
J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 422 – 428, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Refinement of Software Architectures by
Recursive Model Transformations∗

Ricardo J. Machado1, João M. Fernandes2,
Paula Monteiro1, and Helena Rodrigues1

1 Dept. of Information Systems
2 Dept. of Informatics

University of Minho, Portugal

Abstract. The main aim of this paper is to present how to refine software logi-
cal architectures by application of a recursive model-based transformation ap-
proach called 4SRS (four step rule set). It is essentially based on the mapping of
UML use case diagrams into UML object diagrams. The technique is based on
a sequence of steps that are inscribed in a tabular representation that is used to
derive the software architecture for a focused part of the global system.

1 Introduction

The most complex activity during development of software systems is probably the
transformation of a requirement specification into an architectural design [1]. The
other phases have also their challenges, but they are better understood and a variety of
methods, languages and tools are available to support the software engineer.

The process of designing software architectures is, by far, less formalised and often
is greatly an intuitive ad-hoc activity, poorly based on engineering principles. Since
the architecture of a software system constrains the space solution, the design deci-
sions taken during architectural design must be made with great care, since they typi-
cally have a large impact on the quality of the resulting system.

An architectural transformation approach, called 4SRS (four step rule set), is pre-
sented that employs successive transformations of the software architecture, in order
to satisfy the elicited user requirements. It is essentially based on the mapping of
UML use case diagrams into UML object diagrams. The iterative nature of the ap-
proach and the usage of graphical models are important issues to guarantee that the
final architecture reflects the user requirements.

Fig. 1 illustrates the recursive application of the 4SRS technique. This paper ad-
dresses the problem of deriving the logic architecture of a given platform service
(called service object diagram), from a functional refinement of the platform architec-
tural model (called platform object diagram), by adopting a recursive version of the
4SRS technique. The first 4SRS execution supports the platform requirements analy-
sis by generating one platform object diagram that corresponds to the logic architec-
ture of the system (this first 4SRS execution is described in detail in [2]). The second

∗ This work has been supported by projects STACOS (FCT/POSI/CHS/48875/2002) and

USE-ME.GOV (IST-2002-002294).

 Refinement of Software Architectures by Recursive Model Transformations 423

Fig. 1. Service specification with recursive 4SRS execution

4SRS execution supports the service requirements analysis by generating one service
object diagram that corresponds to the logic architecture of the service to be specified
(this second 4SRS execution is the aim of this paper).

The applicability of this technique is illustrated by presenting some results from a
mobile application. For mobile applications, the definition of the underlying service
oriented software architecture must consider as user requirements the services them-
selves, the mobile operators entry points and the final clients interfaces, and use them
to characterize the platform. Within the presented demonstration case, the specifica-
tion of one service of the mobile application was obtained by recursively applying the
4SRS technique.

2 Four Step Rule Set

4SRS is a technique proposed to transform users requirements into architectural mod-
els representing system requirements [3, 4]. It associates, to each object found during
the analysis phase, a given category: interface, data, control. Each one of these cate-
gories is related to one of the three orthogonal dimensions, in which the analysis
space can be divided (information, behaviour and presentation) [5].

For readability purposes, a brief description of the 4SRS technique is next pre-
sented. There is a complete description of its usage to obtain, in a non-recursive ap-
proach, the first logical architecture of the demonstration case used in this paper in
[2]. In [6], an alternative version of the 4SRS technique is described for deriving the
logical architecture for software product lines. This variant of the 4SRS technique

424 R.J. Machado et al.

deals with variability at functional and architectural levels; the IESE GoPhone dem-
onstration case [7] was adopted to experiment the approach.

The 4SRS technique is organized as four steps to transform use cases into objects:
(1) object creation, (2) object elimination, (3) object packaging & aggregation, and (4)
object association. After the execution of the 4 steps of the 4SRS technique, we obtain
the logic architecture for the system that captures all its functional and non-functional
requirements. An object model shows how significant properties of a system are dis-
tributed across its parts.

Fig. 2 shows the filtered object diagram that was obtained by using collapsing and
filtering techniques described in [2] by considering package {P5} as one sub-system
for design. This diagram was included here as an example of how raw object dia-
grams can be used during the development process to stress parts of the system and
allow sub-system specification and partition of sub-projects among various teams.

In this paper, we consider the refinement of package {P5} that has given origin to
the AVAccess service (the service object diagram depicted in fig. 1).

Fig. 2. Filtered object diagram for package {P5} service derivation

3 Recursive Architectural Refinement

{P5} can be considered as the system to be designed and apply, once more, the 4SRS
technique to support its architectural refinement (within fig. 2). The recursive ap-
proach of the 4SRS technique suggests the construction of a new use case diagram
(called service use case diagram, in fig. 1) that captures the users requirements of the
new (sub-)system to refine. From this use case diagram the corresponding raw object
diagram is derived (called service object diagram, in fig. 1). This proposed approach
contrasts with the dominant one that suggests the application of design patterns to
impose into the logical architecture a particular already proven reference architectural
model [8, 9]. Our proposal does not reject this pattern-oriented view, only defers it
into latter stages of development, allowing a previous functional refinement of
requirements at architectural level, taking into account the specific aspects of the
particular sub-system to be designed. The use case diagram depicted in fig. 3 was
constructed for supporting the architectural refinement of {P5} to obtain the raw object
diagram of the AVAccess service. This service constitutes the example considered in
this paper to show the recursive application of the 4SRS technique. All the external
entities (UML actors) existent in this diagram correspond to architectural elements
connected to package {P5} in fig. 2. Object {O0a.1.3.c} in fig. 2 did not give origin to

 Refinement of Software Architectures by Recursive Model Transformations 425

any actor in fig. 3, because the architectural refinement of package {P5} did not con-
sider the functionality that is associated with that object. The user actor is present in
fig. 3, since it was already connected to the use cases that gave origin to the objects
inside package {P5}, during the development process described in [2]. Actors in fig. 3
must be viewed as external sub-systems (components), from the point of view of the
AVAccess service. To attain a better actor semantics within the associations with the
obtained use cases, the actor {O0a.3.7.c} in fig. 3 was specialized into two different
actors: Application System Context Aggregation Service and Application System Service Re-
pository.

Fig. 3. Use case diagram for AVAccess service

4 Tabular Transformations

The execution of the 4SRS transformation steps can be supported in tabular represen-
tations. Moreover, the usage of tables permits a set of tools to be devised and built so
that the transformations can be partially automated. These tabular representations
constitute the main mechanism to automate a set of decision assisted model transfor-
mation steps. The 4SRS has been used both in academia and in industry [3, 4, 10] and
has demonstrated to be agile in helping software engineers to find and refine architec-
tural requirements, based on the elicited user requirements.

The table for the transformation steps is organized as follows: (1) each (micro-)step
gives origin to one column; (2) each object gives origin to one row.

The 1st column corresponds to the execution of step 1. The first row allows the in-
sertion of both the reference and the name of the use case. The next three rows allow
the insertion of one interface, one data, and one control objects for the corresponding
use case. For the demonstration case, there is no use case refinement, so step 1 is
applicable to all (10) use cases in fig. 3, which gave origin to 30 objects. Fig. 4 de-
picts 4 different rows for each of the two previously exemplified use cases.

The 2nd column corresponds to the execution of micro-step 2i. In this micro-step,
the software engineer classifies each use case as one of the 8 different combinations
or patterns (Ø, i, c, d, ic, di, cd, icd). The idea behind this classification is to help on
the transformation of each use case into objects. This classification would provide
hints on which object categories to use and how to connect those objects. For the
demonstration case, {U0.1} was classified as type “i”, which means that only the inter-
face object is kept (the control and data objects will be eliminated in micro-step 2ii),
and {U0.5} was classified as type “icd”, which means that all objects are kept.

426 R.J. Machado et al.

The 3rd column corresponds to the execution of micro-step 2ii. The aim of this mi-
cro-step is to answer if each object created in step 1 makes sense in the problem do-
main, since the creation of objects in step 1 was blindly executed, not considering the
system context for the object creation. Object that are to be eliminated are marked
with “x” and objects that are to be kept are marked with “-”. For the demonstration
case, {U0.1} got two of its originated objects eliminated, since they do not make sense
in the problem domain. {U0.1} is only responsible to send the new user information
from the user to other sub-systems and vice-versa, which means that data and control
dimensions are not within the scope of this use case.

Fig. 4. Table for 4SRS transformations

The 4th column corresponds to the execution of micro-step 2iii. In this micro-step,
objects that have not been eliminated from the previous micro-step must receive a
proper name that reflects both the use case from which it is originated and the specific
role of the object, taking into account its main component. For the demonstration
case, object {O0.1.i}, for instance, was named register user interface.

The 5th column corresponds to the execution of micro-step 2iv. Each named object
resulting from the previous micro-step must be described, so that the system require-
ments they represent become included in the object model. These descriptions must
be based on the original use case descriptions.

The 6th and 7th columns correspond to the execution of micro-step 2v. This is the
most critical micro-step of the 4SRS technique, since it supports the elimination of
redundancy in the user requirements elicitation, as well as the discovering of missing
requirements. The “is represented by” column stores the reference of the object that
will represent the object being analyzed. If the analyzed object will be represented by
itself, the corresponding “is represented by” column must refer to itself. The “repre-
sents” column stores the references of the objects that the object analyzed will repre-
sent. {O0.1.i} does not delegate in other objects its representation (i.e. it is represented
by itself) and it additionally represents a considerable list of other objects (each one of
these objects must refer to {O0.1.i} in their columns “is represented by”).

The 8th column corresponds to the execution of micro-step 2vi. This is a fully
“automatic” micro-step, since it is based on the results of the previous one. The ob-

 Refinement of Software Architectures by Recursive Model Transformations 427

jects that are represented by other ones must be eliminated, since its system require-
ments no longer belong to them.

The 9th column corresponds to the execution of micro-step 2vii. Its purpose is to
rename the objects that have not been eliminated in the previous micro-step and that
represent additional objects. The new names must reflect the plenitude of system
requirements. For the demonstration case, object {O0.1.i} was renamed users manage-
ment interface to reflect the list of other objects that it additionally represents.

The 10th column corresponds to the execution of step 3. For the demonstration
case, neither aggregations, nor packages were used, so column 10 remains unfilled.

The 11th column corresponds to the execution of step 4. For the demonstration case,
the associations were solely derived from the use case classification executed in step 1.
The classification of {U0.5} as type “icd” suggests the existence of three internal associa-
tions relative to the objects generated from the same use case. However, “id” association
(between the interface and the data objects) was not allowed. Additionally, the follow-
ing two tabular transformations imposed some constrictions to the object connectivity
exercise: (1) in step 2v, it was decided that {O0.5.i} is represented by {O0.1.i}; (2) in step
2vi, {O0.5.i} was eliminated. These two decisions imply the existence of the following
associations: (1) between {O0.5.c} and {O0.5.d}, suggested by the “icd” classification;
(2) between {O0.5.c} and {O0.1.i}, due to the transitivity of the suggested association be-
tween {O0.5.c} and {O0.5.i} through the delegation executed by {O0.5.i} in {O0.1.i}.

5 Service Specification

Fig. 5 depicts the raw object diagram for the AVAccess service, obtained from the
recursive application of the 4SRS technique.

The obtained raw object model (fig. 5) constitutes the canonical semantic reference
for the service to be designed, since it has emerged from the software logical
architecture of the platform by adopting a complementary functional refinement at
architectural level. This architectural refinement has been explicitly executed within a
component-based service development.

After obtaining this new architectural refined raw object model, the underlying ser-
vice can be described through a set of diagrams as a means to specify the corresponding
architectural component, namely, by designing a class diagram for the static characteri-
zation of the service component, a statechart for the life cycle characterization of the
service, a set of activity diagrams for methods specification and a set of sequence dia-
grams for interface and protocol specification. These additional perspectives of the same
service are not directly generated from the application of 4SRS technique, even though
they are easier constructed after obtaining the raw object diagram of the service (fig. 5).

Fig. 5. Raw object diagram of the AVAccess service

428 R.J. Machado et al.

6 Conclusions

The proposed recursive approach of the 4SRS technique suggests the construction of
a new use case diagram that captures the users requirements of the new (sub-)system
to refine a service. From this use case diagram the corresponding raw object diagram
can be derive. This approach complements the usage of design patterns by allowing a
previous functional refinement of requirements at architectural level, taking into ac-
count the specific aspects of the particular sub-system to be designed. This transfor-
mational approach shows that model continuity is a key issue and highlights the im-
portance of having a well defined process to relate, map and transform requirements
models. In the demonstration case, the 4SRS has allowed the specification of one
particular service, taking into account all the architectural decisions previously taken
to specify the platform where the service is intended to run, by assuring a continuous
mapping between the platform and the service models.

References

1. J. Bosch, P. Molin. Software Architecture Design: Evaluation and Transformation.
7th IEEE Int. Conf. on the Engineering of Computer-Based Systems (ECBS'99), Nash-
ville, Tennessee, U.S.A., pp. 4-10, IEEE CS Press, March, 1999.

2. R.J. Machado, J.M. Fernandes, P. Monteiro, H. Rodrigues. Transformation of UML Mod-
els for Service-Oriented Software Architectures. 12th IEEE Int. Conf. on the Engineering
of Computer-Based Systems (ECBS 2005), Greenbelt, Maryland, U.S.A., pp. 173-182,
IEEE CS Press, April, 2005.

3. J.M. Fernandes, R.J. Machado, H.D. Santos. Modeling Industrial Embedded Systems with
UML. 8th IEEE/IFIP/ACM Int. Workshop on Hardware/Software Co-Design (CODES
2000), San Diego, California, U.S.A., pp. 18-22, ACM Press, May, 2000.

4. J.M. Fernandes, R.J. Machado. From Use Cases to Objects: An Industrial Information Sys-
tems. 7th Int. Conf. on Object-Oriented Information Systems (OOIS 2001), Calgary, Can-
ada, pp. 319-328, Springer-Verlag, August, 2001.

5. I. Jacobson, M. Christerson, P. Jonsson, G. Övergaard. Object-Oriented Software Engi-
neering: A Use Case Driven Approach. Addison-Wesley, 1992.

6. A. Bragança, R.J. Machado. Deriving Software Product Line’s Architectural Requirements
from Use Cases: An Experimental Approach. 2nd Int. Workshop on Model-Based Meth-
odologies for Pervasive and Embedded Software (MOMPES 2005), Rennes, France,
pp. 77-91, June, 2005.

7. D. Muthig, I. John, M. Anastasopoulos, T. Forster, J. Dörr, K. Schmid. GoPhone: A Soft-
ware Product Line in the Mobile Phone Domain. IESE Technical Report no. 025.04/E,
2004.

8. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. Pattern-Oriented Software
Architecture: A System of Patterns. John Wiley & Sons, 1996.

9. 9 R. Ahlgren, J. Markkula. Design Patterns and Organisational Memory in Mobile Appli-
cation Development. 6th Int. Conf. on Product-Focused Software Process Improvement
(PROFES2005),Oulu,Finland,pp.143-156,Springer-Verlag,June, 2005.

10. J.M. Fernandes, R.J. Machado. System-Level Object-Orientation in the Specification and
Validation of Embedded Systems. 14th SBC/IFIP/ACM Symposium on Integrated Circuits
and System Design (SBCCI 2001), Pirenópolis, Brazil, pp. 8-13, IEEE Computer Society
Press, August, 2001.

	Introduction
	Four Step Rule Set
	Recursive Architectural Refinement
	Tabular Transformations
	Service Specification
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

