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In this paper we show that graphene surface plasmons can be excited when an electromagnetic
wave packet impinges on a single metal slit covered with graphene. The excitation of the plasmons
localized over the slit is revealed by characteristic peaks in the absorption spectrum. It is shown
that the position of the peaks can be tuned either by the graphene doping level or by the dielectric
function of the material filling the slit. The whole system forms the basis for a plasmonic sensor
when the slit is filled with an analyte.

I. INTRODUCTION

The diffraction of electromagnetic (EM) waves on
metallic structures gives rise to a series of interesting phe-
nomena, such as the Wood and Rayleigh anomalies [1, 2]
and the extraordinary optical transmission [3]. Theoreti-
cal models for these phenomena have been elaborated by
modelling the metal as perfect electric conductor (PEC),
as in Refs. [4–6]. One of the fundamental problems in
the nano-optics is the diffraction of light on a single slit
of subwavelength width perforated in a metal. This kind
of diffraction is accompanied by a series of effects such as
funneling of the EM energy into the slit [7, 8] and field en-
hancement inside it [7], Fabri-Pérot resonances across the
metallic film [9–11], transmittance oscillations with an
incidence angle variation in the geometrical optics limit
[12] and its absence in the subwavelength limit[11], and
the sensitivity of the transmittance resonance frequencies
to the refractive index of the material inside the slit [11].

Consideration of the light diffraction on a single slit in
real metals [13–15], with surface capable to supporting
surface plasmon-polaritons (SPPs) enriches considerably
the physics of the diffraction phenomena [16]. Never-
theless, SPPs in noble metals suffer from relatively high
losses in the visible light wavelength, which considerably
shorten their mean free path. One of the perspective
ways to overcome this difficulty is to use graphene plas-
mons that can be combined with other materials in order
to modify SPP’s properties [17–22].

As is well known, SPPs in graphene possess both large
lifetime and high degree of field confinement [23, 24].
This property implies the advantage of using some kind
of hybrid metal-graphene structures, where graphene
sustains the propagation of SPPs, while PEC modifies
their dispersion properties. For example, screening of
graphene SPPs by a perfect [25–27] or dispersive (Drude)
[28] metal adjacent to it leads to the formation of acous-
tic SPPs with linear spectrum. Moreover, in such kind
of structures SPP’s group velocity is quite low compared
to polaritons in graphene on a thick dielectric substrate
since high wavevectors correspond to relatively low fre-

quencies in the SPP dispersion relation. The latter means
that graphene’s conductivity exhibits its nonlocal proper-
ties in the THz frequency range and, therefore, gives rise
to the nonlocal SPPs [29–32]. Simultaneously, graphene’s
conductivity (and, consequently, the dispersion proper-
ties of SPPs) can be effectively controlled by changing
the applied gate voltage [33], which allows one to achieve
the dynamical tunability of the resonant frequency in the
graphene-based structures [34–38]. Being combined with
a metallic grating, variation of gate voltage permits to
control spoof plasmons [39].

Since the dispersion properties of SPPs are extremely
sensitive to the dielectric constant of the surrounding
medium, plasmonics structures are widely used for molec-
ular and biosensing [40]. The use of graphene in plas-
monic biosensors [41, 42] has an additional advantage,
since the above-mentioned tunability of the plasmonic
resonance frequency allows for achive it in the spectral
range where the strength of the characteristic molecular
signal is the highest [43].

Monochromatic plane waves are idealizations never re-
alized in practice. The electromagnetic wave that im-
pinges on the plasmonic structure and couples to SPPs
(if the necessary conditions are fulfilled [17]), generally is
a wave packet, i.e. a superposition of plane waves with
close but unequal frequencies and wavevectors, which
may represent either a pulse or a focused beam [44]. In
the present paper, we consider the diffraction of a lo-
calized wavepacket on the single rectangular slit in PEC
film, which is covered by a graphene sheet encapsulated
(that is, cladded) by two h-BN layers at one side and
open on the other side (see Fig. 1). We demonstrate
that the electromagnetic wave, when diffracted by the
slit edges, excites a standing wave of SPPs in graphene
at a series of resonant frequencies, which are determined
by the graphene doping. At these resonance frequencies,
the slit width contains an integer number of SPP wave-
lengths. Excitation of the polaritons yields a series of
absorption peaks in the spectrum and these resonant fre-
quencies turn out to be very sensitive to the dielectric
constant of the dielectric material filling the slit, as it
will be demostrated by our calculated results.
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II. PROBLEM STATEMENT AND MAIN
EQUATIONS

A. The structure

We consider a graphene monolayer, located at plane
z = 0 and deposited on top of a h-BN layer of thickness
dBN that occupies the spatial domain 0 < z < dBN. The
graphene sheet is covered by another h-BN layer of the
same thickness (−dBN < z < 0). The lower h-BN layer is
deposited on top of the PEC film of thickness d (see Fig.1)
with the surfaces located at z = dBN and z = dBN + d.
The PEC film contains the single rectangular slit of width
W (−W/2 < x < W/2), filled with a dielectric with the
permittivity ε. We consider the incident wave packet
propagating in the positive z-axis direction, localized in
the x direction and impinging on the uppermost h-BN
layer at normal incidence. Furthermore, it is essential
that the wave packet is described by an even amplitude
function of x with respect to the vertical symmetry plane
x = 0. To simplify the calculations, we shall consider
the wave packet of a constant amplitude within a certain
range of kx, |kx| ≤ kc, where kc ≤ ω/c, ω is the frequency
and c is the velocity of light in vacuum.

B. Maxwell equations and their solutions

Since the system under consideration is homogeneous
in the direction y (i.e., ∂/∂y ≡ 0), the Maxwell equations
can be decoupled into two subsystems, which govern TM-
and TE-polarized waves. In the following we will consider
the case of TM-polarized waves only, which have the field
components E = (Ex, 0, Ez) and H = (0, Hy, 0). Assum-
ing the EM field time-dependence as E,H ∼ exp (−iωt),
we represent the Maxwell equations for the TM-polarized
wave as

∂E
(m)
x

∂z
− ∂E

(m)
z

∂x
=
iω

c
H(m)
y ,

−∂H
(m)
y

∂z
= − iω

c
ε(m)
xx E

(m)
x ,

∂H
(m)
y

∂x
= − iω

c
ε(m)
zz E(m)

z .

(1)

The superscripts m = 1, 2, 3, 4, 5 correspond to the spa-
tial domains z < −dBN, −dBN < z < 0, 0 < z < dBN,
dBN < z < dBN+d and z > dBN+d, respectively. The
reason for such separation of the whole space into do-
mains is that inside each domain the dielectric permit-
tivity is homogeneous and generally is described by the
diagonal tensor, in the coordinate frame of Fig. 1:

ε̂(m) =

 ε
(m)
xx 0 0

0 ε
(m)
xx 0

0 0 ε
(m)
zz

 .

FIG. 1. Single slit (yellow) in the metal film (pink), covered
with h-BN-encapsulated graphene layer. Also shown are the
coordinate axes.

In fact, in the isotropic media the tensor components are
the same, for m = 1 and m = 5 (vacuum) equal to unity,

ε
(1)
xx = ε

(1)
zz = ε

(5)
xx = ε

(5)
zz = 1, and for m = 4 (isotropic

dielectric) ε
(4)
xx = ε

(4)
zz = ε. The hexagonal boron nitride

(spatial domains m = 2, 3) is a uniaxial medium with
unequal tensor components in plane and out of plane,
given by [45]:

ε(2,3)xx = 4.87

(
1 +

16102 − 13702

13702 − ω2 − 5iω

)
,

ε(2,3)zz = 2.95

(
1 +

8302 − 7802

7802 − ω2 − 4iω

)
.

(2)

Their depencence upon ω (in cm−1) is due to the po-
lar optical phonon response and the numbers entering
the above relations are the longitudinal and transverse
optical phonon frequencies and the corresponding damp-
ing parameters; the multiplicative factors are the high-
frequency dielectric constants.

Moreover, since both the geometry of the structure and
the considered wave packet are symmetric with respect to
the plane x = 0, we can seek the solution of the Maxwell
equations (1) in the form of Fourier integrals over kx > 0,

H(m)
y (x, z) =

∞∫
0

dkx h
(m)
y (kx, z) cos (kxx) ,

E(m)
x (x, z) =

∞∫
0

dkx e
(m)
x (kx, z) cos (kxx) ,

(3)

where h
(m)
y (kx, z) and e

(m)
x (kx, z) are the amplitudes of

the kx-th harmonics of the tangential components of the
magnetic and electric fields, respectively.
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In the semi-infinite medium m = 1, the solution of
Maxwell equation can be represented in the matrix form
as(

h
(1)
y (kx, z)

e
(1)
x (kx, z)

)
=

= F̂
(1)
kx
·
(
H(i)
y Θ (kc − kx) exp

[
ip(1) (kx) (z + dBN)

]
hr (kx) exp

[
−ip(1) (kx) (z + dBN)

] )
.

(4)

Here

F̂
(1)
kx

=

(
1 1

c
ωp

(1) (kx) − c
ωp

(1) (kx)

)

is the field matrix, p(1) (kx) =

√
(ω/c)

2 − k2x is the

wavevector’s z-component, and Θ (kc − kx) is the Heavy-
side function. For each line in Eq. (4), if written explic-
itly, the first term stands for the incident wavepacket

with the amplitude H(i)
y and the cutoff in-plane wavevec-

tor kc, which propagates in the positive direction of z-
axis. Owing to this restriction, all waves constituting

the incident wave packet have real z-components of the
wavevector. The second term for each line in Eq. (4)
is the reflected wave, whose harmonics [with amplitudes
hr (kx)] can be either propagating in the negative di-
rection of z-axis (when kx < ω/c) or evanescent (when
kx > ω/c) waves. Notice that the sign in the exponent
for the evanescent waves is chosen to exclude the har-
monics which grows at z → −∞. At the same time,
in the other semi-infinite spatial domain, z > d + dBN

(m = 5), the spectrum consist of transmitted waves only,
with p(5) (kx) ≡ p(1) (kx)],(

h
(5)
y (kx, z)

e
(5)
x (kx, z)

)
=

(
1

c
ωp

(5) (kx)

)
ht (kx)×

× exp
[
ip(5) (kx) (z − dBN − d)

]
.

(5)

Again, these transmitted harmonics with amplitudes
ht (kx) can be either propagating in the positive direc-
tion of the z-axis or evanescent, decaying for z → +∞.

In the finite spatial domain −dBN < z < 0 (medium
m = 2) the electromagnetic fields will be represented by
means of the transfer matrix,

Q̂
(2)
kx,z

=

 cos
[
p(2) (kx) (z + dBN)

]
iω
c

ε(2)xx

p(2)(kx)
sin
[
p(2) (kx) (z + dBN)

]
ic
ω
p(2)(kx)

ε
(2)
xx

sin
[
p(2) (kx) (z + dBN)

]
cos
[
p(2) (kx) (z + dBN)

]
 ,

as (
h
(2)
y (kx, z)

e
(2)
x (kx, z)

)
= Q̂

(2)
kx,z

(
h
(2)
y (kx,−dBN)

e
(2)
x (kx,−dBN)

)
. (6)

Here p(2) (kx) =

√
(ω/c)

2
ε
(2)
xx − k2x

(
ε
(2)
xx /ε

(2)
zz

)
, which is

the effective z-component of the wavevector in a uniax-
ial medium [46]. In Eq. (6), we represented the fields

in the hBN substrate using values h
(2)
y (kx,−dBN) and

e
(2)
x (kx,−dBN) [the EM field tangential components at
z = −dBN] as free parameters. This situation is distinct
from the case of semi-infinite vacuum [see Eq. (4)], where
the amplitudes of the reflected waves were used as free
parameters. These free parameters will be eliminated by

matching the fields at the interfaces.
In the medium m = 3 (spatal domain 0 < z < dBN)

the field structure is similar to that of Eq. (6) with the
following replacement: p(2) → p(3) (as a matter of fact,

they are the same, i.e. p(3) = p(2) ), ε
(2)
xx → ε

(3)
xx , ε

(2)
zz →

ε
(3)
zz , and(

h
(2)
y (kx,−dBN)

e
(2)
x (kx,−dBN)

)
→

(
h
(3)
y (kx, 0)

e
(3)
x (kx, 0)

)
.

In other words,(
h
(3)
y (kx, z)

e
(3)
x (kx, z)

)
= Q̂

(3)
kx,z

(
h
(3)
y (kx, 0)

e
(3)
x (kx, 0)

)
, (7)

where the transfer-matrix is given by:

Q̂
(3)
kx,z

=

 cos
[
p(3) (kx) z

]
iω
c

ε(3)xx

p(3)(kx)
sin
[
p(3) (kx) z

]
ic
ω
p(3)(kx)

ε
(3)
xx

sin
[
p(3) (kx) z

]
cos
[
p(3) (kx) z

]
 .

In the medium m = 4 the situation is quite different because the finite width of this domain in x-direction im-



4

poses an additional boundary condition on the slit bor-
ders x = ±W/2, namely the vanishing tangential compo-

nent of the electric field E
(4)
z (±W/2, z) = 0. The solution

of the Maxwell equations, satisfying these conditionscan
be expressed as follows:

E(4)
x (x, z) = iW

∞∑
n=0

νn cos

[
nπ

W

(
x+

W

2

)]
×
{
A(+)
n exp [iνn (z − dBN)]

−A(−)
n exp [−iνn (z − dBN)]

}
,

(8)

H(4)
y (x, z) =

iωε

c
W

∞∑
n=0

cos

[
nπ

W

(
x+

W

2

)]
×
{
A(+)
n exp [iνn (z − dBN)]

+A(−)
n exp [−iνn (z − dBN)]

}
,

(9)

E(4)
z (x, z) =

∞∑
n=0

nπ sin

[
nπ

W

(
x+

W

2

)]
×
{
A(+)
n exp [iνn (z − dBN)]

+A(−)
n exp [−iνn (z − dBN)]

}
,

(10)

where νn =

√(
ω
c

)2
ε−

(
nπ
W

)2
.

C. Boundary conditions

The problem in course includes four boundaries be-
tween aforementioned spatial domains, at which the fields
in the neibouring domains are coupled by matching the
boundary conditions. At the surface of the upper hBN

layer (z = −dBN, boundary between spatial domains
m = 1 and m = 2) the tangential components of the
electric and magnetic fields must be continuous across
the interface, i.e.

e(2)x (kx,−dBN) = e(1)x (kx,−dBN) ,

h(2)y (kx,−dBN) = h(1)y (kx,−dBN) .

At the interface between two hBN layers, where graphene
layer is arranged (z = 0, boundary between media m = 2
and m = 3) the electric field tangential component is
continuous across the interface, while the magnetic field
tangentional component is discontinuous due to presence
of two-dimensional currents jx (kx, ω) in graphene,

e(2)x (kx, 0) = e(3)x (kx, 0) ,

h(3)y (kx, 0)− h(2)y (kx, 0) = −4π

c
jx (kx, ω) .

Taking into account the Ohm law, jx (kx, ω) =

σ (kx, ω) e
(2)
x (kx, 0) [where σ (kx, ω) is the conductivity

of the graphene, which in general case will be consid-
ered nonlocal, i.e. dependent upon the in-plane wavevec-
tor kx], the boundary conditions can be expressed in the
matrix form,(

h
(3)
y (kx, 0)

e
(3)
x (kx, 0)

)
= Q̂g

(
h
(2)
y (kx, 0)

e
(2)
x (kx, 0)

)
(11)

with the matrix

Q̂
(g)
kx

=

(
1 − 4π

c σ (kx, ω)
0 1

)
.

At the surfaces of the PEC film z = dBN and z =
dBN+d (boundaries between the media m = 3, 4 and m =
4, 5, respectively) the situation is more complicated. The
tangential component of the magnetic field is continuous
across the interfaces over the slit area,

H(3)
y (x, dBN) = H(4)

y (x, dBN), −W
2
≤ x ≤ W

2
,

H(5)
y (x, dBN + d) = H(4)

y (x, dBN + d), −W
2
≤ x ≤ W

2
.

(12)

The tangential component of the electric field has to be continuous across the interfaces at the slit area and should
vanish beyond the slit because the metal is assumed perfect. Therefore, boundary conditions can be expressed by the
formulae

E(3)
x (x, dBN) =

{
E

(4)
x (x, dBN), −W2 ≤ x ≤

W
2

0, otherwise

E(5)
x (x, dBN + d) =

{
E

(4)
x (x, dBN + d), −W2 ≤ x ≤

W
2

0, otherwise

(13)

It should be pointed out that, due to the fact that we use different bases of eignefunctions in medium m = 4
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and in media m = 3 and m = 5, the boundary condi-
tions (12)–(13) cannot be written in the same way as at
boundaries z = 0 and z = −dBN where they could be ex-

pressed separately for each spatial harmonic, e
(m)
x (kx, z)

and h
(m)
y (kx, z). Equations (12)–(13) involve the total

fields in each point x, E
(m)
x (x, z), H

(m)
y (x, z) and involve

all kx harmonics. In other words, these relations are in-
tegral equations. However, they can be discretized using
the specific form of the fields inside the slit, Eqs. (8) and
(9).

D. Amplitudes of the eignemodes inside the slit

Applying consequently boundary conditions (11) and
(11) [jointly with expressions (4)–(7) for the fields in me-
dia m = 1, 2, 3] one can obtain expressions for the electro-
magnetic field tangential components of each harmonic
as (

h
(3)
y (kx, dBN)

e
(3)
x (kx, dBN)

)
= F̂

(tot)
kx

(
H(i)
y Θ (kc − kx)
hr (kx)

)
(14)

where the total field matrix F̂
(tot)
kx

is composed from the
transfer-matrices of media m = 2, 3, boundary condi-
tion matrix across the graphene, and the field matrix in
medium m = 1 is:

F̂
(tot)
kx

= Q̂
(3)
kx,dBN

Q̂gQ̂
(2)
kx,0

F̂
(1)
kx
.

Substituting Eqs. (5), (8), (9), and (14) into bound-
ary conditions (12)–(13) and using orthogonality rela-
tions between the x dependence of the fields in the slit,
Eqs. (8) and (9), and the kx harmonics (details are given
in Supplementary Information), it is possible to obtain
equations for the amplitudes of forward- and backward-

propagating modes inside the slit, A
(+)
2n and A

(−)
2n :

W

2

iωε

c
(1 + δn′,0)

[
A

(+)
2n′ +A

(−)
2n′

]
− iW

2

2π

∞∑
n=0

ν2n

[
A

(+)
2n −A

(−)
2n

]
Ĩ2n′,2n (ω)

= −2
c

ω
H(i)
y

∞∫
0

dkx P2n′||kxΘ (kc − kx)
p(1) (kx)[
F̂

(tot)
kx

]
22

;

(15)

ε

2
(1 + δn′,0)

×
[
A

(+)
2n′ exp (iν2n′d) +A

(−)
2n′ exp (−iν2n′d)

]
− W

2π

∞∑
n=0

ν2nI2n′,2n (ω)

×
[
A

(+)
2n exp (iν2nd)−A(−)

2n exp (−iν2nd)
]

= 0 ,

(16)

where

P2n′||kx =
2

W

W/2∫
0

dx cos

[
2n′π

W

(
x+

W

2

)]
cos [kxx] =

=
2

W

kx sin
[
kx

W
2

]
k2x −

(
2n′π
W

)2 ,
(17)

Ĩ2n′,2n (ω) = 2

∞∫
0

dkxP2n′||kxP2n||kx

[
F̂

(tot)
kx

]
12[

F̂
(tot)
kx

]
22

and

I2n′,2n (ω) = 2

∞∫
0

dkx
P2n′||kxP2n||kx

p(5) (kx)
.

Now we consider a special case where the graphene layer
is deposited directly over the slit (that is, both hBN layers
are absent, i.e. dBN = 0). Then

F̂
(tot)
kx

= Q̂gF̂
(1)
kx

=

(
1− 4π

ω σ (kx, ω) p(1) (kx) 1 + 4π
ω σ (kx, ω) p(1) (kx)

c
ωp

(1) (kx) − c
ωp

(1) (kx)

)
.

As a consequence, Eq. (15) can be rewritten as

W

2

iωε

c
(1 + δn′,0)

[
A

(+)
2n′ +A

(−)
2n′

]
+ i

W 2

2π

ω

c

∞∑
n=0

ν2n

[
A

(+)
2n −A

(−)
2n

]
J2n′,2n (ω)

= 2H(i)
y

∞∫
0

dkxΘ (kc − kx)P2n′|kx ,

(18)

where

J2n′,2n (ω) = 2

∞∫
0

dkx
P2n′||kxP2n||kx

p(1) (kx)

[
1 +

4π

ω
σ (kx, ω) p(1) (kx)

]
.

These equations also can be obtained from Eqs. (15)

and (16) by taking Q̂
(tot)
kx

= Q̂g. Notice that the inte-
grals I2n′,2n (ω) and J2n′,2n (ω) can be calculated semi-
analytically (see Supplementary Information).

The system of equations (16) and (18) was solved by
truncating it to a sufficiently large order, n and checking

the convergence. Once the amplitudes A
(±)
2n have been

found, the observable properties such as relectance and
transmittance are calculated in a straightforward way
(details are given in Supplementary Information).

III. SUSPENDED GRAPHENE

In order to clarify the influence of the graphene sheet
on the transmittance and reflectance of the structure we
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FIG. 2. (a) Examples of spatial shape of the incident

wavepacket H
(i)
y (x, 0) for λ = 5µm and two values of the spec-

tral width, ckc/ω = 1 (solid line) and ckc/ω = 0.1 (dashed
line); (b,c) Reflectance R [panel (b)] and transmittance T
[panel (c)] of graphene monolayer suspended over the slit for
two values of the wavepacket spectral width: ckc/ω = 1 (solid
lines) and ckc/ω = 0.1 (dashed lines). Other parameters of
the structure are: d = 100 nm, W = 1.5µm, γ = 7.5 meV,
EF = 0 eV (blue lines), EF = 0.3 eV (green lines).

consider first the situation where the slit is not filled (ε =
1), and both hBN layers are absent. In other words, the
graphene layer is deposited directly on the metal film and
is suspended at the area of the slit.

From Fig. 2(a) it can be seen that a larger spectral
width kc (solid line) correspond to a more focused beam
in the coordinate space. As a consequence, the narrower
beam (with larger kc) exhibits a lower reflectance, R,
and a higher transmittance, T [compare dashed and solid
lines in Figs. 2(b) and 2(c)], because a larger fraction of
the incident wave’s energy flux penetrates the slit, thus
avoiding the diffraction on its edges. In the situation of
bare slit [EF = 0 eV, blue lines in Figs. 2(b) and 2(c)] an
increase of the wavelength, λ, leads to the growth of the
reflectance R [see Fig. 2(b)] and decrease of the trans-
mittance T [see Fig. 2(c)]. This phenomenon can be ac-
counted for the essentially subwavelength character of the
wavepacket diffraction. In fact, in the frequency range of
Fig. 2 all the wavelengths of the wave packet are larger
than the slit width. At the same time, for a larger ratio
between the wavelength and the slit width, the presence
of the slit exerts less influence on the diffraction process,
thus the reflectance becomes more similar to that from
a homogeneous PEC film, i.e. it increases to unity with
the simultaneous decrease of the transmittance. When

FIG. 3. Absorbance, A, versus wavelength, λ, and spectral
width of the wavepacket, kc (lower panel) for doped graphene
with EF = 0.3 eV suspended on top of the slit. The upper
panel shows the absorbance for two fixed walues of the spec-
tral width, ckc/ω = 0.1 (dashed line, the dependence is taken
along the corresponding dashed horizontal line in the lower
panel) and ckc/ω = 1 (solid line, the dependence is taken
along the upper edge of the lower panel). The other parame-
ters are the same as in Fig. 2.

the slit is covered by doped graphene [EF = 0.3 eV, green
lines in Figs. 2(b) and 2(c)], the aforementioned growth
of the reflectance and decrease of transmittance in non-
monotonous, demonstrating the series of local minima.

Quite interesting are the absorption spectra of the con-
sidered structure. As can be seen from the upper panel
of Fig. 3, the absorbance, A = 1 − R − T , is high at the
wavelengths corresponding to the reflectance and trans-
mittance minima. Furtermore, a larger spectral width
of the incident wavepacket (kc) makes these absorbance
peaks more pronounced [see lower panel of Fig. 3], while
their positions (wavelengths λ) are not affected. At
the same time, the positions of the absorption peaks
are strongly influenced by the graphene’s Fermi energy
[see Fig. 4(a)]. This fact resembles the crucial property
of graphene SPPs whose dispersion curve, ω(kx), scales
with the Fermi energy approximately as ω ∝

√
kxEF for

small kx. A more detailed analysis leads to the following
expression for the characteristic wavelengths of the SPP
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FIG. 4. (a) Absorbance, A (depicted by color map) versus
wavelength, λ, and graphene’s Fermi energy, EF ; (b) Am-
plitude of the electric field of the reflected wave harmonics∣∣∣cp(1) (kx)hr (kx) /ω

∣∣∣ versus the wavelength and the wavevec-

tor, kx, for the fixed Fermi energy EF = 0.3 eV. In all pan-
els ckc/ω = 0.5, while other parameters are the same as in
Fig. 2. Solid white lines [superimposed on the color map in
panel (a)] demonstrate the SPP eigenmodes with the wavevec-
tors kx = 2nπ/W (n = 1, 2, 3, from right to left), the same
wavevectors are depicted in panel (b) by white dashed hori-
zontal lines.

eigenmodes:

λn =

√
2π~c
αEF

×

√1 +

(
2nπ~c

2αEFW

)2

− 1

−1/2 , (19)

where n = 1, 2, 3... and α stands for the fine structure
constant. These modes are depicted the white solid lines
in Fig. 4(a). The polaritonic character of the absorp-
tion peaks are confirmed by the fact that the spectral
positions of the absorbance maxima coincide with the
graphene SPP eigenmodes. Moreover, the modulus of
the electric field of the reflected wave harmonics [de-
picted in Fig. 4(b)] has its maxima near the resonance
wavelengths, λn [Eq. (19)]. The associated wavevectors
kx = 2πn/W [horizonal dashed lines in Fig. 4(b)] corre-
spond to the even spatial profiles of the tangential compo-
nents of the eigenmode’s electromagnetic field inside the
slit [see Eqs. (8), (9)]. In other words, when the incident
wave packet’s wavelength coincides with the wavelength
of an SPP eigenmode with the wavevector kx = 2πn/W ,
the wave packet, being diffracted on the slit, resonantly
excites SPPs in graphene. This polariton, owing to the
multiple reflections from the slit edges, forms the SPP

FIG. 5. Reflectance [panel (a)], transmittance [panel (b)],
and absorbance [panel (c)] of (i) suspended graphene layer
[dashed green lines] and (ii) graphene layer cladded by two
hBN layers with thicknesses dBN = 1 nm. In both cases with
EF = 0.3 eV and the incident wavepacket is characterized by
the spectral width ckc/ω = 0.5. Other parameters are the
same as in Fig. (2).

standing wave in the suspended graphene with the nodes
of its electric field (x-component) at the edges of the slit.
This resonant excitation leads to the transformation of
incident wave packet’s energy into the energy of the with
EF = 0.3 eV standing wave; this phenomenon gives rise
to the resonant absorption.

Qualitatively, the situation here is similar to the struc-
ture composed of non-absorbing nanoparticles (NPs) de-
posited on a homogeneous graphene sheet, where the
symmetry breaking caused by the NPs induces surface
plasmon-polaritons and originates absorption of prop-
agating EM waves due to energy dissipation by the
graphene plasmons [47]. Indeed, the absorbance spec-
tra of Fig. 2 show a similarity to that of the ”graphene
+ NPs” system [47], although here we observe not just
the lowest energy (longest wavelength) absorption peak
but also its overtones according to Eq. (19).

IV. EFFECT OF THE SUBSTRATE

The essential physics behind the optical properties of
the graphene-covered slit has been established in the pre-
vious section and now we may address a further ques-
tion, how will the results change if the graphene is not
deposited directly on the metal film but rather cladded
by two hBN layers as depicted in Fig. 1? To an-
swer this question, in Fig. 5 we present a comparison
of the reflectance, transmittance, and absorbance of the
suspended (dashed green lines) and hBN-encapsulated
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FIG. 6. (a) Absorbance, A, versus wavelength, λ, and Fermi
energy, EF , for the slit filled by a dielectric with ε = 3.9;
(b) Absorbance versus waveleng and refractive index, ε1/2,
for the graphene Fermi energy EF = 0.3 eV. In both panels
ckc/ω = 0.5 and all other parameters are the same as in Fig. 2.

graphene (solid red lines). As can be seen from the com-
parison of the dashed and solid lines in Fig. 5, the pres-
ence of hBN leads to the small shift of the positions of the
SPP absorbance maxima, and the appearance of two ad-
ditional maxima (nearby λ ≈ 7.3µm and λ ≈ 12µm) due
to the excitation of optical phonons in the hBN cladding
layers.

One of the crucial properties of SPPs is the strong sen-
sitivity of their dispersion to the dielectric constants of
the surrounding media, which should also apply to the
dielectric filling the slit in the present case. Therefore,
Fig. 6(a) presents the absorbance of the graphene layer
deposited over the slit filled by a material with the dielec-
tric constant ε = 3.9. As it follows from the comparison
of Figs. 6(a) and 4(a), the presence of the dielectric inside
the slit results in a red shift of the plasmonic absorption
peaks. In more detail this phenomenon is demonstrated
in Fig. 6(b). As it can be seen from this plot, there is
an almost linear dependence of the plasmonic absorp-
tion peak positions upon the refractive index, ε1/2. Even
more, when the refractive index is changed in the limits
between 1 and 2, the plasmonic absorption peak wave-
length is shifted by ∼ 5µm.

This phenomenon can be used in plasmonic sensors.
The advantage of the graphene-based plasmonic sensor is
an additional degree of its dynamical tunability. Thus, if
a source of electromagnetic readiation with a fixed wave-
length is used, then the position of the plasmonic ab-
sorption peak can be tuned to the desired wavelength by
adjusting the graphene’s Fermi energy and its value can
provide information about the dielectric constant of the

medium that fills the slit.

V. CONCLUSION

To conclude, we considered the diffraction of the spa-
tially localized wavepacket on the single slit in a perfect
metalic film covered by monolayer graphene. We have
shown that this geometry is suitable for the excitation
of surface plasmon-polaritons in graphene. The diffrac-
tion of the wavepacket on the slit is accompanied by the
excitation of the polariton standing wave, for which the
vertical edges of the slit in PEC serve as a cavity. The
resonance condition for the excitation of such standing
waves can be expressed in the following manner: the ex-
citation of SPP takes place for a given frequency of the
incident wavepacket, ω, if the slit width contains an in-
teger number of the polariton wavelengths, λ = 2π/kx,
where kx is the SPP wavevector for the frequency ω.

The excitation of SPPs is manifested by the appear-
ance of the peaks in the absorbance spectrum. Also the
positions of these resonant absorption peaks can be ef-
fectively tuned by the electrostatic gating of graphene.
The resonant frequencies are shown to be very sensitive
to the refractive index of the medium, which fills the slit.
This phenomenon can be used for environment sensing.
The advantage of the such graphene-based sensor is the
possibility to tune (by the graphene gating) the position
of the absorption peaks to the spectral range where the
fingerprints of the molecules are the most intense, e.g.
due to the presence of dipolar vibration modes.
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