a boundary between LMs after
which the upcoming LM was attributed. In contrast, the proposed tool recognizes the transi-
tional steps to allow some time to the robotic assistive device to timely generate smooth

LMTs.
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Lastly, it was observed that the most effective recognition tools proposed in the literature
[41], [42] only recognized a LMT after the leading leg is already on the next terrain. In contrast,
the proposed recognition tool recognizes an LMT before the leading leg reaches the second
terrain type, without demanding any predefined leading leg, allowing a more natural walk in

daily activities.

6.4.2.Evaluation of Prediction Tool

The final prediction models were built using features calculated over a window size of 1/4
of the stride preceding the leading/opposite leg approach, normalized by min-max scaling in
[-1; 1] interval, and selected by the “mRMR plus forward selection” method. The prediction
models were built using Gaussian SVM classifier (C = 64, 0 = 4). The findings suggest that
the interval from 1/4 stride’s fraction to the toe-off event (likely from terminal stance phase
to preswing phase) contains relevant information for the user’s motion prediction.

Table 6.2 presents the results considering the number of classified steps, the number of
selected features by “mRMR plus forward selection” method, and the performance metrics,

the MCC and accuracy.

Table 6.2- Prediction tool’s performance considering mean and standard deviation of MCC and accuracy (ACC)

Number Number of selected

Recognition Model McCC ACC (%)
of steps features
Direction 6070 52 0.989+0.008 99.6+0.3
Transition Type 316 38 0.887+0.0184  95.9+0.47
Steady-State Type 2876 59 0.986+0.003 99.4+0.8

The prediction models incorporate a different number of features by including features
calculated from all IMUs of InertialLAB. This outcome indicates that the dimensionality reduc-
tion did not contribute to reducing the number of wearable sensors. Around eighteen fea-
tures (almost 25% of the total) were common to all models. The prediction models used more
features than analogous recognition models.

Some features were exclusively used in the prediction models, as follows: mean of the
event foot angular velocity for Direction Prediction Model; first and last positions of the sag-
ittal torso angle, and standard deviation of the sagittal torso angular velocity for Steady-

State/Transition Prediction Model; mean angular velocity of the opposite shank, range of the
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opposite foot angle, range of the sagittal torso angle, last position of the sagittal torso angular
velocity for Steady-State Prediction Model. No specific feature was associated exclusively with
the Transition Type Prediction Model, and there is no evidence for indicating the critical sen-
sors per prediction model.

The Direction Prediction Model presented a near-perfect behavior (MCC =0.989, accuracy
=99.6%), even when considering variations in gait speed. The misclassifications that occurred
when forward steps were classified as counter-clockwise or clockwise and vice-versa, similarly
to the recognition models. The model used 52 features from a total of 80 features, showing
that there were still quite a few features irrelevant to the model. A previous turn system with
IMUs reported results similar to the ones achieved in this work (accuracy> 97% vs. accuracy =
99.6%, respectively) [219].

The Steady-State/Transition Prediction Model had the worst performance (MCC = 0.607,
accuracy = 93.3%) while using most features (64 features). The use of an unbalanced sts_trs_ft
database including a higher number of steady-state steps than transitional steps may explain
this finding. The Transition Type Prediction Model was suitable (MCC = 0.887, accuracy =
95.7%), mainly for SA->LW, SD->LW, RD->LW transitions. Moreover, the Steady-State Type
Prediction Model has shown to be effective (MCC = 0.9857, accuracy = 99.4%) when using 59
features.

A previous study [42] developed a prediction system based on kinematic data and LDA that
was able to classify LW, ramp, and stair steady-states with 99% accuracy. The proposed pre-
diction tool (accuracy = 99.4%) also matches this performance, suggesting it is more versatile
(considers more LM and LMTs) and similarly effective, when compared with similar works.
Moreover, the proposed tool was in part identical to study [216], by investigating kinematic
data from the step that precedes the LMT. However, the presented prediction models are
more accurate, more versatile by varying walking direction and speed on LW, and followed a
lower complex prediction scheme than the one proposed in [216]. Furthermore, the devel-
oped approach is more practical considering daily application requirements given the faster
time for wearing the IMUs and provided a less intrusive experience than the one reached with
the tethered solution proposed in [216].

Other studies [218], [224] have combined EMG with kinematic sensors, addressing a neu-
romechanical sensor fusion for improving the steady-state and transition prediction. The sen-

sor fusion used in [224] was slightly more effective (accuracy = 0.95) in the transition
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prediction problem than the proposed kinematic-based tool (accuracy = 93.3% for Steady-
State/Transition Prediction Model and accuracy = 95.9% for Transition Type Prediction
Model). On the other hand, the developed transition prediction model was more accurate
than the models described in [218] (accuracy = 88%), which used EMG sensors that also re-

ported uncomfortable usability [42].

6.4.3.Limitations

The developed classification scheme requires accurate classification models throughout
the classification sequence since classification errors would propagate from the initial to final
classification stage. This means that the performance of both the Steady-State Type Classifi-
cation Model and Transition Type Classification Model depends on the effectiveness of Direc-
tion Classification Model and Steady-State/Transition Type Classification Model. In practice,
the accuracy of Steady-State Type Classification Models and Transition Type Classification
Models is lower than the one presented in Table 6.1 and Table 6.2 since it would be needed
to add the classification error of Direction Classification Model and Steady-State/Transition
Type Classification Model.

Moreover, the reduced number of transitional steps might be underperformed the Steady-
State/Transition Prediction Model.

The validation of the proposed recognition and prediction tool was limited to gait patterns
obtained from a set of healthy subjects. The variation of walking direction and gait speed with

terrains was not addressed in this thesis.

6.5.Conclusions

The benchmarking analysis using the developed machine learning-based framework con-
cluded that the min-max normalization within [-1; 1] interval, “mRMR plus forward selec-
tion” feature selection method, and Gaussian SVM classifier as the most accurate techniques
for building recognition and prediction tool. The findings highlight the following concluding
remarks. First, the discrimination of the leading and opposite legs is relevant for prediction.
Second, the dimensionality reduction methods that depend on the built model outperformed
the ones (as ANOVA and PCA) that do consider the classification model. The SVM’s ability to
define more complex decision boundaries favors the user’s motion analysis, as reviewed in
[47].
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The developed automatic, user-independent recognition and prediction tool tuned with
kinematic patterns correctly classify LMs and LMTs commonly encountered in daily life. The
contribution of this work to the state-of-the-art is manifold; it proposes a more versatile tool
that classifies several LMs and LMTs while covering different walking directions and terrains;
it tackles the transition prediction problem only using kinematic data; and, it allows the user
to self-select the leading limb for performing the transitional step. There is evidence that kin-
ematic data are appropriate for predicting LMs and LMTs one step before their occurrence.

Moreover, the proposed tool was able to achieve generalization for a given set of healthy
subjects. It may be applied to establish a recognition and prediction tool for a segment of the
population of pathological end-users.

There is still room for improving the decision-making from/to ramp by using environment
awareness to infer the interaction between the user and the world [225]. Recent efforts are
being made to update the user’s motion intention tool of SmartOs considering the forecasting
nature of infrared laser sensor data, inspired by the human ability to adapt and transit among
LMs considering the visualized upcoming terrain changes. The LM transition prediction tool
based on a wearable infrared laser sensor showed in [54] to be accurate and time-effective
(prediction time > 0.73 s) for LMTs in different terrains (level-terrain, stairs, and ramps).

Lastly, the ability of the proposed tool for classifying the user’s motion intention will be

extended for the high-level layer of the control architecture described in Chapter 7.
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Chapter 7 — Assistive Control Strategies

This chapter starts with an introductory insight into the assistive control strategies applied
in robotic-based gait training. Then, it presents the implemented hierarchical control archi-
tecture, detailing the development and validation of the assistive control strategies ap-
proached in this thesis. The potential rehabilitation benefits of each assistive strategy are dis-
closed and discussed. Moreover, this chapter investigates the contributions of Feedback Error
Learning (FEL) as a time-effective and adaptive low-level controller for SmartOs system. The
chapter ends with a comprehensive concluding insight into the proposed assistive control

strategies.

7.1.Introductory Insight

Gait rehabilitation involves a physical and cognitive relearning of how to move to carry out
their needs successfully and in a safe manner [11]. AOs should foster such gait rehabilitation
by endowing assistive control strategies designed to enable user-oriented and intuitive mo-
tor learning. While assisting and enabling long-term recovery of motor abilities, these control
strategies have been reducing the burdens placed on short supply of therapies and other

health care personnel [9].
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Previous neuroscience studies have demonstrated that repetition plays a significant role in
potentiating motor relearning and functional reorganization [11]. Consequently, rehabilita-
tion intervention involving AOs towards repetitive locomotor movements for long-term train-
ing sessions, mainly when trajectory assistive strategies are applied [9], [31]. The trajectory
control is a conventional assistive strategy that guides the AOs to move along repetitive and
specific movements, based on predefined position or torque trajectories, similar to the way
that therapists move patient’s legs during manual assistance [11], [29]. New directions include
adjustment of trajectories according to the users’ body conditions and gait speed, approach-
ing the adaptive trajectory control to improve the user’s movement coordination and enabling
a natural gait pattern recovery [27], [28]. Central pattern generators, applying biological con-
cepts of the human motion control system, can be used for generating adaptive trajectories
considering gait speed variations [226].

Motor learning theories have also highlighted the needed for teaching more functional
gait patterns, which allow neurologically impaired subjects to achieve a certain level of phys-
ical independence on daily living [11]. Consequently, assistive control strategies such as EMG-
based control [33], [227] and reflex-based control using neuromuscular bioinspired models
[28], [228] have been proposed to foster user-oriented assistance during high-challenging and
dynamic locomotor tasks.

There is evidence that the effects’ size of robotic-driven gait rehabilitation, such as the
functional motor recovery result from the user’s voluntary participation, depends on how
compliant is the human-robot interaction [31], [229]. Impedance assistive strategies have
been implemented by modulating the impedance of assistive devices to establish a symbiotic
human-robot interaction, maintaining the interaction force below safe levels for the user
while controlling the limb position according to the desired trajectories for the gait therapy
[229].

Additionally, AAN control strategies, such as adaptive impedance control [29], [230],
[231], AAN EMG-based control [232], [233], and energy-based control (making use of a phys-
iological signal of energy) [234] have been proposed to ensure an energetic-efficient assis-
tance for providing a more personalized and functional training [11], [27], [235]. These strat-
egies are able to automatically modify control parameters to tailor the assistance based on

the individual user’s needs.
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Note that different controllers, such as feedback control, model-based control, iterative
learning control, and fuzzy control [236], may be used to ensure that the assistive devices
track the desired assistance set by these assistive control strategies.

Table 7.1 presents an overview of the assistive control strategies mostly applied in active
assistive devices. Each of these strategies may be advantageous in some gait rehabilitation

and assistance paradigms depending on the user’s disability level and therapeutic purposes.

Table 7.1- Summary of the control strategies applied to active assistive devices. Information obtained from [10],

[11], [13], [45], [46], [237].

Control L. . Assistive
Principle Advantage Disadvantage i
Strategy Device (e.g.)
Predefined .
. - Useful for patients
Trajectory . - Not encourage the sub-
Impose with severe motor L L ATLAS;
Control . ject’s participation;
. repetitive pathology; . , eLEGs; HAL;
/ Adaptive . . , - Not consider the user’s .
. trajectories - Increase the leg’s . . Mindwalker,
Trajectory movement intention;
natural frequency; SCKAFOS
Control
. - Considers human- Knee ortho-
Impedance  Modify the . . ) . .
. robot interaction. - Inter/intra-subject sis by
control / impedance/ . .
. . - Encourage the difference affects the Daachi;
Adaptive compliance , L .
. user’s participation; control modelling; Lokomat®;
impedance of the . .
. - Considers the Orthosis by
control assistance e L .
user’s disabilities; Hussain
Follow - Considers the - Differences in muscular
user’s user’s disabilities; activity between users AAFO by P.
motion - Tracks patient’s and motion tasks; Kao, AAFO
EMG-based . o . .
Control intention rehabilitation - Requires repeated by Ferris,
ontro
based on progress; calibration to deal with Sharif Exo-
EMG signals - Encourage the muscular activity varia- skeleton

user’s participation; tion

Introducing gait training variability improves the overall function motor performance and
enables to accommodate the variability of the inter-and intra-subject needs. In this sense, the
AOs should approach different assistive control strategies offering a multi-functional assistive
system suitable for distinct kinds of therapies.

Bioinspired control architectures, following the principles and organization of the human
motion-control system, started to emerge [9], to efficiently approach user-oriented and AAN
strategies and to provide a seamless and synergetic user-orthosis interaction for increasing

brain plasticity [28]. Such architectures comprise the design of low-, mid-, and high-level
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controls, distributed hierarchically to accounts with the physical interaction between the user,
the environment, and the AO [9], [46].

The design and development of the hierarchical control architecture of SmartOs followed
these research directions and the potentialities of each assistive control strategy, as following

described in this chapter.

7.2.Hierarchical Control Architecture

SmartOs system endows a safe, hierarchical, closed-loop control architecture hierarchi-
cally structured into three-control levels, as illustrated in Figure 3.1. Both structure and the
fusion of control and sensor feedback systems were bioinspired on the human motion-control
system.

The high-level, the perception layer, was designed to manage the gait analysis tools for
user’s motion intention recognition (presented in Chapter 6), gait event detection (described
in Chapter 5), gait speed estimation (given in Chapter 4), and user’s disability level recognition.
It sets user-oriented gait trajectories. The mid-level, the translation layer, converts the user-
oriented trajectories into AO reference trajectories tailored by the current gait event and
human-orthosis interaction when needed. Lastly, the low-level layer uses tracking controllers
to generate assistive commands such that the AOs’ state timely track the desired assistive.
Currently, the control architecture endows low-level position-based and torque-based track-
ing controllers implemented through proportional integral derivative (PID) and FEL.

Concerning the control frequency, the low-level was set to 1 kHz (high-frequency for
achieving an effective human-machine tracking control loop) while the high- and mid-level to
100 Hz (enough for human-machine gait analysis). All software routines of the low- and mid-
level controllers were implemented in C language in the STM32F407VGT microcontroller,
whereas the high-level controllers, implemented in C++ language, are executed in the CCU,
the Raspberry Pi 3.

The architecture presents a modular design to be expandable for including further assistive
control strategies as required for making SmartOs a multi-functional robotic-based gait train-

ing solution.

124



Chapter 7-Assistive Control Strategies

7.2.1.0verview of Proposed Assistive Control Strategies

Currently, the control architecture includes four user-oriented, closed-loop assistive con-
trol strategies, implemented in the high- and mid-level controllers, as follows.

(1) User-orthosis interaction-based control that controls the human-orthosis interaction to
minimize the mechanical impedance of the AO to act like a passive device and follow
the user’s motion intentions (chapter 7.3);

(2) User-oriented trajectory control that controls the position-based trajectory of the hu-
man joint according to user-oriented trajectories (chapter 7.4);

(3) Adaptive impedance control, an AAN control strategy that controls and adjusts the im-
pedance of the human-orthosis interaction, providing interactive and compliant training
(chapter 7.5);

(4) EMG-based Control that controls the assistance level of AOs based on the voluntary

muscle contraction of the user, reflecting the user’s motion intentions (chapter 7.6).

Figure 7.1 presents an overview of the hierarchical implementation of each control strat-
egy. Throughout this chapter, each assistive control strategy will be presented and validated
involving healthy subjects to investigate their usability and time-effectiveness for real-time
gait rehabilitation and assistance and to establish guidelines for their application in neurolog-

ical conditions.

User-orthosis User-Oriented i
Interaction-based Control Trajectory Control Adaptive Impedance Control EMG-based Control

_] " - - - EMG-based User
o . me;a‘:ti’“U User-Oriented Uf;rer-'()rltented Stiffness Motion Intention
& orque-based User Trajectory rajectory A
= . . Estimation Model
5' Motion Intention Model Model - EMG EMG-Torque Model
— u o, - ke meas |
== rmrji'mms Gusg" ﬂ e Imt’myqs
= < AO Reference User Joint
-; AO Reference AO Reference Position Estimation Torque Estimation
= Torque ) Position Estimation I
=]
S 6. AO Reference Torque AO Reference Torque

Tref ref Estimation Estimation

JJ Tref ﬂ Tref

=
I~
-
| User-AO
= & Sensors
= PID

Figure 7.1- User-oriented assistive control strategies implemented in the hierarchical control architecture. 7,..f,
AO reference torque; Tins meas, User-AO interaction torque; 8., user-oriented position trajectory; .., AO
reference position trajectory; 6,,.4s, AO measured position trajectory; k, stiffness of the user-orthosis interac-
tion; EMG, EMG envelops; K, EMG-torque user-oriented parameter.
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The control strategies were selected considering the therapeutic challenges proposed for
SmartOs system in the post-stroke gait training, as listed in Table 7.2. In overall, these strate-
gies make the SmartOs suitable for distinct kinds of therapies to accommodate short- and
long-term changes in motor capacities. All strategies enable gait speed variation from 0.5 to
1.6 km/h (considering the mechanical limits of AOs) to enable high-challenging gait training

within each strategy.

Table 7.2- Summary of assistive control strategies applied to SmartOs

Assistive Low-level L. i
Principle Therapeutic Purpose
control strategy Control*
] User’s interaction - User’s active participation
User-Orthosis Torque X .
. User’s motion encouragement
Interaction-based PID . . ] .
intentions - High-level of muscle strengthening
Control L .
- Familiarization period
Position Repetitive - User-oriented repetitive gait training

User-oriented , .
. PID or FEL movements - User’s natural gait pattern recovery
Trajectory Control i .
- More symmetrical gait pattern

- User’s natural gait pattern recovery
- Long-term recovery of functional
motor abilities

Adaptive Impedance Torque , . . .
User’s interaction - Energetic-efficient motor recovery
Control PID L. . , . S
User’sintentions - User’s active participation
encouragement
- Increased muscular strength
- Assistance level adjustment
-Long-term recovery of functional mo-
tor abilities
EMG-based Torque L .
User’s intentions - Increased muscular strength
Control PID

- Reduced muscular atrophy
- User’s active participation
encouragement

* Current low-level controllers implemented per assistive control strategy.

7.2.2.Safety Measures and AO’s Attachment Methodology

Different safety measures were included throughout the control architecture and applied
for all assistive control strategies to safeguard the user and AO integrity. The first safety
measure was regarding the mechanical limits, i.e., the range of motion of the AOs. The range
of motion of PKO and PAFO was limited to [5; 98]° and [-18; 18]°, respectively. These intervals
are contained within the range of motion of the user’s joints so that the AOs do not compro-

mise the users’ joints integrity by applying overextension or over-flexion motions.
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The control commands were limited to [-2500; 2500], i.e., the maximum values of the AOs’
pulse-width modulation, to avoid the controller instabilities. For this purpose, the hierarchical
architecture includes a saturator. Additionally, the therapy is interrupted or stopped smoothly
and safely when the user is touching on the ground to avoid a fall risk situation.

Lastly, an adaptable attachment of the AOs with the user’s lower limbs and joints, respec-
tively, was considered maximizing the AO’s usability. The location of the braces was adjusted
according to the user’s limb length, and the strap system enables the adjustment of AO to the
user’s limb width. This attachment methodology makes the AOs suitable for subjects with dif-
ferent anthropometric features to cover 10t"-t0-90t" percentile of the male/female population
(height ranging from 1.50 m to 1.90 m and body mass ranging from 45 kg to 100 kg).

A four-strap system was incorporated in the mechanical structure of the PKO, by placing
two upper straps on the tight and two lower straps on the shank, as represented in Figure 7.2.A.
The PAFO was attached to the human lower limb using a two-strap system placed on the user’s
shank and a four-strap system built-in the PAFQO’s outsole placed on the user’s feet, as depicted
in Figure 7.2.B. This outsole system was used on the non-assisted limb (i.e., limb without the
PAFO) to minimize the gait asymmetry due to the height of the outsole placed on the assisted-
limb.

Furthermore, the attachment system also aims to improve the user’s joint and AO align-
ment and consequently, to minimize the loss of mechanical power without obstruction or re-

sistance to the movement.

Figure 7.2- AOs’ attachment system. A: Four-strap System (1-4). B: Two-strap System (1-2) and four-strap sys-

tem built-in the PAFO’s outsole (3).
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7.2.3.Gravity Compensation

The control architecture includes at the low-level layer a gravity compensation component
to minimize the gravitational burden of the wearable AOs’ mass from the user [238]. The con-
trol architecture was designed to provide the gravity compensation torque when a user is

wearing the PKO or PAFO.

Methods

Generally, the gravity compensation torques (G (8)) may be computed through the expres-
sion of the potential energy (P), as given in Equation (7.1a), considering the Euler-Lagrange
formulation. As the PKO and PAFO are a two-link articulated system (including an upper and
lower link, here presented as linki and linky, respectively), the potential energy (P) of these
AOs is described using Equation (7.1b). Consequently, the expression for computing the grav-
ity compensation torques can be written, as given in Equation (7.1c).

dP(0)

2
p= Z P, (7.1b)
|
G(6) = [E)PJl (7.1¢)

The gravity compensation is variable along with gait cycle given its dependency on the
AQ’s joint angle, namely the angle of the upper and lower link, represented as 8, and 8, in
Figure 7.3.A, respectively. For both AOs, the 6, was measured by the potentiometer embed-
ded on the AO. The 8, was got from IMU-based angle estimation, as described in Chapter 4.2.
To monitor 8; in PKO, the IMUs were placed on the human center of mass and thigh (IMU1
and IMU2 in Figure 7.3.A, respectively). For PAFO, the IMUs were placed on the thigh and
shank (IMU2 and IMU3 in Figure 7.3.A, respectively).

Overall, the gravity compensation torques were computed through Equation (7.2), where
m represents the link’s mass, [ is the link’s length, Ic represents the length between the cen-
ter of AO’s rotation to the center of mass of the link, 8 is the link orientation, and g the grav-

itational acceleration, 9.8 m/s%. As the actuation system is placed on the lower link, the
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actuation system of AO can only generate the G(0,) gravitational torques. Consequently,
the control architecture of SmartOs includes a partial gravitational compensation as it is not

able to generate G (6,) torques.

G(6,)

6@ =50}

: (7.2)
[G(Bl) myglc;sin(6; + 6;)

6(92)] - [mlglz sin(6,) + myglc, sin(8, + 0,) + m,gl., sin(6,)

As depicted in Figure 7.3.B, the G (6,) torques were converted into a gravity compensation
command (u;) through a proportional gain (k), as proposed in [230]. Subsequently, u is
summed to the control command (u.) to determine the total command (u;) to be provided
by the AQO’s actuation system such that it is able to compensate for the gravitational burden

of the wearable AOs’ mass and to assist as desired.

HIGH/ MID-LEVEL

[Assistive Control Strategy]

Tref / eref

U U Saturator

Controller —-

n
Ug l

LOW-LEVEL

Figure 7.3- A: Gravity compensation strategy, highlighted for PKO. IMU1 and IMU2 were used in PKO for esti-
mating hip angle (6,), and IMU2 and IMU3 for determining the knee angle (8;) used in PAFO. For both AOs, the
6, was measured by potentiometer embedded on AO. B: Control architecture considering the gravity compen-

sation strategy (G (6,)), with k gain empirically set to 100.

Experimental Validation

The effect of gravity compensation on assisted walking by PKO and PAFO was evaluated
assuming that trials without gravity compensation require more effort from the user compar-
ing to those with gravity compensation. Consequently, the user’s physical effort (evaluated
by EMG signals) and the user’s effort perception was compared in the presence and absence

of gravity compensation.
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The validation involved 12 healthy subjects (7 males and 5 females), with age of 23.5+1.78
years old, the height of 1.71 £ 0.09 m, and the mass of 69.58 + 10.23 kg.

The participant started the experimental validation by wearing the AO (PAFO or PKO), two
embedded IMUs (required for gravity compensation), and two EMG surface electrodes, the
Trigno™ Avanti Sensors (Delsys, USA). For PAFO, the electrodes were placed on the tibialis
anterior and gastrocnemius lateralis muscles; whereas the semitendinosus and vastus lateralis
muscles were selected for PKO.

Each subject was asked to perform a familiarization trial with the AO walking on the tread-
mill. Then, he/she stand still for 5 seconds for IMUs’ calibration. Subsequently, each partici-
pant performed 4 trials of 60 seconds walking at 1.0, 1.3 and 1.6 km/h on a treadmill with the
AO configurated with the user-orthosis interaction-based control strategy. The gravity com-
pensation was activated on the second and fourth trial without the knowledgeable of the user.
At the end of each trial, the participants were asked about the felt effort during walking by
answering (with a number of a scale range from one to five, where one is very low, and five is
very high) to the following question: How do you quantify your effort in this trial?. The protocol
was firstly performed for PAFO and posteriorly repeated for PKO.

For evaluating the effects of gravity compensation, the EMG envelope (100 Hz) was com-
puted using EMGWorks (Delsys’ software), and normalized within [0, 1] interval across gait
speeds for the elected muscles (i.e., tibialis anterior, gastrocnemius lateralis muscles, semiten-
dinosus and vastus lateralis). Moreover, the user’s perception collected at the end of each

trial was analyzed.

Results and Discussion

By analysing the user’s muscular activity variation across trials with and without gravity
compensation, a decreased of the user’s muscular effort in the presence of the gravity com-
pensation was noticed. For instance, Figure 7.4 presents the findings achieved for walking
trials performed at 1 km/h, where the muscular activation of tibialis anterior and gastrocnem-
ius lateralis muscles was lower with gravity compensation (trial 4) than without gravity com-
pensation (trial 3). For gastrocnemius lateralis, the mean value of maximum muscular activa-
tion reduced from 21% to 14%, corresponding to an overall decrement of 33.3% of muscular

effort in the presence of gravity compensation. In tibialis anterior muscle, a decrease of 37.1%
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of the maximum muscle activation was observed when the gravity compensation was acti-

vated.
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Figure 7.4- Representative outcomes of gravity compensation effect. Normalized EMG envelope of tibialis ante-
rior and gastrocnemius lateralis muscles from one subject while walking with PAFO at 1.0 km/h. Identification of

the maximum muscle activation across gait trials. The gravity compensation is only activated in trial 4.

On the other hand, most of the participants were not able to differentiate trials with and
without gravity compensation effect, as they considered that the applied effort across the
trials was identical (“low-to-reasonable effort” for PAFO, and “reasonable effort” for PKO).
This finding may be explained by the lower gravity compensation torques (G (6,)) supplied by
the AOs (absolute maximum value round 2 Nm), which may be imperceptible by a healthy
subject. Even so, three participants correctly perceived the gravity compensation effect by
feeling the AO “more lighter”.

Overall, the developed computational mechanism to compensate the part of the AOs’ mass
shown to be relevant for reducing the user’s physical effort during walking. Nevertheless,
there is still room for improvements through compensation of entire AOs’ mass considering a

mechanical compensation mechanism.
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7.3.User-Orthosis Interaction Based Control

7.3.1.Methods

The user-orthosis interaction based control consists of a torque-based control that mini-
mizes the mechanical impedance of the AO to act as a passive device (although actuated).
Under a research insight, this control strategy was implemented (i) considering a learning and
development phase (“Teach and Replay”) [11], where the trajectories and interaction torque
are recorded to be applied in other control strategies posteriorly, (ii) for comparison purposes
with different assistive control strategies, and (iii) to infer the impact of the robotic device in
the user’s.

Figure 7.5 depicts the hierarchical control architecture implemented in PKO and PAFO for
user-orthosis interaction based control. This control strategy ensures that the AOs follows in-
tegrally the user’s motion intentions, which are processed at the high-level in terms of the
user-AO interaction torque (7;,¢) monitored by the strain gauges embedded on PKO and
PAFO. Note that the interaction torque values describe the gravitational and inertial compo-
nents, as well as the torques produced by the user.

The mid-level sets the AO reference torque (7,.r) to zero such that the user feels more
freedom to move accordingly with his/her intentions and to emulate a passive mode. The low-
level consists of a PID controller to send a command (u) to the actuation system using the
PID control law presented in Equation (7.3), where e, and e, _; correspond to the current and

previous between the reference (t,..5) and the measured interaction torque (7).

k ex — €x—
u=Kpep +K; Z e At + Ky % (7.3)

n=1
The PID was tuned with the Ziegler-Nichols method, with a similar procedure as was reported
in [154]. This tuning considered the practical application of PKO and PAFO in a rehabilitation
scenario to avoid abrupt movements that can cause discomfort to the user and to avoid oscil-

lations and overshoot in the actuator’s response. The achieved gains were: K, = 90 and K; =

Kd = 15
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Figure 7.5- Hierarchical control architecture of the user-orthosis interaction based control strategy. A: represents

the strain gauge.

7.3.2.Experimental Validation

The experimental validation aimed to (i) test the effectiveness of the user-orthosis interac-
tion based control strategy in PKO and PAFQ, (ii) investigate the usability of both AOs, and (iii)
collect data for validating the gait event detection tool in assisted gait conditions and for tun-

ing parameters in adaptive impedance control.

Participants

The validation involved 12 healthy subjects (7 males and 5 females), with age of 23.5 +1.78
years old, the height of 1.71 + 0.09 m, and the body mass of 69.58 + 10.23 kg. The participants
gave informed consent to perform the trials and to use the collected data for research pur-

poses.

Protocol

The experimental protocol was applied for both PKO and PAFO, as follows. The participants
started by wearing an IMU (embedded IMU of AQ) instep of the foot, two FSRs placed on the
heel and toe for ground truth in the gait event detection, and the AO (PKO or PAFO) mounted

in the right human limb (knee or ankle joint, respectively).
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The participants conducted a familiarization walking trial of 2 minutes per AO. The partici-
pant started the gait trials in standing position with both knee and ankle joints aligned to
round 0°, enabling the IMU calibration. Subsequently, they were asked to perform 3 level-
ground walking trials of 2 minutes on a treadmill. These trails were carried out for distinct gait
speed: 1.0, 1.3, and 1.6 km/h. The subjects cloud start the trial when they felt comfortable
and cloud rest 2 minutes between the trials. Figure 7.6 shows a screenshot of a female subject

performing this protocol.

Figure 7.6- Screenshot of a female subject walking at 1.6 km/h. The participant is wearing the PKO at the knee

joint, an IMU in the instep of the foot, and two FSRs placed on the heel and toe.

Data Collection and Analysis

The data were collected at 100 Hz and analyzed in Matlab® (2017b, The Mathworks, MA,
USA). The sensor information (user-AO interaction torque, joint angle, foot angular velocity,
and FSR measure at heel and toe) was monitored, together with the control architecture out-
puts (reference torque, measured interaction torque, and controller’s command). Further-

more, the subjects were asked about the comfort and safety felt during the trials.

7.3.3.Results and Discussion

The performance and effectiveness of the developed user-orthosis interaction based con-
trol strategy considered the inspection of the control outputs considering the user’s interac-
tion and the feedback provided by the subjects during the trials.

Figure 7.7 provides the control results of PAFO (Figure 7.7.A) and PKO (Figure 7.7.B),
namely the reference control variable (reference torque, 7,.r), measured control variable (in-

teraction torque, T;y:), control command (u), and the AO’s angle.
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Figure 7.7- Representative outcomes of the user-orthosis interaction based control during walking trials. A:

Male subject walking with the PAFO at 1.6 km/h. B: Male subject walking with PKO at 1.0 km/h.

By analyzing the bottom view of Figure 7.7.A and Figure 7.7.B, it is possible to verify that
the output of the control architecture, i.e., the control command time-effectively follows the
user’s motion intention measured by the interaction torque.

Furthermore, it was observed that the AO’s angle trajectory (i.e., ankle angle and knee
angle in Figure 7.7) is handled by the user-orthosis interaction torque regarding its magni-
tude. In the first seconds of the trial (before the participants start the walking trial), the user
is not interacting with the AO (interaction torque value near to 0 Nm), and consequently, the
angle trajectory keeps approximately constant. On the other hand, the increased user’s inter-
action with the AO (interaction torque varies) results in a variation in the AO’s angle trajectory.
From the top view of Figure 7.7.A and Figure 7.7.B, it is possible to verify that as higher was

the user’s interaction, higher was the ROM of AO. The AOs’ range of motion was not constant
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during the trials, indicating that the subjects had the freedom to move in the direction of the
human-orthosis interaction force, with minimized rigidity offered by the device.

The ankle and knee angle trajectories are similar to the ones reported for healthy sub-
jects[239], and the interaction torque changes following the direction of the movement (in-
creases until maximum flexion and decreases until maximum extension).

Concerning the AQ’s impact on walking, the participants reported that both AOs are com-
fortable to use and easy and safe to wear. When wearing the PAFO, no misalignments issues
were observed. However, the misalignment of the PKO affected the therapy (requiring to
readjust the PKO’s usability across the trials) mainly for shorter subjects. With this assistive
strategy, the participants perceived that they could control the AO’s trajectory in the direction
of his/her motion intentions.

This strategy showed to be suitable for therapies that exclusively approached the user’s
motion intention, with low rigidity offered by the AOs. Thus, the subjects must present volun-
tary muscular contractions to interact with the device. The user’s voluntary effort provides
ways to enhance the muscular strength and the user’s involvement for maintaining the motor
learning function active. Nonetheless, this strategy does not take into consideration the
user’s disability level.

Lastly, an analysis on the foot angular velocity at the sagittal plane was performed to in-
vestigate whether the walking assisted by AOs modifies the kinematic signal used in the gait
event tool (see example in Figure 7.8). This analysis enables to verify that the foot angular
velocity signal remains similar in waveform and magnitude to the one measured for non-as-
sisted conditions. This finding indicates that the gait event detection tool described in Chapter

5 may be applied for gait assisted situations.
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Figure 7.8- Foot angular velocity in the sagittal plane and FSRs (heel and toe) signals recorded from assisted

walking with PAFO in the user-orthosis interaction based control at 1.4 km/h.

7.4.User-Oriented Trajectory Control

7.4.1.Methods
The user-oriented trajectory control strategy was designed towards the parameterization
of trajectories according to the users’ height and gait speed to enable a natural gait pattern

recovery, as depicted in Figure 7.9.
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Figure 7.9- Hierarchical control architecture of the user-oriented trajectory control strategy, highlighting the low-

level PID controller.

The high-level includes an user-oriented trajectory model based on a trajectory regression

model [240] dependent on the user’s height and speed, joint (the knee or ankle) to set an
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user-oriented position trajectory (6,,c.,) for the knee and ankle joints. For instance, Figure 7.10
illustrates the variability of knee angle trajectory according to the desired gait speed and

user’s height.
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Figure 7.10- Knee trajectories generated by the trajectory model [240] used at the high-level control. A: Knee
trajectories generated for a subject with 1.5 m for different gait speeds. B: Knee trajectories generated for sub-

jects with different heights for 1 km/h.

The mid-level controller sets the AO’s reference position trajectory (6,.r) as the user-
oriented position trajectory (6,,.-) parameterized according to the gait speed. As such, Equa-
tion (7.4), empirically found, sets the Number of Control Loops (NCL), each lasting 1 ms, that
must occur to update the value of the reference trajectory. This speed-parameterization aims

to ensure user-AO coordination.
NCL = —34.62 * Gait Speed + 107.31 (7.4)

The low-level controller covers a position-based control loop to ensure that the AQ’s an-
gular position matches the user-oriented trajectory. Currently, both PID and FEL controllers
may be applied. The FEL controller is detailed described in Chapter 7.7 as well as a compara-
tive analysis among these low-level controllers. Regarding the PID controller, the used PID
gains were: K, = 90 and K; = K; = 1.5,as described in Chapter 7.3. The PID controller im-
plements the control law presented in Equation (7.3) to compute the PID control command
(u), where e, and ej,_; correspond to the current and previous error between the reference
(Orer) and measured (6,045) angular position by a potentiometer embedded on the AO, as

illustrated in Figure 7.9.
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The experimental validation centered on investigating the effectiveness of the user-ori-
ented trajectory control strategy in PKO and PAFO by involving the participants and the pro-
tocol described in Chapter 7.3. However, in this experiment, the participants only wore PAFO

or PKO, as depicted in Figure 7.11.

Figure 7.11- Screenshot of a female subject walking at 1.0 km/h. The participant is wearing the PAFO at the ankle
joint.

The control architecture outputs (reference trajectory, measured trajectory, and control-
ler's command) were collected at 100 Hz and analyzed in Matlab®. The participants were

asked concerning the comfort and safety felt during the walking trials.

7.4.2.Results and Discussion

The user-oriented trajectory control was designed for therapies that ensure repetitive
movements of the user’s lower limbs. The experimental results indicate this strategy success-
fully foster a repetitive user-oriented gait trajectory at the knee and ankle joint, when the
participants used the PKO and PAFO, respectively. Figure 7.12 depicts results from one trial
with PAFO and PKO, highlighting the repeatability assistance fostered by this assistive strategy
since the real knee and ankle angle trajectories followed the same pattern (similar waveform
and magnitude) along with gait trial.

Nonetheless, there is a delay (PKO: 260 + 0.46 ms; PAFO: 260 + 0.27 ms) between the user-
oriented trajectory and the real angle trajectory. This delay, approximately constant across
the trial, may be caused by the mechanical response of AOs. Consequently, the PAFO to reach
to lower extrema nor the PKO to achieve the desired maximum flexion. This delayed assis-
tance was also reported in the literature for this strategy [11]. Consequently, it was necessary
to improve the time-effectiveness of the low-level controller of the user-oriented trajectory,

as proposed in Chapter 7.7 [104].
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The participants rated the assistance as comfortable and safe, and they did not perceive
the delayed assistance. However, due to the misalignment issues in the PKO, it was necessary
to readjust the alignment between the PKO system and the knee joint across the trials.

In general, this assistive strategy demonstrated to be suitable for therapies involving re-
petitive movements with a pre-defined, user-oriented trajectory. This strategy aims to emu-
late manual assistance therapy while relieving the heavy effort from the therapists [11]. The
therapeutic benefits include the improvement in the user’s movement coordination and

more symmetrical gait.
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Figure 7.12- Representative outcomes of the user-oriented trajectory control strategy during walking trials. A:
Female subject with 1.62 m walking with the PAFO at 1.2 km/h. B: Male subject with 1.75 m walking with PKO
at 1.4 km/h.

Nevertheless, this strategy is not adaptive nor approaches the AAN strategy; therefore, it

presents some application limitations. First, the user-oriented trajectory does not consider
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the variability of the disability level from patient to patient, and also for the same patient in
the rehabilitation process [29]. Consequently, this control strategy is being updated to enable
the real-time adjustment of the user-oriented trajectory, within a virtual tunnel, according to
the user’s immediate needs. For this purpose, the user or the therapist can increase or de-
crease the trajectory by setting commands in the mobile graphical application, as illustrated
in Figure 7.13. The high-level controller handlers these commands in as percentual gains that
adjust the initially set trajectory.

Second, this strategy does not provide ways for the user to interact with the devices. The
inclusion of the biofeedback system may play an important role to ensure active participation
of the patients in therapies. These limitations were also reported in the literature [11], [29],

[241].

Speed Reference Trajectory Options Reference Trajectory Options
Change current Speed Values.

— Reference Trajectory -+ — Reference Trajectory -+

10

Reference
Change current reference gain.

CANCEL CANCEL OK

Figure 7.13- Menu of mobile graphical application to adjust the user-oriented trajectory.

7.5.Adaptive Impedance Control

7.5.1.Related Work

Cooperative and AAN gait therapies demand flexible interaction between the human and
the assistive device. AAN strategies may endow controllers capable of modulating the imped-
ance of AOs to allow patient’s natural variability, promote a compliant human-robot interac-
tion, and to encourage the user’s active participation [31]. These strategies are able to re-
semble the manual assistance provided by a therapist, which is compliant and adaptive to the

needs of the patients [29], [241].
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Recent studies have proposed adaptive impedance control as an effective AAN strategy
[11], [29]. The control relies on tailoring the robot’s dynamic properties (stiffness and/or
damping) based on individuals’ active joint torque [29], [242]. The adaptive impedance control
was firstly applied in the AAN robotic gait training through Lokomat®[238]. Moreover, Hussain
et al. [29] implemented this control strategy in the powered orthosis using the interaction
torque as an indication of the subject’s effort. Similar approaches were introduced in [230],

[231]; however, these studies did not validate the proposed strategy in the real environment.

7.5.2.Methods

This chapter presents the development of the adaptive impedance control strategy for
PKO, as detailed described in [55]. This AAN strategy was implemented in a hierarchical con-
trol architecture (illustrated in Figure 7.14) to tailor the impedance behavior, namely the stiff-
ness of the human-orthosis interaction throughout the gait cycle and speed. The stiffness of
the human-orthosis interaction was virtually modulated without introducing mechanical ap-

paratus, such as spring, reducing mechanical issues for PKO.

HIGH-LEVEL )
Knee/Ankle Joi Gait
User-Oriented |+ Knee/Ankle Joint : ot
Trajectory | User’s Height Stiffness Estimation Event Gait Event
Model «— Gait Speed —— Model Detection Tool
Ouser k Omeas Tint
MID-LEVEL
AO Reference Trajectory Estimation
eref = F(Byser NCL)
l Gref %"
AO Reference Torque Estimation |, | ‘G
Tref = k. (eref = emeas) Bmeas v
. Bk
LOW-LEVEL Tre e Saturator k
Y u G
S PID
N

Tint

Figure 7.14- Hierarchical control architecture of the adaptive impedance control. A- Potentiometer used to meas-
ure the real knee joint angle (6,,¢4s), B- Strain gauge measured the user-orthosis interaction torque (t;;;:), C-

IMU measured the foot angular velocity for gait event detection tool.
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The stiffness of the human-orthosis interaction was investigated instated of AO’s stiffness
to make the AO more compliant and cooperative to the user’s motion intention (considering
the strain gauges’ measures), encouraging the user’s participation and the intuitiveness of
interaction. In wearable assistive devices, direct interaction with humans still is a critical con-

cern [243].

Stiffness Estimation

The stiffness of the human-orthosis interaction was estimated as the slope of the linear
regression of the human-orthosis interaction torque versus angle at the knee joint. This ap-
proach is based on the concept of quasi-stiffness, explored in [135].

For that matter, healthy participants performed gait trials at different gait speeds wearing
the PKO in user-orthosis interaction based control strategy, as described in Chapter 7.3.2.
With this control strategy, there is no contribution of the orthosis’ actuation system in the
locomotion, limiting the actuation of the mechanical properties.

By applying the linear regression to the curve that relates the angle with the human-ortho-
sis interaction torque, the stiffness values and the gait events in which they should be tailored
in the adaptive impedance control strategy were determined. The estimated stiffness values
were normalized to [0; 1] interval through the participant-specific percentage of the maximum
stiffness due to operating limits of the actuation technology empirically observed for stiffness

values higher than 1.5 Nm.

Hierarchical Control Architecture

Figure 7.14 illustrates the hierarchical control architecture implemented for the adaptive
impedance control strategy. The high-level defines the user-oriented trajectory (0,,,.,-) ac-
cordantly the user’s height and gait speed, as described in Chapter 7.4.1. Furthermore, this
control level estimates the stiffness of the user-AO interaction (k) as the slope of the linear
regression of the joint angle (0,,.45) and user-AO interaction torque (7;;;), through the stiff-
ness estimation model. The stiffness is adaptively modulated for each user according to the
configurated gait speed and detected gait event (using the detection tool presented in Chap-
ter 5). The stiffness adjustment takes into considering the user’s intention and participation

through 7.

143



Chapter 7-Assistive Control Strategies

The mid-level starts by setting the AO’s reference position trajectory (6,.s) as the user-
oriented position trajectory (,c.,) parameterized according to the gait speed, as indicated in
(7.4). Subsequently, it defines the AO’s reference torque (7,.r) through the used impedance
control law (Equation (7.5)), with reference and real position trajectory of AO (6, and Opeqs,
respectively) and the adaptable stiffness (k) along gait cycle (damping and inertial moment

were not considered in this scope). The potentiometer measured the real knee joint angle

(Omeas)-
Tref = k. (Qref — Omeas) (7.5)

At the low-level, the tuned PID controller was applied to guide the human-orthosis inter-
action torque in the direction of the desired torque (z,.). This level relies on the interaction
torque values (7;,:) between the AO and the human, measured by the strain gauges embed-

ded in AQ, to compute the torque errors (e) that feed the PID controller.

7.5.3.Experimental Validation

The experimental validation aimed to test the effectiveness of adaptive impedance control.
This control strategy was compared to user-oriented trajectory control to establish the bene-

fits of an AAN strategy for gait training regarding a non-AAN strategy.

Participants

Five healthy subjects (2 females and 3 males) with no history of neurologic disorders gave
informed consent and participated in the study. The demographic characteristics of the in-
volved subjects are 26.80 + 2.78 years old, the height of 1.68 + 0.07 m, and the body mass of
64.60 £ 8.5 Kg.

Protocol

The participants started by wearing the embedded IMU instep of the right foot and PKO.
The subjects performed 3 level-ground walking trials of 2 minutes on a treadmill while wearing
the PKO in the user-orthosis interaction based control to estimate the stiffness. The trials were
carried out at different gait speeds: 1, 1.3, and 1.6 km/h.

Regarding the comparative analysis of control strategies, the participants performed 3

level-ground walking trials on a treadmill at different gait speeds: 1, 1.3, 1.6 km/h. In each
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trial, the participant walked 5 minutes in an assistive mode delivered by one control strategy,
resting 2 minutes, and restarting the assisted walking with the other control strategy for 5
minutes. The participants were randomly involved in both assistive modes not to influence
their perception regarding the effects introduced per control strategy. During these experi-
ments, the subjects were encouraged to interact with the orthotic system, by following and
opposing the reference trajectory. Figure 7.15 shows a screenshot of male subjects perform-

ing this protocol.

Figure 7.15- Screenshot of an experiment conducted at 1.3 km/h with a male subject, wearing the PKO, assisted

by adaptive impedance control, and an IMU placed on the right foot for gait event detection.

Data Collection and Analysis

Data from the strain gauges (user-PKO interaction torque), potentiometers (real knee an-
gle), and the control architecture values (user’s oriented trajectory, reference torque, meas-
ured torque, and controller’'s command) were collected at 100 Hz and analyzed in Matlab®.

Additionally, at the end of experiments, each subject reported his/her perception regarding
both control strategies considering: (i) freedom of movement, (ii) possibility or not to deviate
from the imposed trajectory, and (iii) effort demanded during walking. Once more, the pa-
tients also indicated their insights concerning the applied attachment system, comfort, and

safety felt during the experiments.

7.5.4.Results and Discussion

This subchapter firstly presents the estimated stiffness. Then, it provides the results
achieved with the adaptive impedance control strategy and the comparison with user-ori-

ented trajectory control.
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Estimated Stiffness

Figure 7.16 provides the interaction torque vs. knee angle curve along three trials and the
obtained linear regression (black lines). With the linear regression, different slopes were ob-
served in the curves related to the interaction torque versus the knee angle. These results
indicate that the human-orthosis interaction stiffness varies through the gait cycle, mainly in
four gait periods: (i) from HO to TO; (ii) from TO to MMSW; (iii) from MMSW to TS; and, (iv)

from terminal swing (TS) to HO.

—y
o
1

—_
o
T

(4)]
T

Trial 1
Trial 2
Trial 3

Human-Knee Orthosis Interaction Torque (Nm)
o

Knee Angle (%)
Figure 7.16-Representative curve of the human-knee orthosis interaction torque vs knee angle of 3 gait trials of
a male subject walking at 1.3 km/h on the treadmill. Black lines represent the linear regression on the curve,

which changes for the identified gait events (TS - Terminal Swing) [55].

Table 7.3 presents the mean and standard deviation values of the estimated stiffness across
the subjects, per gait speed and gait period, and the stiffness values normalized per user’s
body mass and in [0; 1] interval.

Figure 7.17 illustrates the module of the stiffness values to provide a better interpretation
of their variability with the gait speed and gait period. By analyzing Figure 7.17, it was ob-
served the similarity of the stiffness values in HO->TO and MMSW-TS periods, and
TO->MMSW and TS—->HO. This finding indicates that the human-orthosis interaction should
be stiffer (higher impedance) to perform the HO event (start preparing the foot to swing

phase) and MMSW event (change the limb’s excursion from the flexion to extension).
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Table 7.3- Module of the mean and standard deviation (std) values of the estimated stiffness, normalized in [0;

1] interval.

Gait speed . . Stiffness (N.m/°kg) Stiffness Normalized in

(km/h) IEle Mean Std [0;1]

HO > TO 0.012 0.003 1.0

1 TO > MMSW 0.0085 0.001 0.71

MMSW-> TS 0.012 0.003 1.0

TS - HO 0.008 0.002 0.71

HO - TO 0.020 0.005 0.95

13 TO > MMSW 0.008 0.001 0.38

MMSW->TS 0.021 0.004 1.0

TS - HO 0.008 0.003 0.38

HO ->TO 0.024 0.004 1.0

16 TO > MMSW 0.008 0.001 0.33

MMSW-> TS 0.023 0.004 0.96

TS >HO 0.007 0.0005 0.29

HO > TO 0.036 0.002 0.92

18 TO - MMSW 0.007 0.003 0.18

MMSW-TS 0.039 0.004 1.0

TS - HO 0.009 0.002 0.23

On the other hand, the results indicate that the PKO should be compliant from the initial
to middle-swing phase, and from the terminal swing to middle-stance phase given the low
human-orthosis interaction values to achieve a high knee ROM.

Furthermore, the results presented in Figure 7.17 show that the stiffness of the human-
orthosis interaction varies positively with the gait speed, i.e., higher gait speed requires more
stiff behaviors. The stiffness’s dependency on speed was more evident in moments that in-

volve high stiffness values (HO>TO and MMSW-TS).
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Figure 7.17-Module of the mean and standard deviation values of the estimated stiffness throughout gait cycle

for different gait speeds [55].
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So far, no work has investigated the variation of the stiffness of the human-orthosis inter-
action throughout the gait cycle and speed. Previous studies focused on the investigation of
the stiffness of the human joint to define how the mechanical systems (e.g., springs) attached
to the orthosis have to emulate the dynamic properties of a healthy joint [111], [135], [244].
Nevertheless, the obtained findings are according to the ones presented in the literature re-
garding the stiffness variation with the gait speed (positively correlated) and gait cycle [30],
[135], [245].

Adaptive Impedance Control vs. User-Oriented Trajectory Control

Figure 7.18 depicts representative outcomes of the adaptive impedance control and the
user-oriented trajectory control.

For the adaptive impedance control, as illustrated in Figure 7.18.A and Figure 7.18.B, the
increase of the interaction torque leads to an augment of the real knee trajectory. Conse-
qguently, the real knee trajectory may exceed the ROM of the reference trajectory with maxi-
mum values around 70°; however, it never exceeds the imposed limits for PKO’s range of mo-
tion due to the applied safety measures. The flexibility for deviating from the desired knee
trajectories creates a “virtual tunnel” along the desired trajectory in the sagittal plane, as
disclosed in [242].

Additionally, Figure 7.18 shows the adaptability of the stiffness along the gait cycle, and
that the user has more freedom to move when the user-PKO interface is less stiff (low stiff-
ness values). As the adaptive impedance control takes input in the form of human-orthosis
interaction torque, it can adjust the PKQO’s assistance to meet the needs of individual subjects
based on their voluntary participation and stage of gait rehabilitation. Hussain et al. [29] in-
vestigated a similar AAN gait training based on human-orthosis interaction; however, they
involved a predefined position trajectory for all participants instated of a user-oriented posi-
tion trajectory.

On the other hand, the results of the user-oriented trajectory control (for instance, Figure
7.18.C in the timing interval from 48 to 53 s) indicate that the real knee trajectory is not af-
fected by the human-orthosis interaction torque independently of its magnitude. This finding
suggests that the user-oriented trajectory control does not deliver an AAN gait training nor

considers the user’s participation in gait.
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Figure 7.18- Representative control outcomes of the gait trials assisted with PKO. A: Adaptive impedance control

at 1 km/h. B: Adaptive impedance control at 1.6 km/h. C: User-oriented trajectory control at 1.6 km/h.

The feedback provided by the participants followed the evidence presented above. In all
cases, they reported that the adaptive impedance control delivers a more comfortable and
natural motion, and also possibilities the deviation from the reference trajectory. As ex-
pected, the increasing freedom of movement was more pronounced when low stiffness val-

ues were involved in the adaptive impedance control, since the rigidity of the device is lower.
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Moreover, the participants straightforwardly perceived that the impedance control allows
more interaction comparatively to user-oriented trajectory control since, in this case, they
could not deviate their limb from the set trajectory, and they felt the orthosis stiffer.

The overall findings enhance the suitability of the adaptive impedance control as an AAN
strategy for applications focused on guiding the user’s lower limb through user-oriented gait
patterns while considering the user’s muscle effort and motion intention [11], [29]. Further-
more, this strategy favors the user’s active physical participation.

The possibility of adjusting and modulating the stiffness provides a way to tune the assis-
tance level in gait therapies in favor of the user’s needs and disability level [29]. The stiffness
was adjusted to decrease the human effort required for ensuring a successful knee joint move-
ment during walking. This evidence was reported in [29]. The cooperative user-orthosis inter-
action aligned with assistance’s adaptability is a major step forward for the long-term recov-
ery of functional motor abilities.

Nonetheless, the implementation of the proposed adaptive impedance control presents
two main limitations. It depends two times on the precision of the position and torque sen-
sors. The impedance modulation was limited to stiffness, not considering the effect of damp-

ing nor inertia.

7.6.EMG-based Control

7.6.1.Related Work

User-oriented assistive strategies could take into account the body condition of the user
with information from biomedical sensors, namely EMG signals [246], [227], [247]. The major
advantage of EMG-based control strategy is its ability to predict the user’s motion intention,
as long as the muscles are not paralyzed or too weak to perform the movements. This assistive
strategy provides a functional gait training to encourage the user’s muscular effort, and thus,
avoid muscle atrophy [248].

The EMG-based assistive strategies involve a user’s joint torque estimation method based
on the acquired EMG signals from superficial muscles. Subsequently, the torque of the AQ’s
actuator should timely track the estimated user’s joint torque. Most studies have applied a

complex musculoskeletal model for joint torque estimation. Fleisher et al. [227] and Hassani
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et al. [33] used the modified Hill-type muscle model. However, it requires complex methods
and several calibration procedures to determine several parameters.

On the other hand, more straightforward approaches based on the proportional method
have been approached. Kawamoto et al. [249] proposed a simple calibration method that only
requires the tuning of two proportional gains (one for flexion and one for extension) that
relate the EMG signals with the torque generated at the knee joint by the flexion and exten-
sion muscles, respectively. This method stands, in the field of gait rehabilitation, for its sim-

plicity and real-time effectiveness.

7.6.2.Methods

This subchapter presents the EMG-based hierarchical control architecture implemented
and validated with the PKO. Figure 7.19 provides an overview of the procedure carried out to

achieve the EMG-based control, detailed described in [56].
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Figure 7.19- System Overview. A: Chosen muscles to acquire EMG signals (vastus lateralis and vastus medialis
marked with red and green, and semitendinosus and semimembranosus marked with purple and pink, respec-
tively). B: EMG system used to obtain the EMG envelope. C: Proportional method implemented to find EMG-
torque parameters from a calibration routine for the user’s knee torque estimation. D: Hierarchical EMG-based

control architecture.
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First, the most significant muscles for controlling the knee motion were selected, consid-
ering a trade-off between performance and simplicity of the control strategy. Throughout a
literature analysis, it was verified that two flexors (Semitendinosus and Semimembranosus)
and two extensors (Vastus Lateralis and Vastus Medialis) contribute more to the knee joint
movement during gait [32].

Second, the EMG system detailed in Chapter 4.4 was used in the 4-channel configuration
to obtain the EMG envelope signals for the four selected muscles. Third, the EMG envelope
signals are then used to estimate the user’s knee joint torque (i.e., the torque generated at
the knee joint by the knee flexion and extension muscles) through the proportional gain
method. This stage endows an experimental calibration procedure to find the parameters able
to convert the EMG envelope into the user’s knee joint torque.

Lastly, EMG-based control is executed such that torque of the AQ’s actuator should track
the estimated user’s knee torque. Details regarding the knee torque estimation and EMG-

based control are disclosed below.

Proportional Gain Method

The proportional gain method [14] was implemented for estimating the user’s knee
torque, given its simplicity for clinical applications, and it has a straightforward calibration
procedure when compared to the musculoskeletal model-based methods.

The proportional gain method aims to find two parameters (K, and K,,) that directly
maps the EMG signals into knee torque values. The knee torque was estimated (Txpee) USINg
Equation (7.6), where Ef;(t) and E,,(t) represent the EMG envelope obtained from the flexor
and extensor muscles, respectively; K¢; and K, are the parameters responsible for relating
the envelope EMG signals from flexor and extensor muscle, respectively, to the knee torque;

T, (t) is the estimated flexor torque; and, 7., (t) is the estimated extensor torque.

Tknee = KflEfl(t) — KexEex(t) (7.6)

S Tgnee = ffl(t) — Tex(t)

The determination of K, parameter assumed that torque being generated by the PKO's
actuator (Teqs) Matches the flexor torque generated by the user (z7,(t)), represented in

Equation (7.7a). Further, it considers that the estimated torque provided by the flexor muscle
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(f(t)) attempts to match the torque being generated by the actuator (T;eqs), as given in
Equation (7.7b). Then, the error between the actuator’s torque and the estimated flexor

torque can be calculated using Equation (7.7c).

Tmeas(t) = Tfl(t) (7.7a)
ffl(t) ~ Tmeas(t) (7-7b)
e(k) = Tfl(k) - ffl(k) = Tmeas(k) — ffl(k) (7.7¢)

Equation (7.8a) provides a way to define a performance function based on the error. Equa-
tion (7.8a) can be minimized by setting its derivative concerning K¢; equal to zero, as shown

in Equation (7.8b). Thus, Ky, can be determined by the least square method, given in Equation

(7.8¢c).
J= €20 = D Cmeas(©) = 200 = ) (Tmeas ) = KuBpu())’ (7.8a)
k=0 k=0
4
o 2> Tmeas (OB (K) + 2Ky Y BA(R) = 0 (7.8b)

K. = ZTmeas(k)Efl(k)
e YERM

(7.8c)

The Equation (7.8c) can be rewritten considering Equation (7.7a), and consequently, the

Kr; parameter was computed through Equation (7.9).

_ X ta(k)Eq (k)
It Y E2 (k)

(7.9)

The same procedure was applied to determine K,, parameter. The determination of
Ky and K ., parameters required an experimental calibration procedure, as reported in [14].
However, a new calibration method was endowed due to the mechanical instability of PKO
while performing the calibration described in [14]. The proposed calibration considers general
physical principles and the operating range of the PKO’s torque values. This method computes
the torque produced by the user’s knee (Tgnee) to support a known mass (m = constant) at a
known knee angle («), as generally stated in Equation (7.10), where r is the knee moment-
arm Fy,.. represents the applied force by the user’s knee at a given acceleration (a).

Tknee = Fxknee 7= m*axr (7.10)
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Consequently, during calibration, the user’s knee torque was computed by Equation (7.11),
considering that the user’s knee kept still at a known angle (@ = constant), that only exists the
gravitational acceleration (9.8 m/s?), and known the length of the user’s leg from the hip to

the ground (L).
Tknee =M *9.8x7r = m=*9.8 L *sina (7.112)

The calibration method was implemented in two stages, as illustrated in Figure 7.19.C. In
the first stage, the user was standing with the knee flexed so only the flexion torque is consid-
ered (75;) and in the second stage, the user was seated in a chair with the knee extended, so
only extension torque is considered (7.,). For both stages, the expected user’s knee torque is
known since the user has to keep the knee still at a known angle with a known mass attached
to the foot. Surface electrodes were placed on the selected muscles to measure the EMG sig-
nals that produced the user’s knee torque. When the desired torque was achieved, the enve-
lope EMG signals from the flexor and extensor muscles were recorded, enabling the determi-
nation of the Ky, and K, parameters through Equation (7.9). Subsequently, the user’s knee

torque was estimated by Equation (7.6).

EMG-Based Control

Figure 7.20 presents the architecture control architecture implemented for EMG-based
control. The high-level control infers the user’s motion intention from EMG envelope signals
(Eﬂ(t), Eex(t)) and computes user-oriented flexion (Ky;) and extension (K,,) parameters
during the calibration phase, to be applied in the knee joint torque estimation posteriorly.

The mid-level control estimates the knee joint torque using the proportional gain method
law, presented in Equation (7.6). For this purpose, it uses the EMG envelopes and the cali-
brated parameters K¢; and K,,. Subsequently, this level sets the reference PKO torque (z,.)
equal to the estimated knee joint torque (Txyee) to ensure that PKO follows the user’s motion
intention. The low-level implements a torque control through a PID controller law to track
the error (e;) between the reference knee torque (7,.5) and real torque at the PKO’s actuator

(Tmeas), as given in Equation (7.3).
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Figure 7.20- Hierarchical control architecture of the EMG-based control strategy [56].

7.6.3.Experimental Validation

The effectiveness of EMG-based assistive strategy was inspected and compared with other

implemented intention-based strategy, the user-PKO interaction based control strategy.

Participants

Two healthy users (a male and a female) with demographic characteristics of 24.0 + 0.0
years old, the height of 1.685 + 0.0919 m, and the body mass of 63.5 + 14.8492 kg were in-
cluded. The participants gave informed consent to participate in the study and to use the col-

lected data for research purposes.

Protocol

The experiment started with the placement of the surface electrodes on the selected mus-
cles, Semitendinosus, Semimembranosus, Vastus Medialis, and Vastus Lateralis, following
standard recommendations for surface electrodes assessment [193]. This procedure assures
the repeatability of the sensor’s placement and minimizes intra-subjects and intra-trials vari-
ability. Three surface electrodes were used per muscle. One is a reference electrode that was
placed on the center of the knee joint, which is an electrically neutral tissue [194]. The other
two electrodes were placed on the muscle motor point, separated by about 2 cm from each

other [194]. The gain of the EMG system was tuned regarding the level of muscular activity
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presented in the user’s muscles. The overall validation of the EMG-based strategy covers three

phases, as presented in Figure 7.21.

0 Mass to support 0 IMU 0 PKO
@ surface Electrodes @ surface Electrodes @ Surface Electrodes

Figure 7.21- Experimental validation. A: Validation of calibration method. B: Validation of knee torque estimation

method. C: Validation of EMG-based control [56].

First, the proposed calibration method (to compute K¢, and K,, ) was validated, consider-
ing the set-up presented in Figure 7.19.C and Figure 7.21.A. The participants were asked to
perform isometric contractions during 5 s (for flexion and extension motions), that enabled to
acquire the EMG signals. The isometric movements were performed at different knee angles
(), as indicated in Table 7.4. By varying the knee angle (), it was possible to achieve the
desired torques (rﬂ and t,,) atthe user’s knee joint, i.e., 8, 16, 24, and 32 Nm, as these torque
values are within the range of PKO’s actuator. Table 7.4 shows the knee angles covered to
match the desired knee torque for a constant mass and knee force during the calibration pro-

cedure.

Table 7.4- Biomechanical values used in the calibration procedure.

Knee Joint Angle Moment-arm Mass Force Desired torque
(a, [°]) (r, [m]) (m, [Kgl)  (Fknees IN])  (Tf1/Tex, INmI])
10.9 0.07 8
22.4 0.15 16
10.7 104.86
34.9 0.22 24
49.7 0.30 32

The second phase aims to evaluate the performance of the proportional gain method in
knee torque estimation. The subjects were asked to walk on the treadmill at different speeds
(1, 1.3 and 1.6 km/h) for 3 minutes, as shown in Figure 7.21.B. Each participant performed 3

trials per gait speed. Two IMUs, placed on the human shank and thigh, were used as ground
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truth to investigate if the muscles were activated properly through the gait cycle, with the
emphasis in the knee flexion and extension.

The third phase covers the validation of the EMG-based control using the PKO (Figure
7.21.C). The participants walked 3 minutes on the treadmill at different speeds (1, 1.3 and 1.6
km/h), performing 3 trials per speed. Moreover, the participants conducted the same proce-

dure wearing the PKO in user-PKO interaction based control.

Data collection

The desired and real user’s knee torque, knee joint angle (a), estimated torque (Txyee),
PKO’s actuators torque (Tj,eqs), and the EMG signals (Ef;(t), E..(t)) were collected. The
NRMSE and phase delay between the reference torque (7,.¢) and measured torque (Tpeqs)
were inspected. Furthermore, during the EMG-based control, the users were asked if the PKO

follows their intention to move.

7.6.4.Results and Discussion
Estimated K, and K, Parameters

The Ky and K, parameters were computed by applying Equation (7.9) and considering
the data collected during the experimental procedure proposed for the calibration method.
The K, and K, parameters for the male subject were 24.3 and 46.7, respectively, and for the
female subject, 27.9 and 25.26, respectively. The differences in the parameters highlight the
needed for a user-specific calibration in an attempt to effectively address a user-oriented

assistive strategy.

Estimated Knee Torque

The values of the estimated knee torques were similar to the expected ones, as observed
in Figure 7.22.A. The results depicted in Figure 7.22.B also indicate that the knee joint torque
was estimated properly, i.e., the knee flexion occurs when positive torques are estimated, and
the knee extension occurs when negative torque values are estimated [250]. When there is
an inversion of the limb’s excursion (i.e., from flexion to extension, and vice-versa), the esti-
mated torque becomes zero at that moment (as illustrated in Figure 7.22.B as moment rever-

sal).
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These findings indicate that the implemented proportional gain method and the proposed
calibration procedure were effective for the knee torque estimation and relevant to deal
with different user’s physical conditions (different parameters found for subjects, who differ

in body mass and height).
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Figure 7.22- Representative results of the estimated knee torque for the male subject. A: Estimated knee torque
vs. desired torque (actuator torque) during isometric contractions. B: Estimated knee torque and estimated knee

angle by IMUs from a subject walking on the treadmill at 1.6 km/h [56].

EMG-Based Control

The EMG-based control achieved a mean NRMSE of 12% and a mean phase delay of 22 ms
in a gait cycle ranging from 2.5 to 3.5 s (depends on gait speed), between the reference (7,.f)
and measured (T,,045) torque. These results indicate that the implemented hierarchical con-
trol has the potential to track the user’s motion intentions with minimal delay. Furthermore,
the subjects reported that their intentions were followed, allowing them to move forward
freely.

Figure 7.23 presents the results for both control strategies based on the user’s motion in-
tentions. The participants applied higher muscle activation in user-orthosis interaction
based control, as indicated by the higher EMG measures of the flexor and extensor muscles
(0.54 V and 0.35V, respectively). The flexor and extension muscles activation is 52% and 31%
higher in the user-orthosis interaction based control.

On the other hand, the EMG-based control requires less effort from the user (EMG meas-
ure of the flexors and extensors was 0.26 V and 0.24 V, respectively) while correctly generating
the gait pattern based on the user’s motion intention. Nonetheless, this evidence was limited

to a set of gait patterns from two participants.
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Figure 7.23- Representative results of control strategies of walking experiments in a treadmill at 1 km/h. A: EMG-

based control. B: User-PKO interaction based control [56].

The finding suggests that the EMG-based control strategy is more suitable for subjects with
a moderate level of impaired gait function than the user-orthosis interaction based strategy,
favoring therapies based on the user’s intention. This strategy may be applied for gait thera-
pies that aim to enhance the muscular strength and functional motor ability. Furthermore,
the user’s active participation in the gait therapy will maintain active both the motor relearn-

ing and control of the learned gait pattern.

7.7.Low-Level Control Strategies

7.7.1.Related Work

Feedback and feedforward controllers play an important role in the low-level layer of the
hierarchical control architectures. Feedback controllers, such as the PID, are the low-level con-
trollers mostly applied in AOs due to their feasibility and mathematical straightforwardness
[10], [237], [251]. Nevertheless, the development of time-effective low-level controllers for

AOs capable of providing low steady-state errors, emphasizing adaptiveness to different
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walking scenarios without requiring system modeling (as in optimal and robust controls), be-
comes imperative.

FEL control [252] has been applied to address these features. FEL, bioinspired on the learn-
ing process of the human motor cortex, is a hybrid control combining a feedback controller
with a feedforward controller capable of learning the inverse dynamics of the AO using the
feedback control command as the error signal for the learning (feedback error). The feedfor-
ward controller usually includes regression techniques to simplify and shorten the learning of
the inverse dynamics for real-time and medical applications [253], [254]. The overall perfor-
mance of FEL beneficiates from the adaptive and anticipatory features of the feedforward con-
trol to adapt to changes in AOs’ dynamics and enable time-effective fast movements while

the feedback controller can compensate for disturbances [254].

7.7.2.Methods

Considering the potentialities of FEL controller comparatively to the solo PID, this chapter
presents the real-time implementation of FEL control into the low-level layer of the hierarchical
control architecture of SmartOs. In the scope of this thesis, the FEL was implemented and val-
idated as a position-based control loop considering the user-oriented trajectory assistive strat-
egy. As a low-level controller, the FEL runs at 1 kHz.

FEL implies a feedback and a feedforward controller to command the AO in the desired
way, as depicted in Figure 7.24. The PID feedback controller (previously presented) provides
control commands and guarantees stability during the real-time learning of the AOs’ inverse
dynamics model and compensates disturbances when the learning phase is completed.

An artificial neural network (ANN) was implemented as the feedforward controller [252]
to learn the inverse dynamics of the AO taking the output of a PID command (feedback con-
troller) as an error signal [252], [253], [255]. The ANN was elected due to its proper estimation
performance, good generalization, and its capability to map non-linearities [256]. Note that
two inverse models were designed and implemented, one for PKO and one for PAFO.

The ANN was implemented with Multi-Layer Perceptron structure and trained in real-time
following a supervised learning method. As illustrated in Figure 7.24.B, each ANN has 3 layers

as follows: the input layer with 3 neurons for the 3 inputs, the reference position (6, ), speed
(éref) and acceleration (éref); the hidden layer with 4 and 5 neurons for PKO and PAFO, re-

spectively; and, the output layer with 1 neuron, i.e., the feedforward command (uff). Bias
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nodes were included in the hidden and output layers to increase the flexibility of the ANN to

fit the input data.

HIGH/ MID-LEVEL

AO Reference Trajectory - O,

Plant (PKO)

é Feedforward
re Controller

eref. I-Dl Derivative '—b

~
Feedback
Controller

gref. +

LOW-LEVEL

Feedforward Controller: ANN

/ b<ias neurons

eref L _,. » ‘
Orer —> | Normalization —‘ o m Denormalization >
Href. —p _.. ° ' Output Layer

A\ Y

Input Layer APy
@O .
Hidden Layer N
<
ufb

B

Figure 7.24- FEL control. A: FEL control loop for PKO. 6, is the reference angle; éref is the reference angular
velocity; 9ref is the reference angular acceleration 6,,,., is the measured angular position; e is the position er-
ror; gy, is the feedback command; Ugy is the feedforward command; uis the final control command; A is the

potentiometer and B is the actuator. B: ANN-based feedback controller.

The backpropagation algorithm that includes a forward and a backward phase was used as
a learning method. The forward phase predicts feedforward commands (uyf) for the given
inputs and based on the current weights. The backward phase updates the weights based on
the gradient descent of the current feedback command (ug;,) concerning the network’s
weights change. The stochastic gradient descent approach was implemented such that the

161



Chapter 7-Assistive Control Strategies

weights are updated based on inputs presented in a random order [257]. The Adaptive Mo-
ment Estimation optimizer [258] was applied to enable the stochastic gradient descent imple-
mentation in real-time and to meet the temporal requirement of 1 ms (1 kHz). This optimiza-
tion used adaptive learning rates per weight connection, providing adaptability to the ANN
training and decreasing the training time.

Table 7.5 presents the empirically found set-up for training the ANN for PKO and PAFO.
These parameters’ setting resulted from a trade-off between the ANN performance and the
real-time temporal requirements (1 kHz). For finding the ANN set-up for training phase, an
empiric study was performed, varying the ANN’s conditions as follows: (i) the number of hid-
den neurons ranged from 3 to 20; (ii) the initial weights in the hidden (wp,;4) and output (w,,¢)
layers were modified through Equation (7.12) [259], where L is the input neuron length, M is

the hidden neuron length, and @ = {1, 10, 100}; and, (iii) the learning rate ranged from 0.001

to 0.00001.
L1
T =S Whia ST =
I I
aL Vi (7.12)
1 _ 1
- S W =
avM out avM

Table 7.5- ANN'’s setup for training phase, namely the number of neurons in the hidden layer, the maximum

learning rate, and the initial weights in the hidden (wy;4) and output (w,,;) layers.

AO Hidden Initial Weights e
Neurons
—0.058 < wy;4 <0.058 Adaptive
PKO 4
—0.05 < W,y < 0.05 (<0.0001)
—0.058 < wy;q <0.058 Adaptive
PAFO 5
—0.045 < wyy, < 0.045 (<0.00001)

For both training and recall phases, the input signals of ANN (0., 0f,0,.s ) were nor-
malized between [-1; 1] to provide adaptability and versatility to the ANN. Moreover, it re-
duces the estimation error and accelerates the training phase [260]. As presented in Figure
7.24.B, the predicted output of the ANN (u;s) was denormalized to the maximum operating
magnitude of the control commands, experimentally set to [-2500; 2500], i.e., to the maxi-

mum values of the AOs’ pulse-width modulation.
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Moreover, in both training and recall phases, the computed feedback (uy,) and feedfor-
ward (ur) commands are summed to get the total control command (u) to be applied to the
AOs. The total command was limited to [-2500; 2500] with a saturator (Figure 7.24.B) to pro-
tect the operability of AOs. When three gait cycles are performed, the contribution of the

feedback control command (ug, (%)) to the total control command (u) is estimated, as given

by Equation (7.13), considering u_ff as the mean squared feedforward contribution.

2
upp (%) = 100% X % (7.13)

The training phase ends when the contribution of the feedback controller is equal or
lower to 5% (ur, < 5%) of the total control command since we empirically verified that the
feedback contribution did not reach much lower than 5% of the total control command. Then,
the recall phase starts, and the learned inverse dynamics models of PKO and PAFO are able to
predict time-effective control commands to timely track the reference trajectory (6,.r) while
the feedback controller is released from this task to compensate for disturbances. Details of

the FEL tuning, i.e., the real-time training of the ANN are presented in Appendix G.

7.7.3.Experimental Validation

FEL control was validated in PKO and PAKO regarding its time-effectiveness and repeatabil-
ity along the time in order to investigate the possible inclusion of FEL as a low-level controller
in SmartOs. Moreover, the presented validation considers the user-AO interaction to investi-

gate the FEL adaptability to changes in the dynamics due to the interaction with the user.

Participants
Two healthy subjects (a male and a female) with 25.5 + 0.71 years old, the height of 1.69 +
0.1 m, and the body mass of 64.50 + 14.84 kg. They gave their informed consent to take part

in the experiment.

Protocol

The participants were asked to walk at 0.8, 1.0, and 1.2 km/h in level-ground on a treadmill
with the PKO and PAFO. Each participant performed 3 trials with a duration of 5 minutes.
Moreover, under the same conditions, the subjects were informed and asked to counteract

the PKO and PAFO in the terminal stance and the initial stance phase, respectively, preventing
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both AOs from increasing their position. The participants performed the disturbances in self-
selected gait cycles. These disturbances were selected since they are commonly prevalent
during a gait therapy to study the FEL response to external perturbations to the user-AO in-

teraction.

Data Collection and Analysis

To evaluate the FEL performance while comparing with the single PID controller, the posi-
tion trajectory measured by the potentiometer (6,¢s), the feedback (uy;, ) and feedforward
commands (usf), for PKO and PAFO, were collected. All signals were sampled at 100 Hz. The
control commands were reported as AOs’ pulse-width modulation values. Performance met-
rics as the phase delay (ms), the angular position error (°) and its normalized root mean square
error (NRMSE (%)), and the feedback command contribution (us, (%)), were computed in

Matlab.

7.7.4.Results and Discussion

The findings of FEL tuning indicate that the designed ANN was capable of correctly learning
the inverse dynamics for both AOs. When the learning phase finished, the ANN can timely
track the reference trajectory, discharging the feedback controller for this task. The learning
phase lasted 90 s (approximately 25 gait cycles) and 315 s (approximately 70 gait cycles) for
PKO and PAFO, respectively. These temporal differences are due to the different learning
rates used in both cases (Table 7.5).

Additionally, the running time of the FEL control loop (0.25 ms) is lower than the one re-
quired by the bioinspired control architecture of SmartOs (1 ms). These temporal findings sug-
gest that the techniques applied for approaching a real-time implementation were effective

to avoid long-time periods in the training phase.

FEL Evaluation in PAFO

Table 7.6 presents the results of FEL performance, considering the user-PAFO interaction. It
was observed a mean NRMSE of 6.51%, a mean phase delay of 25 ms and a mean contribution

of 5.8% of the feedback controller to the total control command.
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Table 7.6- Results (mean and std) of FEL and PID controllers achieved in gait trials with PAFO and PKO

Speed NRMSE Delay Usp
Control
(km/h) (%) (ms) (%)
0.8 PID 22.28+0.14 250+0.28 -
' FEL 6.95+0.008 30+£0.01 6.210.01
PID 24.28+0.18 260+0.27 -
PAFO 1.0
FEL 5.99+0.002 20+0.001 6.940.3
12 PID 26.99+0.17 250+0.28 -
' FEL 6.58+0.004 25+0.007 4.84+1.9
0.8 PID 21.58+0.17 260+0.046 -
' FEL 5.55+0.04 15+0.007 6.94+0.67
PID 22.33+0.16 210+0.024 -
PKO 1.0
FEL 5.69+0.04 1+0.004 6.1+0.95
12 PID 22.0+0.16 230+0.05 -
' FEL 6.37+0.013 22.5+0.004 6.52+0.23

Figure 7.25 shows the consistency of FEL performance, presenting low position error and

delay, and repetitive time-effective feedforward commands even when considering the user-

PAFO interaction under different gait speeds. The findings show that FEL can be used as an

adaptive controller to deal with dynamics changes due to interaction with the user. It also

yielded time-effective commands since the AQ’s position achieves the reference position at

least 40 ms before the reference position is updated (every 65 ms for 1.2 km/h, the more de-

manding condition).
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Figure 7.25- Representative results of PID control (A-C) at 0.8 km/h and FEL control (D-L) in the recall phase con-

sidering the user-PAFO interaction for 0.8, 1 and 1.2 km/h gait speeds.
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Furthermore, the FEL performance was assessed in the presence of external disturbances
(as marked in Figure 7.26 between 116 and 118 s). Such disturbances increased the position
error due to the displacement between the reference and measured position. In response to
this disturbance, the FEL control augments the feedback controller contribution (increases the
PID command) while the feedforward command stayed periodic since the PAFO dynamics did
not change. These outcomes demonstrate that the feedback control is charged to compen-
sate for disturbances while the feedforward control is charged to drive the desired move-

ment.
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Figure 7.26- Results of FEL control to external disturbances (marked at the dashed box) for 1 km/h.

FEL Evaluation in PKO

Regarding the validation of the user-PKO interaction, a mean NRMSE of 5.87%, a mean
phase delay of 12.5 ms, and a mean contribution of 6.52% of the feedback controller were
yielded. Moreover, Figure 7.27 shows that the feedback command increases once the position
error grows (Figure 7.27.C) due to the external disturbance caused by the user to the normal
gait pattern of the user-PKO interaction. The increased contribution of the feedback control
aimed to prevent the FEL control from falling into an instability state. On the other hand, the
feedforward controller command stayed periodic (Figure 7.27.B), as the reference signals and

the learned inverse dynamics model did not change.

166



Chapter 7-Assistive Control Strategies

(1) PKO Trajectory (2) Control Commands 30(3) Angular Position Error
e e P
50 o 2000 B : LS ;
S 40| § 1000 3 :
‘@ (= .
@ -] I H
£ 30 £ o0 = :
— = S '
?'020- £ -1000 7 :
g O £-20 :
< 10 -2000 : :
i LI S L . L. . Nesns . . a -30 A
55 60 65 54 56 58 60 62 64 55 60 65
Time (seconds) Time (seconds) Time (seconds)

—Feedforward Command "— Position Error

‘—Feedback Command

—— Measured Position
—— Reference Position

Figure 7.27- Results of FEL control to external disturbances (marked by the dashed box) to the user-PKO interac-

tion for 1 km/h.

Comparative Analysis to PID

The FEL performance was compared with the low-level controller available in SmartOs sys-
tem. For the assistance provided by the PKO under all tested speeds, the PID control achieved
a NRMSE around 22% and a phase delay of 230 ms. Consequently, it was verified that the FEL
control decreased the NRMSE and phase delay in 16.5% and 93%, respectively. In the ankle-
foot assistance by PAFO, the PID achieved a mean NRMSE of 24% and a phase delay of 250
ms for all speeds. For PAFO, the FEL control decreased by 17.5% and 90.7% the NRMSE and

delay, respectively.

The application of the FEL controller in AOs for gait rehabilitation constitutes an innovate
research point. So far, the FEL's use in real robotic assistive devices has been limited to upper
limbs’ assistance by functional electrical stimulation [254] and neuroprosthetics [253].

In overall, the FEL control can provide more accurate and time-effective assistance, with
lower position error and phase delay than single PID control, which is relevant for the correct
application of the user-oriented trajectory strategy in repetitive gait training. FEL control time-
effectively adapts the AOs’ responses to the changes in the dynamics due to the nonlinear
effects that arise from the user interaction with the device and compensated for random dis-
turbances. Therefore, FEL control is an adaptive and time-effective low-level controller for the
AOs embedded in SmartQOs, which may yield to an efficient gait rehabilitation.

Nevertheless, more extended validation involving more subjects and assistive control strat-

egies is required to strengthen the robustness and the evidence of FEL low-level controller
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considering subject-specific effects and control dynamic variability. Lastly, a benchmarking

comparison with a hybrid controller should be approached.

7.8.Conclusions

The developed control architecture includes four different assistive control strategies,
which approached different therapeutic goals to make the SmartOs a multi-functional assis-
tive system to accommodate for the variability of the inter-and intra-subject needs. The con-
trol architecture enables the inclusion of further assistive strategies to rise the SmartOs’ ap-
plicability and expandability for distinct kinds of therapies.

Note that the performance of these assistive control strategies is determined by the (i)
precision of the sensors, (ii) the actuator’s torque precision and bandwidth, (iii) AO’s mechan-
ical response, and (iv) time-effectiveness of the low-level controller.

The reduced number of participants and explored AOs limit the effect size of the proposed

assistive control strategies.
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Chapter 8 — Conclusions

This chapter provides concluding remarks and main contributions by putting the results of
the previous chapters into perspective. The future directions to increase the technological and
clinical value of SmartOs system, as well as opportunities for further technical improvement,

are also presented.

8.1.Concluding Remarks and Main contributions

This Ph.D. thesis proposes a smart, wearable active lower limb orthotic system, SmartOs
system, to meet current challenges in gait rehabilitation and assistance towards a user-ori-
ented and repetitive gait training while fostering a real-time and objective assessment of the
user’s motor condition. SmartOs system was designed, developed, and experimentally vali-
dated to function as a personalized assistive solution for stroke survivors that present im-
paired gait function and spastic gait.

The conducted investigation and development actions, together with the obtained prom-
ising results through benchmarking analyses, contributed to the accomplishment of the ulti-
mate goal of this Ph.D. thesis, as follows.

An user-centered design approach, considering the end-users’ reports and clinicians’ ex-

pertise, was applied throughout the SmartOs’ system design and development (Objective 2).
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In this sense, it is expected that the pathological end-users report positive acceptability and
usability with SmartOs assistance.

Chapter 3 disclosed that SmartOs combines in an innovative and interoperable manner
wearable sensor systems, gait analysis tools, assistive control strategies into AOs such that
they are able to time-effectively adapt the assistance according to real-time evaluation of the
user’s needs and motion intention. The modules combination was successfully established
through a modular, deterministic framework (Objective 2), which demonstrated well-func-
tioning and met the real-time constraints. The framework endows a hierarchical combination
of SmartOs’ modules to boost the reliability of personalized assistance and cooperation be-
tween the end-user, devices, and environment, as handled by the human motion-control sys-
tem, and thus, contributing to smart action of SmartOs.

Moreover, the modular architecture (Objective 2) confers easy technological scalability
that allows extending the SmartOs’ clinical perspectives for novel therapeutic goals, different
neurologically impaired end-user’s, elderly assistance, and even introducing neuroprosthesis
to explore the physiological and cognitive opportunities that hybrid electrical and mechanical
assistance may offer.

In Chapter 4, a wearable motion lab with four stand-alone, self-calibrated, low-cost, wear-
able sensor systems was successfully developed. These sensor systems include real-time gait
analysis tools for estimating biomechanical and muscular outcome measures (Objective 3),
given their relevance in post-stroke gait recovery assessment according to International Clas-
sification of Functioning, Disability and Health (ICF). The benchmarking analysis with commer-
cial systems outlined that the developed sensor systems are purposeful for all-day monitor-
ing in real-world walking scenarios. Experimental findings indicate that the MuscLAB is an
objective and easily applied method for providing an evolutive analysis of the muscular activ-
ity across gait therapies. However, the MuscLAB’s outputs do not endow the forecast nature
of muscular electrical activity measured through EMG system, which plays a relevant role in
prediction and control domains.

The open-architecture approached in these sensor systems allows their application as
stand-alone or combined into third-party systems with an extendable potential for a versatile
ambulatory human gait analysis in healthy, pathological, and robotic-assisted conditions. This

research initiative goes forward the orthosis domain, allowing the real-time and objective

170



Chapter 8 — Conclusions

evaluation of the user’s motor condition to support the clinical-based motor diagnosis with
more accurate information and to investigate the clinical evidence of AO-driven assistance.

Furthermore, Chapter 5 presented a real-time gait event detection tool through an FSM
that showed to be accurate to handle with inter-subject and inter-step variability when var-
ying gait speed, slope, climbing staircases, barefoot and footwear conditions (Objective 4).
Features as lower computational load, simple usage (only using a small, wearable sensor
from InertialLAB or GaitShoe), more holistic gait segmentation (up to six gait events) when
compared with literature, together with the improved performance, makes the proposed de-
tection system suitable as a benchmark for real-time assessing human gait events.

The research activities of this thesis also contributed with an automatic, user-independent
machine learning-based recognition and prediction tool that accurately classified daily per-
formed LMs and LMTs (Objective 5), as stated in Chapter 6. This tool advances the state-of-
the-art by demonstrating that the exclusive use of kinematic data successfully allows (i) tack-
ling the transition prediction problem, (iii) predicting LMs and LMTs one step before their oc-
currence, and (iii) performing a more versatile classification while covering different walking
directions (forward, back, clockwise, and counter-clockwise) with variations in gait speed and
terrains (flat, ascending and descending stairs and ramp, stepping over obstacles). This finding
suggests that the user’s motion intention may be successfully achieved using more practical
sensors for daily locomotion than EMG sensors.

In Chapter 7, a hierarchical, closed-loop control architecture, prioritizing safety measures,
was successfully achieved such that AO’s assistive commands are based on the sensor feed-
back, that tracks the user’s motor condition and his/her interaction with AO, and high-level
gait analysis tool for decoding user’s needs and intention inspection. This control architecture
demonstrated a reliable performance for executing different user-oriented assistive control
strategies in real-time when attempting to the user’s motion intention and participation, as
experimentally inspected. This research action transforms the SmartOs into a multi-functional
assistive system within the healthcare domain to attain for the variability of the inter-and in-
tra-subject needs and to offer distinct kinds of therapies for post-stroke gait rehabilitation
(Objective 6).

Regarding the performance of these assistive strategies, the overall findings outline several
concluding remarks that may guide the clinical therapies. The user-oriented trajectory strat-

egy is suitable for repetitive gait training with user-oriented movements (mainly when using
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FEL controller). Consequently, it contributes to augment the user’s movement coordination,
motor sequence relearning, and potentiating the user’s natural locomotor pattern recovery
given the user-oriented trajectories. As relearning motor skills after a stroke requires a person
to practice movements by repetition [261], this assistive strategy potentially addresses pa-
tients in an initial stage of gait therapy or with a high-to-moderate degree of disability. The
inclusion of wearable biofeedback systems should be approached in gait therapies since this
assistive strategy does not provide any mechanism to consider or boost the user’s participation.

Moreover, SmartOs covers AAN gait training through adaptive impedance control that
tailors the stiffness of the human-orthosis interaction, innovatively investigated to make the
AO more cooperative to the user’s motion intention. The stiffness adjustment enables perma-
nent adaptability of the assistance level and thus the strength of motor memory over time.
This strategy contributes to long-term efficient movements and functional motor ability.

Furthermore, the user-orthosis interaction-based control and EMG-based strategy favour
high-challenging motor therapies that involve the user’s motion intention and physical effort.
The EMG-based control strategy is more suitable for subjects with a high-to-moderate level
of impaired gait function since it requires lower physical effort from the user than the user-
orthosis interaction-based strategy. The findings pointed out that these strategies contribute
to augment muscular strength, and improve functional locomotor ability. Nonetheless, these
assistive strategies do not tailor the assistance according to the user’s disability level.

The adaptive impedance control, user-orthosis interaction-based control, and EMG-based
strategy showed to be featured by the user’s active and voluntary participation in the ther-
apy. The involvement of cognitive processes results in beneficial effects on the control of
learned motor behavior and muscle memory skills [262]. Further, it may accelerate the motor
recovery.

As the user-orthosis interaction-based control minimizes the mechanical impedance of the
AO to act as a passive device, it was elected, in collaboration with clinicians, to be applied
under spastic conditions.

The reliability and time-effectiveness of these assistive control strategies is determined by
the efficacy of the low-level controller. The promising results of the FEL controller highlight
the potential of a hybrid low-level controller to more accurate and time-effective assistance

with enough adaptability to the dynamic changes that arise from the user interaction, when
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compared to the single feedback control, PID controller. Therefore, AOs should attempt to

hybrid controllers as FEL.

The overall results obtained during experimental and technical validation, proved the well-
functioning of the SmartOs system, reaching the Technology Readiness Level 4 “Technology
validated in lab”. At this level, SmartOs is functionally operative and is ready to be validated
in the clinical environment, and a protocol has already been proposed, although not de-
scribed in this thesis. This clinical validation is itself innovative. The SmartOs-driven gait reha-
bilitation will contribute to a long-term biomechanical and functional gait recovery, augment-
ing the movement coordination, muscular strength, energetic efficiency locomotion, cognitive
motor abilities, and general user’s wellbeing. The cognitive advances may be assessed through

neuroimaging.

8.2.Research Questions

The research initiatives conducted in this thesis allow answering to the following RQs.

e RQ1: Which are the key outcome measures to evaluate the functional motor recovery of

stroke survivors upon orthotic-based gait rehabilitation?

This RQ was answered in Chapter 2. There is evidence to apply outcome measures from the
Activity ICF category, including spatiotemporal (mainly, gait speed, step length, stride dura-
tion), kinematic (flexion/extension of hip, knee, and ankle at different stages of the gait cycle,
and range of motion), and functional (mainly, Time-Up-Go Test, 10 Meter Walking Test, and

Berg Balance Scale) outcomes.

e RQ2: What are the main assistive potentialities and scientific challenges to consider in

the design of a wearable active orthotic system for robotic-based gait rehabilitation?

This RQ was tackled in Chapter 2. When compared with manual gait rehabilitation and passive
orthotic assistance, the main assistive potentialities of wearable AOs are: (i) provide an in-
tensive, repetitive therapeutic training according to a real-time evaluation of the user’s needs
(AAN approach); (ii) tailor the assistance to different motor activities and gait speed variations;

(iii) incorporate the patient-active mode and the voluntary effort; (iv) long-term functional
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motor recovery and enhanced motor learning; and, (vi) continuous and objective gait moni-
toring.

Challenges in wearable AOs include the integration of the following technologies: (i) time-
effective assistive control strategies tailored according to the current user’s needs to deliver
a personalized assistance, (ii) unobtrusive wearable biofeedback system approaching less-cog-
nitive effort to actively encourage the user’s participation, (iii) wearable sensor systems and
easy to apply methodologies for real-time monitoring of the neuro-biomechanical user’s mo-
tor condition, and (iv) tools for the recognition of user’s motion intention and current patient’s
disability level.

Clinical challenges include the accomplishment of more clinical experiments with (i) a sig-
nificant number of participants, particularly patients that exhibit spasticity, (ii) repetitive func-
tional motor activities daily performed, and (iii) long-term AQ’s evidence evaluation with

quantitative outcome measures.

e RQ3: Can a single kinematic measure enable a time-effective detection of several gait

events under distinct walking conditions?

This RQ was tackled in Chapter 5. Experimental evidence demonstrated the exclusive use of
foot angular velocity signal at the sagittal plane provided a time-effectiveness detection of
six gait events in controlled and non-controlled gait conditions, varying gait speed and slopes,

climbing staircases, and attending to inter-subject and inter-step variability.

e RQ4: Is it possible to recognize and predict daily performed locomotion modes and loco-
motion mode transitions using a machine learning tool that exclusively deploys kine-

matic data?

This RQ was answered in Chapter 6. The promising findings support the potential of using
only the trunk and lower limb kinematic data (angular velocity and angle) to accurately rec-

ognize and predict daily performed locomotion modes and locomotion mode transitions.

* RQ5: Which set of assistive control strategies will yield a multi-functional assistive sys-

tem addressing different gait therapies?

Chapter 7 approached these RQs though the design and validation of distinct control strate-
gies. It was verified that (i) user-oriented trajectory control is indicated for repetitive training
with user-oriented movements, potentially addressing the initial stage of gait therapy; (ii)
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adaptive impedance control enables a promising AAN gait training with adaptive assistance
level; and, (iii) EMG-based control and user-orthosis interaction-based control are promising
for therapies driven by the user’s motion intentions aiming physical high-challenging gait

therapies.

¢ RQ6: Can feedback-error learning control, a low-level controller, provide proper real-

time performance to an active assistive lower-limb device?

The findings outline that FEL is a time-effective low-level controller for AOs that beneficiates
from the anticipatory and time-effective performance of the feedforward control in the cyclic
task of walking while the feedback controller is suited to compensate for uncertain dynamics

of the human-robot system.

8.3.Future Directions

In this section, some of the scientific and technical improvement opportunities that could
be explored are highlighted.

Future directions for technical improvements include: (i) Integrating the wearable bio-
feedback systems under development to encourage the high-intensity user’s physical partic-
ipation into the therapy to boost the overall motor recovery. (ii) Enhancing aesthetic and er-
gonomic issues in the Wearable Motion Lab by upgrading sensor systems with wireless tech-
nology and attenuating sensors’ misalignments. (iii) Extending the validation of GaitShoe and
MuscLAB to further non-structured walking scenarios such as climbing stairs and slopes to
investigate measurement repeatability under these daily locomotor tasks. (iv) Exploring the
MuscLAB’s response to the use of a force sensor array rather than a single sensor to deal with
attachment problems and delayed muscular activity measurement. (v) Improving the joint
angle estimation, by merging fusion-based methods with gait event resetting-based ap-
proaches to deal with the bias errors. (vi) Improving the overall performance of the user’s
motion intention recognition and prediction tool by including more participants and more
transitional steps to increase the user-independent character and accuracy of Steady-
State/Transition Classification Model, respectively. (vii) Combining variable walking direction
and gait speed across different terrains; otherwise, the Direction Classification Model is only

useful for level-ground. (viii) Utilizing FEL low-level controller with all assistive control
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strategies and optimizing the AOs’ mechanical response to achieve overall purposeful assis-
tance. (ix) Conducting more exhaustive validation of overall hierarchical control architecture
focused on the potentialities of each assistive control strategy. (x) Developing a user-custom
made attachment system for mitigating the misalignments between the user’s and AOs,
mainly for PKO system to effectively obtain a user-centered device, making it more attractive.

Future scientific challenges were also pointed out during the conducted research activities,
as follows. (i) Investigate which type of biofeedback system, vibrotactile or visual, fosters a
more intuitive and cooperative user-AQ interface during assisted walking conditions. (ii) Study
the effectiveness of MuscLAB as an easily and quickly applied methodology for assessing mus-
cle fatigue. (iii) Explore the affordability of tools for gait event prediction to tune the AO’s
assistance when needed. (iv) Employ the machine learning-based framework presented in
Chapter 6 for achieving a disability analysis tool supporting the clinical-based decision in post-
stroke conditions using kinematic and muscular activity data (e.g., spatiotemporal measures
and kinematic and muscle synergies). (v) Complement the hierarchical control architecture
with machine learning-based tools for incipient risk detection and user’s motion intention
recognition and prediction for achieving a smooth movement transition and comfortable as-
sistance for end-users. (vi) Include recurrent NN into the machine learning-based framework
given the ability of this NN to storage the temporal sequence of human gait that is embedded
in the time-series of kinematic data. (vii) Advance the motion prediction problematic fusing
kinematic motion data with environment aware data. (viii) Update current achievements of
assistive control strategies, by introducing real-time adjustment of the user-oriented trajec-
tory in user-oriented trajectory strategy, AAN strategy in EMG-based control, and damping
and inertia modulation in the adaptive impedance control. (ix) Explore energy-based control
strategy considering the evaluation of the user’s energetic effort.

Innovative aspects cover the evaluation of the reliability, through benchmark outcomes, of
the SmartOs system and individual modules in clinical environment with stroke survivors. A
wide-ranging analysis of the locomotor ability of the pathological users will be tackled for cre-
ating an open-source database with meaningful motion data for enabling the offline building
and testing of gait analysis tools and control strategies.

Lastly, long-term technical improvements aim to enable the SmartOs application in daily
assistance and will strong-up the motor ability and offer the patients an adequate level of

independence to perform daily locomotor activities and raise the user’s confidence.
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Appendix A

Appendix A- Methodologic Quality Assess-

ment

This appendix provides information on the methodologic quality assessment of each in-
cluded study in Chapter 2.2 (see Appendix A.1) and Chapter 2.3 (see Appendix A.2) using the

Cochrane risk-of-bias tool [74].

Appendix A.1

Risk of bias assessment of the studies discussed in Chapter 2.2 using the Cochrane tool

Random sequence generation (selection bias) _
Allocation concealment (selection bias) —.

Blinding of participants and personnel (performance bias) - I
Blinding of outcome assessment (detection bias) _ .
Incomplete outcome data (attrition bias) _

0 % 25 % 50 % 5% 1009,

| B Low risk of bias OUnclear risk of bias B High risk of bias |

Figure A.1.1- Risk of bias graph.
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Figure A.1.2- Risk of bias summary.

Appendix A.2

Risk of bias assessment of the studies discussed in Chapter 2.3 using the Cochrane tool

Random sequence generation (selection bias) ]
Allocation concealment (selection bias) I [

Blinding of participants and personnel (performance
bias) I I

Blinding of outcome assessment (detection bias)
(patient-reported outcomes) E— I
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cause mortality)

Incomplete outcome data (attrition bias) I
Selective reporting (reporting bias)
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B Low risk of bias OUnclear risk of bias B High risk of bias |

Figure A.2.1- Risk of bias graph.
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Appendix B

Appendix B- Outcomes Measures in Post-

stroke Gait Rehabilitation

This appendix provides additional information on outcome measures, categorized per ICF
category, used in post-stroke orthotic-based rehabilitation, which were presented in Chapter

2.2

Table B.1- Assessment protocol (goal, outcome measures, motion capture systems, and timing for assessment)

in post-stroke orthotic-based rehabilitation. N/A means not available and (*) indicates the primary outcome.
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Assessment Disease . Outcome measures Motion capture Timing for

Study Orthosis —

goal stage ICF category Description system assessment

[95] Functional Chronic  Conven- Activity -Functional metrics: TUG, 10MWT, FAC, BBS. 6 DOFs motion plat- End of treat-
and dynamic tional AFO -Balance metrics: Weight-bearing asymmetry, form (MOTEK, Nether- ment: 35
balance and  metal timed balance test. lands), Vicon system months

AFO (Vicon, UK)

[96] Walking Chronic  Anterior AFO Body -Impairment metrics: MAS. N/A N/A

ability impairment
Activity -Functional metrics: TUG, TUDS, BBS.

[75] Gait pattern Acute Hinged knee Body -Muscle activity: electromyography. 4-camera system -Baseline;
and sym- orthosis function (Basler Scout, Basler -End of treat-
metry Activity -Spatiotemporal parameters: gait velocity, ca- AG, Germany), tele- ment:4 weeks

dence, step length, base width, stance, swing metric EMG device
and double-support duration, and symmetry in-  (Zebris Medical GmbH,
dex. Germany)
-Functional metrics: 6MWT, 10MWT (*), TUG,
BBS.
Participation - Participation metrics: satisfaction question-
naire with 9 questions concerned the orthotic
fit, weight, durability, appearance, the effect on
clothes and skin, the difficulty of donning, and
related pain.

[97] Balance and Chronic Conven- Activity -Functional metrics: BBS. Biodex System (USA), End of treat-
fall risk miti- tional AFO -Balance metric: postural stability measured by movable balance plat- ment: 1 week
gation Biodex system. form

[85] Knee joint Chronic Conven- Activity -Spatiotemporal parameters: gait speed, step ELITE (BTS Bioengineer- End of treat-
ability tional AFO length. ing, ltaly) with 8 infra- ment: 6 trials

-Kinematic metrics of paretic limb: knee flexion
and peak knee flexion angle.

red cameras
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Assessment Disease . Outcome measures Motion capture Timing for

Study Orthosis —

goal stage ICF category Description system assessment

[103] Walking Chronic  Conven- Activity - Functional metrics: TUG, TUDS, FAC. 2 infra-red beams End of treat-
ability tional AFO ment: 9 months

[98] Balance and Acute Conven- Activity -Functional metrics: 10MWT (*), 6MWT, TUG, N/A -Baseline;
walking abil- tional AFO TUDS, FAC, BI, BBS. -End of treat-
ity ment: 2, 9 and

11 weeks

[99] Long-term Chronic  Conven- Activity -Functional metrics: 10MWT, TUG. Footprints N/A
effect of tional AFO Participation - Participation metrics: perceived exertion scale
walking abil- (ranges from 6 to 20) to assess the activity in-
ity tensity of each trial for each test.

[86] Immediate Acute Conven- Activity -Spatiotemporal parameters: walking velocity 8-camera Vicon 612 -Baseline;
biomechani- tional AFO (*), step length symmetry ratio, average step system (Oxford Met- -End of treat-
cal ability length, cadence. rics, UK), 2 AMTI ment: 7 days

-Kinematics: thigh-to-vertical angle, shank-ver- BP400600 force plat-
tical angle, maximum thigh-to-vertical angle of forms
paretic limb, knee flexion of paretic limb.
Participation - Participation metric: EuroQol EQ-5D-5L29
quality of life questionnaire.

[94] Mediola- Chronic  Non-rigid Activity - Spatial metrics: mediolateral foot-placement 8-camera digital mo- -Baseline;
teral foot- AFO between the ankle and the target line (0%, 15%, tion capture system -End of treat-
placement 30%, 45% subject’s leg length) for each step; cir- ment: 6 trials
ability cumduction.

- Kinematic metrics: hip abduction/adduction
angle, peak pelvic angle.

[87] Initial ef- Acute, Conven- Activity -Spatiotemporal parameters: gait speed; ca- GAITRitel system End of treat-
fects on gait chronic tional AFO dence; step length of paretic and non-paretic ment: 1 month

pattern

limb; stance duration of paretic and non-paretic
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Assessment Disease . Outcome measures Motion capture Timing for

Study Orthosis —

goal stage ICF category Description system assessment
[88] Biomechani- Chronic Conven- Activity -Spatiotemporal parameters: walking velocity 3D motion analysis -Baseline
cal ability tional AFO (*), step length, symmetry ratio based on step measures

length. -End of treat-
-Kinematic parameters: thigh and shank orien- ment: 3 months
tations. -Follow-up: 6
-Kinetic indicators: knee and hip flexion/exten- months
sion moments.

Body struc- - Impairment metrics: MAS, Modified River-

ture mead Mobility Index.

Participation - Participation measures: EuroQol (EQ-5D); in-
terviews to the clinicians and patients before
and after their participation in the study.

[89] Rear-foot Acute Anterior and Body impair- - Impairment metrics: Brunnstrom scale, MAS.  Vicon system (Vicon, End of treat-

motion gait posterior ment UK) ment: 3 trials
AFOs Activity -Spatiotemporal parameters: walking speed,
step length, cycle time.
-Kinematic metrics: angles of the rear-foot joint
in three planes.

[91] Biomechani- Chronic Conven- Activity -Spatiotemporal parameters: step length nor- 2  force platforms End of treat-

cal ability tional AFO malized to body height, cadence, gait velocity (Kistler, Switzerland), ment: 3 trials
(*), stance and pre-swing time. Vicon system (Oxford
-Kinematic metrics: hip extension and knee flex- Metrics, UK)
ion at toe-off.

[90] Biomechani- Acute Conven- Body func- -Muscular activity: EMG from tibialis anterior Myopac EMG unit (My- End of treat-
cal and mus- tional AFO tion muscle. opac), force plates, Vi- ment: 3 trials
cular ability and dynamic  Activity -Temporal metric: gait velocity. con System (Oxford

AFO - Kinematic metrics: ankle angle at initial contact Metrics, UK)
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Assessment Disease . Outcome measures Motion capture Timing for

Study Orthosis —

goal stage ICF category Description system assessment

[92] Double sup- Chronic Conven- Activity -Temporal metrics (*): gait speed; duration of Wheel, wireless force End of treat-
port tional AFO stride initial double support, single support, and platform (pedar®) ment: 10 trials
changes re- terminal double support.
lated to gait -Kinetic metrics (*): mean force, and impulse
speed (bodyweight*seconds) in the wholefoot, hind-

foot, forefoot, and toe during initial double sup-
port.

[93] Biomechani- Chronic Conven- Body func- -Muscle activity: co-activation index of gas- Stereo-photogrammet- End of treat-
cal and mus- tional AFO tion trocnemius, tibialis anterior, biceps femoris, ric system (BTS Smart), ment: 3 trials
cular ability and dynamic rectus femoris muscles. infrared cameras, min-

AFO Activity -Spatiotemporal metrics: stride time, cadence, iaturized EMG device

step length, stride length, percentage of swing (BTS FREEEMG 300)
phase and double stance phase;
-Kinematic metrics: angle at initial contact,
ROM, dorsiflexion peak during swing phase for
ankle; knee flexion/extension ROM; and flex-
ion/extension ROM, flexion peak during swing
phase, and pelvic frontal ROM for hip.

[76] Over- Chronic Knee ortho- Activity -Functional metrics: 10MWT, 6MWT, BBS, five- N/A -Baseline; End of
ground bal- sis time sit-to-stand test (5TSST), and Emory Func- treatment: 6
ance and tional Ambulation Profile (EFAP). weeks;
walking abil- -Follow-up:
ity 3months
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Appendix C- Clinical Protocol on Post-Stroke

Rehabilitation

This appendix presents additional information on the results of the systematic review re-
lated to post-stroke orthotic-based rehabilitation and presented in Chapter 2.3, namely the

inclusion and exclusion criteria and the clinical protocol.
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Table C.1- Inclusion and exclusion criteria, and protocol outlined in the studies with post-stroke patients.

Study Inclusion criteria Exclusion criteria Protocol
- Over 18 years of age. -Randomized cross-over trials.
-Have a single unilateral ischemic or hemorrhagic -Patients performed the posture-graphic test and functional tests, with
stroke at least 3 months leading to hemiparesis. and without AFO, while all subjects were wearing their own shoes.
(95] -Able to walk for 10 m with or without orthosis. N/A - The static test aimed to assess weight-bearing asymmetry while the
-Able to maintain independent unsupported subjects were instructed to stand on the force plate for 90 seconds.
stance with and without an AFO for at least 90 s. -Subjects performed 3 dynamic trials lasting 90 seconds, in which they
-Daily using of AFO for at least 2 months. were instructed to maintain balance without moving their feet.
-Able to follow simple verbal instructions. -Functional tests consisted on: BBS, TUG test, 10MWT, and FAC.
-Over 18 years old. - 2 sessions of gait analysis at their self-selected gait speed without and
- Stroke at least 6 months (chronic-phase). with the use of the AFO and shoes, with a 10 minutes rest period.
105] -Spasticity of the gastrocnemius and soleus mus- N/A -Each condition was carried out in a 10 meters gait corridor, where the
cles rated between 1 and 3 on the MAS, leading to participants performed at least 8 successive gait cycles.
foot-drop. -6 trials were carried out for each condition.
-Unilateral hemiplegic stroke patients capable of -Clinically significant visual impair- -Experiments were randomly performed with and without AAFO.
following simple verbal instructions. ment. - Participants who already had an AAFO were allowed to use the device.
-Ability to walk on a level surface and to walk up  -Ability to voluntarily dorsiflex the - Participants were requested to complete the TUG and TUDS tests.
[96] and down stairs with or without assistive devices ankle against gravity, i.e., MRC - During the testing process, 2 individuals stood by the participants, 1
and without wearing an AAFO. scale > 3, since the AFO is indi- on each side, to prevent falls.
-No systemic or local medical problems, other cated for the weakness of the an- - Participants could rest, generally 5 to 10 minutes, between each test.
than stroke, that might affect walking mobility. kle dorsiflexor. Total testing time ranged from 30 minutes to 1 h.
-Stroke at least 3 months. -Cognitive disorders preventing -8-week prospective, randomized, controlled study with 2 groups.
-Presence of paresis of leg muscles and/or a spas- the understanding. -First group received the orthosis during 4 weeks, and then, 4 weeks
[75] ticity pattern resulting in knee hyperextension. -Ankle or foot contracture or lim-  without using the orthosis. Second group only received orthosis after 4
-Ability to walk independently with or without a ited ROM, or orthopaedicinjuryto weeks for personal use for a 4-week period.
walking aid. the paretic or non-paretic limbs. -Measures were recorded at baseline, 4 and 8 weeks.
-Have spasticity at gastrocnemius and soleus. - Patients were assessed with AFO and without AFO.
[97] -Ability to walk safely without an assistive device. N/A -All assessments were made with footwear.
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Study Inclusion criteria Exclusion criteria Protocol
-Over 18 years old. -Patients performed 2 gait tests successively with (KAFO condition) and
-Have hemiplegia following a stroke at least 6 without orthosis (control condition) at their preferred walking speed,
months (chronic-phase). with a 10 minutes rest period.
104] | -Spasticity or weakness of quadriceps. N/A -Each condition was carried out in 10 meters for 6 trials.
-Knee hyperextension during the stance phase.
-Ability to walk 10 meters without walking aids.
-Prescription of a carbon KAFO in last 6 months.
-Over 18 years of age. - Have comorbidities, orthopaedic -Randomized controlled trials with (study condition) or without AFO
- Had a stroke at least 6 months. or postural problems that could (control), both with shoes.
-Maximum spasticity level of 3 in MAS. confound the outcomes. -All subjects underwent TUG test and TUDS test during 3-month follow-
[106] - Have FACranging 3 to 5. -Have used a dynamic AFO before. up.
-Range of passive dorsiflexion up to at least 90°.
-Have cognitive level to give informed consent, to
understand and follow the directions of protocols.
- Spasticity of gastrocnemius and soleus muscles - Cannot stand for 10 seconds. -Multicentre randomized controlled study over 90 days with 2 walking
less than 3 on MAS. -Motor or cardiovascular disease conditions: Chignon AFO (study group) or the standard AFO (control).
[114]  -Ankle passive dorsiflexion >52 with the knee that might impair locomotion or - Participants underwent to 10MWT.
flexed to 909. other cognitive alteration that -Standardized assessments were performed at the initial wearing time
limits the participation in study. and at 30 and 90 days of follow-up.
- Over 18 years old. -Gait speed was higher than 1m/s. - Patients were asked to walk with AFO or barefoot.
(85] -Walk at least 10 meters. -Unable to give informed consent. - Subjects walked a distance of 10 meters to complete 2 gait cycles.
- No limitation in the ROM in lower limbs. -Significant cardiorespiratory or -6 trials were performed for each condition: 3 without the orthosis and
- Plantarflexor spasticity MAS between 1 and 3. metabolic disease. 3 with the orthosis/ footwear combination.
- Aged 40 and 75 years old. -Tests were randomly carried out with and without their AFO while the
-Have a first unilateral ischaemic or hemorrhagic participants were wearing shoes, lasting 5 weeks to 6 months.
stroke from the middle cerebral artery. - Patients walked the 10-meter walkway 3 times (comfortable speed).
| - Ability to walk independently with shoes with N/A - Participants underwent TUG test, where was permitted to use a walk-
103] and without orthosis. ing aid, but no physical help. The TUG was measured three times.

- Wearing an AFO for at least 6 months.

-Subjects performed the TUDS test 3 times.
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Study Inclusion criteria Exclusion criteria Protocol
-Over 18 years of age. -Suffering from severe compre- - Randomized controlled trial.
- Hemiplegia following a unilateral ischemic or hensive aphasia or neglect. - Effects were assessed 2 weeks after provision (baseline). Patients from
(98] hemorrhagic stroke at least 6 months. -Present a complicated medical early group were observed from week 3 while subjects from delayed
-Able to follow simple verbal instructions. history, as cardiac, pulmonary, or group were analysed week 11.
orthopaedic disorders, that could -Patients performed functional walk tests: 10MWT, 6MWT, TUG, TUDS,
interfere with testing. and they could use their usual assistive device.
-At least 6 months post-stroke. -Randomized crossover trials.
[99] -Have an initial infarct within the past 10 years. N/A -Trials with wearing and not wearing their AFO.
-Patients wearing a thermoplastic AFO for at least -Patient walked on a 10 meters walkway and performed the TUG test.
6 months.
- No prior experience with an AFO. -Have history of falling more than -Randomized controlled trial, since 2005 to 2008, with 2 conditions:
-Have no expected change in medications for at once a week prior to the stroke. with and without a device.
least 6 months. - Have fixed ankle contractures of -Trials consisted of 2 consecutive phases of 6 weeks intervention.
-Have adequate stability at the ankle during 10° of plantarflexion. -During each visit, walking performance was tested at 0, 3, 6, 9, and 12
[107] stance. -Gait speed greater than 1.2 m/s.  weeks.
-Have a Functional Independence Measure score -Morbid obesity.
>4 for ambulation. -Present conditions as myocardial
-Can ambulate at least 10 meters with or without infarction, congestive heart fail-
an assistive device. ure, demand pacemaker.
-Over 16 years old. N/A - Randomized controlled trial study.
-Have to be within 1 to 12 months after stroke; - Patients undergone a tri-dimensional gait analysis that was taken on
-Be able to walk with assistance but have difficulty two occasions: one before the AFO was fitted walking with shoes only
[86] flexing knee and extending hip during gait. (baseline session), and another 7 days later immediately after the AFO
was fitted and tuned (tuning session).
- Patients worn basic training shoes (rigid sole) for tuning session.
-Were collected 10 trials at baseline and 7 immediately AFO tuning.
N/A -Randomized trials.
- Subjects ambulating faster than 0.8 m/s. -Subjects were followed for 6 months, and assessed relatively to func-
[115]  -Subjects that needs physical assistance or exter- tionality with activities of daily living, balance, and quality of life.

nal support.
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Study Inclusion criteria Exclusion criteria Protocol
-Age 40 to 70 years. -Subjects walked with standardized footwear in 4 conditions: i) shoes
-A minimum of 24 months post-stroke. only; ii) conventionally AFO; iii) the same AFO realigned with the tibia
-Presence of hemiplegia after stroke. vertical in the shoe-heel-height compensated AFO; and iv) the same
| -Currently wearing or had an articulated AFO. N/A AFO with % length foot-plate -%.

108] -No major involvement of the contralateral limb. - Data were collected from the walking in a 10 m-walkway at their nor-
mal self-selected walking speed with a minimum of 3 walking trials for
each condition and speed, each lasting approximately 2 hours.

- Subjects were instructed that they could rest as necessary.
- Over 18 years of age. -Randomized across trials.
- At least 1-year post-stroke. -Subjects performed 6 trials, walking back and forth across 10MWT.
[94] -Able to walk without any assistive device. N/A -Subjects were tested at the following randomized step widths: 0%,
-Currently using a non-rigid AFO. 15%, 30%, and 45% subject’s leg length to assess the presence or no of
- Able to understand instructions. the circumduction. Participants should walk at a comfortable speed.
-Diagnosis of hemiparesis secondary to -Stroke with more than one hemi- - Randomized trials with 2 groups, Group 1 (acute) and Group 2
cerebrovascular accident with the duration of sphereinvolvement. (chronic), under 2 conditions (without and with AFO).
symptoms less than 6 weeks (Group 1) or more -Have a score of spasticity higher - A patient could start walking 2 meters prior to stepping on the GAI-
[87] than 6 weeks (Group 2). 2 in MAS. TRite carpet, and to continue walking 2 meters past the end of carpet.
-Ability to walk for 10 meters with or without as- -History of significant orthopaedic - Participants were walked toward the end of the GAITRite at a self-
sistive devices. problems that would interfere selected comfortable speed, with rest periods of 2 minutes.
-Ability to follow simple instructions. with performing a gait analysis.
-Diagnosis of unilateral hemiparesis from the -Randomized trials, in which subjects were placed into two groups ac-
stroke at 6 months or more than 12 months. cording to the duration of hemiparesis.
-Ability to stand without support for at least 1 min. -Patients performed measurement tests, both wearing and not wearing
[109] -Ability to walk for 10 meters with or without N/A an AFO on the affected foot.

assisted device.
-No history of significant orthopedic problems.
-Ability to follow instructions.
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Appendix D- SmartOs Framework: Software

Interfaces

This appendix provides additional information on the software interfaces of the framework

implemented for SmartOs’ modules integration, as described in Chapter 3.3.

The CCU interfaces all SmartOs’ modules and graphical applications and implements the
high-level methods, running the Ubuntu Mate OS. Given the complexity of distributed sys-
tems, the CCU was implemented in C++ language, which allows: (i) object-oriented program-
ming; (ii) complete control over memory management; and (iii) scalability to expand the sys-
tem following a modular and standard software design. The POSIX Pthread Libraries were used
that (i) allow for spawning a new concurrent process flow, (ii) are effective for a multi-core
system, such as the Raspberry Pi 3, where the process flow can be scheduled to run on another
processor thus gaining speed through parallel and distributed programming, and (iii) provide
less operating system overhead.

The software architecture of CCU was organized into five main software modules (classes),
namely ExternalDevice, CentralController, HLController, SmartGaitAnalysis, and Log, de-
scribed in Table D.1. A task was assigned to each module such that when a new entry is added
to the target queue, the task will wake to execute the module’s process. Additionality, it was
implemented a queue per external device (i.e., graphical applications, LLOS, WML) of the CCU
for handling with the messages exchange between CCU and its external devices.

The temporal flow of processes occurs as follows. As the CCU is turned on, the main pro-
gram setups the hardware interfaces and activates the task of the CentralController. Subse-
quently, the CentralController activates the task of mobile graphical application, which is wait-
ing for messages from Bluetooth communication. The received messages are processed in the
CentralController, which setups and activates the tasks of the selected modules in the mobile
graphical application for running the configurated therapy. The therapy starts and stops ac-
cording to start and stop command messages, respectively, sent from the mobile graphical

application.
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Table D.1- Description of the main software modules of CCU

Module Description

- Base class for communication with external devices to CCU; Bluetooth for Mobile
Graphical Application, Wi-Fi for Desktop Graphical Application, and serial commu-
nication for LLOS and WML.

External De- L . . .

. - Handle the communication with the external devices using handler_Msg task.

vice
- Contain tasks to handle with input (inMsg queue including command message)
and output (outMsg queue including status and data messages) messages of the
CCu.

- Process the messages from/to Mobile Graphical Application by process_BTMsg

Central Con- task.
troller - Setup and initialize all configurable modules according to the command messages.
- Start and stop the therapy including the controllers, gait tools and gait monitoring.

- Setup all gait analysis tools (i.e., gait event detection, speed estimation, user’s mo-
tion intention recognition, risk analysis, disability level recognition).

. - Executes all gait analysis tools using SmartGaitAnalysis timer.
Smart  Gait

. - Each gait analysis tool must inherit GaitAlgorithm base class.
Analysis

- Each gait analysis tool is also a base class that includes a set of derived classes (e.g.,
GaitEventDetection_FSM_InertialLAB and GaitEventDetection_FSM_GaitShoe are
derived classes that inherit from GaitEventDetection_FSM base class).

- Setup and manage the assistive control strategy using AssistiveStrategy task.
HLController - Runs the high-level controller using the AssistiveStrategy timer.
- Stop the assistive control strategy, ensuring safety in isExitSafe class.

- Base class for data logging in JSON file and Desktop Graphical Application.
- Handle the communication with the Desktop Graphical Application, LLOS and
WML.

Log - Setup JSON file for local data storage in CCU memory.
- Get all data from therapy (LLOS, WML, HLController, SmartGaitAnalysis) to store
in JSON file and send externally for Desktop Graphical Application using Log task.
- Monitor the battery status using batteryMonitor timer.

The software framework of LLOS and WML followed the same design and was divided into
three main software layers upon the hardware layer. First, the middleware layer incorporates
the freeRTOS [147] real-time operating system and HAL libraries, namely STM32Fx HAL drivers
(e.g., CAN, ADC, I2C, and SPI drivers). The freeRTOS provides the facilities for multitasking,
concurrent programming towards the development of an effective framework and a set of
libraries that allow easy definition and use of tasks, queues, and semaphores. The second
layer, the application programming interface (API), provides the software interfaces (e.g., rou-
tines for initialization, configuration, runtime control, and data acquisition) for controlling and
accessing to the SmartOs’ modules aiming to create a software application. Lastly, the appli-
cation layer centered on setting the timers, FreeRTOS tasks, and using the APIs for the easy

integration of SmartOs’ modules. The programming language selected was C language.
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The software architecture of LLOS and WML was organized into four and three main soft-
ware modules, respectively. Figure 3.6 illustrates the main software modules and the flow of
SmartOs’ messages through these modules. In the External Communication module, incoming
data and status messages from other modules (i.e., Embedded IMU Sensor, Orthotic System,
or Wearable Sensor System) are sent to the CCU, and the command messages from the CCU
are handled in the Management Unit module by Message_Handler task and sent to the Setup
tasks (i.e., Control_Setup, IMU_Setup, Orth_Setup or SensorSystems_Setup). Two queues were
implemented for the external communication with the CCU; one for the transmission of data
(from Run callback functions) and status (from Setup tasks) messages to the CCU; and the
other for receiving command messages from CCU to Setup tasks. All Setup tasks, Start and
Stop functions act upon the reception of command messages. The Setup tasks specify intrinsic
aspects of each module such as the number of sensors, type of sensor system, type of mid-
and low-level controller, calibration routine time, among other aspects. The Start functions
turn the hardware timer assigned to each module. Subsequently, all functionalities such as
Control_Run, IMU_Run, Orth_Run, and SensorSystems_Run are periodically executed and han-
dled by a specific hardware timer ISR to accurately meet the real-time requirements. The
IMU_Run and SensorSystems_Run callback functions include both sensor data acquisition and
processing. The Control_Run callback function executes the mid- and low-level controls while
acquires data from the embedded sensors on the AO. Additionality, the hardware timer as-
signed to each module is charged for activating the semaphore of the SendExternal tasks. Fur-
thermore, the priority of the real-time software interfaces was adjusted such that the hard-
ware timers were configurated to meet the hard-real-time requirements of LLOS and WML.

The temporal flow of processes occurs as follows. When the development board of LLOS or
WML is turned on, the main program setup and initializes all the configurated hardware inter-
faces (e.g., system clock, CAN, 1°C, ADC, UART), the External Communication and the Manage-
ment Unit modules. Subsequently, the Embedded IMU Sensor, Orthotic System, and Wearable
Sensor modules are configurated and run in accordance with the command messages from
CCU received in the Receive_Message task and processed in Message _Handler task. Addition-
ally, the LLOS architecture receives real-time data messages from the high-level control loop

(HLController module in CCU) during the therapy.
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Appendix E- Software-in-the-loop: Inertial-

LAB and GaitShoe

This appendix provides additional information on the software routines implemented in

the InertialLAB and GaitShoe systems, both described in Chapter 4.

Appendix E.1-InertialLAB

As indicated in Figure E.1, the program starts by initializing the 12C communication to wake
up the available IMUs. In the subsequent 10 seconds, several 12C readings are performed for
conducting the calibration routine. Posteriorly, the real-time data acquisition starts using an
interrupt service routine (Timer 2). It ensures the data reading and writing to a linked list every
5 milliseconds (considering the maximum sampling frequency of 200 Hz). In the main program,
the offsets are subtracted to the new angular velocity values, and the accelerometer readings
are normalized according to the values found in the calibration routine. Then, the angle esti-
mation tool is executed. Lastly, the sample time, the gyroscope and accelerometer data of
each IMU, and the estimated angles are stored in the USB flash drive, and these data is re-

moved from the linked list.

Cop |

|
——

[ Write data to tinked list Trigmometry-based

accelerometer method
x

Angle Estimation

‘ | Accelerometer Data | | Gyroscope Data

Initializations Data Acquisition

New data in
linked list?

a> fes
Calibration M Yes Intelligent
| ax/‘"g'm‘ Complementary Filter
No No
Gyroscope Offset L . .
Subtraction and Cor v Filter
Accelerometer
Normalization
| Angle Estimation |
Write data to
USB Drive and
Clear data from
linked list
a) b)

Figure E.1- Flow chart of the software routines implemented in InertialLab, highlighting in (b) the sub-routine of

angle estimation.
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Appendix E.2-GaitShoe

To easily manage the operating mode of GaitShoe, we designed and implemented a graph-
ical interface in Android studio, which communicates with the master interface through the
Bluetooth communication. When master interface receives a “start” command, the interrup-
tion service routine embedded on each NRF24L01+ is triggered to synchronously start the data
reception from the slave interfaces every 10 ms. The RF communication protocol and the op-
erating mode of slave interfaces end when a “stop” command is configurated in the graphical
interface. Additionally, according to the commands selected in the graphical interface, the
received information from both slaves can be stored in the SD card or transmitted to the in-
terface for real-time visualization.

For each slave, as depicted in the flowchart of Figure E.2, the program starts by initializing
the required system’s configuration for data acquisition and transmission. When the wireless
communication starts, as configured in the graphical interface, the software routines are ac-
tivated. In the subsequent 10 seconds (overflow controlled by Timer 1), the ADC and I12C read-
ings performed every 10 ms (ensured through the Timer 2) are used to calibrate the FSRs and
the IMU. Afterward, the new sensory measures are adjusted according to the information
found in the calibration routine; FSRs’ measures are adjusted using a scalar multiplication, the
gyroscope offsets are corrected, and the accelerations are normalized. Subsequently, the foot
angle is estimated using the angular velocity integration with gait cycle-based reset method
[263] dependent on FF event. This angle estimation is required for the gait speed determina-
tion. Posteriorly, we implemented a gait event detection tool based on a single-axis, foot-
mounted gyroscope and FSRs. If the FF event is detected, the gait speed is estimated, and the
values of speed and angle are reset. Lastly, the recorded and computed information is orga-
nized in a 25-byte wireless packet frame to be transmitted to the master interface at 100 Hz
(ensured by Timer 2) using an NRF24L01+ RF module. This process ends as wireless communi-

cation is stopped.
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Figure E.2- Flow chart of the software routines implemented in the slave interfaces of GaitShoe.
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Appendix F-

Performance Analysis

Machine Learning-Based Framework

of

This appendix presents information related to the comparative analysis of the different

techniques explored in some stages of the machine learning-based framework. Table F.1 sum-

marizes the purpose and conditions considered in the comparative analysis.

Table F.1- Experimental comparison of techniques from framework’s stages

Stage

Purpose

Condition

Feature Calcula-

tion

Window’s sizes (full-stride, 1/2, 1/3, 1/4,
1/5,1/6)

Feature leg approaches (left/right or leading/op-

posite)

KNN classifier (k=1)? using all

features

Pre-Processing
(Feature norma-

lization)

Normalization techniques (centering, z-score
standardizing min-max scaling with [O; 1] inter-

val, min-max scaling with [-1; 1] interval)

KNN classifier (k=1)2 using all

features

Pre-Processing
(Feature selec-
tion and extrac-

tion)

1 feature extraction (PCA) and 3 feature selec-
tion methods (ANOVA-based method with
MRMR, “mRMR plus forward selection”, “for-

ward selection plus backward selection”)

KNN classifier (k=1)® using
features normalized by min-

max scaling in [-1; 1] interval

b

Model Building

9 machine learning classifiers (RF, linear and dy-
namic DA, regular and weighted KNN, SVM with

linear, quadratic, cubic, and RBF kernels)

Classifiers with all features
normalized by min-max scal-

ing in [-1; 1] interval

20nly KNN classifier was used given its fast training with reliable results

b Previously reported as the best normalization technique

Feature Calculation

Results of the recognition models (Figure F.1) show that using the full- stride fraction with

left/right approach outperforms (MCC = 0.907) all the other cases by a significant margin (MCC

< 0.808). On the other hand, for prediction, the leading/opposite approach and 1/4 fraction

of gait stride yielded the best results (MCC = 0.857). The findings suggest that both the feature

leg approach and the time window size affect the model’s performance, but these parameters

depend on whether it is a recognition or prediction model.
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Figure F.1- Average performance of the procedures explored for the Feature Calculation in a) recognition and b)

prediction models.

Feature Normalization

Figure F.2 shows that the min-max scaling with the interval [-1;1] yielded the best results
for recognition (MCC = 0.852) and prediction (MCC = 0.728). It was chosen for the remaining
analyses, as proposed in [264]. Overall, the normalization had a more positive effect in recog-

nition models (MCC > 0.711) than in the prediction ones (MCC > 0.630).

1,0

w06

<

=04
02
0,0

No normalization Standardize Min-max Scaling: 0 to 1 Min-Max Scaling: -1to 1

B Recognition ™ Prediction

Figure F.2- Average performance per feature normalization technique.

Feature Selection and Extraction

Figure F.3 shows that the feature selection and extraction methods performed better in
recognition models (0.677 < MCC < 0.96) than in the prediction ones (0.589 < MCC < 0.87).

The application of an adequate dimensionality reduction method improved the effective-
ness of the classifier compared to the inclusion of the entire dataset. This finding is according
to the literature [47] since it results from the ability to create a compact set of uncorrelated
features that still characterize the original data without redundancy. Using the “mRMR plus
forward selection” method (MCC > 0.8483) or “forward selection plus backward selection”
(MCC > 0.8696), both feature selection methods, yielded similar results. However, the former

is less computationally intensive, and while it selects a larger number of features than the
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latter method (20 and 13 features, respectively), it was the selected method allowing a feature
reduction of 75% from a total of 80 features. These sequential selection and ranking-based
methods were used in [62], [215], [224]. In particular, the findings are consistent with [224],
who concluded that the mRMR was faster and more effective than the “forward selection”
and “backward selection” methods.

On the other hand, the ANOVA was less effective (MCC < 0.677) due to the low number of

features that were chosen (2 to 3 features) to discern between the classes.
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H Recognition ™ Prediction H Recognition ™ Prediction

a) b)

Figure F.3- Feature selection/extraction techniques: a) Average model performance per feature selection tech-

nique; b) Number of selected features by feature selection technique.

Model Building

Figure F.4 shows that the SVM classifier with the Gaussian kernel performed better than
other classifiers for both prediction (MCC = 0.839) and recognition (MCC = 0.934). The SVM'’s
ability to define more complex decision boundaries by applying optimization instead of prob-
abilities, and its inherent flexibility to suit the data may explain this finding [47]. Previous lit-
erature indicates this classifier as the best, mainly when the Gaussian kernel is involved. Begg
et al. [265] concluded that SVM performs better than ANN. Badesa et al. [266] noted that the
SVM is more appropriate than LR, LDA, QDA, NB or KNN methods. Huang et al. [41] reported
that SVM yielded better results than LDA to recognize six LMs and predict five LMTs.

On the other hand, both DA models produced the worst classification performance (MCC <
0.733), in contrast to [216] where the LDA performance was comparable to the SVM. Three
reasons can explain this finding: LDA does not work well if the design is not balanced, such as
the one in this study; LDA is not suitable for non-linear data, such as the kinematic data; and,
LDA simplicity was perhaps not sufficient to discriminate the LMs and LMTs using the calcu-

lated features.
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Due to the increased complexity of SVM, the built model took almost the double time to
classify data comparing to other algorithms (Figure F.4). The KNN models took less time to
classify data (< 6.5 ms) while presenting similar effectiveness (MCC > 0.807) to the Gaussian

SVM (MCC > 0.839). This finding suggests that KNN models can potentially also be applied.
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Figure F.4- Average performance for each machine learning classifier across every database and subject: a)

MCC; b) computational load (ms).
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Appendix G- FEL Control Tuning

This appendix provides information related to the tuning of the FEL low-level controller, in-
troduced in Chapter 7.7, namely the experimental procedure and the controller evolution dur-

ing FEL tuning.

FEL Tuning: Experimental Procedure

The tuning of FEL control focused on the feedforward controller. No tuning was made in the
feedback controller since we used the already tuned PID control. The tuning of the feedforward
controller consisted of the real-time training of the ANN by considering the normalized inputs
randomly presented to the ANN (SGD approach) and the actual PID commands as the feedback
error to be minimized. This procedure was separately performed for the PKO and PAFO with
the respective reference trajectories adjusted with NCL for 1 km/h and 0.8 km/h (speeds ran-
domly selected), respectively.

During the real-time training of the feedforward controller, the ANN is trying to learn the
AOs’ inverse dynamics models. Consequently, the feedforward commands that contribute to
the final command (u) could lead the AOs to exceed their mechanical limits and compromising
their integrity. Therefore, for the first training phase of the ANN, we decided to modify the
original reference position trajectory. An offset of 15° was added to the original knee reference
trajectory and smoothed the original ankle reference trajectory with an attenuation gain of 40
% and 4° of offset. With this procedure, it is was possible to get the inverse dynamics models
of PKO and PAFO while operating far from their mechanical limits.

As illustrated in Figure G.1, the trajectory modification was possible since the normalized
signals of the original and modified trajectory are equal. This finding shows that the ANN would
receive equal inputs in both situations. Note that the initial AOs’ angular position was set close
to the first value of the non-normalized input signals.

The pre-trained ANNs were subsequently retrained using the original reference trajectories
to get the final configuration for the ANNs. The pre-trained state is an important advantage to
the clinical application once it may decrease the training time for new user-oriented trajecto-

ries, as reported in [254].
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Figure G.1- Original (red) and modified (black) input signals for PKO (A-C non-normalized signals, D-F normalized

signals) and PAFO (G-I non-normalized signals, J-L normalized signals).

FEL Tuning: Results and Discussion

AOs’ state during FEL tuning was evaluated considering the measured position trajectory,
the control commands, and the angular position error. For instance, Figure G.2 presents the
results achieved during the ANN training using the modified trajectory for the PKO at 1 km/h
under three different periods of FEL control: Initial Phase, Middle Phase, and Final Phase.

During the Initial Phase (first 11 seconds), the feedforward controller is starting to tune its
ANN. Consequently, feedforward contribution to the final control command is not significant,
being the PID control responsible for trucking the reference trajectory (Figure G.2.B). It is pos-
sible to see in Figure G.2.A that the measured trajectory is delayed 210 ms comparatively to
the reference one. Hence, the angular position error varies from -20° to 20°, as demonstrated
in Figure G.2.C.

In the Middle Phase (after 40 s), the FEL controller is learning the inverse dynamics model
of the PKO. Therefore, the measured trajectory starts to decrease its phase difference to the
reference signal to a mean value of 6 ms (considering three gait cycles presented in Figure
G.2.D). To correct this delay, the feedforward controller produces commands that when
summed with PID commands lead the PKO to perform a trajectory with 10° more than the
reference trajectory, as illustrated in Figure G.2.D. This happens because the ANN has not

learned the inverse dynamics model with the best performance yet. Figure G.2.E highlights an

219



Appendix G

increase and decrease in the feedforward command and the PID command, respectively, rel-
ative to the Initial Phase. As depicted in Figure G.2.F, the position error decreased, varying
from -20° to 10°.

For the Final Phase (past 90 s), when the ANN already learned the inverse dynamics of the
PKO, we verified that the FEL control has successfully aligned the PKO trajectory with the ref-
erence one (Figure G.2.G) and corrected the amplitude divergence previous observed. The
position error decreased by 75% compared to the Initial Phase. In this phase, the feedback
controller contribution was 4.4% (Figure G.2.K). At this time, the ANN is not able to start a new

learning phase after the recall phase is reached.
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Figure G.2- FEL tuning over three periods: Initial Phase (A-C), Middle Phase (D-F), and Final Phase (G-1). Random

example for PKO using the modified trajectory tuned for 1 km/h.

In overall, the findings of FEL tuning indicate that the designed ANN was capable of cor-
rectly learning the inverse dynamics for both AOs. When the learning phase finished, the ANN
can timely track the reference trajectory, discharging the feedback controller for this task. We
observed that the learning phase lasted 90 s (approximately 25 gait cycles) and 315 s (approx-
imately 70 gait cycles) for PKO and PAFO, respectively.

Additionally, it was verified that the run time of the FEL control loop (0.25 ms) is lower than
the one required by the bioinspired control architecture of SmartOs (1 ms). These temporal

findings suggest that the techniques applied for approaching a real-time implementation were
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effective to avoid long-time periods in the training phase. Furthermore, few iterations were
required to tune the pre-trained ANN.

It is important mentioning that the modification made in the reference trajectory for the
first learning moment protected the AOs. Figure G.2.D shows a practical situation, during the
Middle Phase, where a 10°-deviation would put the device out of its lower operating limit (3°).
The 10°-deviation did not damage the PKO since the added 15°-offset was enough to deviate
the PKO from its lower mechanical limit (3°). A similar effect was observed in PAFO for the

lower and upper limits.
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