
Valeria Romanciuc

Optimizing Kidney Exchange
Programs with Budget
and Time Constraints

outubro de 2019U
M

in
ho

 |
 2

01
9

Va
le

ria
 R

om
an

ci
uc

O
pt

im
iz

in
g 

K
id

ne
y 

E
xc

ha
ng

e 
P

ro
gr

am
s

w
it

h 
B

ud
ge

t 
an

d 
T

im
e 

C
on

st
ra

in
ts

Universidade do Minho
Escola de Ciências





Valeria Romanciuc

Optimizing Kidney Exchange
Programs with Budget
and Time Constraints

Dissertação de Mestrado
Mestrado em Matemática e Computação

Trabalho efetuado sob a orientação do
Professor Doutor Filipe Pereira Pinto

Universidade do Minho
Escola de Ciências

outubro de 2019

Cunha Alvelos

Professora Doutora Ana Jacinta
Pereira da Costa Soares

e da



Direitos de Autor e Condições de Utilização do Trabalho por Terceiros

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas as regras e boas

práticas internacionalmente aceites, no que concerne aos direitos de autor e direitos conexos. Assim, o

presente trabalho pode ser utilizado nos termos previstos na licença abaixo indicada. Caso o utilizador

necessite de permissão para poder fazer um uso do trabalho em condições não previstas no licenciamento

indicado, deverá contactar o autor, através do RepositóriUM da Universidade do Minho.

Licença concedida aos utilizadores deste trabalho.

Atribuição - Compartilha Igual

CC BY-SA

https://creativecommons.org/licenses/by-sa/4.0/

ii



Acknowledgements

This dissertation would be impossible without the continued support of some amazing people in my life, to

whom I would like to show my gratitude.

First and foremost, to my parents and brother, for always supporting me in my decisions and being so loving

and understanding, even when we are so far away. I miss you all so much.

To my supervisors, Prof. Filipe and Prof. Ana Jacinta, for their copious amounts of patience and kindness,

as well as all the opportunities they created for me this past year. I could not be more grateful for having

been under your wing.

To Hélder and Speed, for carrying me in the beginning and teaching me tons of things about Software

Engineering. To Luísa, for being a great friend and helping me keep some of my sanity when times were

tough. To the guys at the lab, for adopting me and providing great life advice and pep talks whenever I

needed.

Of course, to Leo, to whom thanks is not enough. For being there for me everyday, for always being able to

make me feel better, for his unconditional support and for helping me from the �rst �Send" to the last. I

could not be more lucky.

To all my friends, who always believed in me despite being there for the monthly existential crisis.

To everyone else who supported me during this process, you have my sincerest gratitude.

This work has been supported by FCT�Fundação para a Ciência e Tecnologia within the project UID/CEC/

00319/2019, by the ERDF � European Regional Development Fund through the Operational Programme

for Competitiveness and Internationalisation - COMPETE 2020 Programme, by National Funds through the

Portuguese funding agency, FCT, within project POCI-01-0145-FEDER-016677 and by the COST Action

CA15210 - European Network for Collaboration on Kidney Exchange Programmes.

iii



Statement of Integrity

I hereby declare having conducted this academic work with integrity. I con�rm that I have not used plagiarism

or any form of undue use of information or falsi�cation of results along the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

iv



Otimização em Programas de Doação Renal Cruzada com Restrições

de Orçamento e Tempo

Resumo

A doença renal terminal afeta milhões de pessoas no mundo, sendo que a transplantação é o melhor trata-

mento disponível. A maioria dos rins para transplantes são obtidos de dadores cadavéricos, mas devido ao

aumento do número de pacientes a necessitar de um transplante, esta oferta não é su�ciente para responder

à procura. Esta questão levou ao aparecimento de novas estratégias de transplantação, nomeadamente a

obtenção de rins de dadores vivos. No entanto, mesmo quando existe um dador vivo disponível, em mais de

30% dos casos ele é �siologicamente incompatível com o esperado recetor do transplante.

Os Programas de Doação Renal Cruzada emergiram de forma a oferecer uma solução alternativa para

pacientes com dadores vivos disponíveis, mas incompatíveis, onde dois ou mais pares incompatíveis de dador-

recetor podem encontrar um transplante compatível trocando de dador. Torna-se necessário de�nir um plano

de transplantação num conjunto de pares incompatíveis dador-recetor, de forma a decidir quais as trocas

a efetuar. Contudo, após a de�nição deste plano, são efetuados testes de compatibilidade mais precisos,

podendo revelar novas incompatibilidades, levando ao cancelamento do plano. Além disso, devido à complexa

logística associada a estes testes, existem também restrições a nível de tempo e de orçamento.

Nesta dissertação, pretendemos responder ao problema de decidir quais os testes que devem ser efetuados

dentro de um conjunto de pares incompatíveis dador-recetor, tendo em conta probabilidades de falha, bem

como restrições de tempo e orçamento. Assim, estudamos três problemas com diferentes níveis de restrição

destes recursos no contexto dos Programas de Doação Renal Cruzada e apresentamos vários métodos de

resolução para cada um, baseados em Programação Inteira.

Palavras-chave: Programas de Doação Renal Cruzada, Otimização, Programação Inteira
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Optimizing Kidney Exchange Programs with Budget and Time Con-

straints

Abstract

End-stage renal disease a�ects millions of people worldwide, with transplantation being the best form of

treatment available. Most kidneys for transplants are obtained from deceased donors, but due to the in-

creasing number of patients in need of a transplant, this supply has not been enough to meet the demand.

This issue forced new transplantation strategies to emerge, namely obtaining kidneys from living donors.

However, even when there is a willing living donor, in over 30% of the cases they are incompatible with the

intended recipient of the transplant.

Kidney Exchange Programs emerged to provide an alternative solution for patients with willing but

incompatible donors, where two or more incompatible donor-patient pairs can �nd a compatible transplant

by swapping donors. A transplantation plan needs to be de�ned in a pool of incompatible donor-patient pairs

in order to decide which exchanges should take place. However, after the transplantation plan is de�ned,

more accurate compatibility tests are performed, possibly revealing new incompatibilities and leading to the

cancellation of the plan. Furthermore, due to the complex logistics associated with these tests, there is also

usually a time and budget limitation.

In this dissertation we address the problem of deciding which tests to carry out in a pool of incompatible

donor-patient pairs, taking into account probabilities of match failure, as well as budget and time constraints.

We study three problems with varying degrees of limitation of resources in the context of Kidney Exchange

Programs and present several methods for solving each one, based on Integer Programming.

Keywords: Kidney Exchange Programs, Optimization, Integer Programming
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Chapter 1

General Introduction

1.1 Context

About one in a thousand people in Europe su�er from end-stage renal disease [1]. Between dialysis and

transplantation, the latter is the preferred method of treatment and for the majority of people, kidneys

are obtained from deceased donors. However, since the number of patients in need of a kidney continues

to grow, it becomes increasingly di�cult to meet the demand through this source alone. In an attempt

to increase the number of kidney transplants, various strategies involving living donors emerged in recent

times. Nevertheless, one issue with living donor transplantation is the fact that, even when a willing donor

is available, in about 30% of the cases, the possible donor and patient are physiologically incompatible [1].

Kidney Exchange Programs arose to bypass these compatibility issues and increase the number of patients

obtaining a transplant successfully.

The concept of a Kidney Exchange Program (KEP) was �rst proposed by Felix Rapaport in the 80's

[2]. By considering two pairs consisting of a patient and a willing but incompatible donor, where the donor

in one pair is compatible with the patient in the other, Rapaport proposed a donor swap between the two

pairs. In a scenario where initially no transplants could be conducted due to incompatibilities, the proposed

exchange would allow for both transplants to take place. This was called the �pairwise exchange", but was

soon generalized to include more incompatible pairs in a single exchange.

Di�erent approaches were developed in the context of KEPs in order to decide which transplants to

conduct out of the pool of donor-patient pairs, namely mathematical techniques involving linear programming

and optimization. In these approaches, a transplantation plan is de�ned and afterwards, compatibility tests

are conducted in order to decide which transplants can actually be carried out. This uncertainty is an

important aspect to consider in the context of these programs.

1



1.2 Goals

The motivation for our approach is two-fold: �rstly, given the uncertainty described in KEPs, we are in-

terested in studying the problem by taking this aspect into account and, for this reason, we will consider

probabilities of compatibility failure; secondly, it is usually unfeasible to test the entire pool of incompatible

donor-patient pairs to verify compatibility, as these tests are very resource intensive. If such was possible,

we would have complete information of the network and would easily be able to decide which transplants

to carry out. Thus, considering the complex logistics associated with performing the crossmatch tests, we

will also assume there is a budget for the available number of tests. This is a main aspect of our approach,

which di�ers from most approaches found in the literature. We consider the speci�c scenario where the

maximization of the number of transplants is conducted in regard to a certain prede�ned budget, and we

are interested in understanding what in�uence this limitation has on the results.

Besides the budget limitation on the number of crossmatch tests, in real-life scenarios there is often a

time restriction as well. In these cases, the tests are conducted in testing rounds and the information about

participating pairs is updated periodically, since some pairs may leave the program and new ones may join.

In this dissertation, we address the problem of deciding which possible transplants to test, in three

di�erent settings, according to a number of di�erent methods. We take into consideration three aspects

related to the operation of KEPs: uncertainty and limitation of resources and time. The �rst is addressed

by associating a probability of compatibility failure; the second, by considering a budget for the number of

compatibility tests that can be performed; the third, by considering testing rounds in which sets of tests are

carried out.

Three di�erent problems will be studied in the described context: the simultaneous problem, where a

set of possible transplants is tested simultaneously (according to the budget); the unlimited problem, where

the budget constraint is relaxed and we consider an unlimited number of tests, performed in an unlimited

number of testing rounds; �nally, the two-rounds problem, where a budget is again considered but instead

of conducting the tests simultaneously, they are divided into two rounds. We are interested in measuring

these methods' performance and see how they compare against one another.

1.3 Dissertation Outline

The dissertation is organized as follows.

Chapter 2 provides an overview of Kidney Exchange Programs, starting on basic concepts in the context

of this subject. A summary of di�erent modalities in KEPs is given, as well as current practices of operating

KEPs around the world.

Chapter 3 describes the framework used in addressing this problem, as well as some mathematical

techniques used, namely integer programming based approaches found in the literature. The concept of

recourse is also presented and explained.

Chapter 4 is dedicated to describing the simultaneous problem and several methods to solve it. In the

end, the conducted computational tests are presented and analyzed.

2



Chapter 5 provides a description of the unlimited problem, as well as the studied methods, which are

divided into two categories. In one of them, the concept of probing is also presented and described. The

�nal section is dedicated to discussing the obtained results.

Chapter 6 focuses on the two-round problem. After the problem description, three di�erent policies are

presented and their results are discussed.

Finally, chapter 7 contains general conclusions regarding the presented problems and methods, as well

as �nal remarks about future work and the contribution of this dissertation.

3



Chapter 2

Kidney Exchange Programs

2.1 End-Stage Renal Disease

End-stage renal disease (ESRD) is characterized as an irreversible decrease in renal function which, if left

untreated, leads to death [3]. This condition requires one of the two following alternatives of treatment:

dialysis or kidney transplantation [4]. It has been shown that transplantation o�ers several advantages over

dialysis, both in terms of the patient's quality of life and survival, on top of being much less costly [5, 6, 7].

Despite this, as of 2016, dialysis is still the most common form of treatment, with around 60% of patients

in the EU undergoing some form of dialysis, as opposed to the other 40% who obtain a kidney transplant

[8].

Being the most advantageous alternative, e�orts have been made in order to provide more patients with

a kidney transplant, which can be obtained from either deceased or living donors. In the �rst case, the

patient in need of a transplant will be placed on a waiting list until a suitable deceased donor is found.

However, as the number of ESRD patients steadily increases [9], the waiting times for a transplant also

become increasingly longer and the number of deceased donors is far from being enough to provide every

patient with a kidney [10]. In the second case, the patient has a donor (usually a relative) who is willing

to provide a kidney for transplantation. Kidneys provided by living donors also have proved to yield better

results when compared to the ones obtained from deceased donors, both in patient and graft survival [10, 11].

However, in over 30% of the cases, this transplant is not going to take place as the donor is physiologically

incompatible with its intended recipient [12, 11]. Compatibility is determined based on blood types (ABO)

and human leukocyte antigens (HLA) matching [12, 13].

In the �rst case, there are four di�erent blood types: A, B, AB and O, each corresponding to the presence

of protein A, B, both or neither, respectively [13]. A patient is incompatible with a donor who has one of

the proteins which the patient does not. For instance, a patient with blood type A can only receive kidneys

from donors with blood types A or O. Table 2.1 provides a map of the compatibilities between patients and

donors of di�erent blood types.

As for HLA incompatibility, it occurs when the patient has preformed antibodies against the donor's

antigens. These antibodies can develop through previous transplants, blood transfusions or pregnancy [4]
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Patient

Donor
O A B AB

O •
A • •
B • •
AB • • • •

Table 2.1: Map of compatibilities between the di�erent blood types of patients and donors.

and their presence increases the likelihood of rejection of the graft. Their existence is determined through a

test called crossmatch: if it is positive, it means the antibodies are present in the patient's system, so the

transplant should not take place. If the crossmatch is negative, then there are no harmful antibodies present

and the transplant may proceed.

As an e�ort to decrease the drawbacks of incompatibility, a third alternative arose in recent years based

on the study of incompatible pairs and possible donor swaps between them: the so-called kidney exchange

programs. We will now focus on this subject, as it is the theme of this dissertation.

2.2 Emergence of Kidney Exchange Programs

The basic concept of a kidney exchange was �rst presented in 1986 by Felix Rapaport [2]. The idea was to

give incompatible donor-patient pairs an opportunity to �nd a reciprocally compatible donor among them

and exchange one of their kidneys so that the transplants could be carried out.

The simplest type is the pairwise exchange, which can be formulated as follows: let us consider a patient

P1 with a willing but incompatible donor, D1. Let us also consider another similar pair P2 and D2, where

D2 is an incompatible donor to P2. In this scenario, no transplant would be conducted given the existing

incompatibility between the pairs. However, if D1 was compatible with P2 and D2 was compatible with P1,

we could simply swap donors and perform this procedure on both patients. A key factor in this exchange,

albeit obvious, is that the donations may proceed only because each donor's associated patient will receive

a kidney. This exchange, which can also be designated as �2-way exchange", is represented in �gure 2.1.

D1 P1

D2 P2

Incompatible

Incompatible

Figure 2.1: Representation of a pairwise kidney exchange. The dashed arrows represent incompatibility and

the full arrows represent compatibility between donor (Di) and patient (Pi).
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2.3 Types of Kidney Exchanges

There are several other exchange modalities to a kidney exchange, which allow for di�erent alternatives to

be adopted in a program, some of which will be presented in this section.

2.3.1 k-way Kidney Exchange

This modality generalizes the pairwise exchange by involving k donor-patient pairs (see �gure 2.2). On the

one hand, it allows for a bit more �exibility, since the reciprocal compatibility between two pairs is no longer

a requirement. On the other hand, from a logistical standpoint, it becomes increasingly di�cult to conduct

an exchange the larger the k is, as the surgeries on the patients involved in must be conducted simultaneously

to decreases chances of withdrawal from the program by pairs after receiving a kidney. Therefore, the shorter

the exchange, the smaller the amount of possible cancelled transplants due to these issues, which is why k

is usually limited to two, three or four.

D1 P1

D2 P2

Dk Pk

Incompatible

Incompatible

Incompatible

...

...

Figure 2.2: Representation of k-way kidney exchange. The dashed arrows represent incompatibility and the

full arrows represent compatibility between donor (Di) and patient (Pi).

2.3.2 Altruistic Donor Chains

Another inclusion to the set of donors to be considered is of altruistic donors, that is, donors who are willing

to donate a kidney, despite not having an associated patient in need of a transplant [14]. These donors can

either donate directly to a patient on the deceased donor waiting list, or transform the organization of an

exchange of incompatible pairs into a chain (see �gure 2.3). In the latter case, an altruistic donor donates a

kidney to an incompatible pair, provided that this pair donates a kidney to another incompatible pair in the

pool. This chain continues until the last pair in the exchange donates a kidney to a patient in the deceased

donor waiting list. These donors introduce more �exibility into a program as well, since the requirement of

simultaneity in procedures is relaxed, which helps increase the number of transplants carried out.

2.3.3 Inclusion of Compatible Donors

The donor pool can also include compatible pairs in an exchange. The bene�ts are two-fold: on the one

hand, it increases the chance of incompatible pairs �nding a compatible donor; on the other hand, it o�ers
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Alt

D1 P1

D2 P2

W

Incompatible

Incompatible

Figure 2.3: Representation of a �domino paired donation" with three transplants. The chain starts with an

altruistic donor and ends with a patient on the deceased donor waiting list. The dashed arrows represent

incompatibility and the full arrows represent compatibility between donor and patient.

compatible pairs the chance of �nding a better quality kidney transplant or possibly a younger donor [15, 16].

D1 P1

D2 P2

Compatible

Incompatible

Figure 2.4: Representation of a kidney exchange including compatible pairs. The dashed arrows represent

incompatibility and the full arrows represent compatibility between donor (Di) and patient (Pi).

2.3.4 Patient Desensitization

Some patients are HLA-sensitized, which makes it di�cult to �nd a compatible donor. However, in some

cases of highly sensitized patients, a desensitization procedure may take place in order to remove some

of the harmful antibodies present in the patient's system, thus decreasing the chances of rejection of the

transplanted kidney. Nevertheless, a compatible transplant still leads to better outcomes [1].

2.3.5 Multiple Donors

To further increase the chances of identifying potential exchanges, a patient may have multiple (incompatible)

donors associated in a KEP.
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2.4 Kidney Exchange Programs in Operation

Kidney Exchange Programs have been implemented in several countries with di�erent approaches. In this

section, we will go over the approaches some countries have adopted and the e�ects each KEP had on the

respective health care systems, focusing on the biggest implemented programs. Figure 2.5 presents a map

with the current state of KEPs in Europe (see [1]).

Figure 2.5: Development of KEPs by country [1].

2.4.1 The Netherlands

This program was established in 2004, the �rst one in Europe [1], and is organized by the Dutch Transplant

Foundation. As of 2017, it had the highest number of living donor transplants [17]. Between 2004 and

2016, 284 transplants were performed from exchanges, comprising about 6% of all living donor national

transplants. The maximum number of pairs allowed in an exchange is four and this program also includes

altruistic donors and compatible pairs [1].
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2.4.2 The United Kingdom

The National Living Donor Kidney Sharing Schemes (NLDKSS) is operating since 2007 on all four countries

of the UK, and is organized by the National Health Service Blood and Transplant (NHSBT) [14]. As of 2017,

it has reported an average of 135 transplants per year [1]. This program allows altruistic and compatible

donors, patient desensitization, as well as multiple donors per patient. The number of pairs per exchange is

restricted to three, although pairwise exchanges are prioritized [14], and there is a matching run every three

months to determine the best exchange plan for every 300 pairs. According to [18], in 2017, 22% of adult

kidney national transplants were possible because of this program.

2.4.3 Spain

Established in 2009 by Organización Nacional de Transplantes (ONT), it is the second largest KEP in

Europe, with a total of 147 transplants reported (an average of 35 transplants per year) [1]. This program

operates similarly to the UK's and it also includes altruistic donors, without a limit on the length of the

chains.

2.4.4 Portugal

The Portuguese KEP was started in 2010 under the authority of the Instituto Português do Sangue e da

Transplantação. It is still fairly small, with only nine transplants reported to have been performed through

the program until the end of 2016. Only 2- and 3-way exchanges are allowed and matching runs are conducted

twice a year [19]. Compatible pairs are not allowed in the donor pool and altruistic donors are not yet legally

regulated.

2.4.5 Rest of Europe

There are other smaller programs implemented in European countries, namely in Austria, Belgium, Czech

Republic, France, Italy and Poland, as well as some others in preparation, such as in Greece, Hungary,

Slovakia and Switzerland [1]. They are all organized centrally but have di�erent requirements and regulations.

More detailed information can be found in [1].

2.4.6 The United States

The US's case is di�erent than most countries in Europe. There is a main national program in place: the

United Network for Organ Sharing (UNOS), which was established in 2010. However, there are at least

two other national programs in operation, as well as other regional or single-center programs. Large centers

conduct most of the exchanges by themselves, reporting only the hard-to-match patients to the national

programs. Only 2-way or 3-way exchanges are allowed, but chains can have up to four exchanges [1].

The main problem in the US is the extremely high failure rate (over 90%), which is due to the fact

that the KEP involves mainly hard-to-match patients, as well as the lack of standardized testing for HLA

matching [1].
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2.4.7 Rest of the World

Other countries with large established KEPs are Australia [20], Canada [21], and South Korea [22]. For more

information, see [1].

2.5 International KEPs

In Europe, e�orts have been made in order to establish joint programs involving di�erent countries. This

allows not only for an expansion of the donor pool, but also for more diversity of donors, which may help

solve some issues unique to each country.

Taking into consideration all the requirements for participation in a KEP, it becomes even more di�cult

to meet them in procedures carried out between various centers and even more so countries. However, one

essential constraint is to ensure that the number of transplants performed in each center when in a joint pool

is at least the same as the number of transplants conducted by each center alone. This way, it is guaranteed

that each center does not lose any transplant by participating in a joint program.

Austria and Czech Republic have established the �rst reported international pairwise exchange in 2016

[23]. Both extraction surgeries were performed simultaneously and the recipients reported no signs of rejec-

tion.

Denmark, Sweden and Norway have also joined pools, forming the Scandiatransplant Kidney Exchange

Program. The �rst match run to �nd compatible exchanges was performed successfully in May of 2019.

Although Estonia, Finland and Iceland are also part of Scandiatransplant, they do not have yet any incom-

patible pairs participating in the transnational program.

A joint program involving Italy, Spain and Portugal is being developed, having the �rst two countries

already performed a transnational exchange [24].
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Chapter 3

Literature Review and Preliminary

Concepts

Kidney Exchange Programs can be addressed with di�erent approaches [25, 26, 27, 28]. Although these

approaches di�er from one another, they share the same baseline structure. In this chapter we will introduce

some concepts concerning this structure, as well as describe some of the current solutions being studied to

implement KEPs.

3.1 A Graph-Theoretic Framework for KEPs

The results of the previously mentioned preliminary compatibility tests conducted between incompatible

pairs are used to build a compatibility graph, which summarizes the possible swaps that can be performed

in a set of incompatible pairs (which will be referred to as the pool). Thus, a network of incompatible pairs

is represented via a directed graph G = (V,A), where V is the set of vertices, each vertex representing an

incompatible donor-patient pair, and A is the set of arcs, each arc representing compatibility between the

donor of one pair and the patient of the other. As such given two vertices i, j ∈ V , the arc (i, j) exists in A

if the donor in pair i is compatible with the patient in pair j.

A feasible exchange between pairs in this network is represented through a cycle in the graph, where

its length indicates the number of participating pairs (so a cycle of length k (or a k-cycle) corresponds to a

k-way exchange). If a program includes altruistic donors, chains are also included and they are represented

as paths in the graph.

Finally, models for the kidney exchange problem are also characterized by an objective which maximizes

social wellness, most commonly the total number of transplants. Nevertheless, other objectives can be

considered depending on the features of the pool (see [26] for further information).

Figure 3.1 provides an example of a directed graph G = (V,A) representing a KEP network. The set of

vertices is V = {0, 1, 2, 3} and the set of arcs is given by A = {(0, 2), (1, 0), (1, 3), (2, 1), (3, 1)}. The existing
cycles (possible exchanges) are c1 = {(0, 2), (2, 1), (1, 0)} and c2 = {(1, 3), (3, 1)}.
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0

12 3

Figure 3.1: Example of a KEP instance with four incompatible pairs.

3.2 Deterministic Models

Several authors have modelled this problem through integer programming [26, 27, 29]. The kidney exchange

problem is typically treated as a deterministic problem, meaning there is no uncertainty to the data and the

number of transplants is most commonly maximized, as previously stated. Considering the constraint on

the length of a cycle as being k, the main goal of this problem is to �nd a set of vertex-disjoint cycles, with

length at most k, which has the maximum cardinality.

Next we will present the two baseline integer programs used in KEPs, which were �rst presented and

described in [30] in detail.

3.2.1 The Cycle Formulation

Let C be the set of all cycles in the graph G. Let us consider C(k) ⊆ C, the set of all cycles of G with length

at most k. For each cycle c ∈ C(k), we de�ne a decision variable zc as:

zc =

1, if the cycle c is selected

0, otherwise

The weight wc of each cycle c ∈ C is de�ned as wc =
∑

(i,j)∈c wij , where wij is the weight associated to

each arc. When the goal is to maximize the number of transplants, the weight for all arcs is set to 1. This

model maximizes the weight of a set of disjoint cycles, being formulated as follows:

Max
∑
c∈C

wczc (3.1)

Subject to: ∑
c:i∈c

zc ≤ 1, ∀i ∈ V, (3.2)

zc ∈ {0, 1}, ∀c ∈ C. (3.3)

The objective function 3.1 maximizes the number of transplants. Constraints 3.2 ensure that each vertex

is selected at most once (that is, each donor can donate and each patient can receive at most one kidney).

Constraints 3.3 de�ne the domain of the decision variables.
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3.2.2 The Edge Formulation

Let us consider a variable xij de�ned for each arc (i, j) in A as follows:

xij =

1, if the donor in pair i donates a kidney to the patient in pair j

0, otherwise

The problem can be modelled as follows

Max
∑
c∈C

wijxij (3.4)

Subject to: ∑
j:(j,i)∈A

xji =
∑

j:(i,j)∈A

xij , ∀i ∈ V, (3.5)

∑
j:(i,j)∈A

xij ≤ 1, ∀i ∈ V, (3.6)

∑
p:p∈{1,k}

xipip+1
≤ k − 1 ∀paths (i1, i2, . . . , ik, ik+1) (3.7)

xij ∈ {0, 1}, ∀(i, j) ∈ A. (3.8)

The objective function 3.4 maximizes the total number of transplants (in the case of unitary weights).

Constraints 3.5 ensure the patient in pair i receives a kidney if, and only if, the donor in pair i donates a

kidney. Constraints 3.6 make sure that the donor in pair i donates at most one kidney. Constraints 3.8

ensure that the cycles in the exchange do not exceed a length of k and constraints 3.8 de�ne the domain of

the decision variables.

These two models o�er di�erent advantages; the cycle formulation is known to be very e�cient, but

its number of variables grows exponentially with the number of pairs of an instance [30]. As for the edge

formulation, despite having a polynomial number of variables, the number of constraints grows exponentially

with the size of an instance [31]. This happens because of the constraints which limit the length of an

exchange.

This trade-o� between the number of variables and the number of constraints has been an ongoing topic

of discussion, with computational experiments being made to assert which of the two formulations is the

most e�cient. It has also lead to the creation of �compact formulations", that is, formulations with a linear

number of variables and constraints [27, 29, 31].

In [27], two compact formulations based on the edge formulation were presented, where both the number

of variables and constraints are bounded by a polynomial in the size of the number of pairs: the edge-

assignment formulation and the extended edge formulation. Both of them address the problem of limiting

the length of a possible exchange with di�erent approaches. For the �rst, new assignment variables are de�ned

for each vertex according to the cycle it belongs to, so that cycle cardinality is written more easily. As for

the second, the idea is to create copies of graph G, so that each copy contains a cycle with at most k arcs and

each vertex can belong to at most one cycle. Again, this allows to express the cardinality constraints with a
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polynomial number of variables and constraints. However, both of these formulations have some drawbacks,

namely the possibility of having multiple equivalent solutions, which can be a problem when it comes to

solving these models using traditional methods (such as branch-and-bound) [27].

3.3 Probabilistic Models

3.3.1 Taking Uncertainty into Account

Although KEPs are commonly studied without considering uncertainty, in real-life situations the scenario is

anything but deterministic. Even after a transplantation plan has been established (that is, the transplants

to be carried out were selected), di�erent situations may lead to transplant cancellations, such as withdrawals

by pairs from a program, illness of a patient or donor, the sudden availability of a kidney transplant from

the deceased donor waiting list and other last-minute unexpected issues [1].

On top of these issues, all the participating pairs of a transplantation plan must undergo a more precise

test (the actual crossmatch) before the planned transplants are carried out, in order to verify the virtual

compatibilities of the compatibility graph. Performing these tests is a complex task, both in terms of time

and associated costs, which is the reason why they are conducted only on the pairs of a transplantation

plan, instead of the entire pool. They may lead to the discovery of new incompatibilities between donors

and patients (which is very likely to happen [31]), preventing the plan to move forward. Thus, it becomes

necessary to take into account this uncertainty.

In the literature, this has been studied in [25, 26, 32, 33, 34] by associating a probability of failure

to either each arc or each vertex and maximizing the expected number of transplants instead of the total

number of transplants.

In [32], some algorithms are proposed to calculate the expectation of the number of transplants by

associating probabilities of failure to both arcs and vertices. However, since these methods rely on the

enumeration of all subsets of the set of arcs, they are limiting in terms of the size of the instance. As an

attempt to circumvent this issue, the author proposes an intermediate stage where a database is constructed,

where all possible cycle con�gurations for small graphs are associated to their corresponding expected values.

Nevertheless, the approach was still computationally expensive and stays limited to cycles of length 3.

In [34], the authors deal with uncertainty with a two-stage integer problem model. The �rst stage

addresses the decision problem, in which subsets of arcs should be tested for crossmatch. The uncertain

variables, which values are revealed after the �rst stage decision is made, are the existence of the arcs. Given

that each realization of the uncertain variables leads to a scenario, the resulting integer programming model

is extremely large. The authors prove the complexity of the selection problem presented is NP-hard, even

when the maximum cycle length is k = 2.

This approach di�ers from others for two main reasons: they impose almost no limitations to the

selection problem, namely regarding the restriction of choosing among either disjoint cycles or chains; and

they consider an upper bound for the number of crossmatch tests available. Indeed, the scenario chosen can

not have a number of arcs higher than the number of tests available. This constraint is realistic since, as we

have mentioned before, performing crossmatch tests is very resource-intensive and usually can not be done
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on the entire pool.

Although these approaches provide strong models for solving the kidney exchange problem, in practice

they are di�cult to use for instances with large pools of incompatible pairs, as it is the case with most

national programs.

3.3.2 Recourse Policies

In the previously mentioned schemes, the authors assume that once a solution is established, it can not be

altered. Thus, if issues arise after the creation of a transplantation plan that lead to cancellations, there is

nothing to be done other than establishing a di�erent plan.

However, these possible failures in a network can be addressed by considering recourse policies, where

some part of a solution may still be used or some transplants can be rearranged. There are mainly two types

of recourse being studied: internal recourse and full recourse. In the latter, if a failure occurs, a totally new

solution can be considered.

Regarding internal recourse, we are looking for smaller cycles embedded in the cycles of our solution.

Accordingly, if a transplant fails in a cycle but a shorter cycle within the �rst one can still be considered, we

would be able to make use of part of the solution instead of wasting all the conducted tests.

This idea was �rst considered in [14] by Manlove et al., where the concept of backarc was introduced.

A de�nition is presented next.

De�nition 3.3.1. Let G = (V,A) be a directed graph, where V is the set of vertices and A is the set of arcs.

Let us consider a 3-cycle c in G. Arc (i, j) is a backarc of c if (j, i) ∈ c.

In example 3.2, a KEP network with three incompatible pairs is de�ned. The 3-cycle is composed by

arcs a = (1, 2), b = (2, 3) and c = (3, 1), and d = (1, 3) is a backarc of c. The 3-cycle is said to have an

embedded 2-cycle (the latter being composed by arcs c and d).

3

21

Figure 3.2: Example of a KEP instance with three incompatible pairs and one backarc.

Manlove et al. established multiple objectives for the problem, the �rst being to maximize the number

of e�ective 2-cycles (which are either 2-cycles or 3-cycles with embedded 2-cycles). Among the objectives is

also the maximization of the number of backarcs in the 3-cycles.

Klimentova et al. proposed new algorithms in [26] taking into account failure of vertices and arcs, for

three di�erent recourse schemes (no recourse, internal recourse and subset recourse).

A robust optimization approach is described in [35], being formulated as a two-stage optimization

problem. The authors focus on maximizing the utility in the worst-case scenario of an instance. They
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consider three policies: simple recourse, where the costs of the cancelled transplants are taken into account;

even though this policy does not enable the recovery of failing cycles or chains, it still allows for a more

�informed" decision regarding the instance. An integer programming model is presented for the second

policy, backarcs recourse, which enables for part of a failing cycle or chain to be recovered (considering only

the pairs that were already involved). The last policy presented is full recourse, where other pairs in the

instance are considered for the recovery, and a di�erent integer programming model is presented as well.

In this approach, a referred advantage when compared to other stochastic models is the fact that no

assumptions about the distribution of the probability of failure are needed. This allows to circumvent

situations where modelling the probability distribution is either very di�cult or outright impossible.

3.4 Budget Constraints

A central aspect of this dissertation is the focus on the budget limitation for crossmatch tests. As previously

mentioned, there are complex logistics associated to KEPs, one of them being the limitation of the resources

which can be spent performing crossmatch tests. Since this aspect is usually not considered in the literature,

we are interested in studying a problem in the context of KEPs with this constraint.

Furthermore, we will also consider testing rounds, which simulate how tests are conducted in operating

programs periodically. A round is characterized as a set of crossmatch tests conducted simultaneously, for

which the results are known at the end of the round. The following example illustrates these concepts in the

context of a KEP. Let us consider the instance in �gure 3.3.

0

12 3

Figure 3.3: Example of a KEP instance with four incompatible pairs. The blue arcs represent the possible

transplants.

In a round, we wish to select the set of arcs which maximizes the total number of transplants. Without

any restrictions, we would choose the arcs in cycles {(1, 3), (3, 1)} and {(0, 2), (2, 0)}, since they could poten-

tially yield 4 transplants. However, if we consider a budget of 3, this set of arcs would no longer be eligible,

as it has 4 arcs. For a budget of 3, the chosen arcs would be the ones in cycle {(1, 0), (0, 2), (2, 1)}.
At the end of the round, we perform the crossmatch tests on the selected arcs. Supposing the blue arcs

are the ones for which the crossmatch is negative (i.e., there is no incompatibility between the donor in one

pair and the patient in the other), arcs (2, 1) and (1, 0) would be excluded from the network, since these

transplants are not possible to be conducted. At the start of the next round, we continue this procedure on

the updated network.
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Chapter 4

Simultaneous Problem

In this chapter we will provide the de�nition and formulation of what we call the �simultaneous� problem,

as well as several solution methods.

4.1 Problem De�nition

In the simultaneous problem, we want to maximize the number of transplants, knowing there is a limited

number of arcs that can be tested simultaneously. We will focus on deciding which arcs to test, respecting

the budget limitation on the number of tests. Several approaches will be presented to carry out this selection.

We also assume that only arcs which were previously tested can be selected for the �nal transplantation plan.

We start with the same framework as previously described in Chapter 3, a directed graph G = (V,A),

where V is the set of vertices and A is the set of arcs. Each possible exchange is represented by a cycle in

the graph. The set of all cycles is denoted by C.

To each arc (i, j) ∈ A we associate a weight pij , representing the probability of failure of that possible

transplant.

With this, we may calculate the expected value of a cycle c with the following formula

E(c) = |A(c)|
∏

(i,j)∈A(c)

(1− pij), ∀c ∈ C, (4.1)

where A(c) is the set of arcs of c and |A(c)| is its cardinality.

4.2 Omniscient

For the purposes of comparison, we start by considering the so-called �omniscient� solution, which represents

the maximum possible number of transplants that can be achieved with an unlimited budget and testing

rounds. More speci�cally, after crossmatching all the arcs of an instance, the omniscient solution provides

the solution with the highest number of transplants.
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This solution can be interpreted as an �upper bound" for the methods being studied, as it is the best

possible result for a given instance.

4.3 Solution Methods

4.3.1 Expectations Model

The expectations model is based on the cycle formulation, with additional budget constraints. To each arc

(i, j) ∈ A there are some associated parameters, namely the probability of failure pij as previously stated,

as well as the cost of performing a test on that arc, bij . Associated with each cycle c ∈ C is its expected

value, denoted by E(c), as well as a parameter acij , for each arc (i, j) ∈ A and cycle c ∈ C, which is 1 if arc

(i, j) belongs to cycle c and 0 otherwise. We also have a parameter B for the total available budget.

The decision variables are de�ned as follows:

• yij =

1, if arc (i, j) is tested

0, otherwise
∀(i, j) ∈ A

• wc =

1, if cycle c is selected for the transplantation plan

0, otherwise
∀c ∈ C

The integer programming model is given by

Maximize z =
∑
c∈C

E(c)wc (4.2)

Subject to:
∑
c∈C

∑
(i,j)∈A

acijwc ≤ 1, ∀i ∈ V (4.3)

wc − acijyij ≤ 0, ∀(i, j) ∈ A, ∀c ∈ C (4.4)∑
(i,j)∈A

bijyij ≤ B (4.5)

wc, yij ∈ {0, 1}, ∀c ∈ C, ∀(i, j) ∈ A (4.6)

The objective function (4.2) maximizes the expected number of transplants. Constraints (4.3) ensure

that each vertex is in, at most, one selected cycle for the exchange. This is necessary because each pair can

only donate (and consequently receive) at most one kidney. Constraints (4.4) ensure that only cycles where

every arc is tested can be selected. Finally, constraints (4.5) ensure that the total available budget is not

exceeded.

Since in a real-life scenario the length of an exchange is usually limited to three, we will only consider

cycles of length two and three in our problems.

It should be noted that this model yields the optimal solution when the number of arcs in this solution

is equal to the budget. However, if the budget exceeds the number of arcs in the solution, the number of

transplants is not improved, thus we propose a heuristic to add more arcs besides the ones already obtained.
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We start by calculating a solution, S1, using the presented model (4.2-4.6). If the number of arcs in S1

is smaller than the available budget, B, we exclude S1 from the possible solutions by adding the following

constraint to the model

∑
c∈C1

(1− wc) +
∑
c∈C0

wc ≥ 1 (4.7)

where C1 is the set of indexes of decision variables in S1 equal to 1, and C0 is the set of indexes of decision

variables in S1 equal to 0. This constraint ensures that a given solution (and only that one) is excluded from

the set of possible solutions.

We then re-optimize the model to obtain a new solution, S2. Any arc in S2 that is not in S1 is then

added to S1, and S2 is excluded from the possible solutions. We repeat this process until our constructed

solution has B arcs. Algorithm 1 formalizes this procedure.

Algorithm 1: Selecting a set of B arcs

1 Initialize S = ∅
2 while |S| < B do

3 Optimize the expectations model and obtain a solution S1

4 foreach Arc x in S1 do

5 if x /∈ S and |S| < B then

6 Add x to S

7 Exclude S1 from the possible solutions

Let us consider the example of a KEP network shown in �gure 4.1. This instance has four incom-

patible donor-patient pairs, represented by the set of vertices V = {0, 1, 2, 3}. The possible transplants

are given by the set of arcs A = {(0, 2), (1, 0), (1, 3), (2, 0), (2, 1), (3, 1)} and the cycles in this network are

c0 = {(0, 2), (2, 0)}, c1 = {(1, 3), (3, 1)} and c2 = {(0, 2), (2, 1), (1, 0)}, with expected values of 1.425, 1.05

and 2.180, respectively (all calculated with the formula in 4.1). We also consider that the cost of performing

a test on each arc is 1.

0

12 3
0.1

0.150.05
0.25

0.3

0.25

Figure 4.1: Example of a KEP instance with four incompatible pairs and probabilities of failure.
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Recalling that we only consider solutions where all arcs can be tested, if B = 2, the optimal solution

would be to test the arcs of cycle c0, as it has the highest expected value of the 2-cycles. If B = 3, the

optimal solution would be the cycle c2. However, if B = 4, the optimal solution is the set of cycles c0 and

c1, as their combined expected number of transplants is equal to 2.475. Thus, four is the maximum number

of arcs we can select with the expectations model.

If we consider B = 5, following algorithm 1, we would start by obtaining the solution c0 and c1 with

the expectations model. Then, after excluding it from the set of possible solutions, we re-optimize for the

expected number of transplants and get cycle c2, out of which we select arc (2, 1) or (1, 0) at random. Thus,

one solution for B = 5 is {c0, c1, (2, 1)}.

4.3.2 Expectations with Backarcs

An improvement to our previous model is to consider internal recourse which, as explained in Chapter 3,

consists of including backarcs. This allows us to rearrange part of a solution in case of failure after new

incompatibilities are revealed. By doing this, instead of only considering simple cycles, we must consider

con�gurations, which are de�ned in [26] as follows:

De�nition 4.3.1. A con�guration of a cycle of size k is an equivalence class of isomorphic graphs with k

vertices containing at least a cycle of size k.

Thus, we will consider all possible con�gurations of a 3-cycle with zero, one (�gure 4.2), two (�gure 4.3)

or three backarcs. Figure 4.4 shows the representatives of each equivalence class.

Figure 4.2: The three possible con�gurations of a 3-cycle with one backarc (one equivalence class) and the

representative on the left.

Figure 4.3: The three possible con�gurations of a 3-cycle with two backarcs (one equivalence class) and the

representative on the left.

In the speci�c case of our model, this translates to considering a di�erent set of cycles for the de�nition

of the decision variables wc, as they are no longer associated only to 2-cycles and 3-cycles, but also to all

possible con�gurations of a 3-cycle. As such, we will additionally de�ne the following sets: C0
3 as the set of

all 3-cycle con�gurations with no backarcs, C1
3 as the set of all con�gurations with one backarc, C2

3 as the

set of all con�gurations with two backarcs and �nally C3
3 as the set of all con�gurations with three backarcs.
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Figure 4.4: All four possible con�gurations (representatives of each equivalence class) of a 3-cycle.

We will extend the model (4.2-4.6) by considering C to be the union of C0
3 , C

1
3 , C

2
3 and C3

3 , along with the

set of 2-cycles (C2): C = C2 ∪ C0
3 ∪ C1

3 ∪ C2
3 ∪ C3

3 . The expected value of a con�guration with backarcs is

calculated according to the formulae given in [32].

Let us consider once again the instance in �gure 4.1. In this case, we have the con�gurations c0 =

{(0, 2), (2, 0)}, c1 = {(1, 3), (3, 1)}, c2 = {(0, 2), (2, 1), (1, 0)} and c3 = {(0, 2), (2, 1), (1, 0), (2, 0)} (with ex-

pected value of 2.515), which allow us to de�ne the following sets: C2 = {c0, c1}, C0
3 = {c2} and C1

3 = {c3}.
As con�guration c3 has a higher expected value than c0 and c1 combined, the arcs to be tested would be

those in con�guration c3. This illustrates how including backarcs can give us better results for a limited

number of crossmatch tests.

Similarly to the expectations model, the expectations model with backarcs provides an optimal solution

for a certain budget when the number of arcs obtained is equal to the budget. If the budget is bigger, the

solution is not improved by testing more arcs. Thus, we will once again consider algorithm 1 in order to

add more arcs to the solution, with the di�erence that in line 1, the optimization is carried out with the

expectations model with backarcs. We are now able to improve on the size of a set of arcs obtained with

previous approach for a budget B.

4.3.3 Optimistic Approach

We also consider the approach where uncertainty is not taken into account when selecting the arcs to be

tested, which we refer to as the �optimistic approach". The solution of this method corresponds to the

number of planned transplants if all arcs of an instance existed. This approach uses a particular case of the

model (4.2-4.6), where the probability of failure of all arcs in A is set to 0, which is equivalent to assuming

there are no incompatibilities between the pairs involved. The expected value of a cycle is then simply its

length, so the objective function maximizes the total number of transplants.

Since this model ignores probabilities of failure, it can be used to analyze the impact of including

uncertainty in KEPs. As we will see when interpreting the computational results, considering only the deter-

ministic problem (or that all arcs exist) leads to a signi�cant reduction in the actual number of transplants

obtained through this model and signi�cantly less actual transplants than in the other approaches.

4.4 Computational Results

Computational tests were conducted on 50 instances of 20, 30, 40 and 50 pairs each, generated by the

instances' generator described in [36], taking into account the probabilities of blood type and tissue in-

compatibility. The probabilities of a positive crossmatch were obtained according to [37]. The model was
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implemented using C++ and CPLEX on a machine with a Intel Core i7 CPU @ 2.3 GHz and 6 GB RAM.

In this section we will analyze the performance of the optimistic approach, the expectations model and

the expectations with backarcs approach, and establish comparisons among them. For all instances, we

assume that conducting each test costs 1 and that the budget per instance varies from 2 to the number of

vertices.

Optimistic Approach

Figures 4.5 and 4.6 show the results for the optimistic approach, compared to the actual number of transplants

obtained after crossmatching the arcs of the solution. Furthermore, we also consider the omniscient solution

as a reference for the upper bound.
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Figure 4.5: Results of the optimistic approach, compared to the crossmatched solution, as well as the

omniscient solution for instances of 20 (left) and 30 pairs (right).

We can observe that for instances of 20 pairs and for a budget between 2 and 10, with each unitary

increase in the budget, the increase in the number of planned transplants is of, on average, 0.72 transplants.

For a budget between 11 and 17, the increase is of 0.14 transplants, and for a budget of 18 or higher, there

is no increase in the number of planned transplants (no additional information is gained).

Considering the same ranges for the budget, the increase in the number of actual transplants is of

approximately 0.46 transplants and 0.16 transplants, respectively. For a budget of 18 or higher, the number

of actual transplants continues to increase, although at a lower rate.

For 30 pairs, for a budget between 2 and 13, there is a gain of approximately 0.91 transplants with each

unitary increase in the budget. Between a budget of 14 and 19, the increase is of about 0.22 transplants per

one additional test. For a budget of 19 or higher, the number of transplants remains the same.

As for the actual number of transplants, for a budget between 2 and 13, the increase in the number of

transplants for each additional test is of 0.55; for a budget between 14 and 19 there is an increase of 0.29
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Figure 4.6: Results of the optimistic approach, compared to the crossmatched solution, as well as the

omniscient solution for instances of 40 (left) and 50 pairs (right).

transplants; for a budget between 20 and 29, the increase is of 0.12 transplants.

For instances of 40 pairs, for a budget between 2 and 19, there is an increase of about 0.82 transplants

with each unitary increase in the budget. Between a budget of 20 and 27, the increase is of about 0.14

transplants and for a budget of 28 or higher, the number of transplants does not change.

Regarding the actual number of transplants, for a budget between 2 and 19, the increase in the number

of transplants for each additional test is of 0.46; for a budget between 20 and 27 there is an increase of 0.19

transplants; for a budget between 28 and 39, the increase is of 0.13 transplants.

For instances of 50 pairs and for a budget between 2 and 21, with each unitary increase in the budget,

the increase in the number of planned transplants is of, on average, 0.91 transplants. For a budget between

22 and 36, the increase is of 0.27 transplants, and for a budget of 37 or higher, there is no increase in the

number of planned transplants (no additional information is gained).

Considering the same ranges for the budget, the increase in the number of actual transplants is of

approximately 0.52 transplants and 0.25 transplants, respectively. For a budget of 37 or higher, with each

additional test there is an increase of approximately 0.13 actual transplants.

We can conclude that regardless of the size of the instance, on average, the number of transplants

increases at a similar rate in relation to the increase in the budget.

For instances of 20 pairs, the average number of transplants obtained without considering failure is of

8.93 transplants for a budget of 19 tests (see table 4.1), about 11.2% higher when compared to the omniscient

solution (the maximum possible). However, the number of transplants after crossmatching the arcs of the

solution was of 6.48, at least 27.4% below the initial solution. This means that out of the initial selected arcs,

at least 27.4% of them end up failing, which supports the idea that this approach leads to a high number of

failures and, consequently, to a small number of transplants.

For the remaining instances, similar results were attained, where the failing rate for the optimistic
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approach is between 24% and 29%.

Budget/Instance Size Omniscient Optimistic Optimistic Actual

20 7.982 8.93 6.48 (-27.4%)

30 12.340 13.5 10.254 (-24%)

40 15.399 17 12.156 (-28.5%)

50 22.133 23.8 16.923 (-28.9%)

Table 4.1: Results of the optimistic approach for instances of n = 20, 30, 40 and 50 pairs, for B = n,

respectively.

Expectations vs Expectations with Backarcs

As for the model with expectations and the expectations with backarcs approach, �gures 4.7 and 4.8, contain

the results for all instances for a budget between 2 and the number of vertices.

For the expectations approach, we have the following results:

• For instances of 20 pairs, the expectations approach yields an increase of about 0.25 transplants for each

unitary increase in the budget. As for the actual number of transplants, there is approximately 0.3 more

transplants with each additional budget unit.

• For 30 pairs, there are approximately 0.27 more expected transplants and about 0.33 more actual trans-

plants for a unitary increase in the budget.

• For 40 pairs, with each additional budget unit there is an increase of approximately 0.24 expected trans-

plants and 0.3 actual transplants.

• Regarding instances of 50 pairs, the increase of the budget yields an increase of about 0.3 expected

transplants and 0.34 actual transplants.

In regard to the expectations with backarcs approach, the results obtained are described next.

• For instances of 20 pairs, the expectations approach yields an increase of about 0.29 transplants for each

unitary increase in the budget. As for the actual number of transplants, there is approximately 0.32 more

transplants with each additional budget unit.

• For 30 pairs, there are approximately 0.31 more expected transplants and about 0.32 more actual trans-

plants for a unitary increase in the budget.

• For 40 pairs, with each additional budget unit there is an increase of approximately 0.28 expected trans-

plants and 0.31 actual transplants.

• Regarding instances of 50 pairs, the increase of the budget yields an increase of about 0.33 expected

transplants and 0.36 actual transplants.
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We can observe that, once again, the increase of the number of transplants in relation to the increase

in the number of tests is similar for instances of all sizes.

Moreover, comparing the expectations model with the model with additional arcs for instances of size

20, there is an increase of about 13.7% in the number of transplants from the former (with 6.05 transplants)

to the latter (with 6.88 transplants). For the remaining instances, the increase is similar: for 30 pairs, the

increase is of 16.4%, for 40 pairs, of 18.6% and for 50 pairs, the increase is of 15%.

For the expectations model with backarcs, the increase in the actual number of the solution when adding

more arcs is of approximately 6%, 7%, 9.1% and 7.4% for instances of 20, 30, 40 and 50 pairs, respectively.

Regardless of the instance size, we can also see that the expectations model with backarcs provides

better results than the model without backarcs, ranging from an increase of about 1.9% in the size of a

solution (for 30 pairs), to about 4.9% (for 50 pairs). Thus, we can conclude that the expectations model

with backarcs (with additional arcs) leads to better results when compared to the model without backarcs

(with additional arcs, respectively).
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Figure 4.7: Results of the expectations model compared to the model with additional arcs, and the expec-

tations with backarcs model, compared to the same model with additional arcs, as well as the omniscient

solution for instances of 20 (left) and 30 pairs (right).

Optimistic vs Expectations Model

As we have concluded with the two previous analyses, although the optimistic approach had a higher number

of planned transplants, around 24% of those transplants end up not taking place. This is even more evident

when comparing to the expectations model with additional arcs, since the solutions obtained with the latter

approach have, on average, approximately 5% more transplants that the actual solutions of the optimistic.

Figures 4.9 and 4.10 and table 4.3 show the aforementioned results.

This is helpful in understanding how considering the uncertainty present in Kidney Exchange Programs
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Figure 4.8: Results of the expectations model compared to the model with additional arcs, and the expec-

tations with backarcs model, compared to the same model with additional arcs, as well as the omniscient

solution for instances of 40 (left) and 50 pairs (right).

Budget Exp. Exp. Additional Arcs Exp. Backarcs Exp. Backarcs Additional Arcs

20 6.05 6.88 6.68 7.08

30 9.143 10.644 10.130 10.851

40 10.793 12.8 12.058 13.165

50 15.525 17.876 17.436 18.732

Table 4.2: Results of the expectations approach and the expectations with backarcs for instances of n = 30,

40 and 50 pairs, where B = n, respectively.

a�ects the quality and size of the obtained solutions.

Budget Optimistic Actual Exp. Backarcs Add. Arcs

20 6.48 6.68

30 10.254 10.644

40 12.156 12.8

50 16.923 17.876

Table 4.3: Comparison between the optimistic approach and the expectations with backarcs approach for

instances of n = 20, 30, 40 and 50 pairs, where B = n, respectively.
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Figure 4.9: Comparison between the optimistic model and the expectations model (with additional arcs), as

well as the omniscient solution for instances of 20 and 30 pairs, respectively.
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Figure 4.10: Comparison between the optimistic model and the expectations model (with additional arcs),

as well as the omniscient solution for instances of 40 and 50 pairs, respectively.
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Chapter 5

Unlimited Problem

In this chapter we will describe a second problem which can be studied in the context of Kidney Exchange

Programs, which we call the �unlimited� problem.

5.1 Problem Description

The unlimited problem is characterized as having an unlimited budget for testing arcs in an unlimited number

of rounds. In each round, the goal is to select the best set of arcs to be tested according to a certain method.

We want to reach the omniscient solution in the smallest number of rounds with the smallest budget. Again,

we assume that a solution must have all of its arcs tested.

This problem may be characterized as the opposite of the simultaneous problem, as it will be the most

unrestricting one.

The framework to be considered is the same as for the simultaneous problem, a directed graph G =

(V,A), where V is the set of vertices and A is the set of arcs.

Two types of methods will be studied: the solution-based ones and the probing-based ones. They will

be described in the following sections.

5.2 Solution-Based Methods

In this section we will consider �ve solution-based approaches: optimistic, expectations pure, expectations

modi�ed, union pure and union modi�ed. They all start by considering a solution obtained through the

optimization of the IP model and proceed from there.

5.2.1 Optimistic

This approach is described in [38] (where it is called �reoptimization�).

We �rst obtain an optimistic solution, i.e., assume that all arcs of the instance exist. In each round, we

are going to maximize the number of transplants and crossmatch all arcs of the solution. If any arc fails the
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test, we restart the process. As such, we will optimize the model until we �nd a solution for which all arcs

exist.

The algorithm for this method is as shown in algorithm 2.

Algorithm 2: Obtain a solution with the optimistic method

1 Optimize the optimistic model and obtain a solution S

2 Test all arcs in S

3 if All arcs in S exist then

4 Stop. The output is S

5 else

6 Exclude from the network the arcs which do not exist

7 go to 1

In a given round, if there are several solutions with the same objective value, we select the one which

has the highest number of arcs tested in previous rounds.

Given the fact that there is an unlimited budget and an unlimited number of testing rounds, this method

converges to the omniscient solution (since, in the worst-case scenario, we can test all arcs of the instance).

5.2.2 Expectations Pure

For this method, we will de�ne a model similar to the one used in Chapter 4. The parameters remain the

same:

• pij : the probability of failure of arc (i.j) ∈ A

• acij : a parameter which is 1 if arc (i, j) belongs to cycle c and 0 otherwise

The decision variables are also maintained.

• yij =

1, if arc (i, j) is tested

0, otherwise
∀(i, j) ∈ A

• wc =

1, if cycle c is selected for the transplantation plan

0, otherwise
∀c ∈ C

In each round, we will use the following integer programming model to make the selection of the arcs:
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Maximize z =
∑
c∈C

E(c)wc (5.1)

Subject to:
∑
c∈C

∑
(i,j)∈A

acijwc ≤ 1, ∀i ∈ V (5.2)

wc − acijyij ≤ 0, ∀(i, j) ∈ A, ∀c ∈ C (5.3)

wc, yij ∈ {0, 1}, ∀c ∈ C, ∀(i, j) ∈ A (5.4)

The objective function (5.1) maximizes the expected number of transplants. Constraints (5.2) ensure

that each vertex is in, at most, one selected cycle for the exchange. Constraints (5.3) ensure that only cycles

where every arc is tested are selected. Finally, constraints 5.4 de�ne the domain of the decision variables.

After we maximize the expected number of transplants and get a solution, we test all its arcs. If at

least one arc does not exist, it is excluded from the network and the model is re-optimized. This procedure

is done until we obtain a solution with all tested arcs.

One thing should be remarked about this approach: it does not necessarily converge to the omniscient

solution. Since the approach with expectations provides a solution with the most reliable arcs on average, it

can di�er from the omniscient solution.

The algorithm for this method is the same as 2, except in line 1, where the expectations model is

optimized instead of the optimistic model. In the next section, we will present an example which illustrates

why this method may not converge to the omniscient solution.

5.2.3 Expectations Modi�ed

This method is based on the previous one, but aims at improving the fact that the expectations pure approach

may not converge to the omniscient solution.

In this procedure, we start with the solution given by the expectations model and analyze other, possibly

better, solutions. We start by optimizing the expectations model, testing all of the arcs of the obtained

solution until reaching one for which all arcs exist, Se. Then, we optimize the optimistic model, obtaining a

solution So and testing all of its untested arcs. If all arcs exist, we have arrived at an omniscient solution,

So. Otherwise, we go back to optimizing the optimistic model (see algorithm 3).

On the one hand, this method allows us to search for solutions that are more sturdy and reliable

(calculated with the expectations model), and on the other hand, test solutions which are the most promising

in terms of the number of transplants (through the optimistic model), in the same iteration. As such, we

start with a reliable solution and then move on to a possibly better one by switching methods.

Let us consider an example to illustrate this point. Figure 5.1 shows a KEP instance with four incom-

patible pairs. We are going to assume all arcs in this instance exist.

The cycles in this instance and their respective expected values are:

• c1 = {(0, 2), (2, 1), (1, 0)} and E(c1) = 2.43675.

• c2 = {(0, 1), (1, 0)} and E(c2) = 1.26.
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Algorithm 3: Expectations modi�ed heuristic

1 Get a solution Se with the expectations model

2 Test untested arcs in Se

3 Update network

4 if All arcs in Se exist then

5 Re-optimize and get a solution So with optimistic model

6 if All arcs in So exist then

7 Stop. The solution is So

8 else

9 go to 5

10 else

11 go to 1

1

0 2 3

0.3
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0.05

0.3

0.25

Figure 5.1: Example of a KEP instance with four incompatible pairs and probabilities of failure.

• c3 = {(2, 3), (3, 2)} and E(c2) = 1.05.

By optimizing the network with the expectations model, we would obtain the solution S1 = {(0, 2), (2, 1),
(1, 0)}, as it has the highest value out of all the cycles and their combinations (combining cycles c2 and c3

yields an expected value of 2.31). However, assuming all arcs in this instance exist, the omniscient solution

would be equal to cycles c2 and c3 combined, so S2 = {(0, 1), (1, 0), (2, 3), (3, 2)}.
With the expectations modi�ed approach, after reaching S1 we would optimize the optimistic model

and obtain solution S2. After testing all of its arcs and con�rming they all exist, we could conclude the

latter solution is better.

5.2.4 Union Pure

This approach is similar to the previous one, but is meant to speed up the convergence between the ex-

pectations solution and the solutions obtained with the optimistic model. The goal is to try the optimistic

solution (So), and in case at least one of its arcs does not exist, we test the expectations solution (Se) in the

same iteration. Thus, in each iteration, we are testing the most promising solution and the solution which

is most likely to not have any failures.
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For this, we start by calculating a solution Se with the expectations model and another solution So with

the optimistic model. We then test all the arcs of both. If all arcs of solution So exist, then we can stop,

as we have arrived at the omniscient solution (So). Otherwise, we re-optimize both models and repeat the

process.

Algorithm 4 summarizes this approach.

Algorithm 4: Union Pure Heuristic

1 Obtain a solution Se with the expectations model

2 Obtain a solution So with the optimistic model

3 Test untested arcs in Se

4 Test untested arcs in So

5 if All arcs in So exist then

6 Stop. The solution is So

7 else

8 go to 1

5.2.5 Union Modi�ed

For this approach, we start again by considering the solutions of both the optimistic model and the expec-

tations model in each iteration. However, instead of testing all arcs of the optimistic solution, we select

arbitrarily a number of arcs of this solution to be tested (as described in algorithm 5).

Algorithm 5: Union Modi�ed heuristic

1 Get a solution Se with the expectations model

2 Get a solution So with the optimistic model

3 Test untested arcs in Se

4 Test |So| − |Se| arcs (chosen arbitrarily) of So

5 if All arcs in So exist then

6 Stop. The solution is So

7 else

8 go to 1

5.3 Probing-Based Methods

This section provides a description of three probing-based approaches. First, we are going to de�ne the

concept of expected value with probing, as was described in [39].
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The expected value with probing of an arc is de�ned as the expected number of transplants of a network

if the arc x is selected to be tested.

Let us consider the expected number of transplants if the result of the test on arc x is v (where v is the

value of a realization of the tested random variable, which is 0 if arc x exists and 1 otherwise), which we

denote by E(A, x, v).

The expected number of transplants with probing for arc x, denoted by E(A, x), is de�ned as

E(A, x) = (1− px)E(A, x, 0) + pxE(A, x, 1), x ∈ A, (5.5)

where px is the probability of failure of arc x. E(A, x, v) is calculated by updating px to v and solving for

the maximum expected number of transplants.

Example 5.2 illustrates the concept of probing.

0

12 3
0.1

0.150.05
0.25

0.45

0.4

Figure 5.2: Example of a KEP instance with four incompatible pairs and probabilities of failure.

Table 5.1 contains the expected value with probing (EVP) for each arc of the instance in �gure 5.2. We

can observe that arc (1, 0) has the highest EVP, at 2.493, which is greater than the expected value calculated

for any of the cycles of the instance.

x E(A, x, 0) E(A, x, 1) E(A, x)

(0, 2) 2.295 0.66 2.21325

(1, 0) 2.565 2.085 2.493

(1, 3) 2.625 2.18025 2.4248625

(2, 0) 2.56 2.18025 2.4650625

(2, 1) 2.4225 2.085 2.38875

(3, 1) 2.525 2.18025 2.3871

Table 5.1: Expected value with probing for each arc of instance in �gure 5.2.

This concept can be extended to a set of any number of arcs; however, the number of integer programming

models to be solved for each subset of T arcs for an instance with n arcs is 2T , and a total of 2T
(
n
T

)
for

each instance. As this is very computationally heavy even for small instances, we restrict T to 3, since it is

usually also the maximum size of a cycle considered in practical applications.
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5.3.1 Expected Value with Probing for Arcs

In this method, we are interested in probing the arcs of a solution obtained with the optimistic approach. We

start by getting the solution with the highest number of transplants and then calculate the expected value

with probing for each one of its arcs (see algorithm 6). In each round, we select the arc with the highest

EVP to be tested.

Algorithm 6: Expected Value with Probing for Arcs

1 do

2 Obtain a solution S with the optimistic model

3 Calculate the expected value with probing for all arcs of S

4 Select the arc with the highest EVP and test it

5 while The solution has untested arcs

5.3.2 Expected Value with Probing for Cycles

This method di�ers from the previous one in the fact that instead of calculating the EVP for each arc of

a solution, we calculate it for each cycle. In each round, we conduct the optimization for the optimistic

approach (thus obtaining the solution with the maximum number of transplants) and then calculate the

EVP for each cycle, selecting the one with the highest EVP. These steps are formalized in algorithm 7.

For instance, for a 2-cycle composed by arcs x and y, the EVP is calculated as follows:

E(A, x, y) =(1− px)(1− py)E(A, x, y, 00) + (1− px)pyE(A, x, y, 01)+ (5.6)

+ px(1− py)E(A, x, y, 10) + pxpyE(A, x, y, 11) ∀x, y ∈ A,

where px and py is the probability of failure of arcs x and y, respectively. E(A, x, y, v1v2) is calculated by

updating px to v1 and py to v2 and solving for the maximum expected number of transplants.

Algorithm 7: Expected Value with Probing for Cycles

1 do

2 Obtain a solution S with the optimistic model

3 Calculate the expected value with probing for all cycles of S

4 Select the cycle with the highest EVP and test it

5 while The solution has untested arcs

5.3.3 Expected Value with Probing and Alternative Solutions

In this approach, we use the various alternative solutions obtained for the optimistic method. We start

by calculating n solutions with the highest number of transplants (where n is the number of pairs of the
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instance) and for each one, we calculate the EVP for each cycle. Then, after calculating the average EVP

per cycle for each solution, we choose the one with the highest average EVP. Finally, we test the untested

arcs of this solution and repeat this process until a solution with tested arcs is reached.

Algorithm 8: Expected Value with Probing for Alternative Solutions

1 do

2 Obtain n solutions with the optimistic model

3 Calculate the EVP for every cycle of every solution

4 Select the solution which has the highest average EVP to be tested and test all of its arcs

5 while The solution has untested arcs

5.4 Computational Results

Computational tests were conducted for 50 instances of 20, 30, 40 and 50 pairs each, obtained as described

in Section 4.4 of Chapter 4.

For instances of 20 pairs, we start by analyzing the four convergent solution-based methods. Regarding

the number of rounds, as shown in table 5.2, the fastest method is �Union Pure", attaining convergence in

1.842 rounds. The slowest is �Expectation Modi�ed", with 4.797 rounds, which is approximately 2.6 times

higher than the former approach.

As for the number of tests, the least expensive method is the �Optimistic", with 13.554 tests. Conversely,

the approach which needed the highest number of tests to converge is the �Union Pure", with 15.958,

approximately 45% more tests when compared to the Optimistic.

Concerning the probing-based approaches, the fastest one is the �EVP for Alternative Solutions", with

2.178 rounds, and the slowest one is the �EVP for Arcs", needing over 5 times more rounds (11.377) to attain

convergence. However, when analyzing the number of tests, the roles for these two methods are reversed:

the former is the most expensive, with 13.109 tests, while the latter is the least expensive, with 11.377 tests.

Figure 5.3 contains the visualization of table 5.2. If we consider this problem as a multi-criteria approach

with two minimization criteria (number of tests and number of rounds), we can observe that the two most

e�cient methods are the �Union Pure" and the "EVP for Alternative Solutions".

Regarding execution times, the probing-based approaches are usually slower when compared to the

solution-based ones.

Similar results were observed for instances of 30 pairs, which are summarized in table 5.3. Solution-

based methods are also faster, on average, when compared to the probing-based approaches, but also more

expensive. The �Union Pure" method was again the fastest overall (with 2.317 rounds), with �EVP for

Alternative Solutions" being the fastest among the probing-based approaches (with 2.804 rounds). As for

the number of tests, �EVP for Arcs" was the approach which needed the least amount of tests to converge

overall (with 17.159 tests), whereas the Optimistic method was the least expensive among the solution-based

approaches.

35



Solution-based Probing-based

Average Exp. Pure* Opt. Exp. Mod. Union Pure Union Mod. Arcs Cycles Alt. Sol.

Sol. Value 7.601 7.982 7.982 7.982 7.982 7.982 7.982 7.982

No. Rounds 1.791 2.277 4.797 1.842 2.547 11.377 4.357 2.178

No. Tests 10.997 13.554 14.813 15.958 13.673 11.377 12.992 13.109

Table 5.2: Computational results for the unlimited problem for instances of 20 pairs. *Exp. Pure does not

converge to an omniscient solution.

Figure 5.3: Scatter plot comparing the number of rounds and the number of tests for instances of 20 pairs.

In �gure 5.4, we can observe that once again, the non-dominated solutions are the Union Pure and the

EVP for Alternative Solutions.

Solution-based Probing-based

Average Exp. Pure Opt. Exp. Mod. Union Pure Union Mod. Arcs Cycles Alt. Sol.

Sol. Value 11.764 12.340 12.340 12.340 12.340 12.340 12.340 12.340

No. Rounds 2.282 2.934 8.288 2.317 3.415 17.159 6.845 2.804

No. Tests 17.438 21.125 25.097 25.675 21.831 17.159 20.020 20.753

Table 5.3: Computational results for the unlimited problem for instances of 30 pairs.

Tables 5.4 and 5.5 provide the results obtained for instances of 40 and 50 pairs, except for approach

�EVP for Alternative Solutions", which proved to be too computationally heavy. Again, similar conclusions

can be drawn from these results, where the fastest and least expensive approaches are the same as for the
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Figure 5.4: Scatter plot comparing the number of rounds and the number of tests for instances of 30 pairs.

previous instances.

It should be noted that for this problem and for instances of 50 pairs, the �Union Pure" approach yields

better results when compared to the Reoptimization approach described in [38], as it achieved the optimal

solution with less tests and in less rounds.

Solution-based Probing-based

Average Exp. Pure Opt. Pure Exp. Mod. Union Pure Union Mod. Arcs Cycles

Sol. Value 14.453 15.399 15.399 15.399 15.399 15.399 15.399

No. Rounds 2.626 3.500 13.630 2.770 4.325 23.269 9.680

No. Tests 22.723 29.110 37.860 34.727 29.795 23.269 27.582

Table 5.4: Computational results for the unlimited problem for instances of 40 pairs.

Solution-based Probing-based

Average Exp. Pure Opt. Exp. Mod. Union Pure Union Mod. Arcs Cycles

Sol. Value 16.494 17.212 17.212 17.212 17.212 17.212 17.212

No. Rounds 2.496 3.384 14.248 2.466 3.94 22.848 9.06

No. Tests 23.62 28.696 38.744 34.756 29.362 22.848 26.962

Table 5.5: Computational results for the unlimited problem for instances of 50 pairs.

From these results, we can observe that there is a clear trade-o� between speed (number of rounds) and

cost (number of tests). According to the resource that is most available to us, we are able to choose the best

policy.
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Figure 5.5: Scatter plot comparing the number of rounds and the number of tests for instances of 40 pairs.

Figure 5.6: Scatter plot comparing the number of rounds and the number of tests for instances of 50 pairs.
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Chapter 6

Two-Rounds Problem

The �nal problem being studied in this dissertation is the two-rounds problem, for which a certain budget

and two-rounds will be considered.

6.1 Problem De�nition

This problem is a particular case of the unlimited problem presented in Chapter 5 with two rounds. There

is also an additional budget constraint for both rounds.

A budget B for the crossmatch tests is considered for the two rounds (combined). In the �rst round, a

set of arcs is selected according to a certain method and is tested at the end of the round. The network is

then updated and we proceed to the second round, where again a new set of arcs is selected and is tested.

In each round, we are solving a simultaneous problem, as described in Chapter 4.

Since this problem can be interpreted as a �middle-ground� between the simultaneous and the unlimited

problem, it will be interesting to compare its results to the previous two. We will be able to understand how

many transplants are lost by considering less rounds than in the unlimited problem (and if it is signi�cant)

and the gain in comparison to performing all the tests in one round, as is done in the simultaneous problem.

Three methods for the selection of the set of arcs will be presented in the following section: Left, Middle

and Right.

6.2 Selection Policies

In each round a set of arcs is to be selected, we need to de�ne which method will be used for this selection.

Based on the results obtained in the previous chapters, for the �rst round, we will use the optimistic approach

described in Section 4.3.3 of Chapter 4. Since there are still arcs to be tested in the second round, we can try

to get the highest number of arcs in the �rst round and rearrange the solution in the second round in case of

failure. In the second round we will use the expectations approach with backarcs (Section 4.4 of Chapter 4),

as there is no possibility of recourse afterwards. Thus, we want to obtain the most reliable set of arcs in this
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�nal round.

Since the considered budget must be divided between the two rounds, we will consider three policies in

which the budget is distributed di�erently.

For the �Left" policy, the �rst round will have approximately 2/3 of the budget allocated to it and will

be solved with the optimistic model. After getting a solution with all tested arcs, we will move on to the

second round, where the budget is equal to 1/3 of the initial budget and the approach used to calculate the

solution will be the expectations with backarcs. The reason for this is to ensure that the obtained solution is

as sturdy as possible, considering that the second round is the �nal one, thus no future repairs can be made

to the network.

For the �Middle" policy, the di�erence is that the budget will be divided (approximately) evenly between

the two rounds. Once again, in the �rst round we use the optimistic approach, whereas in the second, we

use the expectations with backarcs and additional arcs model.

For this �nal policy, we consider the same algorithm as for the left policy, with the di�erence that the

budget is divided 1/3 for the �rst round and 2/3 for the second round. As such, we are leaving more tests

to be performed at a later stage of the program run.

Algorithm 9 described these methods.

Algorithm 9: Two-rounds heuristic

1 First round: Optimize the optimistic approach for a portion of the budget B (divided according to

the selected method) and obtain a set of arcs to test S

2 Test all arcs in S

3 Update network

4 Second round: Optimize the expectations model with backarcs and added arcs for the remaining

budget (taking into account some arcs were already tested) and obtain a set of arcs Se

5 Test all untested arcs in Se

6 Exclude arcs which do not exist from the network

7 Maximize the number of transplants for the existing arcs

6.3 Computational Results

Computational tests were conducted for 50 instances of 20 and 30 pairs each, generated as described in

Section 4.4 of Chapter 4. Figure 6.1 shows the results for each policy for a budget of 2 to 19 for instances

of 20 pairs, and for a budget of 2 to 29 to instances of 30 pairs. We can observe that, in general, there

are no signi�cant di�erences among the three policies. Nevertheless, for a smaller budget, the Right policy

generally yields better results, while for a bigger budget, the Left and Middle policies tend to be slightly

better.

For instances of 20 pairs, the average increase in the number of transplants per unitary increase in the
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budget is of approximately 0.313 transplants for the Left policy, 0.314 for the Middle Policy and 0.31 for the

Right policy.

Regarding instances of 30 pairs, the average increase in the number of transplants with each additional

unit in the budget is of about 0.344 transplants for the Left policy, 0.339 for the Middle policy and 0.329

transplants for the Right policy.

This is more evident in �gure 6.2 and backed-up by table 6.1.
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Figure 6.1: Results for instances of 20 pairs.

As for instances of 30, �gure 6.2 shows that the left policy was the dominant one, except, once again,

for smaller budgets.

No. Pairs/Tests Left Middle Right

20 7.027 7.038 6.933

30 11.044 10.906 10.631

Table 6.1: Average number of transplants for each method, for instances of 20 and 30 pairs.

As previously mentioned, we were also interested in comparing the results of the simultaneous problem

with the ones of the current two-round problem.

The best approach in the simultaneous problem was the expectations model with backarcs, which, for

instances of 20 pairs with a budget of 20, yielded a solution of 7.08 transplants. Comparing to the two-phased

Middle policy which yielded the best result for this budget, with 7.038 transplants, we can conclude that the

simultaneous approach provided a better solution.
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Figure 6.2: Results for instances of 30 pairs.

However, for instances of 30 pairs (considering a budget of 30), we observed that the expectations model

with backarcs resulted in 10.851 transplants, whereas the best policy in the two-phased problem was the

Left, yielding 11.044 transplants.
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Chapter 7

Conclusions

7.1 Discussion

Kidney Exchange Programs play a crucial role in providing more patients su�ering from end-stage renal

disease with kidney transplants, improving signi�cantly their quality of life. Several optimization approaches

have been developed in order to increase the number of transplants being carried out in these programs.

Because of the compatibility issues that may arise in KEPs, the inclusion of probabilities of failure in

the optimization techniques leads to better results. Furthermore, for logistical reasons, it is also important

to consider the time (in terms of testing rounds) and budget limitations (in terms of the number of the

available number of tests) that exist in operating KEPs.

This dissertation focused on the study of three di�erent problems in the context of KEPs: the simul-

taneous problem (chapter 4), the most restricting one, where there is both a budget and time constraint;

the unlimited problem (chapter 5), where there are an unlimited budget and time; �nally, the two-rounds

problem (chapter 6), where there is a budget and two testing rounds.

In the simultaneous problem, we studied both the deterministic and the probabilistic approach, as well

as a method involving backarcs. We were able to conclude that the probabilistic approach with backarcs

yielded the best results, providing, on average, a solution with approximately 7% more transplants than the

second best approach, for all instances.

Regarding the unlimited problem, where we assume there is no budget or number of rounds limitation,

two types of methods were studied: the solution-based and the probing-based approaches. Despite the fact

that there is a trade-o� between the number of rounds and number of tests needed for each method (so the

fastest methods are usually the most expensive ones), we concluded that the solution-based methods tend to

require less rounds, whereas the probing-based methods need a lower budget when compared to the solution-

based ones. For this problem, we improved the best results from the literature as the best solution-based

method leads to less tests and less rounds than the one from [38].

Finally, for the two-rounds problem, we considered an optimistic (deterministic) approach for the �rst

round and an expectations (probabilistic) approach for the second with backarcs. The budget was divided

between the two rounds according to three policies: Left (more tests in the �rst round), Middle (divided
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equally) and Right (more tests in the second round). The computational tests showed that, on average,

Right policy yielded better results for small budgets, whereas the Left and Middle policies lead to the best

outcomes for bigger budgets. Comparing these approaches to the ones studied in the simultaneous problem,

we concluded that for instances of 30 pairs and a budget of 30, the Left policy performed better when

compared to the Expectations Model with Backarcs.

7.2 Future Work

As end-stage renal disease is an issue with great social impact, new methods are being continuously tested

and developed in hopes of improving the current system, including in the context of Kidney Exchange

Programs.

Regarding our contribution speci�cally, there are methods that can be further explored. One of them is

the number of alternative solutions tested in the �EVP for Alternative Solutions�, described in Section 5.3.3

of Chapter 5. By considering more alternative solutions, we could potentially increase the objective function

value.

Furthermore, the approaches studied in chapter 6 could also have a potential of providing better results

than the ones obtained by trying di�erent methods for the selection of the tests in the �rst round. With a

di�erent method, the set of selected arcs could be more reliable or lead to a higher number of transplants.
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