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RESUMO 

 A cirurgia trata-se de uma das mais importantes funções a gerar receita e admissão ao 

hospital, assim sendo, melhorias na eficiência do processo poderia traduzir-se numa redução de gastos 

e aumento de benefícios tanto para o paciente quanto para o hospital. Os pacientes deveriam usufruir 

de uma experiência de alta qualidade, dignidade e segurança quando submetidos a uma cirurgia, 

contudo, a imprevisibilidade da cirurgia torna difícil que tal aconteça. Assim sendo, existe uma forte 

necessidade de melhoria de serviços, de forma a otimizar os recursos e maximizar o nível de satisfação 

por parte dos pacientes, sem para isso pôr em causa o existente nível de qualidade. Porém, para se 

obter tais melhorias, são necessários esforços de maneira a utilizar de forma inteligente a informação 

existente relativa a cirurgia. 

 O objetivo desta tese é fazer uso de tal informação com o recurso à criação de um sistema de 

suporte na decisão, de forma a avaliar o processo cirúrgico a que um paciente necessita ser 

submetido, construído em uma abordagem de Programação Lógica para Representação do 

Conhecimento e Raciocínio, completada com uma abordagem híbrida baseada em raciocínio baseado 

em casos e redes neuronais artificias para computação. A solução proposta é única em si mesma, 

uma vez que atende ao tratamento explícito de informação incompleta, desconhecida, ou até mesmo 

auto contraditória, seja em termos quantitativos ou qualitativos. Além disso, devido à imprevisibilidade 

que o processo cirúrgico exibe, uma configuração de tempo é apresentada de forma a se poder lidar 

com tais situações. 

 

Palavras-Chave: Processo Cirúrgico; Raciocínio baseado em casos; Representação e raciocínio de 

conhecimento; Programação Lógica. 
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ABSTRACT 

 Surgery is one of the most important sectors that generate revenues and admission to the 

hospital, therefore improvements in the efficiency of the process could be translated into significant 

savings and benefits to the patient as well as the hospital. Patients deserve a high-quality, dignified, and 

safe experience when submitted to surgery, however, the unpredictably of the surgery makes it hard for 

it to happened. Thus, there is a strong necessity of improvement of the services in order to optimize the 

resources and maximize the patients level of satisfaction, without jeopardising the existing level of 

quality. However, in order to obtain such improvements, efforts need to be made in order to smartly 

make use of the existing information. 

 The goal of this thesis is to make use of such information with resource to the development of a 

decision support system to assess the surgery process that a patient needs to be submitted, built on 

top of a Logical Programming approach to Knowledge Representation and Reasoning, completed with a 

hybrid case-based reasoning and artificial neural networks approach to computing. The proposed 

solution is unique in itself, once it caters for the explicit treatment of incomplete, unknown, or even self-

contradictory information, either in terms of quantitative or qualitative setting. Also, due to the 

unpredictability that the surgery process exhibit, a time setting is presented in order to deal with such 

situations.  

    

 

KEYWORDS: Surgery process; Case-Based Reasoning; Knowledge Representation and Reasoning; Logic 

Programming. 
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CHAPTER 1 

 

INTRODUCTION 

With the increasing interest by the healthcare services on providing a higher quality services to 

the patient, there is a strong necessity of improvement of the services in order to optimize the 

resources and maximize the patients’ level of satisfaction, without jeopardising the quality. Nowadays, 

hospitals face multiple challenges due to cuts on the economic domain that puts in risk this quality. 

Between the multiple services provided on the hospital, the surgery department, being one of the 

services with the highest level of importance and economic impact on the hospital environment, 

presents a crucial task in terms of hospital organization.  In case of delay or cancellation of a surgery 

this affects negatively the health care quality, harms the patient, and wastes resources (Talalwah & 

Mciltrot, 2018).  

A special circumspection needs to be taken when the surgery process is considered, since the 

diversity of entities present through the process make it to be a complex and dynamic structure were 

both hospital and patient related information are taken into account, therefore multiple problems may 

arise from that instability. Thus, it is in everybody’s interest that measures are taken into account in 

order to find the best solution for a better management of the situations encounter every time a new 

surgical case is presented.  

Since healthcare systems include a high level of complexity and large amount of available 

information, data uncertainty is one of the major problems, since data reliability is crucial for the 

obtainment of a valid solution when it is applied to the real system. In healthcare, uncertainty may arise 

in different contexts and due to different causes, and in all cases, cannot be neglected, as it may have a 

significant impact on the solution and on the quality of service provided to patients (Addis et al., 2014). 

 With this thesis an efficient approach is presented, that is capable of leading with the 

uncertainty present on the information that has incomplete, self-contradictory, and even unknown data 

focusing on a Logic Programming (LP) based approach to knowledge representation and reasoning able 

to handle this type of data. This system will also have an approach capable of handling with the time 

where a simple logic interpreter allows an effective reasoning based on the manipulation of a sequence 

of snapshots. Moreover, the system will be capable of dealing with the high computational complexity 

presented due to the high quantity of data presented. Thus, it is intended the development of an 

intelligent decision support system capable of predicting a new successful case for a new surgery 
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process of a patient needing surgical intervention, with resource to a hybrid Case-Based Reasoning 

(CBR) and Artificial Neural Network (ANN) soft computing approach to knowledge processing. 

1.2 Motivation 

In healthcare inconvenient problems occur frequently, namely cancelations, long time waiting, 

and resource overload (Meskens, Duvivier, & Hanset, 2012). In terms of health services, surgery is one 

of the most important functions that generate revenue and admissions to the hospitals, being one of the 

largest cost category were multiple resources are used. Between 187.2 million and 281.2 million 

surgeries are performed per year (Weiser et al., 2008). Therefore, improvements in the efficiency could 

translate into significant savings and benefits to the patient as well to the hospital (Min & Yih, 2010). 

Patients deserve a high-quality, dignified and safe experience when they’re submit to surgery, however, 

the unpredictably of the surgery makes it hard to succeed in every case, since multiple factors are 

taken into account, not only the patient health condition but also the hospital services and resources 

provided. Consequently, new approaches that improve their service and handle this problem need to be 

implemented. 

Despite the tremendous progress the use and implementation of data has been slow and 

difficult, mostly due to the lack of stored information, without data to provide an insight into actual 

practice, disparity in outcomes is an inevitable consequence (Maier-Hein et al., 2017). Therefore, new 

approaches need to be taking into account that is more capable of dealing with the presence of 

imprecise data. 

Current approaches implemented to surgery tend to focus on the management of the hospital 

resources through mathematical optimization models but are not capable of leading with real data that 

present such imprecise information, so the application of the model to the real system becomes 

difficult, presenting little efficiency. Also their’ models tend to be more focussed on the costs savings of 

the hospital through management, although this approaches are valid, they will lack in some aspect 

when implemented on the real world. 

In this thesis the use of an intelligent decision support system is introduced to the process of 

surgery capable of leading with real world data, focusing the implementation of the process not on the 

resources of the hospital services but on the patient path through the process. In the moment the 

stable conditions for a successful case are presented, this will give the patient the minimal care that is 

needed in order to the process to succeed, but will also prevent the hospital from overuse the 
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resources, since the prediction of the complete path of the process made by the system will give the 

hospital the information about the minimal expenses, in order to successfully save costs and time.  

 Concluding, both patient and hospitals will benefit from improvements on the quality and 

efficiency of the healthcare services provided. 

1.3 Objectives 

 The objective of this thesis consist on the study of the surgery process in order to develop an 

intelligent decision support system to predict the most suitable surgical path for a new patient. With the 

implementation of such a system, a survey and analysis of the information that is relevant to the health 

unit regarding the surgical process will exist; the entire system present in the surgery process will 

improve benefiting both patient and hospital; the management of the resources will be more efficient; 

an improved capacity of respond regardless of the type of case encountered will be provided, allowing 

to deal with the situations where information is incomplete, self-contradictory, and even unknown; and 

an greater fidelity on the services provided to the patient will be created due to the reduction of 

anomalies. 

1.4 Structural Document Organization 

 An organization of the thesis is presented. 

 

Chapter 2.  In this chapter, the state of the arte is presented, were an introduction to the surgery 

process is made by giving a background of the current problems on the surgery domains and the future 

perspectives. A review is presented about the essential aspects of the surgery process and the 

problems present on the surgery domains are discussed, describing the problem of cancelations and 

delays on surgery and the block that they create on the services. Also the uncertainty and variability is 

described and the consequences of such when present. Additionally, the future of the surgery process 

is described, namely the paths that are being created and what paths need to be taken in order to 

obtain the best surgery experience for the patients. In the end, a complete literature review of 

computational approaches proposed on surgery until now is presented.  

 

Chapter 3.  In this chapter, a review of the structure of the CBR approach is described in order to 

understand its operation and the advantages in using the CBR. Subsequently, a description of the way 

cases can be represented and indexed on the Case Base is presented. Further, the case retrieval 
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performed by the CBR, the adaptation of a case, the learning of the Case Base and the Case Base 

maintenance is explained. Also, a hybrid system of CBR with recourse to ANNs is described, giving a 

review on the way that ANNs behave.  

 

Chapter 4.  In this chapter, a Knowledge Representation and Reasoning using the Logic 

Programming is presented in order to deal with the type of data present on the system, where 

background information and the use of the approach on the both quantitative knowledge and the 

qualitative knowledge are described. 

 

Chapter 5.  In this chapter, a handle of time approach for the surgery process is presented. A 

knowledge representation of time is described, where a basic system with the mechanism for defining 

and adding semantic knowledge to data base system is described. Also, the approach in order to deal 

with handle of time and negation is described. The data base operations performed on the data is 

described, where the retrieval of the desired data and the update of the data on the database is 

explained. 

 

Chapter 6. In this chapter, the structure of the knowledge database used by the system for the 

surgery process is described and the treatment made on the data to be used is presented. Moreover, 

the structure of the scheme used on the knowledge database for the surgery process and the 

representation of the qualitative information on the time domain is explained. Furthermore, the 

knowledge database is presented in terms of the extensions of the relations and the procedure used on 

the data is exemplified. 

 

Chapter 8.  In this chapter, a logical programming approach to Case-Based Reasoning is 

described, where a new Case-Based reasoning approach base on logical programming is presented and 

the influence of the time knowledge representation on CBR is described. 

 

Chapter 9.  In this chapter, a computing approach for the surgery process of Artificial Neural 

Networks and Case-Based Reasoning is presented. 

 

Chapter 10.  In this chapter, the conclusions about the system created are discussed.  
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CHAPTER 2 

 

STATE OF THE ART 

Over the years’ surgery has been growing and improving in order to give the best possible result 

to the patients in need of such, being a focal point on the health care system. In terms of health 

interventions, surgery’s past presents a long historical record, dating from the third millennium B.C. 

from an old text that was found transcribed to the Egyptian papyrus Smith, where the author simply 

advised how wound edges had to be approximated by sutures or linen bandages strips (Van Hee, 

2013). From the past to the present a lot have changed on the way surgery is seen and performed, now 

a day, surgery presents high standard procedures and technology that those from the past could not 

even imagine possible.  

Although, all this progresses have been made, there is still a lot of issues that stagnate the 

process and need to be addressed. In order to improve, the use of the current existent technology need 

to happened, that way, the excellence of services provided on the surgery domain could increase and 

the obstacles that prevent un successful surgical process would diminish.  

2.1 An introduction to the surgery process 

As the growth, and sophistication of new treatments and technologies are being implemented, 

surgery becomes one of the fastest changing specialties. The capacity to perform surgery on patients 

with complex medical problems means that the tools required to provide competent and compassionate 

fundamental care, so far displayed for these patients must extend well beyond. It will not only be benefit 

to the patient but also to the hospital and all health professionals working in the many settings in which 

surgical care is delivered (Smith, Kisiel & Radford, 2016). Surgery as one of the most important 

functions that generates revenue and admissions to the hospitals, is economically one of the largest 

hospital cost category with it being approximately one-third of the total cost. That’s why surgery is the 

area with the highest potential for cost savings, being approximately two-third of hospital incoming. 

Therefore, small improvements in efficiency could translate into significant savings and benefits to the 

patient as well as to the hospital. For these reasons, managing the surgical resources effectively in 

order to reduce costs and increase revenues has a considerable attention from the healthcare 

community (Min & Yih, 2010).  
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Statistically it was estimated that the global volume of major surgery in 2004 was between 

187.2 million and 281.2 million cases per year, translated as one operation for every 25 human 

beings. In terms of death and complication rates after surgery, major morbidity complicates 3–16% of 

all inpatient surgical procedures in developed countries, with permanent disability or death rates of 

about 0.4–0.8%, being half of the adverse events identified as preventable and for the death for major 

surgery a rate 5–10%. Mortality from general anaesthesia, infections and other postoperative 

morbidities are a serious concern worldwide. With the assumption of a 3% perioperative adverse event 

rate and a 0.5% mortality rate globally, almost 7 million patients undergoing surgery have major 

complications, including 1 million that die during or immediately after surgery every year. Postoperative 

morbidity and mortality are probably far more common globally, but the fact that less than a third of 

countries can offer data for surgical volume is an indication of not only how difficult making an accurate 

global estimate of surgery is, but also how inadequate present health-care surveillance is. Surgery 

occurs at a tremendous volume worldwide and this growth calls for public-health efforts, improving the 

monitoring, safety and availability of surgical services, especially in view of their high risk and expense, 

that’s why public-health strategy for surgical care is indispensable (Weiser et al, 2008).  

Patients and their families deserve and expect a high-quality, dignified and safe experience 

when they have surgery. This requires competent resources that continue to enhance and develop 

better healthcare service. Since the physical treatment received by surgical patients are in the form of 

operative procedures, this means that, specific aspects of the care of these patients may differ from 

those of medical patients since they are at risk of complications following the surgical procedure (Smith 

et al., 2016).  

Two major patient classes are considered in the literature namely the elective patients and non-

elective patients. As for the first class it represents patients for whom the surgery can be planned in 

advance, whereas the latter class, groups patients for whom a surgery is unexpected and hence needs 

to be fitted into the schedule on short notice. A non-elective surgery is considered an emergency if it 

has to be performed immediately and an urgency if it can be postponed for a short time. Elective 

patients can be distinguished between inpatients and outpatients. Inpatients are hospitalized patients 

who have to stay overnight, whereas outpatients (ambulatory care) typically enter and leave the hospital 

on the same day. Moreover, since outpatients are not already present in a hospital ward before surgery, 

their actual arrival time is uncertain (Samudra et al., 2016).  

Patient safety is at the centre of care provision, and requires quality and effective management 

of the surgical process, including a strong clinical staff. The surgical team embrace a range of 
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healthcare professionals who are involved in the patient’s care throughout the perioperative period. The 

wider members of the multidisciplinary team and the surgical team have an obligation to support each 

other while delivering patient care in wards, theatre, clinics, and community settings following 

discharge. It is imperative that there is effective communication between all team members with regard 

to the patient’s care, in order to maintain high standards and reduce the risk of errors. The key 

members of the general intra-operative team include the surgeon, surgical care practitioner, 

anaesthetist, anaesthetic practitioner, advanced scrub practitioner, circulating practitioner and recovery 

practitioner (Smith et al., 2015). The surgeon is only present during the surgery act and requires a 

certain amount of time between interventions mainly for cleaning, change of clothes and rest, that 

depends on the duration of the previously performed surgery. During a surgery additional resources, 

human or physical are required and each resource unit assigned to a surgery must be available 

throughout the preparation and performance of the surgery with a fixed preparation time that depends 

on the resource type (Latorre-Núnez et al., 2016). Capacity shortage of downstream resources will keep 

patients from moving forward and it will significantly deteriorate de OR utilization (Min & Yih, 2010).  

Once the surgery is finished, the patient must be transported to a bed of PACU and if the 

patients require special care it must be transported to an ICU (Latorre-Núnez et al., 2016).  

With the increasing specialization of surgery, a radical shift in the organization of surgical care 

has resulted in fewer surgeons maintaining general skills and an increasing number having a more 

organ-specific focus. This shift has occurred during a period when perioperative pathways have changed 

due to the increasing use of technology, pharmacology, and refined techniques that result in reduced 

pre-operative and overall length of stay. Significantly, the intensity of care is higher, with greater 

throughput of patients in fewer hospital beds (Smith et al., 2016).  

Hospitals provide many types of surgery delivery systems and are typically equipped with a 

broad range of capabilities, including an emergency department for handling cases resulting from 

unpredictable adverse events.  

There are different degrees of urgency associated with patient care, depending on the patient 

case, the current classifications in use of interventions are respectively the immediate, urgent, 

expedited and elective surgery. Immediate surgery takes place within minutes of the decision to 

operate, in order to save life, an organ or a limb, therefore, it should take place in the next available 

operating theatre and can necessitate interrupting existing theatre lists. Urgent surgery normally takes 

place within hours of the decision to operate, in order to treat the acute onset or the clinical 

deterioration of a potentially life-threatening condition. It also includes the fixation of fractures, the relief 
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of pain or other distressing symptoms. Additionally, patients who are to undergo this category of surgery 

should be added to the emergency theatre list. Expedited surgery takes place within days of the 

decision to operate, for a condition that requires early intervention but which does not pose an 

immediate threat to life, a limb, or an organ. The patient should either be added to an elective theatre 

list which has spare capacity or be included on a daytime emergency list. As for the elective surgery, is 

planned in advance of a routine admission, at a time to suit the patient and the hospital. It takes place 

on an elective theatre list, having been booked in advance (Denton, Rahman, Nelson & Bailey, 2006; 

Smith et al., 2016). Elective surgeries can be either conventional (inpatient surgeries) or ambulatory 

(outpatient surgeries). For an ambulatory surgery both the hospital admission and the discharge of the 

patient occur on the same day and, therefore, the patient is not in hospital overnight. According to 

Portuguese legislation, elective surgeries are classified in four levels of priority, defining the due date in 

which they must be performed, namely the deferred urgency surgeries must be completed in three 

days, high priority surgeries within 15 days, priority surgeries must be completed within two months 

and normal surgeries in one year (Marques, Captivo & Vaz Pato, 2013).  

These classifications exist to ensure that patients receive surgery within the time frame 

necessary for their condition and also to ensure that medical staff only perform surgery out of hours 

when it is appropriate to do so. The classification should be assigned by the consultant caring for the 

patient, at the time when the decision to operate is taken. Specific conditions or types of surgery cannot 

be pre-assigned to these categories since, individual patient need will vary on a case-by-case basis 

(Smith et al., 2016).  

All stages of surgery are encompassed by the perioperative period including the preoperative, 

intraoperative, and postoperative stages of patient care. The preoperative care begins with the patient’s 

decision to have surgery, and ends with the transfer of the patient to the OR bed and it can include a 

variety of activities such as patient education, a patient visit to an anaesthesia outpatient clinic, 

preparation for the day of surgery, and arrival at the designated location for surgery. As for the 

intraoperative care it is defined as the time between when the patient reaches the OR bed, and the time 

when they are admitted to the recovery area which may be a PACU, ICU, or other post-procedure 

recovery area. The postoperative care covers the time between arrival in the recovery area and the time 

that the surgeon terminates follow-up care with the patient. Each of these stages are critical to the 

successful delivery of surgical services to the patient (Denton et al., 2006).  

It is important to highlight, that in order to ensure that the patient is apt to go through surgery, 

prior to the elective surgical procedure, an pre-operative assessment is needed, to enhance issues that 
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may complicate the surgery, so that the surgical or anaesthetic team be aware during the perioperative 

period, ensuring that way the safety of the patient and also avoiding unnecessary cancellations or 

complications due to an unsuitable surgery, benefiting that way, both patients and health services in 

terms of costs and quality.  

During the perioperative period, the post-operative management of the elective surgical patients 

begins involving the surgical team, anaesthetic staff and all the associated health professionals. 

Requiring proper monitoring and repeated clinical evaluations, supporting all major organ systems, 

including cardiorespiratory function, renal function, fluid, electrolyte balance and awareness of signs of 

early surgical complications, such as bleeding and infection (Akhtar, MacFarlane, & Waseem, 2013).  

In healthcare inconvenient problems are a frequent occurrence, namely cancelations, long time waiting 

and resource overload. Although, traditional approaches have been proposed to solve these problems, 

such as, hiring more personnel, purchasing more equipment or providing more beds and among 

others, this may offer solution to curtain degree but, the underlying problems have not been solved. 

Therefore, managers are increasingly looking for new approaches that improve their service or reform 

their organization (Meskens, Duvivier, & Hanset, 2012). 

2.2 Surgery process Issues  

Surgery is a very inconsistent field, recurrent problems occur, because there is intervention 

from multiple clinical systems, the troubling factor could be inconsistences in the hospital resources or 

circumstances of the patient, between many other reasons. As result unpredictability and variability are 

a constant present in surgery and may cause disruption, delays or even cancellation of the surgery. 

2.2.1 Delays and Cancelations 

Unexpected delay or cancellation of elective surgeries has a significant impact on hospital 

performance and causes undesired patient outcomes. When surgery is cancelled for any reason, 

efficiency is in jeopardy, waiting time increases, patient care may be compromised, resources are 

wasted, and the cost increases. Short notice cancellation has a negative psychological effect on patient 

satisfaction and causes significant disappointment and frustration for patients and their families.  

The impact of cancellation result in the inability of performing surgery within a reasonable time, 

so the prolonged waiting time for surgery coupled with a prolonged hospital stay causes both pain and 

possible deterioration of the patient’s medical condition, which might lead to an impaired recovery. 
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Cancellation of planned elective surgery is a significant problem that negatively affects health care 

quality, harms the patient, and wastes resources (Talalwah & Mciltrot, 2018).  

The problem of last-minute changes in a surgical schedule is complex and involves multiple 

clinical systems such as the day surgery unit (DSU), Operating Room (OR), OR scheduling team, post-

anaesthesia care unit (PACU), and Intensive Care Unit (ICU). When the surgical scheduling team fails to 

update the DSU about a surgical case sequence change, the patient waiting time for surgery becomes 

uncertain, nursing assignments change and workload increases. These consequences distress the DSU 

nurses, hindering their ability to prioritize patient needs and work as a team (Talalwah & Mciltrot, 

2018).  

In the event of cancellation, the OR workflow is interrupted, instrument kits previously prepared 

must be returned to central supply, resources are wasted and the use of the room is reduced. Limited 

health care resources and inefficient scheduling processes significantly affect the decision to perform 

the surgery. Only when resources become available, the patient will go to the OR and then to the PACU. 

Also, the unavailability of a bed in the ward or in the ICU leads to patient delay in the PACU for many 

hours. This delay increases safety risk, leads to poor continuity of care and increases stress for the 

patient, families and staff. The delay of surgery has a significant impact on the patient outcome as most 

surgical patients experience worry and uncertainty while waiting in the ambulatory surgery unit, since, if 

the waiting period becomes complicated, a cancellation or a postponement will occur. In most cases, a 

delay is identified as a work flow problem in the microsystem that requires specific consideration to 

improve patient experience, whereas a cancellation of surgery is a significant problem with far-reaching 

consequences. Thereupon, cancellation on the day of the surgery is widely recognized as a common 

dilemma with a negative impact not only on the organization, but also on patient outcome. Likewise, 

cancellation and rescheduling may harm patients, influence their quality of life, and increase the cost of 

conventional treatment (Talalwah & Mciltrot, 2018).  

Evidence suggests that 86.5% of cancellations were preventable, whereas 13.5% were non-

preventable. In addition, causes of cancellation are classified into three broad classes namely hospital 

related, patient related and surgeon or anaesthesia related causes (Talalwah & McItrot, 2018).  

 Most causes of surgical cancellation were related to hospital and administration, such as 

unavailable OR time, prioritizing emergency cases, failed or missing equipment, insufficient planning of 

surgery, lack of hospital beds and personnel. Being the unavailable OR time considered the highest 

cause of surgery cancellation (Talalwah & Mciltrot, 2018). 
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Cancellation related to patient factors occurred because of several reasons, such as 

absenteeism, self-cancellation, financial constraints, medical reasons and inadequate preoperative 

assessments (POA). The inadequate POA was associated with 10% to 20% of cancellations in 2011 

(Talalwah & Mciltrot, 2018). 

Unavailability of the surgeon, lack of anaesthesia staff, failure to administer anaesthesia and 

over booking are examples of physician related causes that may lead to cancellation. On one hand, 

surgeon unavailability is considered one of the cancellation reasons identified, providing a range of 2.6% 

to 41%, as well the overbooking was responsible for at least 77.4% of cancellations. Another 

cancellation reason was anaesthesia related matters like failure to administer anaesthesia, due to lack 

of anaesthesia facilities or due to an inadequate number of anaesthesiologists (Talalwah & Mciltrot, 

2018). 

Reasons for surgical cancellation can varied, however, a high incidence of cancellation is due to 

hospital and administrative causes. As mentioned above the leading cause of cancellation is due to lack 

of OR time, the second leading cause of cancellation is a patient related reason, with absenteeism on 

the day of surgery being the most frequent reason, followed by lack of POA before the surgery date. On 

the contrary, the unavailability of surgeons or anaesthesia service is the least likely cause of 

cancellation (Talalwah & Mciltrot, 2018). 

Surgical cancellations are a significant quality issue in health care. These cancellations are 

associated with the undesired outcome of wasting resources, patient dissatisfaction and increased 

health care costs. It is essential to analyse the reasons for cancellation to reduce the rate. Most 

cancellation causes are preventable. However, special attention must be given to cancellation causes at 

one’s individual hospital when implementing interventions. Every effort should be made to enhance 

cost-effectiveness and efficiency as well as to prevent unnecessary cancellations (Talalwah & Mciltrot, 

2018). 

2.2.2 Uncertainty 

Features of healthcare systems include a high level of complexity and a large amount of 

available data, which have only recently begun to be stored digitally. Moreover, one of the major 

problems faced by people working in health care management is data uncertainty. Available data need 

to be properly analysed and processed in order to obtain reliable input parameters. In fact, data 

reliability is a key factor in guaranteeing the feasibility and efficiency of the obtained solution when it is 

applied to the real system. In healthcare, uncertainty may arise in different contexts and due to different 
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causes, and in all cases, uncertainty cannot be neglected, as it may have a significant impact on the 

solution and on the quality of service provided to patients (Addis et al., 2014). 

One of the major problems is the uncertainty inherent to surgical services, two types of 

uncertainty that seem to be well addressed in the stochastic literature are the arrival uncertainty and 

duration uncertainty. For instance, there is the unpredictable arrival of emergency patients or the 

lateness of surgeons at the beginning of the surgery session. Next to arrival and duration uncertainty, 

other types of uncertainty may be addressed, for instance, resource uncertainty, though, that resource 

uncertainty often coincides with arrival uncertainty. For example, the arrival of emergencies may result 

in a claim of both the surgeon who is needed to perform the emergent surgery and a specific OR. These 

claims actually result in resource breakdowns as the elective program cannot be continued and hence 

has to be delayed ((Cardoen, Demeulemeester, & Beliën, 2009). 

 The biggest problem associated with the development of accurate OR planning and scheduling 

strategies is the uncertainty inherent to surgical services. Surgery durations are difficult to predict 

because for some surgeries the magnitude of the procedure only becomes apparent once the surgery is 

already in progress. Additionally, the durations often depend on various complex factors, namely the 

characteristics of the patient, the surgeon and the surgical team (Samudra et al., 2016).  

The decision of scheduling elective surgery patients is to determine whether an elective patient 

should be scheduled and, if so, when it should happen. There are two challenges with this, the capacity 

constraints of downstream resources such as surgical ICU beds or ward beds and the uncertainty in 

surgery operations. The elective surgery schedule will attempt to admit as many patients as possible 

while satisfying resource constraints, in order to maximize the quality of care. With regard to resource 

constraints for scheduling elective surgeries, the consideration of OR capacity alone does not mean 

good schedules. Capacity shortage of downstream resources will keep patients from moving forward 

and it will significantly deteriorate OR utilization. Scheduling surgery becomes challenging when 

considering the uncertainty in surgery operations. Surgery operations have case dependent durations 

and there is often a large variation between scheduled durations and actual durations. Also after 

surgery, there is a patient’s length of stay on ICU uncertainty (Min & Yih, 2010).  

2.2.3 Variability 

If it was to consider a healthcare system without variability, it would be supposed that all patients 

are homogeneous in disease process, they all appear for care at a uniform rate and all medical 

practitioners and healthcare systems have the same ability to deliver quality care, being possible to 
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achieve 100% efficiency in healthcare delivery. There would be no waste, the cost would be minimal 

and quality maximal within the boundaries of knowledge and technology. It would be easy to satisfy the 

goal of managed care to provide the right care, to the right patient, at the right time.  

In the real world, healthcare systems are expected to deliver quality care for patients with many 

different types of disease. Patients with the same disease exhibit significant differences in their degree 

of illness, choice of treatment alternatives and response creating clinical variability, usually appearing 

for care in randomly.  

In addition, professional variability emerge since the medical practitioners and healthcare delivery 

systems are not uniform in their ability to provide the best treatment. The constant challenge to the 

healthcare system is to efficiently convert a naturally variable incoming group of sick patients into a 

homogeneous outgoing stream of healthy patients. The goal then is to optimally manage natural 

variabilities. However, dysfunctional management often leads to the creation of artificial variability that 

unnecessarily increases the very cost and inefficiency. For example, the extreme variation in daily bed 

occupancy. On days when occupancy is too high, quality of care decreases because it is too costly for 

staff to peak loads, in contrast, on days when occupancy is too low, there is waste. No staffing system 

can be flexible enough to optimally manage these daily fluctuations. It is reasonable to assume that 

these variations in occupancy are related to a combination of the natural clinical variability of the 

patients’ response to therapy and the natural flow variability of their admission through physician offices 

or the emergency room. Surprisingly, this assumption is only partially correct. An additional source of 

admission and occupancy variability in many hospitals is through the ORs. Typically, 80% or more of 

this variability from the ORs is due to variations in the elective scheduled daily caseload. The variability 

is not related to unexpected changes in the OR day from unscheduled emergencies, cancellations, or 

additions. It is artificial variability introduced into the system by the advance elective surgical scheduling 

process. Not only are there significant variations in the elective caseload among each day of the week 

but as much as a 50% difference in caseload on the same day of the week. Compared with natural 

variability, artificial variability is non-random. Yet it also is unpredictable, driven by numerous competing 

demands on the surgeons’ time that are usually unknown and therefore unaccounted for by the 

healthcare system. So, the predictability of the number of admissions to the hospital on any day from 

elective scheduled surgery may be worse than the purely random appearance of patients for emergent 

admission through the emergency room (Litvak & Long, 2000).  

Has previously appreciated, this variability is an obstacle to efficient delivery of healthcare. 

However, analyse the types and amounts of variability present in healthcare delivery systems and then 
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to eliminate or optimally manage them, gives us the potential to overcome it. Therefore, all system 

expense resulting from artificial variability in healthcare delivery should be eliminate, using operations 

research methods and optimally manage the remaining natural variabilities (Litvak & Long, 2000).  

Applying variability methodology at the hospital unit or departmental level is necessary but not 

sufficient, it needs to conduct a system wide analysis. Supposing there is a traffic jam, and is proposed 

to avert future jams the widening of the road. If the true dynamics of the traffic flow are not apparent, 

and the problem is a constriction at a distant exit, it will only worsen the jam at the area. To achieve 

maximal effectiveness in healthcare, it is necessary to understand the complete dynamics of patient 

interaction with all components of the delivery system and their mutual interdependencies. Much of the 

artificial variability in healthcare that is costly and should be eliminated is caused by poorly understood 

interdependencies between different hospital identities, who are simultaneously contributing to the 

delivery of healthcare. Simulation tools for modelling such interdependencies can be developed for the 

healthcare industry using network structures (Litvak & Long, 2000).  

Significant variability in healthcare delivery is inevitable because of the changing nature of 

disease, the availability of new therapies, the wide variety of patients’ psychological and physical 

responses. Unless, healthcare delivery models that can respond to this variability are developed, 

hospitals will never be able to maximize operating efficiency and quality, so it’s needed new tools to 

reassure the patients that their cares are efficiently manage in a way that delivers the highest possible 

quality (Litvak & Long, 2000).  

2.3 Surgery process Future  

 Future advances in the surgical care demands a greater extent of a close partnership between 

caregivers, patients, technology and information systems. In order to obtain a personalized medicine, 

interventional care will increasingly transform from a craft based on the physicians’ individual 

experiences, preferences and traditions into a discipline that relies on objective decision-making based 

on large scale data from heterogeneous sources (Maier-Hein et al., 2017).  

Data science as an emerging interdisciplinary field that deals with the extraction of knowledge 

from data. Despite the tremendous progress, there has been a delay in introducing large-scale data 

science into interventional medicine like surgery, attributed to the fact that, only a fraction of patient 

related data and information is digitized and stored in a structured and standardized manner. Without 

data to provide an insight into actual practice, disparity in outcomes is an inevitable consequence. An 

increasing access to large amounts of complex data throughout the patient care process, 
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complemented by advances in data science and machine learning techniques, has set the stage for a 

new generation of analytics that will support decision-making and quality improvement in interventional 

medicine (Maier-Hein et al., 2017).  

Future advances in surgery will continue to be motivated by safety, effectiveness and efficiency 

of care. The next paradigm shift will be from implicit to explicit models, from subjective to objective 

decision-making and from qualitative to quantitative assessment. This will enable personalized 

treatment and ensure that future evolution is cantered around patients and caregivers. Surgical data will 

evolve to observe everything occurring within and around the treatment process. Also, providing the 

surgeon with quantitative support to aid decision-making, surgical actions and link decisions to patient 

outcomes. For the patient, this will mean, access to the best surgical care with less variability arising 

from unique patient characteristics rather than the choice of surgeon or care facility. Ultimately, surgical 

data will offer the opportunity to create exceptional surgery by moving beyond the data associations that 

individuals are able to perceive, detect and maintain, into the realm of vast data types and sizes that 

can only be exploited through modern computing solutions (Maier-Hein et al., 2017). 

The quality of surgical care is affected by decisions made by caregivers and patients throughout 

the care pathway. Traditionally, surgeons relied upon their experience to play a major role in 

consequential decisions such as whether to operate and the type of surgery to be performed. This 

decision-making model has gradually evolved to be informed by predictive analytics based on 

systematic data capture and curation through patient registries. However, currently available registry-

based analytics to support surgical decision-making rely upon cross-sectional measures of a subset of 

patient characteristics before surgery. Furthermore, registries rarely capture the full record of the 

patient care pathway and the amount of data that they are missing varies. A data science approach to 

decision support relies not only upon continuously updating predictive analytics throughout the patient 

care process but also upon more comprehensive and unconventional sources of data. In addition, 

surgical decisions may be optimized by modelling individual patients within the context of population 

level data and other multimodal data sources (Maier-Hein et al., 2017). 

Surgical education and certification ensure that competent surgeons provide care, being a 

critical element in assuring quality of care. Poor surgical technical skill is associated with an increased 

risk of readmission, reoperation and death. Technical skills and errors are also associated with non-

technical skills such as decision-making.  

In addition, surgical data can be transformative for surgical training through objective computer-

aided skill evaluation (OCASE), robot-assisted active learning of technical skills, patient and context 
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specific simulation training and assessment, and surgical coaching. Additional data analytics such as 

surgical process modelling, detection of constituent activities, errors and skill deficits facilitate targeted 

feedback based on OCASE (Maier-Hein et al., 2017).  

Surgical data science thus represents the new frontier for surgical training in a complex patient 

care environment with limited resources. In terms of challenges, data availability and analysis of highly 

heterogeneous multimodal data, relies upon access to high quality data on a large scale that 

documents both the patient care process and patient outcomes. While other communities share 

databases for advancing research and practice, such resourceful databases are lacking in 

documentation of surgery, despite it being inherent that quality improvement can be achieved through 

outcome measurement, for example, using patient registries. This paucity of databases may be 

attributed to a multitude of regulatory, technical and sociological factors. On the other hand, although 

large amounts of data are routinely available during interventional care, they are not captured and 

annotated using standardized protocols (Maier-Hein et al., 2017). 

Analysis of data from interventions also introduces unique challenges. The surgical process 

varies significantly from case to case and is highly specific to procedure, patient and surgeon. The 

heterogeneity in the data is a great challenge to be overcome, not only for the development of data 

analysis methods but also for the validation of new methodology and systems. Finally, procedural data 

must be holistically analysed with other heterogeneous data, enabling us to move from eminence-based 

to knowledge-based and data-driven medicine (Maier-Hein et al., 2017). 

  Moreover, surgical data enables fundamental understanding of surgical procedures, their 

variability, crucial parameters, hidden structures, dependencies, optimal pathways, the importance of 

each parameter, keys to success and failure of methodologies, and the basic principles driving our 

surgical education, training and practice. In this sense, its dissemination will be manifold. As discussed 

above, surgical data could change the education and training of millions of physicians across the planet 

(Maier-Hein et al., 2017). 

 Towards next-generation surgery, surgical data will pave the way from artisanal to data-driven 

interventional healthcare with concomitant improvements in quality and efficiency of care. A key 

element will be to institutionalize a culture of continuous measurement, assessment and improvement 

using evidence from data as a core component (Maier-Hein et al., 2017). 
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2.4 Approaches made on the Surgery process 

 Surgery has a considerable importance on health services, therefore multiple researches have 

been made on the subject, particularly on the operating theatre due to the conflicting priorities and 

preferences of its stakeholders, but also due to the scarcity of costly resources. Consequently, solutions 

to the issues present on the OR management and development of adequate planning and scheduling 

procedures are the topics with greatest enhancement on literature. 

Large quantity of literature on the management of operating theatres have been presented, so 

there are some reviews made of literature past released papers. Therefore, only the most recent papers 

on the subject released will be review. However, a detail and organized review of the previous literature 

can be consulted on Cardoen, Demeulemeester and Beliën (2009) where is provided an overview on 

OR planning and scheduling, that captures the developments made in this area until 2008. The 

literature reviewed is structured using seven descriptive fields, allowing the analyse of the papers from 

different perspectives, respectably patient characteristics, performance measures, decision level, type 

of analysis, solution technique, uncertainty and applicability of research. Each section consisting on a 

brief discussion of the specific field on a selection of appropriate papers. As for the released papers 

following the review made, the ones found with the closest analogies are presented below.  

Tànfani and Testi (2010), proposed a holistic integrated approach that could be used as a 

decision support tool to compare alternative operative scenarios, by means of a complete set of 

performance indexes, regarding all the different sub-processes. An integrated framework for surgery 

department performance evaluation from the moment the patient enters the system to the moment it is 

discharged was developed, taking advantage of both simulation and optimization ability to support 

decision.  

Min and Yih (2010), proposed a stochastic optimization model for elective surgery scheduling 

considering surgical ICU capacity constraints. A sample average approximation algorithm was employed 

to solve the problem, numerical experiments demonstrate the convergence of statistical bounds with 

moderate sample size for a given test problem and a simulation study was conducted to show that 

stochastic surgery scheduling problem outperforms the expected value problem. However, because 

each patient may have different initial condition, speed of disease progress and either be making a 

recovery from a disease or relapsing, it is very difficult to define an explicit structure.  

Wang, Tang and Qu (2010), proposed an operation scheduling model with a genetic algorithm. 

It focused on partitioning patients into different priorities according to the state of illness, an 

optimization model with the aim of maximizing customer satisfaction established under the 
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consideration of a three-dimensional parameter, constraint related patients, ORs and medical staffs. A 

Genetic algorithm was proposed with two-dimensional 0-1 encoding for solving the surgery scheduling 

problem with the data derived from an upper first-class hospital, the experimental results showed the 

efficiency of the model and algorithm.  

Taneva, Plattner, Byer, Higgins and Easty (2010), proposed a breakdown detection method as 

a useful approach to the management of breakdowns in inter-team coordination, within the context of 

the daily operations of surgical units. By mapping information flow expectations for various information 

needs in clinical work, an analyst could derive a set of predictions that served as input to the algorithm 

for detecting the breakdowns. The method was verified over data from three sets of observational 

studies in two different hospitals. Performance analysis demonstrates excellent detection rate.  

Atle and Burke (2010), presented a model for the admission planning problem, in which 

intervention assignment and scheduling is combined, including scheduling interventions for each 

surgeon. A meta-heuristic resolution method was presented, along with its underlying move operators 

and associated distance measures. It also presented computational results for a set of realistically sized 

benchmarks that were generated based on the characteristics of the admission planning problem in a 

Norwegian hospital.  

Devi, Rao and Sangeetha (2010), focused on the scheduling of the operating theatre, such that 

there was no overload on any of the beds. It forecasted the surgery time by taking into account the 

surgical environment in an ophthalmology department. The estimation of surgery times was done using 

three techniques, such as the Adaptive Neuro Fuzzy Inference Systems (ANFIS), ANN, and Multiple 

Linear Regression Analysis (MRLA) and the results of estimation accuracy were compared. The 

framework was validated by using data obtained from a local hospital. The ANFIS model was found to 

out-perform the other two models. It was hypothesized that by accurately knowing the surgery times, 

one could schedule the operations optimally resulting in the efficient utilization of the ORs. The 

scheduling is done using P||Cmax algorithm. The increase in the efficiency was demonstrated through 

computer simulations of the operating theatre.  

Ghazalbash, Sepehri, Shadpour and Atighehchian (2011), a novel mixed integer programming 

model was presented for minimizing completion time of the last patient’s surgery and the operating 

room idle times in hospitals. The model was then used to determine the allocation of resources, 

including operating rooms, surgeons and assistant surgeons to surgeries, moreover the sequence of 

surgeries within operating rooms and the start time of them. The proposed model was then evaluated 

against some real-life problems, by comparing the schedule obtained from the model and the one 
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currently developed by the hospital staff. Numerical results indicated the efficiency of the proposed 

model compared to the real-life hospital scheduling and the gap evaluations for the instances show that 

the results were generally satisfactory.  

Kargar, Khanna and Sattar (2013), develop a prediction based methodology to drive optimal 

management of scheduling processes, with historic utilization data and current waiting list information 

to manage case mix distribution. A novel algorithm used current and past perioperative information to 

accurately predict surgery duration. A National Elective Surgery Target compliance guided optimization 

algorithm was then used to drive allocation of patients to the theatre schedule.  

Marques, Captivo and Pato (2013), contributed with a population based approach to solve an 

elective surgery scheduling problem applied to real case instances and with the specifications of the 

Portuguese hospital under study. The problem combined simultaneously advance and allocation 

scheduling, and two optimization criteria were considered maximizing the surgical suite occupation and 

maximizing the number of surgeries scheduled. Instances with 508–2306 elective surgeries were 

successfully solved in 22–240 s using the genetic heuristic. It was better results than the authors 

previous approaches to the same problem.  

Antonelli, Bruno and Taurino (2014), presented a thorough analysis of the patient flow in an 

elective surgery ward using data gathered in a large hospital in Italy. An engineering approach was used 

to provide a process parameterization in order to reach managerial objectives of beds utilization. A 

simulation of the new process was done to test proposed parameters. Simulation results showed that 

small variation on the average value of inter-arrival times caused significant variations on waiting times. 

So a solution to find a compromise between bed utilization and waiting times was provided and 

simulated.  

Sperandio, Gomes, Borges, Brito and Almada-Lobo (2014), an intelligent decision support 

system was developed, allowing the centralization and standardization of planning processes, improving 

the efficiency of the operating theatre and tackling the waiting lists for surgery fragile situation. The 

intelligence of the system was derived from data mining and optimization techniques, which enhance 

surgery duration predictions and ORs surgery schedules. Experimental results show significant gains, 

reducing overtime, under time and better resource utilization.  

Zhao and Li (2014), investigates the problem of scheduling elective surgeries to multiple ORs in 

an ambulatory surgical centre. It was build a Mixed Integer Nonlinear Programming model and a 

Constraint Programming model to provide support for the daily scheduling decision, with the objective 

of minimize the sum of the fixed costs and overtime costs of the ORs. The two models were tested on 
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random instances, the results showed that the Constraint Programming model was more efficient on 

computational time and solution quality. However, they assumed that all patients to be scheduled were 

known in advance and the surgery durations were deterministic. Also, the patients were assumed to 

arrive punctually and all the resources needed for the surgeries were available. 

 Wang, Tang, Pan and Yan (2014), developed a heuristic and metaheuristic algorithms to solve 

the daily laminar scheduling problem. It was used real data from the hospital to evaluate and compare 

algorithms. Based on our numerical experimentation, it was found that the DPSO- TNSS algorithm 

works very well. Compared with CPLEX, the DPSO-TNSS algorithm provided a similar solution quality 

but required far less computation time. However, uncertainty that usually happens in surgery process, 

which includes the emergency arrival or uncertain service time is not considered.  

Saadouli, Jerbi, Dammak, Masmoudi, and Bouaziz (2014), studies the problem of scheduling 

elective surgery patients in the orthopaedic surgery division of an hospital in Tunisia. The problem 

consisted in optimize the assignment of surgeries to ORs and planning the recoveries, in order to avoid 

them in the ORs when no bed is available in the recovery room. The proposed solution took into 

account the uncertainty in surgery, and recovery durations and the capacity of resources. A knapsack 

model was proposed to choose operations to be scheduled and were assigned to the different ORs 

using a mixed integer programming model. The suggested solution showed that a substantial amount of 

operations could be saved.  

Aringhieri, Landa, Soriano, Tànfani and Testi (2014), presented a two level metaheuristic 

algorithm that solves the joint master surgical schedule and advance scheduling problem taking into 

account many resource and operative constraints, while minimizing the total social cost of the resulting 

surgery schedule. Results showed that the proposed method exhibited very good performances, both in 

terms of solution quality and computational times. 

Xiang, Yin and Lim (2014), integrated the surgery scheduling problem with real-life nurse roster 

constraints. This article proposed a mathematical model and an ant colony optimization (ACO) 

approach to efficiently solve such surgery scheduling problems. A modified ACO algorithm with a two-

level ant graph model was developed to solve such combinatorial optimization problems, because of its 

computational complexity. The outer ant graph represented surgeries, while the inner graph was a 

dynamic resource graph. Three types of pheromones, i.e. sequence-related, surgery-related and 

resource-related pheromone, fitting for a two-level model were defined. The performance of the 

proposed ACO algorithm was then evaluated using the test cases from published literature data with 

complete nurse roster constraints and real data collected from a hospital in China. The ACO approach 
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proposed efficiently solved the surgery scheduling problem with daily nurse roster, while providing a 

shortened end time and relatively balanced resource allocations.  

Duma and Aringhieri (2015), considered a generic surgical clinical pathway for elective patients 

in which were evaluated the introduction of an online optimization approach for the Real Time 

Management and some additional optimization modules to deal with the surgery process scheduling 

problem. An accurate computational analysis proved the effectiveness of the proposed approach. It was 

also demonstrated the capability and the flexibility of the approach by extending the hybrid model to 

deal with emergency surgeries and different trained surgery teams.  

Dios, Molina-Pariente, Fernandez-Viagas, Andrade-Pineda and Framinan (2015), presented a 

Decision Support System for surgery scheduling which is currently in use in one of the largest hospitals 

in Spain. The system embeds several optimization procedures to help the responsible of each Surgical 

Unit in several related decisions. In addition, allows users to fine-tune the schedule by including a 

graphically-interactive user interface. The proposed system is currently in use in the Hospital and there 

are several research avenues for its extension.  

Castro and Marques (2015), addressed the short-term scheduling problem involved in the 

selection of a subset of elective surgeries from a large waiting list. A decomposition algorithm was 

proposed that relies on two continuous-time Generalized Disjunctive Programming models. It showed 

that the new algorithm outperforms a full-space discrete-time formulation and a genetic algorithm, 

improving the total surgical time as well as the number of performed surgeries by 5%.  

Molina-Parient, Hans, Framinan and Gomez-Cia (2015), tackled the OR planning problem of the 

Plastic Surgery and Major Burns Specialty of the University Hospital in Spain, in order to assign an 

intervention date and an OR to a set of surgeries on the waiting list, minimizing access time for patients 

with diverse clinical priority values. It was proposed a set of 83 heuristics (81 constructive heuristics, a 

composite heuristic and a meta-heuristic) based on a new solution encoding. The computational 

experiments show that the proposed meta-heuristic was the best for the problem under consideration. 

Also, the proposed heuristics were tested with data from the Plastic Surgery and Major Burns Specialty. 

The results show significant improvements on several key performance indicators and the hospital 

implemented the heuristic methods.  

Neyshabouri and Berg (2016), proposed a formulation for surgery scheduling while considering 

the downstream units. It was applied two-stage robust optimization to address the inherent uncertainty 

in surgery duration and length-of-stay in the downstream unit. Extensive computational experiments 

show that the model had the potential of being employed to manage multi-stage care operations. 
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However, the proposed algorithm may not be efficient for cases with large number of patients, with 

large uncertainty sets.  

Latorre-Núñez et al. (2016), addressed the surgery scheduling problem considering 

simultaneously, the operating rooms, the post anaesthesia recovery, the resources required by the 

surgery and the possible arrival of emergency surgeries. It was proposed an integer linear programming 

model that allowed finding optimal solutions for small size instances, it was transformed to use 

constraint programming, and developed a metaheuristic based on a genetic algorithm and a 

constructive heuristic, that solved larger size instances.  

Molina-Parient, Hans and Framinan (2016), addressed a stochastic operating room scheduling 

problem which consists of assigning an intervention date and operating room to surgeries on the 

waiting list. To solve the problem, it was proposed a Monte Carlo optimization method based on the 

sample average approximation method, which combined an iterative greedy local search method and 

Monte Carlo simulation. The results show that the objective function value converged with exponential 

rates when the number of samples increases, obtaining an optimality index value around 1 % and 

concluded that an important cost reduction could be obtained by solving the stochastic problem rather 

than the deterministic one.  

Guido and Conforti (2016), proposed a multi-objective integer linear programming model 

aiming at efficiently planning and managing hospital OR suites. By effectively exploiting a novel hybrid 

genetic solution approach, the devised optimization model was able to determine, in an integrated way, 

the OR time assigned to each surgical specialty, the OR time assigned to each surgical team, the 

surgery admission planning and the surgery scheduling. The resulting Pareto frontiers provided a set of 

“optimal” solutions able to support hospital managers in efficiently orchestrating the involved resources, 

and planning surgeons and surgeries.  

Marques and Captivo (2017), work results from a close collaboration with a large and publicly 

funded Portuguese hospital. It was proposed a systematic approach to help the surgical planner in the 

scheduling of elective surgeries, in order to optimize the use of the available surgical resources, 

improve equity, and access to operated and waiting patients. Three versions were modelled in (mixed) 

integer linear programming and a robust approach was proposed to tackle the uncertain surgeries’ 

duration. Practical and realized problems from the hospital were solved providing very good 

optimization gaps within a short time limit, both for the deterministic and robust approaches.  

Jebali and Diabat (2017), the present work aimed the planning problem by accounting for the 

availability of the ORs and the ICU which are shared between elective and emergency patients. A 
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featured Sample Average Approximation algorithm was developed to solve the model. The results 

demonstrate the superiority of the OR plans obtained by the proposed approach in terms of robustness. 

However, it was shown that this robustness was achieved at the expense of higher costs and lower OR 

utilization.  

Feng et al. (2017), proposed an Intelligent Perioperative System, a real-time system that 

assesses the risk of postoperative complications and dynamically interacts with physicians to improve 

the predictive results. In order to process large volume patients’ data in real-time, was design the 

system by integrating several big data computing and storage frameworks with the high through-output 

streaming data processing components. It was also implement a system prototype along with the 

visualization results to show the feasibility of system design.  

Ebadi, Tighe, Zhang and Rashidi (2017), proposed a tool for facilitating decision making in 

surgical team selection based on considering history of the surgical team, as well as the specific 

characteristics of each patient. A decision support tool for surgical team selection, a metaheuristic 

framework for evaluation of surgical teams and finding the optimal team for a given patient, in terms of 

number of complications. It was also tested using intra-operative data from 6,065 unique orthopaedic 

surgery cases and results suggested high effectiveness of the proposed system in a health-care setting. 
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CHAPTER 3  

 

CASE-BASED REASONING 

Case-based reasoning is a problem solving paradigm that is fundamentally different from 

other major Artificial Intelligence (AI) approaches. Instead of relying solely on general knowledge 

of a problem domain, or making associations along generalized relationships between problem 

descriptors and conclusions, CBR is able to utilize the specific knowledge of previously 

experienced into concrete problem situations (cases). Therefore, a new problem is solved by 

finding a similar past case and reusing it in the new problem situation. It also is an approach to 

incremental sustained learning, since a new experience is retained each time a problem has 

been solved, making it immediately available for future problems (Aamodt & Plaza, 1994).  

During the period 1977–1993, CBR research was highly regarded as a plausible high-

level model for cognitive processing. It was focused on problems such as how people learn a new 

skill and how humans generate hypotheses about new situations based on their past 

experiences. The objectives of these cognitive-based researches were to construct decision 

support systems to help people learn (Pal & Shiu, 2004).  

The roots of CBR in AI arose out of the research in cognitive science. The earliest 

contributions in this area were from Roger Schank and his colleagues at Yale University, on 

dynamic memory and the central role that a reminding of earlier situations (episodes, cases) and 

situation patterns (scripts, MOPs) has in problem solving and learning. Other trails into the CBR 

field has come from the study of analogical reasoning and from theories of concept formation, 

problem solving and experiential learning, within philosophy and psychology. The first system that 

might be called a case-based reasoner was the CYRUS system, developed by Janet Kolodner, at 

Yale University (Schank's group). CYRUS was based on Schank's dynamic memory model and 

MOP theory of problem solving and learning. It was basically a question-answering system with 

knowledge of the various travels and meetings of former US Secretary of State Cyrus Vance. The 

CBR field has grown rapidly over the last few years, as seen by its increased share of papers at 

major conferences, available commercial tools and successful applications in daily use (Aamodt 

& Plaza, 1994).  

As mentioned, CBR solves new problems by adapting solutions used in older problems. 

Therefore, retains a memory of previous problems, their solutions and solves new problems by 
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reference to that knowledge. Generally, it is presented with a problem, wither by a user, a 

program or system, then it searches for past cases in its memory and tries to find some case 

that presents the same problem characteristics as the new presented one. If the reasoner fails to 

find such case, it will try to get a case or multiple cases that present the most proximity in terms 

of characteristics (Pal & Shiu, 2004).  

When a past case with identical structure is retrieved and the success on the solution is 

assumed, it can be presented as the solution to the new problem. But the most common 

situation is where the case retrieved is not identical to the case in analyse, as result there is the 

necessity of an adaptation phase. In this adaptation, the new case and the retrieved cases 

differences are identified and the solution of the retrieved case is altered by taking this 

differences into account. Then the proposed solution to the new problem can be tested in the 

appropriate domain (Pal & Shiu, 2004).  

Most CBR systems have an internal structure divided into two major parts, namely the 

case retriever and the case reasoner. The function of the case retriever consists into find in the 

Case Base the most suitable cases, while the case reasoner tries to find a valid solution to the 

problem description given from the retrieved cases. This reasoning process generally involves the 

determination of the differences between the retrieved cases and the current one and the 

modification of the solution in order to efficiently reflect these differences. Also, this process may 

or may not involve retrieving some additional cases or portions of cases from the Case Base (Pal 

& Shiu, 2004).  

CBR can be seen as a reflection of a particular type of reasoning performed by humans, 

in the equivalent way they solve problems, since once faced with a new situation or problem, the 

previous experiences of a similar problem experienced on a personal level, or from another 

person who faced the same situation can be used by adding it to the memory through either an 

oral or a written account of that experience. This gives the advantage on the use of CBR once it 

can be based on superficial knowledge not requiring significant effort in knowledge engineering 

when compared with other existing approaches. In general, CBR has been referred as a tool for 

problem solving, but it can also be used in other ways like arguing a point of view (Pal & Shiu, 

2004). 

 Unlike other logical systems, CBR is capable of using knowledge that is incomplete or 

there is little evidence. Traditional AI systems tend to use certainty factors and other methods of 

inexact reasoning to solve this problems, requiring a considerable amount of effort from the 
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computer. CBR uses another method in order to deal with incomplete knowledge, were a case-

based reasoner makes assumptions in order to fill incomplete or missing knowledge out of what 

its own experience tells and starts from there. These generated solutions won’t always be 

optimal, or even successful, but with a careful evaluating on the proposed answers from the 

reasoner, the case-based methodology gives it a way in order to generate answers easily 

(Kolodner, 1993).  

 Is worth mention that CBR also can provide advantage even if the old solution is far from 

what is needed. Either the features of the remembered case that must be ruled out in the new 

situation, can be added to its description and a new case recalled, or the recalled case can be 

used as a starting point for coming up with a new solution. When there is considerable 

interaction between the parts of a solution, then even if large amounts of adaptation are required 

to derive an acceptable solution, that may still be easier than generating a solution from scratch. 

The case provides something concrete to base reasoning on. In short, CBR reduces the cognitive 

load involved in interacting with a complex real-world environment (Kolodner, 1993).  

In 1994, Aamodt and Plaza defined a well-received four step view on the process of CBR, 

described by the four steps retrieve, reuse, revise and retain, as showed in the Figure 1.  

 

 

Figure 1— CBR Cycle (From Pal & Shiu, 2004). 
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 1. Retrieving similar past experienced cases whose problem is judged to be similar; 

2. Reusing the cases by copying or integrating the solutions used on the retrieved 

cases; 

3. Revising or adapting the solution(s) retrieved in order to try to solve the new problem; 

4. Retaining the new solution once it has been confirmed or validated 

 

 A new problem is solved by retrieving one, or more previously experienced cases, reusing 

the case in one way or another, revising the solution based on reusing a previous case and 

retaining the new experience by incorporating it into the existing knowledge-base (Case Base) 

(Aamodt & Plaza, 1994).  

An initial description of a problem defines a new case and is used to retrieve a case 

from the collection of previous cases. The retrieved case is then combined with the new case 

through reuse into a solved case, i.e. a proposed solution to the initial problem. Through the 

revise process this solution is tested for success, e.g. by being applied to the real world 

environment or evaluated and repaired if failed. During retain, useful experience is retained for 

future reuse and the Case Base is updated by a new learned case, or by modification of some 

existing cases (Aamodt & Plaza, 1994).  

As indicated in the figure 1, general knowledge usually plays a part in this cycle, by 

supporting the CBR processes. This support may range from very weak (or none) to very strong, 

depending on the type of CBR method. By general knowledge, we here, mean general domain-

dependent knowledge, as opposed to specific knowledge embodied by cases. For example, in 

diagnosing a patient by retrieving and reusing the case of a previous patient, a model of anatomy 

together with causal relationships between pathological states may constitute the general 

knowledge used by a CBR system (Aamodt & Plaza, 1994).  

3.1 Case-Based Reasoning Advantages 

Some of the main advantages of CBR to have in count are presented below: 

1. Reducing the knowledge acquisition task. It does not need to extract 

a model or a set of rules, the knowledge acquisition tasks of CBR consist primarily on the 

collection of relevant existing experiences/cases and their representation and storage;
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2. Avoiding repeating mistakes made in the past. Information about the reason for 

the failures in the past can be used in order to predict potential failures in the future, since the 

systems record failures, successes and perhaps the reason for those failures;  

 

3. Providing flexibility in knowledge modeling. In contrast with other model-based 

systems, case-based systems can use past experience as the domain knowledge in order to 

provide a reasonable solution, through appropriative adaptation, to situations where there is a 

problem with missing or incomplete data; 

 

4. Reasoning in domains that have not been fully understood, defined, or 

modelled. In the presence of insufficient knowledge, in order to build a causal model of a 

domain or to derive a set of heuristics for it, a case-based reasoner can still be developed using 

only a small set of cases from the domain. For the case-based reasoner to function the 

underlying theory of domain knowledge does not have to be quantified or understood entirely; 

 

5. Making predictions of the probable success of a proffered solution. With the 

information stored regarding the level of success of past solutions, the case-based can be 

capable of predicting the success of a suggested solution for a current problem. This happens 

thanks to the ability of referring to the stored solutions, the level of success of these and the 

differences between the previous and current contexts of applying these solutions; 

 

6. Learning over time. With the increase of use of the CBR systems, more problem 

situations are inserted and more solutions are created. If this solutions cases are then tested in 

the real world, and the level of success is determined, these cases can be added to the Case 

Base and used to help in future problems. As the number of cases grow, the capacity of 

reasoning of the CBR system also increases, being able to solve a wider verity of situation with a 

higher degree of refinement and success;  

 

7. Reasoning in a domain with a small body of knowledge. When the system is 

faced with only few cases, a case-based reasoner can start with these few known cases and build 

its knowledge incrementally as cases are added to the system, this addition will expand the 

system in directions determined by the solutions obtained by the cases encountered; 
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8. Reasoning with incomplete or imprecise data and concepts. Retrieved cases 

may not be identical to the current case, but even in the presence of any incompleteness and 

imprecision this can be dealt by a case-based reasoner. Although these factors affect the 

performance, due to the increased disparity between the current and the retrieved cases, 

reasoning is still possible; 

 

9. Avoiding repeating all the steps that need to be taken to arrive at a 

solution. When it is required to create a solution from scratch, the alternative approach is to 

modify an earlier solution, reducing this processing requirement significantly. Also, reusing a 

previous solution allows the actual steps taken to reach that solution to be reused for solving 

other problems; 

 

10. Providing a means of explanation. A CBR system can justify its proposed 

solution to a user, by supplying a previous case and its solution. 

 

11. Extending to many different purposes. The implementations of the CBR system 

is almost unlimited. It can be used for many purposes, such as creating a plan, making a 

diagnosis and arguing a point of view. Therefore, the data dealt with by a CBR system are able to 

take many forms, and the retrieval and adaptation methods will also vary;  

 

12. Extending to a broad range of domains. CBR can be applied to extremely 

diverse application domains, due to the limitless number of ways of representing, indexing, 

retrieving and adapting cases;  

 

13. Reflecting human reasoning. Since the humans, use regularly a form of CBR, it 

is not difficult to convince implementers, users and managers of the validity of the paradigm (Pal 

& Shiu, 2004).  

 

It is described in the next section, briefly, the four major tasks: case representation and 

indexing, case retrieval, case adaptation, and case learning and Case Base maintenance.
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3.2 Case Representation and Indexing 

  A case can be said to be a record of a previous experience or problem and the 

information that is recorded will, by necessity, depend on the domain as well as the purpose for 

which this case will be used. Also the case presents a description of the solution that was used 

when presented with a similar situation, may include the facts that define a solution, or it may 

include information about additional steps or processes involved. It is also important to include a 

measure of success in the case description for situations where the solution (or cases) have 

achieved different levels of success or failure. Also the specific knowledge of a case-based system 

means that related knowledge is stored in close proximity. Thus, rather than drawing knowledge 

from a wider net, the knowledge needed to solve a specific problem can be found grouped 

together in a few or even one of the cases. The Case Base in the CBR system is the memory of 

all cases stored previously (Pal & Shiu, 2004).  

3.2.1 Case Representation 

Many different types of knowledge can be stored in many different representational 

formats represented by cases in a Case Base. The intended purpose of a CBR system will greatly 

influence what is stored. In many practical CBR applications, cases are usually represented as 

two unstructured sets of attribute–value pairs that represent the problem and solution features 

(Pal & Shiu, 2004).  

In some situations, cases may need to be decomposed to their subcases. For example, a 

person’s medical history could include as subcases all patient’s visits to a doctor. Features have 

to be represented in some format, regardless of what a case actually represents as a whole. 

Depending on the types of features that have to be represented, an appropriate implementation 

platform can be chosen. This implementation platform ranges from simple boolean, numeric, 

and textual data to binary files, time-dependent data and relationships between data. 

Independently of how is stored, or the data format that is used, a case must store information 

that is both relevant to the purpose of the system and also will ensure the most appropriate case 

is retrieved to solve each new problem situation. Thus, the cases have to include those features 

that will ensure that a case will be retrieved in the most appropriate context. In many CBR 

systems, not all of the existing cases need to be stored, since there are specific criteria that 

decide which cases will be stored and which will be discarded. For example, when faced with two 
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or more cases that are very similar, only one case may need to be stored. It also may be possible 

to create an artificial case that is a generalization of two or more cases that describe actual 

incidents or problems. By creating generalized cases, the most important aspects of a case need 

to be stored only once. When choosing a representation format for a case, there are many 

choices and many factors to consider. Some examples of representation formats that may be 

used include database formats, frames, objects, and semantic networks (Pal & Shiu, 2004).  

 In conclusion, cases are assumed to have two components: problem specification and 

solution. Normally, the problem specification consists of a set of attributes and values. The 

attributes of a case should define that case uniquely and should be sufficient to predict a solution 

for that case. The representation may be a simple flat data structure or a complex object 

hierarchy (Pal & Shiu, 2004).  

3.2.2 Case Indexing 

Case indexing refers to assigning indexes to cases for future retrieval and comparison. 

The choice of indexes is important to enable retrieval of the right case at the right time. This is 

because the indexes of a case will determine in which context it will be retrieved in the future. 

Indexes must be predictive in a useful manner. This means that indexes should reflect the 

important features of a case, and the attributes that influence the outcome and describe the 

circumstances in which a case is expected to be retrieved in the future. Indexes should be 

abstract enough to allow retrieval in all the circumstances in which a case will be useful, but not 

too abstract. When a case’s indexes are too abstract, the case may be retrieved in too many 

situations or too much processing is required to match cases. Although assigning indexes is still 

largely a manual process and relies on human experts, various attempts at using automated 

methods have been proposed in the literature (Pal & Shiu, 2004).  

3.3 Case Retrieval 

Case retrieval consist in the process of finding, within a Case Base, those cases that are 

the similar to the current case. In order to carry out an effective case retrieval, it is needed 

selection criteria that determine how a case is judged and a mechanism to control how the Case 

Base is searched. The selection criteria, are necessary to determine which is the best case to 

retrieve, by determining how similar the current case is to the cases stored. The case selection
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criteria depend partly on what the case retriever is searching for in the Case Base (Pal & Shiu, 

2004). When the case retriever is searching for the most suitable solution in order to solve a new 

problem, CBR relates the new problem to the problems in the cases of the Case Base in such a 

way that the notion of “most suitable” (i.e. similar) is reflected. The main difficulty present is that 

a similar problem may not be recorded in the Case Base since one cannot store all possible 

situations. Therefore, CBR has developed intelligent techniques to take advantage of the 

experiences even if they do not exactly match the new problem. This is done by comparing the 

new problem with the ones of the stored cases, with the purpose of finding a case that shows to 

be useful in a way that helps in solving the new problem. The goal is that the cases are 

analogous in such a way that their solutions can be reciprocally reused. Assessing similarity 

between two cases takes into account the similarity between attributes and the relative relevance 

of each attribute (Ritcher & Weber, 2013). However, when only a portion of a case is being 

sought because no full case exists and a solution is being synthesized by selecting portions of a 

number of cases. The actual processes involved in retrieving a case from a Case Base is highly 

dependent on the memory model and indexing procedures used. Retrieval methods employed by 

researchers and implementers are extremely diverse, ranging from a simple nearest-neighbour 

search to the use of intelligent agents (Pal & Shiu, 2004).  

Retrieval is a major research area in CBR. The most commonly investigated 

retrieval techniques, by far, are the k-nearest neighbours (k-NN), decision trees, and their 

derivatives. These techniques involve developing a similarity metric that allows closeness among 

cases to be measured (Pal & Shiu, 2004).  

3.4 Case Adaptation 

Case adaptation is the process of transforming a solution retrieved into a solution 

appropriate for the current problem. It has been argued that adaptation may be the most 

important step of CBR since it adds intelligence to what would otherwise be simple pattern 

matchers (Pal & Shiu, 2004). The use of cases is a reuse of previous experiences in a new 

situation, if the case is exactly like a previous one than the reuse is simply done by copying the 

old solution. However, the use of a solution exactly as it is recorded is very rare. If the new 

problem situation is not too different in essential aspects from the nearest neighbour selected 

from the Case Base, then the recommendation is to adapt the recorded solution before reusing it 
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to best suit the new problem. This can be done either manually or automatically (Richter & 

Weber, 2013).  

Adaptation can be performed on different levels of granularity. One extreme case is 

reusing the solution strategy. Another extreme case is using the solution itself. Both are called 

solution adaptation. Suppose we have to design exercise plans for people who need to increase 

their endurance, the simplest way would be to create a weekly plan for running. Now suppose 

there is a person who is not allowed to run because of knee problems, the previous plan can still 

be used but running has to be replaced by swimming or bicycling (Richter & Weber, 2013).  

The approximate nature of case-based reasoning has the consequence that there is no 

guarantee that the chosen case provides a good solution. For instance, the Case Base may not 

even contain a single good solution for the new problem. Sometimes, this can be easily seen as 

symmetric problems. Therefore, after adaptation, the adapted solution has to be tested in reality 

and possibly modified further. If the solution obtained in this way is satisfactory, then one may 

decide to add the case to the Case Base in order to improve it. This last step can be interpreted 

as a learning step (Richter & Weber, 2013). 

Adaptation allows Case Bases to be smaller than if no adaptation could be done. 

Furthermore, adaptation can also be extended by reusing a strategy when the solution is given, 

because strategies can also be adapted (Richter & Weber, 2013).  

3.5 Learning on Case-Based Reasoning Systems 

In the presence of a valid solution generated and outputted by the system, it is expected 

that the solution will be properly teste in reality. In order to do so, both the way it may be tested 

and how the outcome of the test will be classified if a success or a failure, needs to be consider. 

Thus, some criteria need to be defined for the performance rating of the present solution. This 

information can be added to a system for two purposes, the more information is stored, more 

likely will be to found a match in the Case Base and with the increase of the information more 

successful will be the solution created by the system.  

The learning phase can occur in many ways, a common method is the addition of a new 

problem, its solution and the outcome to the Case Base. As more cases are added to the Case 

Base, the range of situations covered by the stored cases will increase and reduce the average 

distance between an input vector and the closest stored vector. Other method of learning in a 

CBR system is using the solution’s assessment to modify the indexes of the stored cases or to



3.5 LEARNING ON CASE-BASED REASONING SYSTEMS	

	 46	

modify the criteria used for the case retrieval. When a case has indexes irrelevant to the specific 

contexts in which it should be retrieved, adjusting the indexes may increase the correlation 

between the occasions when a case is actually retrieved and the occasions when it should have 

been retrieved. Similarly, assessment of a solution’s performance may lead to an improved 

understanding of the underlying causal model of the domain that can be used to improve 

adaptation processing. If better ways can be found to modify cases with respect to the distance 

between the current and retrieved cases, the output solution will probably be improved (Pal & 

Shiu, 2004).  

3.6 Maintenance of Case-Based Reasoning Systems 

With the application of the CBR system for solving a problem, there is always a trade-off 

between the number of cases to be stored in the case library and retrieval efficiency. The larger 

the case library, the greater the problem space covered, but it also downgrades system 

performance. Removing redundant or less useful cases to attain an acceptable error level is one 

of the most important tasks in maintaining CBR systems. Case Base maintenance consists in the 

implementation of policies for revising the organization or contents of a Case Base to facilitate 

future reasoning for a particular set of performance objectives. Some measures for case 

competence are developed, that are the range of problems that a CBR system can solve. Various 

properties may be useful, such as the size, distribution, and density of cases in the Case Base, 

the coverage of individual cases, the similarity and adaptation knowledge of a given system. 

Another reason for CBR maintenance is the possible existence of conflicting cases in the case 

library, due to changes in domain knowledge or specific environments for a given task. For 

example, more powerful cases may exist that can contain inconsistent information, either with 

other parts of the same case or with original cases that are more primitive. Furthermore, if two 

cases are considered equivalent (with identical feature values), or if one case subsumes another 

by having more feature criteria, a maintenance process may be required to remove the 

redundant cases (Pal & Shiu, 2004).  

3.7 Hybrid Case-Based Reasoning with ANNs 

Artificial neural networks (ANNs) are commonly used for learning, and the generalization 

of knowledge and patterns. They are not appropriate for expert reasoning and their abilities for 

explanation are extremely weak. Therefore, many applications of ANNs in CBR systems tend to 
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employ a loosely integrated approach where the separate ANN components have specific 

objectives, such as classification and pattern matching. Neural networks offer benefits when used 

for retrieving cases, because case retrieval is essentially the matching of patterns. Neural 

networks are very good at matching patterns. They cope very well with incomplete data and 

imprecise inputs, which is of benefit in many domains, as some portion of the features is 

sometimes important for a new case, whereas other features are of little relevance. Domains that 

use case-based reasoning are usually complex, this means that the classification of cases at each 

level is normally nonlinear, and hence for each classification a single-layered network is not 

sufficient and a multi-layered network is required (Pal & Shiu, 2004).  

Hybrid CBR and ANNs are a very common architecture for applications to solve 

complicated problems. Knowledge may first be extracted from the ANNs and represented by 

symbolic structures, for later use by other CBR components. Alternatively, ANNs could be used 

for retrieval of cases where each output neuron represents one case (Pal & Shiu, 2004).  

3.7.1 Artificial Neural Networks 

Artificial neural networks (ANNs) are inspired by the biological nervous systems, which 

consists of a large number of highly connected elements called neurons. The brain stores and 

processes the information by adjusting the linking patterns of the neurons. ANNs are signal 

processing systems that try to emulate the behaviour of and ways of processing information in 

the biological nervous systems, by providing a mathematical model of the combination of 

neurons connected in a network. In an artificial neural network, artificial neurons are linked with 

each other through connections, assigned with a weight that controls the flow of information 

among them. By adding the information into a neuron through the connections, it is summed up 

first and then, undergoes a transformation by an activation function f (x,w) where x is the input 

and w the weight of the connection, that send outputs to other neurons or back to itself as input. 

In artificial neural networks, input information is processed in parallel in the neurons. This 

improves the processing speed and the reliability of the neural network (Pal & Shiu, 2004).  

 

Some advantages of ANN are summarized below: 

• Adaptive: Through some training algorithms or learning rules its connection weights 

can be modified and the ANN can optimize its connections to adapt to the changes 

in the environments; 
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• Parallel: As the ANN distribute the input information to different neurons for 

processing, neurons when activated by the inputs can work in parallel and 

synergetically if they are activated by the inputs. This way, the computing power of 

the neural network is fully utilized and the processing time is reduced; 

 

• Rugged: If one of the neurons fails, the weights of the connections can be adjusted 

for preserving the performance of the ANN. While the connections to the failed 

neuron will be weakened, the working neurons will establish a stronger connection 

with each other. By doing so, the reliability of the ANN improves (Pal & Shiu, 2004). 

 

The architectures of ANNs can be classified into two categories based on the connections 

and topology of neurons: 

 

• Feedforward networks: The inputs travel in only one direction, from input to output layer, 

and no feedback is allowed as showed in Figure 2 with a three-layered feedforward ANN. 

Figure 2 — Simple feedforward ANN (From Pal & Shiu, 2004). 

• Recurrent (or feedback) networks: The inputs can travel in both directions and loop is 

allowed, as showed in Figure 3.  

 

 

 

 

 

Figure 3 — Simple recurrent ANN (From Pal & Shiu, 2004). 
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Before using an ANN, it needs to be trained. In the training phase, the weights are 

adjusted using some gradient-based algorithms or predefined learning rules. After training the 

ANN successfully, it can be used for problem solving (Pal & Shiu, 2004). 

There are principally three ways of training ANNs: supervised, unsupervised, and 

reinforcement. In supervised training, weight modification is carried out by minimizing the 

difference between the ANN outputs and the expected outputs. In unsupervised training, weight 

modification is driven by the inputs. The weights are trained with some predefined learning rules 

that determine how to modify the weights. Reinforcement training is similar to supervised 

training, except that the training samples are obtained through the use of outputs from the neural 

networks. If the feedback of the output is successful, the input–output pair is stored as a training 

sample, and no modification is performed on the weight vector. Otherwise, the output will be 

repaired using some domain knowledge (Pal & Shiu, 2004).  
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CHAPTER 4  

 

KNOWLEDGE REPRESENTATION AND REASONING 

 As mentioned before, surgery is the most influent specialty present in hospitals, with the 

most generate revenue and admissions. Thus, improvement of the quality and efficiency of the 

surgery process will not only help in the performance of healthcare services provided to patient, 

but also give significant savings and benefits to the hospital as well.  

Therefore, in this work, it will be presented a clinical decision support system in order to 

propose the surgery process that a patient will be submitted. Since, the patient is the reason for 

the surgery to be performed, it is to be expected that the system present should be focused on 

the patient and is course through all the perioperative period of the surgery process, including 

the preoperative, intraoperative and postoperative stages. This way, the patient needs will be 

assured and all the remain factors that influence the process will be improved as well, namely 

the available hospital resources or medical team, among many others. It will not only ensure a 

more secure surgery but also, provide a bigger confidence in the process. Moreover, the patients 

and the medical team will have a more precise vision of the situation when presented with a 

complete customized surgical route. 

 As previously mentioned, surgery is a very inconsistent field, unpredictability and 

variability are constantly present through all the surgery process. This is why, the system needs 

to be capable of leading with incomplete, self-contradictory and/or unknown data that will most 

certainly be present in majority of the cases presented.  

In this chapter, will be described a Knowledge Representation and Reasoning approached 

capable of dealing with the data present on the used dataset for the system, that will be 

described further in the next chapter. It will also be present an approach to deal with time and 

negation present in this type of systems, since the surgery process will need to take into account 

the constant changes of the elements that influence the case of the patient.  

4.1 Background 

Many approaches to Knowledge Representation and Reasoning have been proposed using 

the Logic Programming epitome, namely in the area of Model Theory (Kakas, Kowalski and Toni 
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,1998; Pereira and Anh ,2009), and Proof Theory (Neves ,1984; Neves, machado, Analide, 

Abelha and Brito ,2007). In the present work the Proof Theoretical approach in terms of an 

extension to the LP language is followed. An Extended Logic Program is a finite set of clauses, 

given in the form: 

{ 

¬	0 ← 234	0, 234	678604932: 

0 ← 0*,⋯ , 0<, 234	=*,⋯ , 234	=> 

? 0*,⋯ , 0<, 234	=*,⋯ , 234	=> 		 2,@ ≥ 0  

678604932:C 

… 

678604932:D		 0 ≤ F ≤ G , H692I	G	J2	9246I6K	2L@H6K 

} ∷ N83K92IOPQRS 

 

where the first clause stand for predicate’s closure, “,” denotes “logical and”, while “?” is a 

domain atom denoting “falsity”, “∷” stands for “where”, the pi, qj, and p are “classical ground 

literals”, i.e., either positive atoms or atoms preceded by the classical negation sign “¬” (Neves 

,1984). Indeed, “¬” stands for a strong declaration that speaks for itself, and not denotes 

negation-by-failure, or in other words, a flop in proving a given statement, once it was not 

declared explicitly. Under symbols’ theory, every program is associated with a set of “abducibles” 

(Kakas, Kowalski and Toni ,1998; Pereira and Anh ,2009), given here in the form of exceptions 

to the extensions of the predicates that make the program, i.e., clauses of the form: 

678604932:C ,			⋯			 , 678604932:D		 0 ≤ F ≤ G ,				H692I	G	J2	9246I6K	2L@H6K 

that stand for data, information or knowledge that cannot be ruled out. On the other hand, 

clauses of the type: 

? 0*,⋯ , 0<, 234	=*,⋯ , 234	=> 		 2,@ ≥ 0  

 

also named invariants, allows one to set the context under which the universe of discourse has to
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 be understood. The term	scoringvalue stands for the relative weight of the extension of a 

specific predicate with respect to the extensions of peers ones that make the inclusive or global 

program. 

4.1.1 Knowledge Representation and Reasoning — Quantitative Knowledge  

In order to set one’s approach to knowledge representation, two metrics will be set, 

namely the Quality-of-Information (QoI) of a logic program that will be understood as a 

mathematical function that will return a truth-value ranging between 0 and 1 (Lucas ,2003; 

Machado, Abelha, Novais and Neves ,2008), once it is fed with the extension of a given 

predicate. Indeed,	QoIi	=	1 when the information is known (positive) or false (negative) and QoIi	

=	0 if the information is unknown. For situations where the extensions of the predicates that 

make the program also include abducible sets, its terms (or clauses) present a QoIi	ϵ	]0,	1[, in 

the form: 

T3UV = 1
WJKX (5.1.1) 

if the abducible set for predicates i and j satisfy the invariant: 

? 678604932:Y; 	678604932:D , ¬	 678604932:Y; 	678604932:D  

where “;” denotes “ logical or” and “Card” stands for set cardinality, being i ≠ j and i,	j ≥ 1. A 

pictorial view of this process is given in Figure 4 (a), as a pie chart. 

On the other hand, the clauses cardinality (K) will be given by W*
[P\] + ⋯+ W[P\]

[P\], if 

there is no constraint on the possible combinations among the abducible clauses, being the QoI 

acknowledged as: 

T3UVC_Y_`abc		 =
1
W*
[P\] ,⋯ , 1

W[P\]
[P\] (5.1.2) 

where W[P\]
[P\] is a card-combination subset, with Card	elements. A pictorial view of this process 

is given in Figure 4 (b), as a pie chart. 
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Figure 4 — QoI’s values for the abducible set for predicatei given in terms of an hatched area (a), i.e., 

considering only the abducibles clauses, or with a circle (b), i.e., considering the possible combinations 

among the abducible clauses. 

 However, a term’s QoI	also depends on their attribute’s QoIs. In order to evaluate this 

metric, look to Figure 5, where the segment with bounds 0 and 1 stands for every attribute 

domain, i.e., all the attributes range in the interval [0, 1]. [A, B] denotes the range where the 

unknown attributes values for a given predicate may occur (Figure 5): 

 

 

 

Figure 5 — Setting the QoIs of each attribute’s clause. 

 

T3UPdd\VeRdSV		 = 1 − g − h  (5.1.3) 

where ||A–B|| stands for the modulus of the arithmetic difference between A and B, i.e., taking 

the absolute value. It must be also stated that unsharp (e.g., fuzzy or probabilistic) or linguistic 

attribute values (e.g., good, bad, …) may be transferred into an arithmetic difference as it is 

shown below (Figure 6 and subsection 5.1.2). Indeed, this generalized conception of observable 

enables a consistent notion of unsharp reality and with it an adequate concept of joint properties. 

 Under this setting, another metric has to be considered, which will be denoted as DoC 
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(Degree-of-Confidence), that stands for one’s confidence that the argument values or attributes of 

the terms that make the extension of a given predicate, having into consideration their domains 

(which were set to the interval [0,	1], are in a given interval (Fernandes, Vicente, Abelha, 

Machado and Neves ,2012). Therefore, the DoC is figured using	i3W = 1 − ∆kl, where ∆k 

stands for ||A–B|| (Figure 7). 

Thus, the universe of discourse is engendered according to the information presented in 

the extensions of such predicates, according to productions of the type: 

0K6X98J46V − 8kJLN6m gnC, hnC T3UnC, i3WnC ,⋯ ,
*omo>

    (5.1.4a) 

gnp, hnp T3Unp, i3Wnp ∷ T3Um ∷ i3Wm    (5.1.4b) 

where �, m and l stand, respectively, for set union, the cardinality of the extension of predicatei 

and the number of attributes of each clause (Fernandes, Vicente, Abelha, Machado and Neves 

,2012). On the other hand, either the subscripts of the QoIs and the DoCs, or those of the pairs 

(As, Bs), i.e., x1, …, xl, stand for the attributes’ values ranges. 

 

 

 

Figure 6— QoI’s values for the abducible set for predicatei given in terms of an hatched area (a) 

considering only the abducible clauses, or with a circle (b), considering the possible combinations among 

the abducible clauses. T3UV×0V 2<
V)*  denotes the QoI’s average of the attributes of each clause 

that sets the extension of the predicate under analysis. n and pi stand for, respectively, for the attribute’s 

cardinality and the relative weight of attribute pi with respect to its peers (	 0V
<
V)* = 1). 
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Figure 7 — Evaluation of the attributes’ Degree of Confidence. 

4.1.2 Knowledge Representation and Reasoning — Qualitative Knowledge 

In present study both qualitative and quantitative data/knowledge are present. Aiming at 

the quantification of the qualitative part and in order to make easy the understanding of the 

process, it will be presented in a graphical form. Taking as an example, consider a set of n issues 

regarding a particular subject, where the values of the k criteria, understood as linguistic ones, 

are none, low, …, high and very high. Now, enumerating a unitary area circle split into n slices 

(Figure 8), the marks in the axis resemble each of the possible criteria’ values. If the answer to 

issue 1 is high the correspondent area is q× G − 1 /G	×	q
l
2, i.e., G − 1 / G	×	2  

(Figure 8 (a)). Assuming that in the issue 2 are chosen the alternatives high and very high, the 

correspondent area ranges between 

π× G − 1 /G	×	q
l
2, 	 π× G/G	×	q

l
2 ,i.e., G − 1 / G×2 , 	G/ G×2  

(Figure 5(b)). Finally, in issue n if no alternative is ticked, all the hypotheses should be 

considered and the area varies in the interval 0, 		 π× G/G	×	q
l
2 , i.e., 0, 		G/ G×2  

(Figure 8 (c)). Thus, the total area is the sum of the partial ones (Figure 8 (d)), i.e., 2G − 2 /

G×2 , 	 3G − 1 / G×2 .  

 

 

Figure 8 —  A view of a qualitative data/knowledge processing.
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CHAPTER 5  

 

HANDLE OF TIME ON THE SURGERY PROCESS 

 As already mentioned, in surgery there is frequent inconsistency that comes with the 

unpredictability and variability present throughout the process. From the perioperative period, 

were the surgery is planned, to the postoperative stage where the patient is accompanied, until 

his discharge from the hospital, there is a strong time dependent unpredictability. Therefore, 

changes in the attributes related both to patient and hospital services, present in the knowledge 

base are an inevitable event.  

With the use of time, a complete surgery process history record of the alteration of some 

attributes will be created, increasing the retrieval and reliability of the system model, with a more 

real assemble proximity to the process, improving the trustworthiness in the knowledge base. 

Moreover, one of the crucial parts of the process will be the motorization of the patient, this 

means that until his discharge from the hospital the system will need a time dependent analysis, 

in order to get a complete and reliable patient related performance. Another situation that also 

needs to be taken into account is the strong possibility of absence of elements from the 

knowledge base, for example, since some hospitals struggle to provide some recourses, some 

elements can be removed from the intervention, this means that the deleted attribute must be 

taken into account, since is absence could have a major impact in all case and lead to a delay, 

cancelation or even to a failed surgery. 

 Therefore, a temporal knowledge representation and reasoning approach proposed in 

Neves (1984), in order to deal with such circumstances, is presented in this section. 

 Most approaches to modeling information in data base ignore the problem of time and 

focus on the static properties of a world model. Outdated data is simply deleted from the data 

base. In the approach presented here a world model captures change by manipulating a 

sequence of snapshots. The interrelations of events in time are explicitly represented in the data 

base by marking the data base clauses with a form of time stamp (Williams and Neves, 1983). 

 Another of the problems which arises in data base theory is the way in which negative 

information is distinguished from absence of information. This problem is generally solved by 

adopting the “negation as failure” approach suggested by Clark (Clark, 1978). An alternative 
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approach suggested here caters for explicit negation. It applies to logic data bases and allows for 

native information to be represented explicitly in the data base either using ground clauses or 

general rules. 

5.1 Basic System 

 A mechanism for defining and adding semantic knowledge to data base system has been 

implemented in prolog and is described in Neves, Anderson and Williams, 1983.  It makes use of 

an extended version of the query language Query-By-Example (QBE) (Zloof, 1977), a non-

procedural data base language in which queries are expressed by filling in skeleton tables with 

examples of the result required. This system consists on the use of a skeleton of a table as show 

in table 1, where the user introduces a request by filling is quadrants with information about 

relations in the data base in the form of example elements, constants and operators.  

 

Table 1 — Table skeleton. 

  

  

 

Taking into account the present work, as an example, it’s considered a surgery domain 

where a data base with relation “surgeries” and relation “patient”, given by the set of ground 

clauses with the format: 

 

surgery (patiente_number, surgeon_name, type_of_surgery , operating_room_number) 

 

patient ( patient_number, patient_name, condition_degree, pathology) 

 

Supposing that the user would want to find the surgeon name and the type of surgery in 

surgeries being performed in the operating room 1 and the patients with the aneurysm as 

pathology. He may enter as showed on Table 2 (the user’s contribution is underlined).
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Table 2 — Tables skeleton of surgery and patient. 

 

 

 

 

   

  

 

 This is translated by the system to yield the logic rule (i.e. theorem): 

 

 query ([N , A]) if [  surgery ( X, N, A, 1), patient (X, Y, C, aneurysm) ]. 

 

Where “[ “ and  “] “ denotes a set. This is then applied to the data base. The results of 

queries are collected in lists enclosed in square brackets (i.g. [N, A]) rather than in new relations. 

More detail of the way in which QBE maps into Prolog are given in Neves (1983). 

5.2 Time and Negation 

 One solution to the problem of negation that applies in the case of ground clause data 

bases was described by Reiter (1978) and Clarck (1978) following work by Nicolas and Syre 

(1974). A negative assertion is supposed to be implicitly present if its positive counterpart is not 

explicitly present (i.e. failure to find an instance of a tuple in a relation means that the negation of 

the tuple is true). 

 If a ground clause “p” is not a logical consequence of the data in the data base infer 

“not p”. 

 

 Formally this is expressed as: 

 

    :--     not :-- p     infer    :--    not p 

 

Where the notation “:-- p” is to be read as “p is deducible from the axioms in the data 

base”. This is similar to the approach taken by Cood (1972) to allow for the use of negation in 

relational calculus, and it is referred to as the “negation as failure inference rule”. 

surgery patn surgn types oproom 

 X p.N p.A 1 

patient patn pname cdegree pathology 

 X   aneurysm 
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In a logic data base, it is desirable to think in terms of accumulating additional 

information without altering any existing information in the data base. If this were true, then the 

data base system would contain a complete record of every transaction which was occurred to 

date and the system would be responsible for deducing the information which is applicable at 

any particular point in time. 

In order to model time changes each data base relation is extended to include an 

additional attribute value, denoting the state number. Tuples which are inserted into the data 

base have the same format as in the previous section, with the first field of each tuple set aside 

to contain the state number or time stamp. Thus, the equation 5.1.4 presented on the chapter 5 

section 5.1.1, relative to the universe of discourse is engendered according to the information 

in	4wxy	,presented in the extensions of such predicates, were G stands for time and being G an 

integer number, according to productions of the type: 

0K6X98J46V − 8kJLN6m 4wxy, gnC, hnC T3UnC, i3WnC ,⋯ ,
*omo>

    (6.1.1a) 

gnp, hnp T3Unp, i3Wnp ∷ T3Um ∷ i3Wm    (6.1.1b)  

 

As an example, the relation “surgery” given in the previous section will be extended to 

the form:  

 

surgery (state_number, patiente_number, surgeon_name, type_of_surgery, 

operating_room_number) 

 

patient (state_number, patient_number, patient_name, condition_degree, pathology) 

 

 The additional field (state) contains the state number, a value which represents the point 

in the time the clause was created (a time stamp).  

 

An example of data base of a set of clauses could be presented: 

 

   patient (0, 29, blake, elective , glaucoma). 

    patient (1, 10, smith, urgent, aneurysm ).        
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       surgery (0, 29, charles, trabeculectomy, 1 ). 

          surgery (0, 7, jones, kidney_transplant, 1 ). 

             surgery (1, 10, andrea, brain_aneurysm_repair, 4 ). 

           surgery (1, 2, peter, brain_aneurysm_repair, 4  ). 

 

 On deletion of a tuple, p ( t, a, b, ... ) the tuple concerned is left untouched in the data 

base and the tuple not-p ( t, a, b, ...) is added to indicate that the original tuple has been deleted 

at time t. Returning to the example data base, supposing that the surgeon name of the surgery 

for kidney transplant is updated to Robert.   

    

      patient ( 0, 29, blake, elective , glaucoma). 

 patient ( 1, 10, smith, urgent, aneurysm ). 

       surgery ( 0, 29, charles, trabeculectomy, 1 ). 

             surgery (1, 10, andrea, brain_aneurysm_repair, 4 ). 

                 surgery (1, 2, peter, brain_aneurysm_repair, 4  ). 

                    not-surgery (2, 7, jones, kidney_transplant, 1). 

                          surgery (2, 7, robert, kidney_transplant, 1 ). 

 

 That is, whenever a new tuple is to be inserted into the relation “p” or an existing tuple in 

“p” is to be changed at some point in time t’, a new entry of the form: 

 

p (t’, a1, a2, ..., an). 

or p (t’, a1, a2, ..., an) if p1, p2, ..., pj. 

 

will be created. If a tuple is to be deleted from relation “p” at time t’’, as entry of the form: 

 

not-p ( t’’, a1, a2, ..., an) . 

or p ( t’, a1, a2, ..., an) if p1, p2, …, pj. 

 

is created. In order to access such a data base a simple rule of inference is required. The general 

search strategy corresponding to such an inference rule is: 
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search-tp ( t, a1, a2, ..., an)  if  p( t, a1, a2, ..., an), fail; 

not not-p ( t, a1, a2, ..., an),  fail;  

search-tp ( pred ( t ), a1, a2, ...,an). 

 

where the semicolon “;” reads as “or” while “pred” stands for the predecessor relation. This 

steps systematically through each data base state, starting from t and moving backwards in time 

to the initial state looking for a tuple from the relation “p” which was either created at some point 

t’ in time prior to t and not deleted before t. For relation “surgery” this becomes: 

 

search-surgery ( t, a, b, c, d) if surgery ( t, a, b, c, d); 

not not-surgery ( t, a, b, c, d), fail; 

search-surgery ( pred ( t ) , a, b, c, d). 

 

 This asserts that a surgery exists during the interval t’ to t if a surgery tuple can be found 

which was inserted ate some point t’ in time prior to t and was not deleted (or updated) before t. 

To deal with the negative part of a relation, one has: 

 

search-np ( t, a1, a2, …, an) if not-p ( t, a1, a2, …, an); 

p ( t, a1, a2, …, an), fail; 

search-np ( pred ( t ), a1, a2, …, an). 

 

 In the Appendix of Neves (1984), a simple logical interpreter which implements this 

strategy from dealing with time and explicit negation in the context of a logic data base is 

presented. Any query to the relation “p” must therefore be translated as a query to “tp”, while 

any query to “notp” will be translated to “np” before being applied to the data base. The 

inference rules will then systematically search for the most recent clauses in the data base which 

either proves or refutes the query. Should the system fail to prove or disprove a given conjecture 

an answer of “IT IS NOT KNOW IF THE STATEMENT IS TRUE OR FALSE” is returned to the user. 

This is the case when neither a “YES” nor “NO” answer is possible from the axioms in the data 

base. If the answer is “NO” or “IT IS NOT KNOW IF THE STATEMENT IS TRUE OR FALSE” and 

analysis of the presuppositions made by the user in his query about the data present in the data 

might follow if requested (Neves and Williams (1983)). 
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5.3 Data Base Operations 

 It is possible to represent and answer user requests that make the distinction between a 

proposition always being true of the domain of discourse and one which is true at some 

particular point in time. It handles default reasoning of the type “If a surgery of a patient is to be 

performed at time t, and it was not delayed or canceled, the surgery should still be schedule to 

be performed now”. That is, it supports persistence. 

5.3.1 Retrieval Operations 

As an example, consider the user queries: 

• Is there now a surgery to be performed on an urgent patient? 

• Has there been surgeries to be performed on an immediate patient? 

• Are there more surgeries to be performed on an immediate patient now 

than at any time in the past? 

 

The first request can be answered by consulting the current state of the data base; the 

second by consulting all data base states. The third request can only be answered by evaluating 

two data base queries, one over the current state of the data base, another over every past 

situation and computing the answer from the values returned. As an example of the user 

dialogue to the system, consider the query “Has there ever been a surgery patient, at least one 

with high body temperature?”. 

For this he may enter:  

Table 3 — Tables skeleton of patient and patient-condition. 

  

 

 

patient state patn pname cdegree pathology 

 L   X  

patient-condition  state cdegree pain btemp bloodp 

any 1. L X  high  
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 This is translated by the system to yield the logic rule: 

 

 Query ( [ ] ) if [ any 1(_, (patient ( L, X, A, B, C), patient-condition ( L, X, D, low, E)), _)]. 

 

where the predicate “any 1” returns as its value a list of no more than 1 data base entry in the 

relation “patient” that satisfy the predicate conjunction “patient (L, X, A, B, C), patient-condition ( 

L, X, D, high, E)”. Other queries that a user might want to ask include: 

 

• Are there at least as many schedule surgeries now as there ever have been in the past? 

• Has the number of performed surgeries by surgeon Foster risen? 

• Has Clark ever had the same number of performed surgeries as Foster? 

• When was Clark listed to perform a surgery to a patient with aneurysm? 

     

Time dependent questions of this sort are not handle by existing data base systems, although the 

need for temporal semantics in data base systems has been discussed (Clifford and Warren 

(1983)).  

5.3.2 Update Operations 

Suppose that the user wishes to set to 5 the operating room to the patients with urgent 

surgery necessity. He may enter: 

  

 

Table 4 —  Tables skeleton of patient and surgery. 

 

 

 

 

 

  

 

patient state patn pname cdegree pathology 

  X  urgent  

surgery state patn surgn types oproom 

u.  X   5 
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Where the entry “u.” in the tuple-command-field of relation “surgery” refers to the relation to 

which the update operation applies. This request is mapped into the rule clauses: 

 

not-surgery ( 3, X, Y, G, B) <— [ patient ( 2, X, E, urgent, F) , surgery ( 2, X, Y, G, B) ]. 

 

Surgery ( 3, X, Y, G, 5) <— [ patient ( 2, X, E, urgent, F) , surgery ( 2, X, Y, G, B) ]. 

 

which when applied to the data base yields the ground clauses: 

 

surgery ( 3, 14, amber, liver_transplant, 5). 

not-surgery ( 3, 14, amber, liver_transplant, 3). 

 

These clauses are then added to the data base. 

 With this approach a system for reasoning about time and negation that is not too 

extravagant with respect to storage is presented. Changes to the data base are explicitly 

represented by time stamping the data base clauses, i.e. time is represented as a series of data 

bases describing the world in successive states. Both positive and negative information are 

represented explicitly in the data base, i.e. the components of a relation are now defined by 

positive and/or negative ground instances or general rules, or by a mixture of both. A first-order 

logic model is presented as a paradigm of a temporal data base model. This approach is referred 

to as the open world assumption and corresponds to the standard first-order interpretation of 

negation.  

 These ideas have been realized in an extension to the query language QBE, which has 

been implemented in Prolog and is currently running on VAXs, PDPs and an Eclipse machine. 
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CHAPTER 6  

 

SURGERY PROCESS KNOWLEDGE DATABASE 

  A high level of complexity and large amount of available data is present throughout the 

surgery process. Therefore, in order to get the best panorama of the process as a whole, a large 

group of entities that play an influential role in the process needs to be taken into account and 

efficiently structured. Moreover, available data needs to be properly analysed and processed in 

order to obtain reliable input parameters, guaranteeing the feasibility and efficiency of the 

obtained solution, when applied to the real system. Also, the unpredictable state of the process 

demands that adverse situations that could risk a successful case to be avoided, by taken into 

account the presence of responsible entities on the data. Thus, everything occurring within and 

around the process will provide a successful intervention.  

 In order to develop a predictive model to estimate the surgery process a database was 

set. The data used was taken from the health records of patients at a major health care 

institution in the north of Portugal.  

In this section the process of extraction, transformation and loading is briefly 

demonstrated. Likewise, it shows how the information is structured and how it is processed.  

6.1 Extract, Transform and Load 

 In order to supply the CBR and ANN processes used, it was necessary to organize the 

information by gathering data from several sources and carry out with an Extract, Transform and 

Load (ETL) process. A star schema was used to organize the information, which consists of a 

collection of tables that are logically related to each other. To obtain a star schema a few steps 

were needed. The first stage was necessary to understand the problem in study and gather the 

parameter that have influence in the final outcome. Several variables that have a direct influence 

in the surgery process are taken into account and can be grouped in two categories. The ones 

directly related with the patient and the ones that have to do with the hospital environment during 

the inpatient care. The variables chosen and the structure applied are discussed in the next 

section (section 7.2). The following stage was related with the dimensions that would be needed 

to define these parameters on the facts tables. For the final stage, information from several 
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sources was collected, transformed according the fact and dimension tables and loaded to the 

fact tables. 

6.2 Data Processing   

 After studying the best way to delineate the surgery process in a way that includes the 

most focal points of the process as a whole, an example of how the structure would be created 

was set and an overview is presented in Figure 9. The schema focus on a chronological 

assessment of the surgery process encompassing the perioperative, intraoperative and 

postoperative periods. The process is initiated on the perioperative period by the patient 

admission to the hospital flowed by an evaluation about is health condition, in order to obtain the 

most fitted schedule for his surgery performance. As for the intraoperative period, the surgery is 

performed and through its execution the record of the patient state, medical team and physical 

resources is made. Ultimately, in the postoperative period, the state of the patient is supervised 

until is stabilization and discharge from the hospital, ending the surgery process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 —  Overview of the Surgery Process. 
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By following the schema delineated in Figure 9, after obtaining the star schema it is possible 

to build up a set of tables with the information that most influence the surgery process and 

construct the database knowledge structure presented on the Figure 11, that is described next.  

The insertion of data begins with the patient admission to the hospital, where the patient 

related data relevant to the surgery process is added to the database into the Patient Information 

table. 

 

o Patient Information  

This table describes the characteristics of the patient when admitted in to the 

hospital, namely the variables Age, Gender, Body Mass (kg), Height (m), Type of Patient 

and Admission Date (day/month/year). The variable Age is filled with the patient age; 

the Gender with patient sex either male (M) or female (F); the Body Mass with the patient 

weight in kilograms; the Height with the patient height in meters; the Type of Patient with 

the type of patient either elective or non-elective.   

 

Followed by the record of the patient information an assessment of the condition of the 

patient is performed and two tables will be filled with data, namely the Symptoms and the 

Pathology tables. 

 

o Symptoms 

This table describes the symptoms that a patient present when admitted to the 

hospital, namely the variables Loss of Consciousness, Physical Pain, Body Temperature, 

Vision Disturbance, Nausea and Vomiting, Blood Pressure Disturbance and Breading 

Disturbance. The variables are filled with qualitative information of the presence of a 

symptom that the patient may or may not have, where the scale is respectively Non, 

Low, Moderate, High, Very High. 

 

o Pathology 

This table is filled with the variable Classification where the designation of the 

pathology that the patient is diagnosed is present. 
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With data present in the three tables Patient Information, Symptoms and Pathology a new 

table is set, named Pathology Incidence in order to be used by the ANN process. 

 

o Pathology Incidence 

This table is filled with variables with data from other tables namely the variables Age, 

Gender, Body Mass Index (BMI) (kg/m2), Pathology and Symptoms. Where, the variable 

Age is filled with the patient age; the Gender with 0 (zero) or 1 (one) standing for male or 

female respectively; the BMI with the result of the body max index of the patient from the 

use of the equation h3X|	}JNN	 ~9Iℎ4l; the Pathology is populated with the number 

of the corresponding Classification presented on the Pathology table; the Symptoms 

variable is filled with ranges of the qualitative values present in the Symptoms table.  

The function of this table is to feed the ANN process with the variables that define the 

incidence of the pathology on the patient in order to obtain the urgency state. 

 

After the information is processed by the ANN, the Pathology Incidence is obtained with the 

classification of the pathology degree and the Surgery Scheduling table is populated. 

 

o Surgery Scheduling 

This table is filled with the variables Pathology Incidence, Surgery Date 

(day/month/year) and Surgery Hour (hrs/min).  Where, the Pathology Incidence is 

populated with the degree of incidence that a pathology has in the patient in order to 

decide the urgency of the surgery execution, where, the higher the degree is, more 

urgent the patient case is, therefore the surgery needs to be performed earlier. Thus, the 

Surgery Date and the Surgery Hour is populated according with the degree obtained.  

 

By filling the Surgery Scheduling table, the surgery is to be performed in the date and hour 

defined in the previous table.  

The next tables to be taken into account are the Patient Perioperative State and Patient Risk 

Factors For Surgery Performance. 
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o Patient Perioperative State 

This table describes the patient condition in order to be accepted to perform the 

surgery, since a low value of the interval range could mean that the surgery would need 

to be delayed or even cancelled until the patient is in condition to be operated and a rush 

on the execution of the surgery could put in risk the patient life or the success of the 

surgery. The patient condition variables taken into account are respectively the Loss of 

Consciousness, Physical Pain, Hemodynamic Stability, Respiratory Stability, Oxygen 

Saturation Stability, Vital Signs, Pain Absence, Nausea and Vomiting Absence. These 

variables are filled with qualitative information of conditions that the patient may or may 

not present, where the scale is respectively Non, Low, Moderate, High, Very High. 

 

o Patient Risk Factors For Surgery Performance 

This table describes risk factors that could put in risk the patient life and the surgery 

success, the table contemplates the variables Allergies, Medication, Other Diseases. Where 

the Allergies stands for the possibility of the patient undergoing surgery having some type of 

allergic reaction, for example to some anaesthetic drugs, natural latex rubber, antibiotics or 

analgesics that can induce life-threatening anaphylaxis reactions; the Medication the patient 

could have taken some risk medication, for example some anti-coagulants that would make 

the blood thinner and increase the risk of wound infections and postoperative Anemia; the 

Other Diseases stands for the possibility of the patient having some other diseases that could 

risk the surgery performance. All these variables are filled with boolean data respectively 1 

(one) for yes or 0 (zero) for no. 

 

After the patient conditions to perform surgery is addressed in the previous tables, multiple 

factors play a major role in order to obtain a successful surgery. Therefore, the following tables 

taken into account are respectively the Medical Team, Surgery Physical Resources, Surgery 

Characteristics and Patient Intraoperative State. 

 

o Medical Team 

This table describes the medical staff present in the operating room. The table 

variables are divided by speciality respectively Surgeon, Surgical Care Practitioner, 
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Anaesthetist, Anaesthetic Practitioner, Advanced Scrub Practitioner, Circulating 

Practitioner and Recovery Practitioner and all are filled with the number of staff in each 

speciality available to perform the surgery.  

 

o Surgery Physical Resources 

This table describes the surgery resources used in the operation. The table is divided 

into the variables Operating Room, Surgery Equipment, Surgery materials, PACU Bed 

(min), ICU Bed (day) and Ward Bed (day). Where, the Operating Room informs about the 

availability of an operating room, since for example in the case of an immediate surgery 

none of the operating rooms could be available, or in the case where the operating room 

was needed for an immediate surgery a less urgent patient needs to wait until there is 

one free; the Surgery Equipment and Surgery Material informs respectively about the 

availability of all equipment and material needed in order to operate; the PACU Bed, ICU 

Bed and Ward Bed, informs respectively about the availability of a Post-Anaesthesia Care 

Unit bed, an Intensive Care Unit bed if needed and Ward bed. All these variables are 

filled with boolean data respectively 1 (one) for yes or 0 (zero) for no. 

 

o Surgery Characteristics 

This table describes the characteristics of the surgery to be performed. It is 

composed by the variables Type of Surgery, Surgery Specialty and the Surgery Time. 

Where, the Type of Surgery variable is filled with the options of the type of surgery to be 

perform, namely the Elective, Expedited, Immediate and Urgent; the Surgery Speciality is 

filled with the name of the specialization of the surgery, as for the Surgery Time (min) it 

gives the time in minutes of the duration of the performance of the surgery. 

 

o Patient Intraoperative State 

This table describes the patient state during the surgery performance integrating the 

variables Hemodynamic Stability, Respiration Stability, Oxygen Saturation Stability and 

Vital Signs while performing the surgery. These variables are filled with the respectively 

qualitative information of the conditions that the patient may or may not present, where 

the scale is respectively Non, Low, Moderate, High and Very High. 
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 With the data populating the previous tables, namely the Medical Team, Surgery Physical 

Resources, Surgery Characteristics and Patient Intraoperative State a new table is set with the 

name Surgery Performance, so that the contained information is used by the ANN process. 

 

o Surgery Performance 

This table is filled with variables with data from other tables, namely the variables 

Medical Team (MT), Patient Perioperative State (PPES), Patient Intraoperative State 

(PIS), Patient Risk Factors For Surgery Performance (PRFSP), Type of Surgery (TS), 

Surgery Speciality (SS), Surgery Time (min) (St) and Surgery Physical Resources (SPR). 

Where, the Medical Team is filled with the total number of elements present in the 

performance of the surgery; the Patient Perioperative State with the qualitative values of 

the perioperative state of the patient; the Patient Intraoperative State with the qualitative 

values of the state of the patient during the intraoperative period; the Patient Risk Factors 

For Surgery Performance with the total number of risk factors that the patient performing 

the surgery has; the Type of Surgery is present with the value of the respective type 

presented on the Surgery Characteristics table namely 1 (one) for Elective, 2 (two) for 

Expedited, 3 (three) for Immediate and 4 (four) for Urgent; the Surgery Speciality is filled 

with the respective number of the speciality of the surgery; the Surgery Time (min) gives 

the duration of the performance of the surgery in minutes; the Surgery Physical 

Resources gives the number of the surgery related resources available, given by the 

quantity of 1 (one) present on the Surgery Physical Resources table. 

 

 The function of this table is to feed the ANN process through the gathered data with the 

variables that most influence the surgery performance in order to obtain the state of the surgery 

execution.  

 After the information is processed by the ANN, the Surgery Performance is obtained with 

the classification of the surgery is state and the Surgery Assessment table is populated. 
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o Surgery Assessment 

This table is filled with the variables Surgery Performance (SP), Surgery Complications 

(SC), ICU Time (ICUt) (day) and PACU Time (PACUt) (min). Where, the Surgery Performance 

is filled with the performance state of the surgery given by the ANN process resulting into the 

respectively possibilities of Cancelled, Delayed, Operating and Performed; the Surgery 

Complications gives information if some type of complications happened during the surgery 

procedure, it is filled with boolean data namely 1 (one) for yes and 0 (zero) for no; the ICU 

Time and PACU Time give respectively the time of days that a patient was in the Intensive 

Care Unit bed and the time of minutes that a patient was in the Post-Anaesthesia Care Unit 

bed. 

 

 After the surgery is performed and the patient is discharge from PACU or ICU bed, it is 

moved to the ward bed were an evaluation of is recuperation state is made in order to be 

discharge from the hospital. This evaluation made to the patient populates the table Patient 

Postoperative State. 

 

o Patient Postoperative State 

This table describes the patient condition in order to be discharge from the hospital. 

The patient condition variables taken into account are respectively the Loss of 

Consciousness, Physical Pain, Hemodynamic Stability, Respiratory Stability, Oxygen 

Saturation Stability, Vital Signs, Pain Absence, Surgical Bleeding Absence, Nausea and 

Vomiting Absence. All these variables are filled with qualitative information of conditions 

that the patient may or may not present, where the scale is respectively Non, Low, 

Moderate, High and Very High. 

 

 With data present in previous tables Patient Postoperative State and Patient Information 

a new table is set, named Patient Postoperative Assessment in order to the information be used 

by the ANN process. 
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o Patient Postoperative Assessment 

This table is filled with the variables Age, Gender, Body Mass Index (BMI) (kg/m2), 

Patient Postoperative State (PPOS). Where, the variable Age is filled with the patient age; 

the Gender with 0 (zero) or 1 (one) standing for male or female respectively; the BMI 

with the result of the body max index of the patient from the use of the equation 

h3X|	}JNN	 ~9Iℎ4l; the Patient Postoperative State is filled with the qualitative 

values of the postoperative state of the patient.  

The function of this table is to feed the ANN process through the gathered data that 

give the state of the patient is health condition, in order to be discharge from the 

hospital. 

 

 After the information is processed by the ANN and the Patient Postoperative Assessment 

is obtained with the classification of the surgery is state, the Surgery Postoperative Assessment 

table is populated. 

 

o Surgery Postoperative Assessment 

This table is filled with the variables Patient Postoperative Assessment (PPA), Ward Bed 

Time (day) (WBt), Contracted Infection (CI), Discharge Date (day/month/year). Where, the 

Patient Postoperative Assessment variable is filled with the state of the patient healthy 

obtained by ANN process, namely Unhealthy, Unstable, Stable and Healthy, where, 

Unhealthy means that the patient health is still in a critical condition, therefore it needs 

special attention in order to regain is healthy state, the Unstable means the patient still 

needs constant observation of the health state, the Stable means that the patient is almost 

ready to be discharge but needs some minor observations and Healthy means that the 

patient is ready to be discharge from the hospital; the Contracted Infection is filled if a patient 

during is surgery process contracted an infection, in order to identify the risk of future 

patients contracting some type of infection when performing the same surgery process, this 

variable is filled with boolean values 1 (one) for yes and 0 (zero) for no; the Discharge Date is 

filled with the date of the patient discharge of the hospital ending the surgery process as a 

whole. 
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 After populating all the previous tables with the respectively data the main table Surgery 

process is set with all the main variables from the surgery process in order to feed the CBR 

process.  

 

o Surgery process 

This table is filled with all the main variables from the surgery process in order to be used 

by the CBR process, namely the variables Age, Gender, Body Mass Index (BMI) (kg/m^2), 

Type of Patient (TP), Pathology, Pathology Incidence (PI) , Medical Team (MT), Patient 

Perioperative State (PPES), Patient Intraoperative State (PIS), Patient Risk Factors For 

Surgery Performance (PRFSP), Type of Surgery (TS), Surgery Specialty (SS), Surgery Time 

(St), Surgery Physical Resources (SPR), Surgery Performance (SP), Surgery Complications 

(SC), ICU Time (ICUt) (day), PACU Time (PACUt) (min), Patient Postoperative State (PPOS), 

Patient Postoperative Assessment (PPA), Ward Bed Time (WBt) (day), Contracted Infection 

(CI), Surgery Hours (hrs:min), Surgery Waiting Time (day), Patient Hospitalization Time (day), 

Surgery process Time (day) and Observations. Where, the variable Age is filled with the 

patient age; the Gender with 0 (zero) or 1 (one) standing for male or female respectively; the 

BMI with the result of the body max index of the patient from the use of the equation 

h3X|	}JNN	 ~9Iℎ4l; the Type of Patient with the type of patient either 1 (one) for 

elective or 0 (zero) for non-elective; the Pathology is populated with the number of the 

corresponding Classification presented on the Pathology table; the Pathology Incidence is 

populated with the value of the degree of incidence that a pathology has in the patient, in 

order to decide the urgency of the surgery execution given by the ANN process being 

respectively 1 (one) for Non, 2 (two) for Low, 3 (three) for Moderate, 4 (four) for High  and 5 

(five) for Very High; the Medical Team is filled with the total number of elements present in 

the performance of the surgery; the Patient Perioperative State with the qualitative values of 

the perioperative state of the patient; the Patient Intraoperative State with the qualitative 

values of the state of the patient during the intraoperative period; the Patient Risk Factors For 

Surgery Performance with the total number of risk factors that the patient performing the 

surgery has; the Type of Surgery is present with the value of the respective type presented on 

the Surgery Characteristics table namely 1 (one) for Elective, 2 (two) for Expedited, 3 (three) 

for Immediate and 4 (four) for Urgent; the Surgery Speciality is filled with the respective 

number of the speciality of the surgery; the Surgery Time (min) gives the duration of the 
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performance of the surgery in minutes; the Surgery Physical Resources gives the number of 

the surgery related resources available; the Surgery Performance is filled with the 

performance state of the surgery given by the ANN process resulting into the respectively 

possibilities of 1 (one) if Cancelled,  2 (two) if Delayed, 3 (three) if Operating and 4 (four) if 

Performed; the Surgery Complications gives information if some type of complications 

happened during the surgery procedure, it is filled with boolean data namely 1 (one) for yes 

and 0 (zero) for no; the ICU Time give respectively the time of days that a patient was in the 

Intensive Care Unit bed ; the PACU Time give the time of minutes that a patient was in the 

Post-Anaesthesia Care Unit bed; the Patient Postoperative State is filled with the qualitative 

values of the postoperative state of the patient; the Patient Postoperative Assessment 

variable is filled with the state of the patient health obtained by ANN process namely 1 (one) 

for  Unhealthy, 2 (two) for Unstable , 3 (three) for Stable and 4 (four) for Healthy; the Ward 

Bed Time with the days that the patient stayed on the ward bed; the Contracted Infection is 

filled if a patient during is surgery process contracted an infection, filled with boolean values 

1 (one) for yes and 0 (zero) for no; the Surgery Hour provides the hour at which the surgery 

was performed; the Surgery Waiting Time (day) with the time in days that the patient had to 

wait until the surgery was performed; the Patient Hospitalization Time (day) with the time in 

days that a patient was admitted to the hospital from the admission to the discharge day; the 

Surgery Process Time (day) with the time in days that the surgery process has taken from 

the identification of the patient need of surgery to the day of discharge from the hospital; the 

Observations with an free text fields that allow for the registration of relevant events during 

the surgery process. 

 

 After the Surgery Process table if filled, the knowledge database representation is 

completed, and the information is processed by the CBR system in order to add the new 

information to the cases record base. 

6.3 Knowledge Database Time Representation  

As mentioned above, this knowledge database is time depend, this means, that all the 

variables presented in each table describe a complete historical record of all the changes 

made throughout the process from 4y  to 4w, by using an additional attribute value denoting 

the state number, as described on the Chapter 6. Therefore, the qualitative information 
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present will also be affected by the presence of the state number since, changes to the 

qualitative data will be explicitly represented by time stamping, thus aiming at the 

quantification of the qualitative part and in order to make easy the understanding of the 

process, it will also be presented the time changes of the qualitative data in a three 

dimensional graphical form as presented on Figure 10. In it is possible to view a time lapse 

of the changes occurred to the information of a particular subject present on the knowledge 

base. This graphics follow the same concept as the representation of the Qualitative 

Knowledge, respecting the same characteristics presented on section 5.1.2 of Chapter 5, but 

taking into account the time changes occurred on the information of some issue regarding a 

particular subject, where in this case the information can vary from Low to Very High or other 

intermediate value that has taken place in a certain time state. 

 

 

 

    

     

 

 

 

 

Figure 10 — A view of a qualitative data/knowledge processing changes on a time domain. 

 

Subsequently, each patient surgery process will have the complete chronological history 

record of all the changes made in the surgery process, increasing the proximity of the model 

to the real surgery process, since changes, removal or updates in the data, are inevitable and 

extremely important to the trustworthiness off the database, allowing a more accurate use of 

the data by the CBR process. 

More details about the benefits of the use of time on the system will be discussed in detail 

on the Chapter 8 section 8.2. 
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6.4 Logical Programming Approach to Data Processing  

 With the structured presented on the section 7.1, the knowledge database is given in 

terms of the extensions of the relations depicted in Figure 11, which stand for a situation where 

one has to manage information of a surgery process. Under this scenario some incomplete 

and/or unknown data is also present. For instance, in the Surgery Process table, the PACU Time 

(PCAUt) in case 1 is unknown, which is depicted by the symbol �, while the Patient 

Intraoperative State (PIS) range in the interval [0.71, 0.73]. 
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Figure 11— A fragment of the knowledge base for Surgery Process. 
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Now, applying the procedure presented in Fernandes et al. (2015) to the tables or 

relation’s fields that make the knowledge base for Surgery Process (Figure 11), excluding at this 

stage such a process the Observation one, and looking to the DoCs values obtained, it is possible 

to set the arguments of the set of  predicates pathology incidence (pi) ,  surgery 

performance (sp) , patient postoperative assessment (ppa) and surgery process 

(surgproc), whose extensions also denotes the objective functions with respect to the problem 

under analyse, in the from: 

 

09: 4V>S, gI6, Å62]S\, h}U, ÇJ4ℎÉQÉÑÖ, Ü|@:dÉ>á 	→ 	 0,1  

 

N0: 4V>S,}â, ÇÇäÜ, ÇUÜ, ÇãåÜÇ, âÜ, ÜÜ, Üä, ÜÇã	 → 	 0,1  

 

00J: 4V>S, gI6, Å62]S\, h}U, ÇÇçÜ	 → 	 0,1  

 

NLKI0K38: 4V>S, gI6, Å62]S\, h}U, âÇ, ÇJ4ℎÉQÉÑÖ, ÇU,}â, ÇÇäÜ, ÇUÜ, ÇãåÜÇ, âÜ, ÜÜ, 

Ü4, ÜÇã, ÜÇ, ÜW, UWé4, ÇgWé4, ÇÇçÜ, ÇÇg,èh4, WU, Ü~, ÜR\ÑS\ÖèPVdV<Ñ4V>S, 

ÇPdVS<d~Éá:VdPQVêPdVÉ<4V>S, ÜR\ÑS\ÖÇ\ÉëSáá4V>S 	→ 	 0,1  

 

where 0 (zero) and 1 (one) denote, respectively, the truth values false and true. 

 The application of the algorithm presented in Fernandes et al. (2015) comprises several 

phases. In the former one the clauses or terms that make extension of the predicate under study 

are established. In the next stage the boundaries of the attributes intervals are set in the interval 

[0,1] according to a normalization process in terms of the expression (ì − ì>V<)/(ì>Pn −

ì>V<), where the Ys stand for themselves. Finally, the DoC is evaluated as described in the 

previous Chapter 5.  

It is now possible to exemplify the application of the procedure referred to above and 

given in Fernandes et al. (2015), in relation to the term or clause that presents the feature vector 

in terms of the extension of each predicate. 

 In terms of the extension of predicate pi, with the feature vector time = 0, Age = 35, 

Gender = 0, BMI = 22.13 , Pathology = 470, Symptoms = [0.24 , 0.37] , one may have:  

 

 



	 	 CHAPTER 6 SURGERY PROCESS KNOWLEDGE DATABASE 

	 82	

Begin 

 

%The predicate’s extension that sets the Universe-of-Discourse for the term under 

observation is fixed% 

 

{ ¬	09	 4, gîÑS, hîÑS T3UîÑS, i3WîÑS , 	 gïS<, hïS< T3UïS<, i3WïS< , 

gñóò, hñóò T3Uñóò, i3Wñóò , gôPdö, hôPdö T3UôPdö, i3WôPdö , gõÖ>, hõÖ> T3UõÖ>, i3WõÖ>  

← 234	09		 4, gîÑS, hîÑS T3UîÑS, i3WîÑS , 	 gïS<, hïS< T3UïS<, i3WïS< , 

gñóò, hñóò T3Uñóò, i3Wñóò , gôPdö, hôPdö T3UôPdö, i3WôPdö , gõÖ>, hõÖ> T3UõÖ>, i3WõÖ>  

09
0, 35	, 35 1[ûü,ûü], 	i3W[ûü,ûü] , 0, 0 1[y,y], 	i3W[y,y] 	 , 22.13,			22.13 1[ll.*û,ll.*û], 	i3W[ll.*û,ll.*û] ,

470	, 470 1[£§y,£§y], 	i3W[£§y,£§y] , 	 0.24, 	0.37 1[y.l£,y.û§], 	i3W[y.l£,y.û§]

∷ 1 ∷ i3W 

 

0, 1 																															 0, 1 																											 0, 1 																																									 0, 1 																																										 0, 1
•¶¶ß®©™¶´`≠	ÆØ∞•®±≠	Ø±≤´	±Øß∞•≥®¥´Æ	

 

}∷ 1 

 

 

%The attribute’s boundaries are set to the interval [0, 1], according to a normalization 

process that uses the expression (ì − ì>V<)/(ì>Pn − ì>V<) % 

 

{ ¬	09	 4, gîÑS, hîÑS T3UîÑS, i3WîÑS , 	 gïS<, hïS< T3UïS<, i3WïS< , 

gñóò, hñóò T3Uñóò, i3Wñóò , gôPdö, hôPdö T3UôPdö, i3WôPdö , gõÖ>, hõÖ> T3UõÖ>, i3WõÖ>  

← 234	09		 4, gîÑS, hîÑS T3UîÑS, i3WîÑS , 	 gïS<, hïS< T3UïS<, i3WïS< , 

gñóò, hñóò T3Uñóò, i3Wñóò , gôPdö, hôPdö T3UôPdö, i3WôPdö , gõÖ>, hõÖ> T3UõÖ>, i3WõÖ>  

09
0, 0.29	, 0.29 1[y.l∂,y.l∂], 	i3W[y.l∂,y.l∂] , 0, 0 1[y,y], 	i3W[y,y] 	 , 0.34,			20.34 1[y.û£,y.û£], 	i3W[y.û£,y.û£] ,

0.0047	, 0.0047 1[y.yy£§,y.yy£§], 	i3W[y.yy£§,y.yy£§] , 	 0.24, 	0.37 1[y.l£,y.û§], 	i3W[y.l£,y.û§]

∷ 1 ∷ i3W 

 

0, 1 																															 0, 1 																											 0, 1 																																									 0, 1 																																										 0, 1
•¶¶ß®©™¶´`≠	ÆØ∞•®±≠	Ø±≤´	±Øß∞•≥®¥´Æ	
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}∷ 1 

 

%The DoC’s values are evaluated % 

 

{ ¬	09	 4, gîÑS, hîÑS T3UîÑS, i3WîÑS , 	 gïS<, hïS< T3UïS<, i3WïS< , 

gñóò, hñóò T3Uñóò, i3Wñóò , gôPdö, hôPdö T3UôPdö, i3WôPdö , gõÖ>, hõÖ> T3UõÖ>, i3WõÖ>  

← 234	09		 4, gîÑS, hîÑS T3UîÑS, i3WîÑS , 	 gïS<, hïS< T3UïS<, i3WïS< , 

gñóò, hñóò T3Uñóò, i3Wñóò , gôPdö, hôPdö T3UôPdö, i3WôPdö , gõÖ>, hõÖ> T3UõÖ>, i3WõÖ>  

pi 0, 0.29	, 0.29 1, 	1 , 0, 0 1, 	1 	 , 0.34	, 0.34 1, 	1 , 0.0047	, 0.0047 1, 	1 , 	 0.24, 	0.37 1, 	0.99

•¶¶ß®©™¶´`≠	π•≥™´≠	ß•±∫´≠	Ø±≤´	±Øß∞•≥®¥´Æ	•±Æ	ß´≠ª´≤¶®π´	ºØ$	•±Æ	ΩØæ	π•≥™´≠	

∷ 1 ∷ 0.99 

0, 1 																															 0, 1 																											 0, 1 																																									 0, 1 																																										 0, 1
•¶¶ß®©™¶´`≠	ÆØ∞•®±≠	Ø±≤´	±Øß∞•≥®¥´Æ	

 

}∷ 1 

 

End 

 

In terms of the extension of predicate sp, with the feature vector time = 1, MT = 7, PPES 

= 0.77, PIS = 0.80 , PRFSP = 0, TS = 1, SS= �, St = 13, SPR = 5, one may have: 

 

Begin 

 

%The predicate’s extension that sets the Universe-of-Discourse for the term under 

observation is fixed% 

 

{

 

¬	N0	 4, góø, hóø T3Uóø, i3Wóø , 	 gôô¿õ, hôô¿õ T3Uôô¿õ, i3Wôô¿õ , gôòõ, hôòõ T3Uôòõ, i3Wôòõ , 

gô¡¬õô, hô¡¬õô T3Uô¡¬õô, i3Wô¡¬õô , gøõ	høõ T3Uøõ, i3Wøõ , gõõ	hõõ T3Uõõ, i3Wõõ , 

gõd, hõd T3Uõd, i3Wõd , gõô¡, hõô¡ T3Uõô¡, i3Wõô¡  

← 234	N0		 4, góø, hóø T3Uóø, i3Wóø , 	 gôô¿õ, hôô¿õ T3Uôô¿õ, i3Wôô¿õ , gôòõ, hôòõ T3Uôòõ, i3Wôòõ , 

gô¡¬õô, hô¡¬õô T3Uô¡¬õô, i3Wô¡¬õô , gøõ	høõ T3Uøõ, i3Wøõ , gõõ	hõõ T3Uõõ, i3Wõõ , 
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gõd, hõd T3Uõd, i3Wõd , gõô¡, hõô¡ T3Uõô¡, i3Wõô¡  

sp

4, 7	, 7 1[§,§], 	i3W[§,§] , 0.77, 0.77 1[y.§§,y.§§], 	i3W[y.§§,y.§§] 	 , 0.80	, 0.80 1[y.≈,y.≈], 	i3W[y.≈,y.≈] ,

	 1, 0, 0 1[y,y], 	i3W[y,y]	 , 1, 	1 1[*,*], 	i3W[*,*] , 0, 1 1[y,*], 	i3W[y,*] , 	 13, 	13 1[*û,*û], 	i3W[*û,*û] ,

5, 	5 1[ü,ü], 	i3W[ü,ü]
	

∷ 1 ∷ i3W 

	
7, 15 																																															 0, 1 																																																			 0, 1

0, 3 																																														 1, 4 																																																 1, 65 																																																 10, 1920 		
0,6

•¶¶ß®©™¶´`≠	ÆØ∞•®±≠	

 

} ∷ 1 

 

%The attribute’s boundaries are set to the interval [0, 1], according to a normalization 

process that uses the expression (ì − ì>V<)/(ì>Pn − ì>V<) % 

 

{

 

¬	N0	 4, góø, hóø T3Uóø, i3Wóø , 	 gôô¿õ, hôô¿õ T3Uôô¿õ, i3Wôô¿õ , gôòõ, hôòõ T3Uôòõ, i3Wôòõ , 

gô¡¬õô, hô¡¬õô T3Uô¡¬õô, i3Wô¡¬õô , gøõ	høõ T3Uøõ, i3Wøõ , gõõ	hõõ T3Uõõ, i3Wõõ , 

gõd, hõd T3Uõd, i3Wõd , gõô¡, hõô¡ T3Uõô¡, i3Wõô¡  

← 234	N0		 4, góø, hóø T3Uóø, i3Wóø , 	 gôô¿õ, hôô¿õ T3Uôô¿õ, i3Wôô¿õ , gôòõ, hôòõ T3Uôòõ, i3Wôòõ , 

gô¡¬õô, hô¡¬õô T3Uô¡¬õô, i3Wô¡¬õô , gøõ	høõ T3Uøõ, i3Wøõ , gõõ	hõõ T3Uõõ, i3Wõõ , 

gõd, hõd T3Uõd, i3Wõd , gõô¡, hõô¡ T3Uõô¡, i3Wõô¡  

sp

1, 0	, 0 1[y,y], 	i3W[y,y] , 0.77, 0.77 1[y.§§,y.§§], 	i3W[y.§§,y.§§] 	 , 0.80	, 0.80 1[y.≈,y.≈], 	i3W[y.≈,y.≈] ,

0, 0 1[y,y], 	i3W[y,y]	 , 0, 	0 1[y,y], 	i3W[y,y] , 0, 1 1[y,*], 	i3W[y,*] ,

0.00157, 	0.00157 1[y.yy*ü§,y.yy*ü§], 	i3W[y.yy*ü§,y.yy*ü§] , 0.833, 	0.833 1[y.≈ûû,y.≈ûû], 	i3W[y.≈ûû,y.≈ûû]
	

∷ 1 ∷ i3W 

	
0, 1 																																															 0, 1 																																																			 0, 1

				 0, 1 																																																																		 0, 1 																																																																																															 0, 1 		
					 0,1 																																																																	 0,1

•¶¶ß®©™¶´`≠	ÆØ∞•®±≠	Ø±≤´	±Øß∞•≥®¥´Æ

 

} ∷ 1 

 

%The DoC’s values are evaluated % 

{ ¬	sp	 4, góø, hóø T3Uóø, i3Wóø , 	 gôô¿õ, hôô¿õ T3Uôô¿õ, i3Wôô¿õ , gôòõ, hôòõ T3Uôòõ, i3Wôòõ , 
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gô¡¬õô, hô¡¬õô T3Uô¡¬õô, i3Wô¡¬õô , gøõ	høõ T3Uøõ, i3Wøõ , gõõ	hõõ T3Uõõ, i3Wõõ , 

gõd, hõd T3Uõd, i3Wõd , gõô¡, hõô¡ T3Uõô¡, i3Wõô¡  

← 234	N0		 4, góø, hóø T3Uóø, i3Wóø , 	 gôô¿õ, hôô¿õ T3Uôô¿õ, i3Wôô¿õ , gôòõ, hôòõ T3Uôòõ, i3Wôòõ , 

gô¡¬õô, hô¡¬õô T3Uô¡¬õô, i3Wô¡¬õô , gøõ	høõ T3Uøõ, i3Wøõ , gõõ	hõõ T3Uõõ, i3Wõõ , 

gõd, hõd T3Uõd, i3Wõd , gõô¡, hõô¡ T3Uõô¡, i3Wõô¡  

sp
1, 0	, 0 1, 	1 ,			 0.70, 0.70 1, 	1 	,				 0.80	, 0.80 1, 	1 ,							 0, 0 1, 	1 , 	 0, 	0 1, 	1 ,

0, 1 1, 0 , 				 0.0016, 	0.0016 1, 1 ,						 0.833, 	0.833 1, 	1

•¶¶ß®©™¶´`≠	π•≥™´≠	ß•±∫´≠	Ø±≤´	±Øß∞•≥®¥´Æ	•±Æ	ß´≠ª´≤¶®π´	ºØ$	•±Æ	ΩØæ	π•≥™´≠	

∷ 1

∷ 0.88 

	
0, 1 																			 0, 1 																											 0, 1 																						 0, 1 																															 0, 1

0, 1 																													 0, 1 																																								 0, 1 			
•¶¶ß®©™¶´`≠	ÆØ∞•®±≠	Ø±≤´	±Øß∞•≥®¥´Æ	

 

} ∷ 1 

 

End 

 

In terms of the extension of predicate ppa, with the feature vector time = 3, Age = 35, 

Gender = 0, BMI = 22.13 , PPOS = [0.78 , 0.79], one may have: 

 

Begin 

 

%The predicate’s extension that sets the Universe-of-Discourse for the term under 

observation is fixed% 
 

{ ¬	ppa	 4, AîÑS, BîÑS QoIîÑS, DoCîÑS , 	 AïS<, BïS< QoIïS<, DoCïS< , 

Añóò, Bñóò QoIñóò, DoCñóò , AôôÕõ, BôôÕõ QoIôôÕõ, DoCôôÕõ ,  

← not	ppa		 4, AîÑS, BîÑS QoIîÑS, DoCîÑS , 	 AïS<, BïS< QoIïS<, DoCïS< , 

Añóò, Bñóò QoIñóò, DoCñóò , AôôÕõ, BôôÕõ QoIôôÕõ, DoCôôÕõ ,  

ppa
3, 35	,35 1[ûü,ûü], 	i3W[ûü,ûü] ,				 0, 0 1[y,y], 	i3W[y,y] 	,			 22.13	, 22.13 1[ll.*û,ll.*û], 	i3W[ll.*û,ll.*û] ,				

	 0.78	, 0.79 1[y.§≈,y.§∂], 	i3W[y.§≈,y.§∂]
	

∷ 1 ∷ i3W 

0, 120 																																																																				 0, 1 																																																																						 12, 42
[0, 1]

•¶¶ß®©™¶´`≠	ÆØ∞•®±≠		
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} ∷ 1 

 

%The attribute’s boundaries are set to the interval [0, 1], according to a normalization 

process that uses the expression (ì − ì>V<)/(ì>Pn − ì>V<) % 

 

{ ¬	ppa	 4, AîÑS, BîÑS QoIîÑS, DoCîÑS , 	 AïS<, BïS< QoIïS<, DoCïS< , 

Añóò, Bñóò QoIñóò, DoCñóò , AôôÕõ, BôôÕõ QoIôôÕõ, DoCôôÕõ ,  

← not	ppa		 4, AîÑS, BîÑS QoIîÑS, DoCîÑS , 	 AïS<, BïS< QoIïS<, DoCïS< , 

Añóò, Bñóò QoIñóò, DoCñóò , AôôÕõ, BôôÕõ QoIôôÕõ, DoCôôÕõ ,  

ppa
3, 0.29	,0.29 1[y.l∂,y.l∂], 	i3W[y.l∂,y.l∂] ,				 0, 0 1[y,y], 	i3W[y,y] 	,			 0.34	, 0.34 1[y.û£,y.û£], 	i3W[y.û£,y.û£] ,				

	 0.78	, 0.79 1[y.§≈,y.§∂], 	i3W[y.§≈,y.§∂]
	

∷ 1 ∷ i3W 

0, 1 																																																																				 0, 1 																																																																						 0, 1
[0, 1] 	

•¶¶ß®©™¶´`≠	ÆØ∞•®±≠	Ø±≤´	±Øß∞•≥®¥´Æ		

 

} ∷ 1 

 

 

 

%The DoC’s values are evaluated % 

 

{ ¬	ppa	 4, AîÑS, BîÑS QoIîÑS, DoCîÑS , 	 AïS<, BïS< QoIïS<, DoCïS< , 

Añóò, Bñóò QoIñóò, DoCñóò , AôôÕõ, BôôÕõ QoIôôÕõ, DoCôôÕõ ,  

← not	ppa		 4, AîÑS, BîÑS QoIîÑS, DoCîÑS , 	 AïS<, BïS< QoIïS<, DoCïS< , 

Añóò, Bñóò QoIñóò, DoCñóò , AôôÕõ, BôôÕõ QoIôôÕõ, DoCôôÕõ  

ppa 3, 0.29	, 0.29 1, 	1 ,			 0, 0 1, 	1 	 , 0.34	, 0.34 1, 	1 ,			 0.78	, 0.79 1, 	1

•¶¶ß®©™¶´`≠	π•≥™´≠	ß•±∫´≠	Ø±≤´	±Øß∞•≥®¥´Æ	•±Æ	ß´≠ª´≤¶®π´	ºØ$	•±Æ	ΩØæ	π•≥™´≠	

∷ 1 ∷ 0.99 

0, 1 																																				 0, 1 																																			 0, 1 																																									 0, 1
•¶¶ß®©™¶´`≠	ÆØ∞•®±≠	Ø±≤´	±Øß∞•≥®¥´Æ	

 

} ∷ 1 

 

End 
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In terms of the extension of predicate surgproc, with the feature vector time = 1, Age = 

35, Gender = 0, BMI = 22.13 , TP = 1, Pathology = 470, PI= 2, MT = 7, PPES = 0.77, PIS= 0.80 

, PRFSP= 0, TS=1, SS= �, St= 16, SPR= 5, SP = 4, SC= 0, ICUt= 0, PACUt= 4, PPOS= [0.78 , 

0.79], PPA= 4, WBt= 1, CI= 0, SH= 9.00, Surgery Waiting Time = 7, Patient Hospitalization Time 

= 3, Surgery Process Time= 10, one may have: 

	

Begin 

	

%The predicate’s extension that sets the Universe-of-Discourse for the term under 

observation is fixed% 
	

{ ¬	NLKI0K38	 4, gîÑS, hîÑS T3UîÑS, i3WîÑS , 	 gïS<]S\, hïS<]S\ T3UïS<]S\, i3WïS<]S\ , 

gñóò, hñóò T3Uñóò, i3Wñóò , gøô, høô T3Uøô, i3Wøô , gôPdö	hôPdö T3UôPdö, i3WôPdö , 

gôò, hôò T3Uôò, i3Wôò , góø, hóø T3Uôô¿õ, i3Wôô¿õ , gôòõ	hôòõ T3Uôòõ, i3Wôòõ , 

gô¡¬õô, hô¡¬õô T3Uô¡¬õô, i3Wô¡¬õô , gøõ, høõ T3Uøõ, i3Wøõ , gõõ	hõõ T3Uõõ, i3Wõõ , 

gõd, hõd T3Uõô¡, i3Wõô¡ , gõô, hõô T3Uõô, i3Wõô , gõ[	hõ[ T3Uõ[, i3Wõ[ , gò[–d	hò[–d T3Uò[–d, i3Wò[–d , 

gôî[–d, hôî[–d T3Uôî[–d, i3Wôî[–d , gôôÕõ, hôôÕõ T3UôôÕõ, i3WôôÕõ , gôôî	hôôî T3Uôôî, i3Wôôî , 

g—ñd, h—ñd T3U—ñd, i3W—ñd , g[ò, h[ò T3U[ò, i3W[ò , gõ“	hõ“ T3Uõ“, i3Wõ“ , 

gõ—d	hõ—d T3Uõ—d, i3Wõ—d , gô“d, hô“d T3Uô“d, i3Wô“d , gõôd	hõôd T3Uõôd, i3Wõôd  

← 234	NLKI0K38		 4, gîÑS, hîÑS T3UîÑS, i3WîÑS , 	 gïS<]S\, hïS<]S\ T3UïS<]S\, i3WïS<]S\ ,		 

gñóò, hñóò T3Uñóò, i3Wñóò , gøô, høô T3Uøô, i3Wøô , gôPdö	hôPdö T3UôPdö, i3WôPdö , 

gôò, hôò T3Uôò, i3Wôò , góø, hóø T3Uôô¿õ, i3Wôô¿õ , gôòõ	hôòõ T3Uôòõ, i3Wôòõ , 

gô¡¬õô, hô¡¬õô T3Uô¡¬õô, i3Wô¡¬õô , gøõ, høõ T3Uøõ, i3Wøõ , gõõ	hõõ T3Uõõ, i3Wõõ , 

gõd, hõd T3Uõô¡, i3Wõô¡ , gõô, hõô T3Uõô, i3Wõô , gõ[	hõ[ T3Uõ[, i3Wõ[ , gò[–d	hò[–d T3Uò[–d, i3Wò[–d , 

gôî[–d, hôî[–d T3Uôî[–d, i3Wôî[–d , gôôÕõ, hôôÕõ T3UôôÕõ, i3WôôÕõ , gôôî	hôôî T3Uôôî, i3Wôôî , 

g—ñd, h—ñd T3U—ñd, i3W—ñd , g[ò, h[ò T3U[ò, i3W[ò , gõ“	hõ“ T3Uõ“, i3Wõ“ , 

gõ—d	hõ—d T3Uõ—d, i3Wõ—d , gô“d, hô“d T3Uô“d, i3Wô“d , gõôd	hõôd T3Uõôd, i3Wõôd  
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surgproc

4, 35	,35 1[ûü,ûü], 	i3W[ûü,ûü] , 0, 0 1[y,y], 	i3W[y,y] 	 , 22.13	, 22.13 1[ll.*û,ll.*û], 	i3W[ll.*û,ll.*û] ,						

1	, 1 1[*,			*], 	i3W[*,*] , 470	,470 1[£§y,			£§y], 	i3W[£§y,£§y] ,				 ,

2, 2 1[l,l], 	i3W[l,l] 	,			 	7, 7 1[§,§], 	i3W[§,§] 0.77	, 0.77 1[y.§§,y.§§], 	i3W[y.§§,y.§§] , ,

0.80, 0.80 1[y.≈y,y.≈y], 	i3W[y.≈y,y.≈y] 	,			 0	, 0 1[y,y], 	i3W[y,y] , 1	,1 1[*,*], 	i3W[*,*] ,				

			 1, 65 1[*,◊ü], 	i3W[*,◊ü] 	,			 16	,16 1[*◊,*◊], 	i3W[*◊,*◊] , 5	,5 1[ü,ü], 	i3W[ü,ü] ,			

4, 4 1[£,£], 	i3W[£,£] 	 , 0	,0 1[y,y], 	i3W[y,y] ,			 0	,0 1[y,y], 	i3W[y,y]

4, 4 1[£,£], 	i3W[£,£] 	,			 	0.78,0.79 1[y.§≈,y.§∂], 	i3W[y.§≈,y.§∂] , 4, 4 1[£,£], 	i3W[£,£] ,

	 1	, 1 1[*,			*], 	i3W[*,*] ,				 0, 0 1[y,y], 	i3W[y,y] 			 9.00	, 9.00 1[∂.yy,∂.yy], 	i3W[∂.yy,∂.yy] ,			

	 	7, 7 1[§,§], 	i3W[§,§] , 	3, 3 1[û,û], 	i3W[û,û] , 	10, 10 1[*y,*y], 	i3W[*y,*y]

∷ 1 ∷ i3W 

																	

0, 120 																																																																							 0, 1 																																																																	 12, 42 					
								 0, 1 																																															 0, 100000

	 1, 5 																																																																								 7, 15 																																																																 0, 1 					
1, 65 																																																																								 10, 1920 																																																															 0, 6 					
1, 4 																																																																										 0, 1 																																																															 0, 480 							
0, 360 																																																																									 0, 1 																																																															 1, 4 	
0, 31 																																																																									 0, 1 																																																															 0, 24

0, 365 																																																																									 0, 31 																																																															 0, 386

	

•¶¶ß®©™¶´`≠	ÆØ∞•®±≠	

 

} ∷ 1 

 

 

%The attribute’s boundaries are set to the interval [0, 1], according to a normalization 

process that uses the expression (ì − ì>V<)/(ì>Pn − ì>V<) % 
 

	

{ ¬	NLKI0K38	 gîÑS, hîÑS T3UîÑS, i3WîÑS , 	 gïS<]S\, hïS<]S\ T3UïS<]S\, i3WïS<]S\ , 

gñóò, hñóò T3Uñóò, i3Wñóò , gøô, høô T3Uøô, i3Wøô , gôPdö	hôPdö T3UôPdö, i3WôPdö , 

gôò, hôò T3Uôò, i3Wôò , góø, hóø T3Uôô¿õ, i3Wôô¿õ , gôòõ	hôòõ T3Uôòõ, i3Wôòõ , 

gô¡¬õô, hô¡¬õô T3Uô¡¬õô, i3Wô¡¬õô , gøõ, høõ T3Uøõ, i3Wøõ , gõõ	hõõ T3Uõõ, i3Wõõ , 

gõd, hõd T3Uõô¡, i3Wõô¡ , gõô, hõô T3Uõô, i3Wõô , gõ[	hõ[ T3Uõ[, i3Wõ[ , gò[–d	hò[–d T3Uò[–d, i3Wò[–d , 

gôî[–d, hôî[–d T3Uôî[–d, i3Wôî[–d , gôôÕõ, hôôÕõ T3UôôÕõ, i3WôôÕõ , gôôî	hôôî T3Uôôî, i3Wôôî , 

g—ñd, h—ñd T3U—ñd, i3W—ñd , g[ò, h[ò T3U[ò, i3W[ò , gõ“	hõ“ T3Uõ“, i3Wõ“ , 

gõ—d	hõ—d T3Uõ—d, i3Wõ—d , gô“d, hô“d T3Uô“d, i3Wô“d , gõôd	hõôd T3Uõôd, i3Wõôd  

← 234	NLKI0K38		 gîÑS, hîÑS T3UîÑS, i3WîÑS , 	 gïS<]S\, hïS<]S\ T3UïS<]S\, i3WïS<]S\ ,		 

gñóò, hñóò T3Uñóò, i3Wñóò , gøô, høô T3Uøô, i3Wøô , gôPdö	hôPdö T3UôPdö, i3WôPdö , 



6.4 LOGICAL PROGRAMMING APPROACH TO DATA PROCESSING 

	 89	

gôò, hôò T3Uôò, i3Wôò , góø, hóø T3Uôô¿õ, i3Wôô¿õ , gôòõ	hôòõ T3Uôòõ, i3Wôòõ , 

gô¡¬õô, hô¡¬õô T3Uô¡¬õô, i3Wô¡¬õô , gøõ, høõ T3Uøõ, i3Wøõ , gõõ	hõõ T3Uõõ, i3Wõõ , 

gõd, hõd T3Uõô¡, i3Wõô¡ , gõô, hõô T3Uõô, i3Wõô , gõ[	hõ[ T3Uõ[, i3Wõ[ , gò[–d	hò[–d T3Uò[–d, i3Wò[–d , 

gôî[–d, hôî[–d T3Uôî[–d, i3Wôî[–d , gôôÕõ, hôôÕõ T3UôôÕõ, i3WôôÕõ , gôôî	hôôî T3Uôôî, i3Wôôî , 

g—ñd, h—ñd T3U—ñd, i3W—ñd , g[ò, h[ò T3U[ò, i3W[ò , gõ“	hõ“ T3Uõ“, i3Wõ“ , 

gõ—d	hõ—d T3Uõ—d, i3Wõ—d , gô“d, hô“d T3Uô“d, i3Wô“d , gõôd	hõôd T3Uõôd, i3Wõôd  

surgproc

0.29	,0.29 1[y.l∂	,y.l∂], 	i3W[y.l∂,y.l∂] , 0, 0 1[y,y], 	i3W[y,y] 	 , 0.34	, 0.34 1[y.û£,y.û£], 	i3W[y.û£,y.û£] ,						

1	, 1 1[*,			*], 	i3W[*,*] , 0.0047,0.0047 1[y.yy£§,y.yy£§], 	i3W[y.yy£§,y.yy£§] ,				 ,

0.25, 0.25 1[y.lü,y.lü], 	i3W[y.lü,y.lü] 	 , 0	, 0 1[y,y], 	i3W[y,y] 0.77	, 0.77 1[y.§§,y.§§], 	i3W[y.§§,y.§§] , ,

0.80, 0.80 1[y.≈y,y.≈y], 	i3W[y.≈y,y.≈y] 	,			 0	, 0 1[y,y], 	i3W[y,y] , 0	, 0 1[y,y], 	i3W[y,y] ,				

			 0, 1 1[y,*], 	i3W[y,*] 	 , 0.0031	,0.0031 1[y.yyû*,y.yyû*, 	i3W[y.yyû*,y.yyû*] ,			

4, 0.83,0.83 1[y.≈û	y.≈û], 	i3W[y.≈ûy.≈û] , 1	, 1 1[*,*], 	i3W[*,*] 	 , 0	,0 1[y,y], 	i3W[y,y] ,			

0	,0 1[y,y], 	i3W[y,y] , 0.011, 0.011 1[y.y**,y.y**], 	i3W[y.y**,y.y**] 	 ,

	 	0.78,0.79 1[y.§≈,y.§∂], 	i3W[y.§≈,y.§∂] , 1	, 1 1[*,			*], 	i3W[*,*] ,			
	

0.032, 0.032 1[y.yûl			y.yûl], 	i3W[y.yûl,y.yûl] , 0	, 0 1[y,y], 	i3W[y,y] ,

	0.375, 0.375 1[y.û§ü,y.û§ü], 	i3W[y.û§ü,y.û§ü] , 0.019	,0.019 1[y.y*∂,y.y*∂], 	i3W[y.y*∂,y.y*∂]

0.097	,0.097 1[y.y∂§,y.y∂§], 	i3W[y.y∂§,y.y∂§] , 0.026	,0.026 1[y.yl◊,y.yl◊], 	i3W[y.y£∂,y.yl◊]

∷ 1 ∷ i3W 

																	

0, 1 																																																																								 0, 1 																																																																	 0, 1 					
								 0, 1 																																															 0, 1

	 0, 1 																																																																								 0, 1 																																																																 0, 1 					
0, 1 																																																																								 0, 1 																																																															 0, 1 					

								 0, 1 																																															 0, 1 						
0, 1 																																																																									 0, 1 																																																															 0, 1

			 0, 1 																																															 0, 1 					

	

		 0, 1 																																															 0, 1 			
			 0, 1 																																															 0, 1 						
			 0, 1 																																															 0, 1 						
			 0, 1 																																															 0, 1 						

	

			
	

	

•¶¶ß®©™¶´`≠	ÆØ∞•®±≠	Ø±≤´	±Øß∞•≥®¥´Æ	

                                        

} ∷ 1 

 

 

%The DoC’s values are evaluated % 

 

	

{ ¬	NLKI0K38	 4, gîÑS, hîÑS T3UîÑS, i3WîÑS , 	 gïS<]S\, hïS<]S\ T3UïS<]S\, i3WïS<]S\ , 

gñóò, hñóò T3Uñóò, i3Wñóò , gøô, høô T3Uøô, i3Wøô , gôPdö	hôPdö T3UôPdö, i3WôPdö , 
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gôò, hôò T3Uôò, i3Wôò , góø, hóø T3Uôô¿õ, i3Wôô¿õ , gôòõ	hôòõ T3Uôòõ, i3Wôòõ , 

gô¡¬õô, hô¡¬õô T3Uô¡¬õô, i3Wô¡¬õô , gøõ, høõ T3Uøõ, i3Wøõ , gõõ	hõõ T3Uõõ, i3Wõõ , 

gõd, hõd T3Uõô¡, i3Wõô¡ , gõô, hõô T3Uõô, i3Wõô , gõ[	hõ[ T3Uõ[, i3Wõ[ , gò[–d	hò[–d T3Uò[–d, i3Wò[–d , 

gôî[–d, hôî[–d T3Uôî[–d, i3Wôî[–d , gôôÕõ, hôôÕõ T3UôôÕõ, i3WôôÕõ , gôôî	hôôî T3Uôôî, i3Wôôî , 

g—ñd, h—ñd T3U—ñd, i3W—ñd , g[ò, h[ò T3U[ò, i3W[ò , gõ“	hõ“ T3Uõ“, i3Wõ“ , 

gõ—d	hõ—d T3Uõ—d, i3Wõ—d , gô“d, hô“d T3Uô“d, i3Wô“d , gõôd	hõôd T3Uõôd, i3Wõôd  

← 234	NLKI0K38		 4, gîÑS, hîÑS T3UîÑS, i3WîÑS , 	 gïS<]S\, hïS<]S\ T3UïS<]S\, i3WïS<]S\ ,		 

gñóò, hñóò T3Uñóò, i3Wñóò , gøô, høô T3Uøô, i3Wøô , gôPdö	hôPdö T3UôPdö, i3WôPdö , 

gôò, hôò T3Uôò, i3Wôò , góø, hóø T3Uôô¿õ, i3Wôô¿õ , gôòõ	hôòõ T3Uôòõ, i3Wôòõ , 

gô¡¬õô, hô¡¬õô T3Uô¡¬õô, i3Wô¡¬õô , gøõ, høõ T3Uøõ, i3Wøõ , gõõ	hõõ T3Uõõ, i3Wõõ , 

gõd, hõd T3Uõô¡, i3Wõô¡ , gõô, hõô T3Uõô, i3Wõô , gõ[	hõ[ T3Uõ[, i3Wõ[ , gò[–d	hò[–d T3Uò[–d, i3Wò[–d , 

gôî[–d, hôî[–d T3Uôî[–d, i3Wôî[–d , gôôÕõ, hôôÕõ T3UôôÕõ, i3WôôÕõ , gôôî	hôôî T3Uôôî, i3Wôôî , 

g—ñd, h—ñd T3U—ñd, i3W—ñd , g[ò, h[ò T3U[ò, i3W[ò , gõ“	hõ“ T3Uõ“, i3Wõ“ , 

gõ—d	hõ—d T3Uõ—d, i3Wõ—d , gô“d, hô“d T3Uô“d, i3Wô“d , gõôd	hõôd T3Uõôd, i3Wõôd  

 

surgproc

4, 0.29	, 0.29 1, 	1 , 0, 0 1, 	1 	 , 0.34	, 0.34 1, 	1 , 1, 1 1, 	1 , 	 0.0047, 	0.0047 1, 1 ,

0.25, 0.25 1, 1 , 	 0, 0 1, 1 , 0.77, 	0.77 1, 	1 , 0.80, 	0.80 1, 	1 , 0, 	0 1, 	1 , 0, 0 1, 1 ,

	 0, 1 1, 0 , 0.0031, 	0.0031 1, 	1 , 0.83, 	0.83 1, 	1 , 1, 	1 1, 	1 , 0, 0 1, 1 ,

	 0, 0 1, 1 , 0.011, 	0.011 1, 	1 , 0.78, 	0.79 1, 	0.99 , 1, 	1 1, 	1 , 0.032, 0.032 1, 1 ,

0, 0 1, 1 , 0.375, 	0.375 1, 	1 , 0.019, 	0.019 1, 	1 , 0.097, 	0.097 1, 	1 ,

0.026, 	0.026 1, 	1

•¶¶ß®©™¶´`≠	π•≥™´≠	ß•±∫´≠	Ø±≤´	±Øß∞•≥®¥´Æ	•±Æ	ß´≠ª´≤¶®π´	ºØ$	•±Æ	ΩØæ	π•≥™´≠	

∷ 1 ∷ 0.99 

																	

0, 1 																							 0, 1 																																								 0, 1 																						 0, 1 																																					 0, 1
								 0, 1 																												 0, 1 																															 0, 1 																											 0, 1 																						 0, 1 																		 0, 1

	 0, 1 																							 0, 1 																																								 0, 1 																						 0, 1 																																					 0, 1
0, 1 																							 0, 1 																																								 0, 1 																						 0, 1 																																					 0, 1
0, 1 																																								 0, 1 																											 0, 1 																																										 0, 1 																						

[0, 1]

	

•¶¶ß®©™¶´`≠	ÆØ∞•®±≠	Ø±≤´	±Øß∞•≥®¥´Æ	

 

}∷ 1 

 

End
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CHAPTER 7  

 

LOGICAL PROGRAMMING APPROACH TO CASE-BASED REASONING 

As previously mentioned, the surgery process is composed by multiple sources of 

complex and important information that needs to be taken into account in order to obtain an 

efficient model. Therefore, the computing approach applied to the existing data needs to be 

capable of processing all the information in an efficient and reliable way, in order to obtain a 

successful case. Thus, the most suitable main approach to use in the case of the surgery 

process was the CBR, since it provides the capability of solving a new case of patients that are in 

need of a surgical intervention, by using or adapting past similar successful surgery processes 

with the similar historical data organization. However, since the surgery process is composed by 

multiple sources of data, unknown and incomplete information is a constant on the data 

obtained, consequently, the actual CBR systems cannot be efficiently applied to the process, that 

would result in an inaccurate solution that could cost a successful case of surgery performed.  

In this chapter a new approach is described where there is a junction of LP with the 

same structure presented on Chapter 5, using the CBR approach and presenting a new and 

more precise cycle to the process. 

7.1 Case-Based Reasoning approach to Computing  

 As described on chapter 4, the CBR approach to computing has the ability to search and 

justify a valid solution to a given problem by reusing knowledge acquired from past experiences 

(i.e. solves new problems based on similar past solutions) (Aamodt & Plaza, 1994). The CBR 

process takes advantage of the cases’ terms and solutions similarities, in order to find in its 

repository of cases a past case with the most suitable solution for a new one, even if the 

backgrounds differ. This means that the knowledge acquired when solving some situation can be 

used as a first approach to solve new ones (Balke et al, 2009).  

 In the current days, CBR has a tremendous potential of use in several areas, like Law, 

Medicine, among many others. But it faces a great obstacle of implementation, since the 

availability of data is scarce and the cost of obtaining such is high (Stahl and Gabel, 2006). 
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 As it was already explained in chapter 4, the typical CBR cycle (Figure 1) has a 

consistent model, that is composed by the next phases. First with the description of the problem 

with knowledge that is used to Retrieve one or more cases from the repository, by retrieving the 

cases with the higher degree of similar characteristics with the new case. Then, a solution for the 

new problem is proposed on the Reuse phase, where the solution is reused, tested and adapted 

to the new case in order to obtain the solution (Aamodt & Plaza, 1994). Next, there is the Revise 

stage, were the suggested solution is tested by the user that creates the Test Repaired Case, 

which sets the solution of the new problem by correcting, adapting or changing the suggested 

solution. This feedback from the user is essential, since automatic adaptation in existing systems 

is almost impossible. It also implies an iterative process, since the solution proposed by the user 

must be tested and adapted while the result of applying that solution is unsatisfying.  As for the 

Retain (or learning) phase the case is learned and the repository is updated with the new one.  

The existent CBR systems are neither complete nor adaptable enough for all domains. In 

some cases, the user is required to follow the similarity method defined by the system, even if it 

does not fit user’s needs. The current CBR system face an incapacity of dealing with unknown 

and incomplete information. Contrasting, this new approach presented, will be completely 

generic and it will have the capacity of dealing with those type of information.  

 The existing CBR tools follow different approaches to problem solving, i.e., looking at 

same patterns from different perspectives. However, they all look too complex and the effort to 

adapt them to a specific problem domain is comparable to develop a full new CBR. Also, an 

important feature that often is discarded is the ability to compare strings. In some problem 

domains, strings are important to describe a situation, the problem in itself or even an event. If 

the CBR is only prepared to work with number, then this gap will prove to be fatal. Therefore, this 

approach will use several of the most popular string similarity algorithms, namely the Dice 

Coefficient (Dice, 1945), Jaro Winkler (Winkler, 1990) and the Levenshtein Distance 

(Levenshtein, 1966), and have the possibility of set the weight of a particular attribute along the 

attributes that make a case’s argument. With this new approach a new perception of this 

methodology for problem solving will be potentiated, going in depth in aspects like the case’s 

Quality-of-Information (QoI) or the Degree-of-Confidence (DoC), a measure of one’s confidence 

that the value of a particular attribute is the expect one. With this approach it will be possible to 

handle unknown, incomplete or even contradictory data. It will also change the typical CBR cycle 

presented on the Figure 1 of chapter 4. This new cycle will have into consideration a 
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normalization phase, with the attributes values of the case argument being set in the interval 

[0, 1], therefore making easier their DoCs evaluation. It will also improve performance and 

reliability of the similarity strategy. The Case Base will be given in terms of triples that follow the 

pattern: 

 Case= {<Raw-case, Normalized-case, Description-case>} where Raw-case and 

Normalized-case stand for themselves, and Description-case is made on a set of strings or even 

in free text, which may be analysed with specific string similarity algorithms. 

 This CBR cycle also contemplates a cases optimization process present in the Case 

Base, whenever they do not comply with the terms under which a given problem as to be 

addressed (e.g., the expected DoC on a predication was not attained). In this process may be 

used Artificial Neural Networks (Haykin, 2009; Vicente et al.,2012), Particle Swarm Optimization 

(Mendes Kennedy, & Neves, 2003) or Genetic Algorithms (Neves et al. 2007), just to name a 

few. Indeed, the optimization process generates a set of new cases which must be in conformity 

with the invariant: 

ÿŸ	, 	⁄Ÿ ≠ ∅

<

V)* 		

			 

          (8.1.1) 

that states that the intersection of the attribute’s values ranges for the cases’ set that make the 

Case Base or their optimized counterparts (Bi) (being n its cardinality), and the ones that were 

object of a process of optimization (Ei), cannot be empty.  

 

 

 

 

 

 

 

 

 

 

 

Figure 12 — The extended view of the CBR cycle. 
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7.2 Time Knowldge Representation on Case-Based Reasoning 

 As it was presented on Chapter 6, time will be considered on this approach, this mean 

that a chronological record of the arguments changes through the surgery process will be taken 

into account. Changes on the cases structure, will also update the way that the CBR retrieves 

past cases. With the presence of a time historical record of each argument present on a case, 

the similarity of a single argument will not only take into account the characteristics of the 

argument, but will also implements a similarity analyse to the time record of the argument, this 

means, that similarity of certain arguments will increase and others decrease. Some cases that 

were thought to be successful, but present low time similarity in the arguments, will decrees is 

similarity. However, some cases that were thought to be unsuccessful, but present high time 

similarity in the arguments, will be taken into account optimizing the process of Retrieval of the 

CBR process.  

Other advantage is that the predictability of a certain event will be increased, meaning 

that, when the process is use on real time prediction, the time arguments will be changing 

through the process. Due to the constant adaptation of the knowledge present in the case, the 

prediction of the success of the new case will be changing, resulting in a view changer for some 

situations, since the path of a successful case will be traced. This can serve as an alert indicator 

to the user or to the system about the changes on the success of the new case. When a problem 

occurs and some arguments are changed, the state time path will alert about the changes on the 

success, by optimizing and proposing a more efficient case that has more time resembles to the 

present one. Likewise, it can also be an alert to the user that outside changes need to be made 

in order to not jeopardize the success of the current case, decreasing the uncertainty present 

through the process.  

When the expectation for the case fail during the process, understanding and reminding 

prior explanation may be useful to help resolve the anomalies present in the input. Therefore, in 

the presence of a fail case, the historical record can help to understand the cause of such 

outcome, improving the efficiency of the optimization for a new case, changing it into a 

successful outcome.  
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Consequently, with the use of such approach it will improve not only the experience of 

the patient when submitted to a surgical intervention, but also the health services reliability.  
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CHAPTER 8  

 

COMPUTING APPROACH FOR THE SURGERY PROCESS 

 As mentioned, multiple sources of complex and important information needs to be taken 

into account, in order to obtain an efficient model. The computing approach applied to the 

existing data needs to be capable of processing all the information in an efficient and reliable 

way, in order to obtain a successful case. As showed on the chapter 7, the surgery process is 

composed by multiple stages that complete the surgery process as a whole, therefore the 

computing approach presented in this chapter will be composed by a hybrid CBR and ANN 

approach, composed by three ANN processes that will be used as classification for some data, 

that will create new important parameters which will be taken into account when using the CBR 

process as the final stage.  

 The framework presented previously, shows how the information comes together and 

how it is processed. In this chapter, soft computing approaches were set to mode the universe of 

discourse, where the computational part is based on a hybrid CBR and ANN approach to 

computing. 

8.1 Artificial Neural Netwroks approach to computing   

 In this section, a data mining approach to deal with the processed information is 

considered. It is set a soft computing approach to model the universe of discourse, where the 

computational part is based on ANNs which are used not only to structured data but also to 

capture objective function’s nature (i.e., the relationships between inputs and outputs). 

 Considering the approach capacity of dealing with incomplete information and the 

necessity of an efficient classifier with the capacity of the obtainment of the DoC associated to 

the result. The most appropriated choice fell on ANNs, due to their dynamics characteristics like 

adaptability, robustness and flexibility, simulating the structure of the human brain and being 

populated by multiple layers of neurons with valuable set of activation functions.  

 In the surgery process model, the ANNs process will be used as an classifier for three 

different extensions of predicates, namely pathology incidence (pi), surgery performance 

(sp) and patient postoperative assessment (ppa). 
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In each extension of predicate, the normalized values of the interval boundaries and their 

DoCs and QoIs values (i.e., the tuple minimum, maximum, DoC, QoI) work as inputs to the 

ANNs. Also the time tuple is excluded from the input values since the use isn’t needed for the 

process.  

In terms of the extension of predicate pi, in the Figure14, a case can be seen being 

submitted for a pathology incidence assessment, where the output is given in terms of a 

pathology incidence value and the degree of confidence that one has on such a happening. 

Exemplifying with the arguments Age, Gender, BMI, Pathology and Symptoms, one may have 

(0.29, 0.29, 1, 1); (0, 0, 1, 1); (0.34, 0.34, 1, 1); (0.0047, 0.0047, 1, 1) and (0.24, 0.37, 1, 

0.99). The output depicts the pathology incidence value of the degree of incidence that a 

pathology has in the patient being respectively 1 (one) for Non, 2 (two) for Low, 3 (three) for 

Moderate, 4 (four) for High and 5 (five) for Very High, plus the confidence that one has on such 

happening. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13— The Artificial Neural Network Topology for the Pathology Incidence. 
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In terms of the extension of predicate sp, in the Figure 15, a case can be seen being 

submitted for a surgery performance assessment, where the output is given in terms of 

performance state of the surgery value and the degree of confidence that one has on such a 

happening. Exemplifying with the arguments MT, PPES, PIS, PRFSP, TS, SS, St and SPR, one 

may have (0, 0, 1, 1); (0.70, 0.70, 1, 1); (0.80, 0.80, 1, 1); (0, 0, 1, 1); (0, 0, 1, 1); (0, 1, 1, 0); 

(0.0016, 0.0016, 1, 1) and (0.833, 0.833, 1, 1). The output depicts the surgery performance 

value degree of the performance state of the surgery, resulting into the respectively possibilities 

of 1 (one) if Cancelled, 2 (two) if Delayed, 3 (three) if Operating and 4 (four) if Performed, plus 

the confidence that one has on such happening. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 — The Artificial Neural Network Topology for the Surgery Performance. 

 

In terms of the extension of predicate ppa, in the Figure 16, a case is being submitted 

for a patient postoperative assessment, where the output is given in terms of a pathology 

incidence value and the degree of confidence that one has on such a happening. Exemplifying 

with the arguments Age, Gender, BMI, PPOS, one may have (0.29, 0.29, 1, 1); (0, 0, 1, 1); 

(0.34, 0.34, 1, 1) and (0.78, 0.79, 1, 0.99). The output depicts the Patient Postoperative 



CHAPTER 8 COMPUTING APPROACH FOR THE SURGERY PROCESS 

	 99	

Assessment value of the degree of the state of the patient health being respectively 1 (one) for 

Unhealthy, 2 (two) for Unstable, 3 (three) for Stable and 4 (four) for Healthy, plus the confidence 

that one has on such happening. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15 — The Artificial Neural Network Topology for the Patient Postoperative Assessment. 
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8.2 Case-Based Approach to Computing  

In this section is set the formal model of the universe of discourse, where the computational 

part is based on a CBR approach to computing. Contrasting with other problem solving tools 

(e.g., those that use in almost all the situations the work is performed at query time. The main 

difference between this approach and the typical Case-Based one relies on the fact that, not only 

all the cases have their arguments set in the interval [0, 1], but also a situation that is 

complemented with the prospect of handling incomplete, unknown, or even self-contradictory 

data, information or knowledge (Figure 12). 

When confronted with a new case, the system is able to retrieve all cases that meet such a 

structure and optimize, when necessary, such a population, i.e., it considers the attributes 

DoC’s value of each case or of their optimized counterparts when analyzing similarities among 

them. Thus, under the occurrence of a new case, the goal is to find similar cases in the Case 

Base.  

Having this in mind, the algorithm described above is applied to a new case, that presents the 

feature vector (Age = 45, Gender = 1, BMI = 30,09 , TP = 1, Pathology = 36610, PI= 2, MT = 7, 

PPES = 0.75, PIS= 0.80 , PRFSP= 0, TS=1, SS= 36, St= 15, SPR= 5, SP = 4, SC= 0, ICUt= 0, 

PACUt= 4, PPOS= [0.68 , 0.70], PPA= 4, WBt= 1, CI= 0, SH= 10.00, Surgery Waiting Time = 

10, Patient Hospitalization Time = 1, Surgery Process Time= 11), having in consideration that 

the cases being retrieved from the Case Base satisfy the invariant of the equation 5 on section 

8.1, which denotes that the intersection of the attributes range in the cases that makes the Case 

Base repository or their optimized counterparts (Bi), and the equals in the new case (Ei), and the 

equals in the new case (Ei), cannot be empty. Then, the computational process may be 

continued. With the outcome (once applying the algotithm presented in Fernandes et al. (2015): 

 

NLKI0K38<S›

0.38	, 0.38 1, 	1 , 1, 1 1, 	1 	 , 0.60	, 0.60 1, 	1 , 1, 1 1, 	1 , 	 0.3661, 	0.3661 1, 1 ,

0.25, 0.25 1, 1 , 	 0, 0 1, 1 , 0.75, 	0.75 1, 	1 , 0.79, 	0.79 1, 	1 , 0, 	0 1, 	1 , 0, 0 1, 1 ,

	 0.55, 0.55 1, 1 , 0.0026, 	0.0026 1, 	1 , 0.83, 	0.83 1, 	1 , 1, 	1 1, 	1 , 0, 0 1, 1 ,

	 0, 0 1, 1 , 0.011, 	0.011 1, 	1 , 0.68, 	0.70 1, 	0.99 , 1, 	1 1, 	1 , 0.032, 0.032 1, 1 ,

0, 0 1, 1 , 0.42, 	0.42 1, 	1 , 0.027, 	0.027 1, 	1 , 0.032, 	0.032 1, 	1 ,

0.029, 	0.029 1, 	1

∷ 1 ∷ 0.99

<S›	ëPáS
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Now, the new case may be portrayed on the Cartesian plane in terms of its QoI and DoC, 

and by using clustering methods (Figueiredo, Esteves, Neves & Vicente, 2016) it is feasible to 

identify the cluster(s) that intermingle with the new one (epitomized as a square in Figure 16). 

The new case is compared with every retrieved case from the clusters using a similarity function 

sim, given in terms of the average of the modulus of the arithmetic difference between the 

arguments of each case of the selected cluster and those of the new case, which is crucial when 

different clustering methods are examined. Thus, one may have: 

 

NLKI0K38*

0.50	, 0.50 1, 	1 , 1, 1 1, 	1 	 , 0.90	, 0.90 1, 	1 , 1, 1 1, 	1 , 	 0, 1 1, 0 ,

0.25, 0.25 1, 1 , 	 0, 0 1, 1 , 0.64, 	0.84 1, 	0.97 , 0.64, 	0.80 1, 	0.99 , 0, 	0 1, 	1 , 0, 0 1, 1 ,

	 0.55, 0.55 1, 1 , 0.0031, 	0.0031 1, 	1 , 0.83, 	0.83 1, 	1 , 1, 	1 1, 	1 , 0, 0 1, 1 ,

	 0, 0 1, 1 , 0.014, 	0.014 1, 	1 , 0.43, 	0.88 1, 	0.89 , 1, 	1 1, 	1 , 0, 1 1, 0 ,

0, 0 1, 1 , 0.46, 	0.46 1, 	1 , 0.025, 	0.025 1, 	1 , 0, 	1 1, 	0 ,

0.034, 	0.034 1, 	1

∷ 1 ∷ 0.87

NLKI0K38l																	

0.38	, 0.38 1, 	1 , 1, 1 1, 	1 	 , 0.97	, 0.97 1, 	1 , 1, 1 1, 	1 , 	 0.3661, 	0.3661 1, 1 ,

0.25, 0.25 1, 1 , 	 0, 0 1, 1 , 0.70, 	0.70 1, 	1 , 0.78, 	0.78 1, 	1 , 0, 	0 1, 	1 , 0, 0 1, 1 ,

	 0.55, 0.55 1, 1 , 0.0026, 	0.0026 1, 	1 , 0.83, 	0.83 1, 	1 , 1, 	1 1, 	1 , 0, 0 1, 1 ,

	 0, 0 1, 1 , 0.014, 	0.014 1, 	1 , 0.67, 	0.70 1, 	0.99 , 1, 	1 1, 	1 , 0.032, 0.032 1, 1 ,

0, 0 1, 1 , 0.42, 	0.42 1, 	1 , 0.022, 	0.022 1, 	1 , 0.032, 	0.032 1, 	1 ,

0.023, 	0.023 1, 	1

∷ 1 ∷ 0.99

⋮

NLKI0K38m															

0.39	, 0.39 1, 	1 , 1, 1 1, 	1 	 , 0.53	, 0.53 1, 	1 , 1, 1 1, 	1 , 	 0.3661, 	0.3661 1, 1 ,

0.25, 0.25 1, 1 , 	 0, 0 1, 1 , 0.73, 	0.73 1, 	1 , 0.78, 	0.78 1, 	1 , 0, 	0 1, 	1 , 0, 0 1, 1 ,

	 0.55, 0.55 1, 1 , 0.0016, 	0.0016 1, 	1 , 0.83, 	0.83 1, 	1 , 1, 	1 1, 	1 , 0, 0 1, 1 ,

	 0, 0 1, 1 , 0.0111, 	0.0111 1, 	1 , 0.68, 	0.70 1, 	0.99 , 1, 	1 1, 	1 , 0.032, 0.032 1, 1 ,

0, 0 1, 1 , 0.43, 	0.43 1, 	1 , 0.033, 	0.033 1, 	1 , 0.032, 	0.032 1, 	1 ,

0.033, 	0.033 1, 	1

∷ 1 ∷ 0.99

<É\>PQVêS]	ëPáSá	fl\É>	\Sd\VSOS]	ëQRádS\

 

 

Assuming that every attribute has equal weight, for the sake of presentation, the dissimilarity 

between NLKI0K38new and the	NLKI0K381, i.e.,	NLKI0K38new⟶ 1, may be computed as 

follows: 

NLKI0K38<S›→*
‡É[ =

1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 + 1 − 0 + 1 − 1 	+ 1 − 1
+ 1 − 0.97 + 1 − 0.99 + 1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 + 1 − 1
+ 1 − 1 + 1 − 1 + 1 − 1 + 0.99 − 0.89 + 1 − 1 + 1 − 0 + 1 − 1 + 1 − 1

+ 1 − 1 + 1 − 0 + 1 − 1
26

= 0.12
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Thus, the similarity for NLKI0K38<S›→*
‡É[  is set as 1 – 0.12 = 0.88. Regarding the QoI the 

procedure is similar, returning NLKI0K38<S›→*
·Éò = 1. Thus, one may have: 

NLKI0K38<S›→*
·Éò,	‡É[ = 1	×	0.88 = 	0.88 

    As for the Descriptions (i.e. the surgery process observations), it will be compared using 

String Similarity Algorithms, as stated before, in order to get a similarity measure between them.  

These procedures should be applied to the remaining cases of the retrieved clusters in order 

to obtain the most similar ones, which may stand for the possible solutions to the problem.  

 

 

 

 

 

 

 

 

Figure 16 — A case’s set clusters. 

 The present model, beyond to consider the surgery process, enables the integration of 

surgery process related data with other factors, such as patient and hospital related data, being 

assertive in the prediction of a successful surgery process. Thus, it can be claimed that the 

proposed model is able to evaluate the surgery process for each patient needing some type of 

surgical intervention, being a major contribution to achieve high standards concerning health 

services efficiency and patient health improvement.   
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CHAPTER 9  

 

CONCLUSION 

 In this thesis, it was discussed a Case-Based Reasoning approach to the surgery 

process. To this end, multiple factors were needed to be taken into account, since the complexity 

of the surgical process requires great efforts from several hospital services in order to obtain a 

successful procedure. From the moment the patient is presented with a pathology that needs a 

surgical procedure to the end of the process where it is discharged from the hospital, several 

efforts are made, resources are used, unpredictability’s happened and changes are constantly 

made. It is undeniable that the complete process has a constant presence of uncertainty and 

variability that could cost the success of a surgical procedure, therefore an efficient model needs 

to be used in order to deal with this issues, which will maximize the surgical efficiency and quality 

of service provided to the patient.  

Thus, the proposed methodology solves the problem with the development of an 

intelligent support system that is able to give an adequate response to predict a successful 

surgery process, that takes into account all the data present through the process related to the 

hospital and patient. The system takes into account the three periods of hospital intervention on 

the patient respectively, the perioperative, intraoperative and postoperative. Beginning on the 

perioperative period, with the admission of the patient were is health state data is taken into 

account and processed by an ANN that classifies the degree of urgency for surgery execution in 

order to help with the scheduling of the operation. Then in the intraoperative period all the data 

related to the patient and to the hospital resources, in order to perform the surgery, will be 

processed by other ANN that will classify the success of the performance. As for the 

postoperative period, the system will take into account all the data related to the recovery of the 

patient by processing the patient health condition through the ANN process to classify the health 

state degree of the patient in order to be discharged. Finally, the complete process is taken by 

the CBR system in order to be used on future similar cases, which could result on a successful 

surgery process when presented with a new case of a patient with the same characteristics.  

The CBR approach was the best choice in this situation, since it has the capacity of 

providing a solution for the complete process based on the past experience of other processes 

with the same characteristics.  
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An important aspect of the work is the capacity to handle incomplete, self-contradictory, 

and even unknown data present on the different variables and/or conditions with complex 

relations entwined among them. In order to overcome these difficulties, the methodology followed 

was centred on a formal framework based on LP for knowledge representation and reasoning, 

complemented with a CBR approach to computing. Furthermore, under this line of thinking the 

cases’ retrieval and optimization phases were heightened, when compared with existing tactics or 

methods. It allows one to normalize all cases present in the knowledge base, improving the 

performance of the similarity analysis, that is made when retrieving cases. It is also able to 

analyse free text attributes using several String Similarities Algorithms, which fulfil a gap that is 

present in almost all CBR Software Tools.  

The capacity of optimization from the system is a very useful feature on the surgery 

process, since the presence of a failed case is very likely to happen due to the multiple entities 

that are taken into account. With the optimization phase of the cycle, the DoC assumed when 

the solution of the problem is presented, has also into account the past solution, this way a new 

case is created with more probabilities to succeed. Also, due to the complexity presented by the 

process, observations are needed to be taken into account, since the comparisons can be crucial 

on the retrieval phase. For example, although a case can be seen as successful, errors may have 

occurred during the process that could risk such outcome, so an observation of such error, 

needs to be taken into account in order to prevent.  

Additionally, under this approach the users may define the cases weights attributes on-

the-fly, letting them to choose the appropriate strategies to address the problem (i.e., it gives the 

user the possibility to narrow the search space for similar cases at runtime). A possible limitation 

on its use is not on the model in itself, but on the unavailability of data, information or 

knowledge, since in health services data ethic regulations are very restrict when related to the 

patient information and some necessary specific data related to the hospital resources can be 

neglected by the medical staff and not be inserted on the data base. However, even in these 

situations, once it has the capacity to handle incomplete information, either in its qualitative or 

quantitative form, its usefulness is assured.  

Other important characteristic added to the approach was the fact that the time was 

taken into account. A simple system for reasoning about time and negation was presented, 

where changes to the database are explicitly represented by time stamping the data clauses and 
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both positive and negative information are represented explicitly in the database. With this, a time 

record (successive data states) is created every time there is a change on the data, improving the 

efficiency and accuracy of the process. When there is a fail on the expectations, the retrieve of 

prior data may be useful to help resolve the anomalies present in the process. Therefore, past 

data from some variable can be the answer to a wrong assessment, since the presence of this 

chronological data record the system can retrieve better solutions for the case. Moreover, the 

presence of a chronological record, represents a structural path that can lead to a more efficient 

prediction of the final outcome, this means, that with the use of the time a better prediction can 

be made ensuring a greater security for all the entities involved on the process.  

In fact, with the approach presented on this thesis, the capacity of predicting surgery 

processes will not only benefit the patient experience, but also the hospital in terms of 

management, efficiency and security. Also, with a prediction of the complete path of the patient 

through the surgery process will save the hospital resources and time, which will induce an 

increase on the costs savings. Likewise, the patient will be presented with a more customized 

treatment, with greater guaranties of security and success in the procedure, improving the 

system of health, saving more lives and providing great help to the medical staff. 

Future developments of the model, where more entities are included and the system is 

adapted to a real surgery department, according to the conditions that is presented on that 

hospital, should be taken into account. It is undeniable that the application of a system like this 

have numerous benefits, in terms of management of resources, the system would give the best 

solution for a successful case with the most suitable use of the hospital resources, that would 

also be translated into costs reduction. As well, the medical staff would have a support system 

that would help them to predict possible problems that may occur and therefore, prevent them 

and have more security on the decisions made.  

Nevertheless, the system could be capable of increasing the number of successful cases 

of surgery, also improving the patients’ trust in the health care services. For this reason, the 

implementation of such system would be a revolution on the way the surgery process is 

perceived by the health care system. 
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