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Resumo 

A eutrofização é um grave problema de ecossistemas aquáticos que pode ameaçar a biodiversidade e a 

saúde humana. É causada por uma alta concentração de nutrientes, tal como fósforo, levando a um 

crescimento excessivo de plantas aquáticas e, consequentemente, à estagnação e diminuição dos 

níveis de oxigênio nos sistemas de água. 

Para evitar este problema, as águas residuais das zonas rurais, industriais e urbanas são tratadas com 

recurso a remoção biológica de fósforo melhorada. Esta técnica utiliza microrganismos já presentes em 

águas residuais que incorporam o fósforo dentro das suas células na forma de polifosfato, removendo 

assim o nutriente da água. Uma parte muito importante desta técnica consiste em avaliar os níveis de 

polifosfato presentes nos microrganismos, o que é geralmente efetuado por métodos analíticos caros e 

demorados. 

Para melhorar a etapa de medição de polifosfatos, o objetivo desta tese foi criar um programa de 

análise quantitativa de imagem que pudesse correlacionar dados obtidos de imagens com dados 

analíticos, criando modelos de regressão linear úteis para a quantificação de polifosfatos. Este 

programa utilizou segmentação de cores entre regiões de polifosfato e biomassa, com base nos 

espaços de cores RGB, HSV e LAB, e foi aplicado em imagens de amostras tingidas com diferentes 

colorações (azul de metileno e azul de toluidino) e com diferentes fatores de diluição (sem diluição e 

diluição 10x). Estas imagens foram ajustadas nos seus valores de gamma e contraste, para avaliar 

diferentes configurações de imagem em segmentação de cor. Os modelos para amostras de azul de 

metileno e amostras diluídas apresentaram os maiores coeficientes de regressão entre os resultados 

dos dados de imagem e os dados analíticos (0,920 e 0,992, respetivamente), existindo também 

algumas diferenças entre os modelos de imagens com diferentes contrastes e valores de gamma. 

O espaço de cores escolhido para a análise de imagens parece ser muito importante, pois o RGB e o 

LAB apresentam resultados mais satisfatórios do que o HSV. Mais trabalho é necessário antes que este 

método possa ser usado, no entanto os resultados vistos nesta tese são promissores. 

 

Palavras-chave: fósforo; polifosfato; remoção biológica de fósforo melhorada; análise quantitativa de 

imagem; azul de metileno; azul de toluidino; RGB; HSV; LAB. 
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Abstract 

Eutrophication is a serious problem of aquatic ecosystems that can threaten biodiversity and human 

health. It is caused by a high concentration of nutrients, such as phosphorus, leading to excessive 

growth of aquatic plants and, consequently, to stagnation and decreased levels of oxygen in water 

systems. 

To prevent this problem, wastewater from rural, industrial and urban backgrounds are treated using 

enhanced biological phosphorous removal. This technique uses microorganisms already present in 

wastewater that incorporate phosphorous into their cells in the form of polyphosphate, removing the 

nutrient from the water. A very important part of this technique consists of evaluating the polyphosphate 

levels present in the microorganisms, which is usually done through expensive or time consuming 

analytical methods.  

To improve the polyphosphate measurement step, the objective of this thesis was to create a 

quantitative image analysis program that can correlate image obtained data with analytical data, 

creating linear regression models useful for polyphosphate quantification. This program used color 

segmentation between polyphosphate and biomass regions, based on RGB, HSV and LAB color spaces, 

and was applied on images of samples dyed with different stains (methylene blue and toluidine blue) 

and with different dilution factors (no dilution and 10x dilution). These images experienced gamma 

values and contrast adjustments, to evaluate different image settings on color segmentation. Models for 

methylene blue stained and diluted samples presented the highest regression coefficients between the 

image data results and analytical data (0.920 and 0.992, respectively), also existing some differences 

between models of images with different contrast and gamma values.  

The color space chosen for image analysis seems to be very important with RGB and LAB presenting 

more satisfying results than HSV. More work is needed before this method can be used, however the 

results seen on this thesis are promising. 

 

Key words: phosphorous; polyphosphate; enhanced biological phosphorous removal; quantitative image 

analysis; methylene blue; toluidine blue; RGB; HSV; LAB. 
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A digital image based method to quantify intracellular polyphosphates in microbial aggregates 

1. Introduction 
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1. Introduction 

1.1 Motivation 

Water is the most important resource for human survival and life in general. There is around 1,4x10 9 

km3 of water on Earth, however only 2,5% of the total water volume is drinkable with only a very small 

percentage of this fresh water being accessible to man[1], [2]. According to the AQUASTAT database of 

the Food and Agriculture Organization of the United Nations, there is an estimated use of 3,9 km3 of 

fresh water per year, with the greatest consumption being agriculture. Out of this amount 56% (2,2 km3) 

is released into the environment as wastewater in the form of industrial or municipal effluent or 

agricultural drainage water. At the same time and due to increasing population, changing consumption 

habits, greater urbanization and industrialization, and others, water demand is predicted to increase 

significantly on the coming decades [3]–[5].  

All these factors lead to an immense pollution of fresh water sources which can cause severe health 

and environmental issues, especially in poorer countries and regions. On average, high-income 

countries treat about 70% of wastewater, while middle-income countries treat less than 50%. Low-

income countries are even worse as they treat less than 10% of their wastewater further escalating the 

situation for the poor who are sometimes in direct contact with polluted wastewater. It is estimated that, 

globally, over 80% of wastewater is released to the environment without proper treatment [3]. Although 

there has been an increase in wastewater treatment levels over the years, further investment and study 

must be made to achieve even better outcomes [6]. 

The lack of treatment can also directly affect ecosystems and the services they provide. Both agriculture 

drainage water and municipal effluent have a high concentration of nutrients such as phosphorous (P) 

or nitrogen that increase eutrophication of freshwater ecosystems [3]. Eutrophication is the excessive 

growth of aquatic plants and algae which leads to an increase in water turbidity and stagnation and to a 

decrease in oxygen levels, ultimately affecting wildlife in those waters [4], [7]. The removal of these 

nutrients from wastewater is therefore of utmost importance and it is why there are more and more 

wastewater treatment plants with the purpose to reduce the nutrients levels. The most common 

biological process for P removal, known as Enhanced Biological Phosphorous Removal (EBPR), uses 

microorganisms present in the wastewater to incorporate the abnormal levels of P on their cell bodies in 

the form of inorganic polyphosphate (poly-P). Over time the wastewater will have its phosphate 

concentration diminished for discharge into natural water sources [7]–[9].  
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For a proper EBPR system, fast and efficient analytical methods must be a requirement, however 

current poly-P monitoring techniques mostly consist of time consuming chemical methods which 

require prior extraction of cell’s content or other more complicated, or even more expensive methods 

[10]. Thus, there is an obvious need for new and faster techniques in this analytical process [8]. This 

thesis proposes a different approach to this problem by use of an algorithm that identifies and 

quantifies intracellular poly-P (int. poly-P) using images obtained with staining analysis and brightfield 

microscopy. 

1.2 Objectives 

This thesis main objective is the development of a quantitative image analysis (QIA) program that allows 

for the identification and quantification of poly-P inclusions in samples from an EBPR system. In detail, 

the technological objectives are: 

1) To review relevant bibliography about poly-P and state of the art techniques and existing tools 

for poly-P quantification; 

2) Studying and testing available relevant software tools; 

3) To develop an algorithm that identifies and quantifies poly-P inclusions; 

4) Compare the developed algorithm with a traditional poly-P quantification method; 

5) Validation of the tool. 
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2. State of the art 

2.1 History of wastewater treatment 

Wastewater management has been in existence since early in the known history of mankind. In the 

Mesopotamian empire (3500 to 2500BC) there were drainage systems relying on storm water designed 

to carry away wastes into cesspools [11]. The ancient Greeks (300 BC to 500 AD) had a different 

approach to the problem, they used public latrines with drainage systems that collected sewage and 

storm water in a collection basin located outside the city which connected to nearby agricultural fields, 

using the wastewater for irrigation and fertilization[11]. The Romans (800 BC to 450 AD) had a strong 

sanitation ethic, creating a central sewer system that led wastewater into the Tiber along with 

aqueducts which provided clean water not only for personal use, but also for cleaning public baths, 

latrines and even the streets, which were used as open sewers by common people [11], [12]. 

With the Roman empire’s collapse so too did their sanitary ethics. Their far-reaching aqueducts were 

neglected and ruined over time. These sanitary “dark ages” (450 to 1750 AD) saw some attempts to 

properly dispose of waste and wastewater with the building of cesspools, sewers and the hiring of 

sanitation workers to clean the streets, however the monarchy wasn’t too concerned with the situation 

as long as they weren’t affected by the smell, which slowed down further development [11], [12]. 

In the second half of the 18th century came the industrial revolution and with it an increase in science 

and technology, however it was also the cause for an exponential increase in population, which 

worsened the already difficult situation of waste management. Due to the increasing population 

densities the early part of the 19th century was marked by outbreaks of diseases the likes of cholera 

and typhus, which is now known to be a consequence of water and waste-borne disease [11], [13]. At 

the time, these diseases were thought to be provoked by miasma, a type of poisoned or foul air caused 

by rotting waste, leading to the government placing emphasis on sanitation to prevent the spread of the 

disease. In London, measures such as construction of sewers and water closets helped the situation 

with wastewater going directly into the sewers instead of cesspools. By doing this, however, the 

government was unknowingly turning the river Thames into a virtual cesspool since all the sewers were 

connected into it [11], [13]. In 1854, Dr John Snow proved the link between water and cholera, by 

showing that water containing contaminated vomit or fecal matter was the cause of the disease[14]. 

After this the government implemented a system that collected the discharge wastewater before 

releasing it downriver from the city [13]. 
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Only after this discovery and in the later parts of this century did people realize that pollutants needed 

to be removed from wastewater, which led to the first instances of wastewater treatment [11]. There 

were already some instances of chemical treatment in 1740, using lime as a precipitant [15], but the 

movement only gained favor in the mid to later stages of the 19th century. Despite its advantages, 

chemical treatment wasn’t completely efficient at pollutant removal and created a lot of sludge, which 

was difficult to dispose of [11]. The search of better treatment methods led to the creation of septic 

tanks and biological filters. Septic tanks consisted of large cisterns with inlets and outlets located below 

the surface of water, since wastewater divided itself into 3 components based on density: oils went to 

the top, water in the mid and settled sludge on the bottom, allowing cleaner water to be removed. It 

was observed that the number of solids decreased in these tanks with the passage of time, this being 

credited to anaerobic organisms [12], [16], [17]. Biological filters consisted of a medium used to filtrate 

wastewater, with porous soil being used. Wastewater that passed through sandy, gravelly soil had a 

decrease in pollutants, but the method later evolved into synthetic filters [16], [18]. From both methods 

came the idea that microorganisms could be used for wastewater treatment, which later led to 

extensive biological treatment research and development in the 20th century [11]. Chemical treatment 

was casted to the background, even though it is still used for purposes such as disinfection, chemical 

precipitation, neutralization and others [19]. 

The main biological treatment process, called activated sludge (AS), was only discovered in 1913. It 

was previously known that aeration of sewage allowed for oxidation of organic matter, thus diminishing 

the pollutants in wastewater, but it was common practice to dispose of the sludge that resulted from 

settling [11], [20]. In 1913, William Lockett and his team decided to aerate new portions of sewage 

along with previous obtained sludge. They discovered that with each aeration the amount of sludge 

increased and the period needed for oxidation of organic matter in the wastewater was reduced [20]–

[22]. In a mere 25 years, AS was present in hundreds of full-scale wastewater treatment facilities all 

around the world [23]. Research into this biological process was halted until after the Second World 

War. From that point on the main, emphasis has been on the removal of suspended solids, organic 

material and nutrients, disinfection and also overall performance of the method, along with research of 

AS’s many variants and also anaerobic processes [11]. 
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2.2 Enhanced biological phosphorus removal 

EBPR was discovered in 1975 in South Africa, where its semi-arid environment, along with population 

growth and high chemical prices, made reuse of water essential, leading to the search of cheaper 

alternatives to chemical precipitants, which were, at the time, the conventional method for phosphorus 

and nitrogen removal [24]. EBPR is a variant of the AS process that achieves P removal by recirculating 

sludge through aerobic and anaerobic conditions [24]. The organisms capable of P removal are 

generally known as polyphosphate accumulating organisms (PAO). These incorporate P in the form of 

int. poly-P granules (inclusions), which leads to P removal from the liquid phase by means of cell 

removal in the waste AS [25]. 

2.2.1 EBPR process – poly-P accumulation 

Poly-P accumulation doesn’t occur in anaerobic conditions; however, a single aerobic phase is not 

enough for efficient removal of P from wastewater. Therefore, EBPR is characterized by exposure of AS 

to both aerobic and anaerobic phases in cycles. Keeping in mind that oxygen can be replaced by nitrite 

or nitrate, the aerobic phase can be replaced with an anoxic phase or even a combination of both. This 

will not alter the general process of EBPR.  

2.2.2 Anaerobic phase 

The anaerobic phases of the EBPR process (Figure 1) are stressful for PAOs leading them to take up 

and accumulate carbon sources to prepare for the possibility of long-term oxygen absence. Acetate and 

other molecules that serve as carbon sources, such as sucrose or propionate, are thus transformed into 

acetyl-CoA, a reaction that consumes energy leading into the release of P, due to the hydrolysis of ATP 

into ADP. In this step poly-P reserves in the cell are consumed to maintain ATP levels in the cell. The 

accumulated acetyl-CoA is then converted and stored as polyhydroxyalkanoates (PHA), a carbon storage 

compound. The anaerobic phase may seem counterproductive since P is released into the medium, 

however, the aerobic phase intakes more than enough P to compensate [9], [26]. 
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Figure 1 Representation of the anaerobic phase biochemical reactions in a PAO. Image adapted from Tarayre [9]. 

2.2.3 Aerobic phase 

In the aerobic phase (Figure 2), the previously stored carbon compounds, PHA, are used as fuel for cell 

growth and replenishment of poly-P reserves. The compounds are degraded into acetyl-CoA and enter 

the tricarboxylic acid cycle (TCA) cycle, which will produce the necessary energy and carbon for new cell 

growth. Some of the produced energy (ATP) will be used to incorporate P from the surrounding 

environment in the form of intracellular poly-P granules. In the aerobic stage, the microorganisms will 

take up almost all the surrounding P, including the one removed during the anaerobic phase. Under 

optimal conditions, EBPR will consume around 85% of wastewater phosphate, a great improvement to 

the conventional method’s 30% [9], [26]. 

 

 

Figure 2 Representation of the aerobic phase biochemical reactions in a PAO. Image adapted from Tarayre [9]. 
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2.2.4 Phosphorus accumulating organisms (PAO) 

A great number of organisms can be used in EBPR as accumulators of P, from bacteria to algae and 

even fungi [9], however, bacteria plays the most significant role in this process. For EBPR to be efficient 

as a P removal method, not all PAOs can be used since the process of incorporating P intracellularly 

will rely mainly on the ability of the organisms present in the sludge, usually bacteria. Thus, a proper 

knowledge regarding the molecular mechanisms of poly-P accumulation on bacteria, and perhaps on 

other types of PAO, could become of help in the biological P removal from wastewater [27].  

In the early beginnings of EBPR it was thought that PAOs could only accumulate P under aerobic 

conditions. However, based on a biological point of view, oxygen is not the only viable electron acceptor 

with both nitrate and nitrite being possible candidates. It is known that most bacteria possess the ability 

to denitrify and accumulate poly-P [28] and in fact, literature states that there is P removal in the 

presence of nitrate in AS systems [29], [30]. This means that there are at least two groups of PAOs, 

aerobic and denitrifying [28], with the latter able to remove nitrogen alongside P. Many bacteria have 

been reported as PAO in AS, such as: Acinetobacter, Aeromonas, Pseudomonas, Paracoccus, Bacillus, 

and more.[28] Acinetobacter spp. are the most common isolates found in the EBPR process, however 

they are not predominant, in fact several bacteria belonging to different genus are constantly being 

identified in EBPR processes, with both Gram-negative and Gram-positive bacteria being found. 

2.3 Poly-P 

2.3.1 Characteristics 

Poly-P is a linear polymer of orthophosphate residues linked by phosphoanhydride bonds, the same 

found in ATP. This polymer can have lengths from tens to hundreds of residues, depending on its 

location and metabolic state [8], [10], [31]. Due to its composition (Figure 3), it has a highly negative 

charge. Organic poly-P is usually found in large granules inside the cells, especially large if the organism 

is a PAO [25], [32]. 

 

Figure 3 Example of poly-P linear structure.  
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2.3.2 Functions 

Poly-P is a molecule with a wide range of biological functions, depending on the subcellular 

compartment where it is located and when it is needed. These functions include substitution for ATP in 

kinase reactions, regulation of enzymatic activities, capsule of bacteria, regulating some genes 

expressions, the physiologic adjustments to growth, development, stress and deficiency, and, with 

special interest to this thesis, disposal of pollutant phosphate in wastewater [33]. The biological removal 

of P from wastewater through poly-P production has long since been documented [4], [7], [25], [34], 

with poly-P serving as a high energy storage molecule that, upon hydrolysis, can supply large amounts 

of energy for biochemical reactions within the cell [8], however, this is not its only function in 

wastewater treatment since poly-P’s characteristics make it useful in other areas. Its highly negative 

charge, for instance, makes it helpful in preventing microbial adhesion to filter surfaces, which can 

prove useful in recovering microflora from drinking water [35]. Poly-P can also keep minerals in 

suspension during industrial processing and decrease bacterial adhesion to soil [36]. Poly-P’s 

reusability in wastewater treatment is yet another reason to why EBPR is the best current choice in P 

removal.  

2.4 Poly-P analysis 

Quantification and characterization of different forms of P are not easy to accomplish due to the vast 

uses of P in biology and its presence in several forms. Most quantification methods require a primary 

step to separate and concentrate the selected P fractions of interest from the rest. Poly-P can associate 

with other cellular components and depending on its size poly-P solubility will vary, making it a hard 

target for extraction [10]. Also, extraction has been reported to lead to an underestimation of poly-P 

values in samples owing to poly-P loss or composition change in the extraction step [37]–[39]. This 

implies a drop of efficiency in analytical methods with a prior extraction step, making other methods 

more appealing to the general scientific community.  

There are several methods that enable P detection and quantification in biological sources, but not all 

are suitable for poly-P, with some detecting organic P or ortho-P. These methods can be divided into 

chemical, biological, molecular, and microscopy/staining analysis.   

2.4.1 Chemical analysis 

Traditional chemical poly-P quantification methods involve a digestion step to convert poly-P to ortho-P. 

Organic P is also converted therefore increasingly rigorous digestion methods are used to separate both 

types of P. The ortho-P corresponding to poly-P is then analyzed by ion chromatography or inductively 
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induced plasma atomic emission spectrometry. Since the analysis is conducted on ortho-P levels and 

not directly on poly-P these results may not be completely accurate due to high background ortho-P 

levels and the method’s own susceptibility to other P compounds [40]–[42].  

High performance liquid chromatography is a very precise chemical quantification method, however it 

can only identify poly-P with small chain lengths, less than 35 P units, making it not compatible with the 

quantification of EBPR poly-P [43]. 

More advanced methods, such as electron ionization mass spectrometry, allow for poly-P quantification 

without the need of pre-extraction steps, preventing any underestimation [44].  

These methods are widely used due to their cost-effectiveness and no need of advanced instruments. 

Still, they require work and time and are not techniques used for fast quantification of poly-P. 

2.4.2 Biological analysis 

Biological analysis can be divided into either enzymatic assays or protein affinity labeling. The second 

method can locate and visualize poly-P at the ultra-structural level tagging and detecting an epitope, the 

part of poly-P that is detected by the immune system [45]. This technique is not used for poly-P 

quantification. The first method, however, can quantify poly-P levels. 

Enzymatic assays are based not on poly-P itself but on the enzymes responsible for poly-P metabolism. 

Poly-P is synthesized in bacteria by poly-P kinases (PPK) and degraded by exopolyphosphatase (PPX). 

One method involves measuring P concentration after poly-P is degraded by PPX. Another measures 

ATP concentration, since poly-P is converted to ATP by PPK in the presence of an excess of ADP. The 

reaction products can then be analyzed by chromatography, electrophoresis or other methods [37], 

[46], [47]. The PPK method is considered more effective for longer poly-P chains, more than 20 P 

units, while the PPX method seems more suited for the opposite. These techniques are highly 

dependent on the extraction step beforehand since they require a high poly-P purity [39]. 

2.4.3 Molecular analysis 

Methods that pertain to molecular analysis are great non-invasive techniques that can differentiate 

between different species of P, such as poly-P with possible quantification. X-ray spectrometry, nuclear 

magnetic resonance (NMR) and RAMAN microscopy are possible molecular analysis methods for poly-P 

in wastewater.  

When X-ray spectrometers are associated with scanning or transmission electron microscopy it is 

possible to directly measure the levels of elemental contents of the cells and its inclusions, such as 
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poly-P granules [48], [49]. However, quantification of environmental samples using electron microscopy 

is difficult, if not impossible to accomplish. There is also the possibility of fluorescence X-ray 

microscopy, a technique that shows the spatial concentration of elements and can be applied to poly-P. 

This method can only be applied to cells larger than 3 µm, making it somewhat undesirable [50], [51].  

The NMR technique requires labeled substrates to operate (31P) which are included in poly-P granules 

through normal cell metabolism [52]. This method allows for a good characterization of P-containing 

molecules, allowing for the visualization of the spectra of all P species, including poly-P. A drawback 

from this method is that it recognizes molecules based on their bond, meaning that other molecules 

that possess phosphoanhydride bonds, such as nucleotides, may interfere with poly-P detection. Also, 

this technique allows for a relative quantification at best, not being suitable for quantifying total poly-P 

levels on samples [53]. 

RAMAN microscopy requires a minimal sample preparation and can be used with complementary 

molecular techniques for better results [10]. This method has been recently used for the identification 

and quantification of poly-P in EBPR systems [52], however there is still no literature on this method’s 

ability to differentiate between poly-P’s with different chain lengths.  

2.4.4 Microscopy and staining analysis 

Microscopy and staining analysis involves some of the most common methods used when compound 

visualization and quantification is involved. These range from fluorometric to simple colorimetric 

techniques and provide a fast, low-cost and easy set of operations [10]. 

Fluorometric techniques involve staining of poly-P granules with specific fluorescent dyes. The most 

common fluorescent staining method for poly-P detection uses 4’,6-Diamidino-2-phenylindole 

dihydrochloride (DAPI) [54], [55]. This dye is not specific to poly-P, staining DNA as well as other 

compounds, but this behavior can be circumvented with high enough concentrations of DAPI, with DNA-

DAPI turning blue while poly-P-DAPI yellow [39], [54], [56]. Methods for quantification of poly-P using 

DAPI have already been created with promising results [8], [55].  

Intracellular poly-P granules are not visible through an optical microscope, unless stained which led to 

colorimetric methods in poly-P visualization and quantification. These methods were the first to be 

implemented and are still widely used due to their simplicity. They consist of staining biomass with 

chemicals (dyes) and observing them through a brightfield microscope [9]. There are two major stains 

commonly used in EBPR studies, Neisser and Loeffler staining, and both use Methylene Blue (MB) as 
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their active component. This dye can be replaced with Toluidine Blue (TB), which shares similar 

properties, and can also be used for poly-P staining. MB is a metachromatic dye with a high positive 

charge that has a high affinity for poly-P granules, due to their anionic properties. When this dye binds 

to poly-P it produces a color different from the rest of the cell, allowing for the differentiation between 

them through microscopy [57], [58]. These dyes alone are already enough for poly-P differentiation, 

with Loeffler and Neisser methods further increasing the visual difference between cell and poly-P 

granules. 

Loeffler’s method has been reported to have a higher efficiency towards larger poly-P granules, with 

good results in EBPR systems with large poly-P quantities [57]. Through this method, pink-violet poly-P 

granules are seen amidst a blue background corresponding to the cells [59]. 

When using Neisser staining method, MB is dissolved in an acidic solution that helps better differentiate 

poly-P granules and the rest of the cell since MB only binds to molecules with lower pH than the 

solution, which is the case of poly-P. Afterwards a counterstain solution is added. This method makes 

Neisser staining more suitable for poly-P staining than Loeffler’s since it provides a better contrast 

between poly-P and the cell. Through this method, purple-black poly-P granules are seen amidst a 

yellow-brown background corresponding to the cells [57].  

In EBPR systems, cell staining after the aerobic phase with any of these methods, should show the 

entire cell as stained instead of individual granules, due to large amounts of poly-P present in PAO [32]. 

2.5 Quantitative Image Analysis (QIA)  

2.5.1 Image 

An image may be defined as a two-dimensional function, f (x, y), where x and y are spatial coordinates, 

and the amplitude in any given coordinate (pixel) is the intensity of the image at that point. When f, x 

and y are finite and discrete quantities, the image is a digital image. In monochrome images, the 

intensity value of pixel is usually known as gray level, since the variation between black and white is 

what enables us to see a picture. Mathematically speaking, images are n-dimensional matrices (with n 

typically 1-5) with each dimension corresponding to a different parameter or coordinate [60]. For 

example, in the RGB (red, green and blue) color system, an image consists of three individual 

monochrome images, each corresponding to their respective color [61]. The junction of these three 

individual monochromatic images is the original color image.  
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2.5.2 Color spaces 

A color can be represented through a series of different mathematical systems. These are called color 

spaces or color models, and each possess different qualities that enables them to better perform 

certain tasks when compared to each other.  

RGB is the most common color system, but it’s not the only one, in fact there are several of these color 

spaces, such as HSV or CIELAB, which are mathematical representations of sets of color [62]. In RGB 

color space there are three primary colors: red (R), green (G), and blue (B), that added together can 

form all other colors including black and white. This model is usually represented as a cube due to the 

models three main colors (Figure 4), which act as the axis for the model. RGB values are conventionally 

normalized to range from 0 (not saturated) to 1 (fully saturated), however they can also be represented 

in an 8-bit system, ranging from 0 (not saturated) to 255 (fully saturated) [63]. 

 

Figure 4 Representation of the RGB color space in a three-dimensional shape – RGB cube. The x, y and z are represented 

with the colors red, green and blue respectively, with each coordinate representing a different color. Image adapted from 

Kuehni [62]. 

The simplicity and versatility of this color space makes it the most common choice for computer 

graphics, however RGB is not very efficient when dealing with “real-world” images so other color 

systems were designed [62], [63]. One color space that takes human perception and interpretation of 

color into account is HSV (hue, saturation, and value), among others. It was designed to be more 

intuitive in manipulating color in a time when color had to be specified manually in systems. This color 

model allowed for a simplification of programming, processing, and end-user manipulation processes, 

making it suitable for color manipulation such as color identification and segmentation. This color space 
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is usually represented as a cylinder or as a cone (Figure 5) [62]. Unlike RGB this color space doesn’t 

have the same range of values in its “dimensions”. Hue (H) refers to the basic color and is defined as 

the angle around the color plane from a reference to the specific color, ranging from 0 (red) to 360 

(also red, since it’s a circle). Saturation (S) and value (V) are defined as the departure of the color from 

white and black, respectively, and are defined as two vectors, with saturation being the distance 

between the central circle point and the specific pure color, and value being the vertical position where 

the circle plane intersects the grey vertical axis. Both saturation and value conventionally possess 

normalized values ranging from 0 (white or black) to 1 (specific color), or as a percentage. 

 

Figure 5 Three-dimensional representation of HSV color space. HSV model is similar to a cylinder with hue (H) being 

arranged as a radial slice around a central axis of neutral color, saturation (S) as the horizontal depth of the structure, 

counting from the central axis, and value (V) as the height of the structure. This image was obtained from 

http://lib.povray.org and is a creative property of Michael Horvath. 

Another important color space and presently the most important system of color representation is the 

CIELAB model, also called LAB or L*a*b. Created by the Commission International d’Eclairage (CIE) in 

1976, this model is a result of several years of study and development and is based on the opponent 

color theory. Designed to be perceptually uniform with respect to human color vision and considered 

one of the most accurate color systems in the organization of colors, this 3D model is composed of 

three different axes: a vertical L* axis, that relates to the luminance of the color and ranges from black 

to white and two perpendicular horizontal axis, a* and b* which range from red to green and yellow to 

blue, respectively [63]. Conventionally, red and yellow are positive on their axes with values up to +154 

while green and blue are negative with values down to -155 (8-bit integer). L values range from 0 

(darker) to 100 (lighter). This relates to the fact that it’s considered impossible for any color to be both 

green and red, or yellow and blue at the same time, according to the opponent color theory [64]. This 

color space is usually represented as a sphere (Figure 6). 

http://lib.povray.org/
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Figure 6 Representation of CIELAB color space as a sphere. This image was obtained from 

http://sheriffblathur.blogspot.com/2013/07/cie-lab-color-space.html. 

All these color spaces are interchangeable, which allows for an easy transformation of a RGB image to 

HSV, LAB or others, and even vice-versa, through the use of mathematical equations [62], [63]. 

2.5.3 Gamma 

Another important element when dealing with images is gamma correction, or simply gamma. While it 

is not directly related to color, it can significantly change the perception of colors and brightness of an 

image.  

The intensity of light generated by a physical device is not a linear function of the applied signal, instead 

being the approximate applied voltage raised to a gamma power. If an image was stored in a linear 

manner, instead of gamma encoded, it would use an excess number of bits to describe brighter tones 

due to the higher sensitivity of cameras on this tonal range. Gamma increases the visual quality of an 

image since humans perceive color and brightness in a nonlinear manner. Gamma correction, which is 

a simple altering of the gamma value, is therefore a nonlinear operation that optimizes the usage of 

bits, giving more importance to shadow values that humans are more sensitive to or to highlights that 

humans cannot differentiate, depending on the purpose of the correction. To put it simply, gamma 

values define how much dark colors are highlighted in an image. Higher gamma values will darken 

shadows and darker regions, while lower gamma values will do the opposite, brightening those areas  

[62], [65]. 

http://sheriffblathur.blogspot.com/2013/07/cie-lab-color-space.html
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2.5.4 Image analysis 

Image analysis is defined as the act of measuring meaningful object features in an image, with these 

objects being colors, sections or others (Figure 7). The results can be qualitative or quantitative with a 

tendency for quantification in most fields of research [60]. 

QIA techniques are becoming increasingly more important in many scientific fields, with a great focus 

on biology. The increase in both image hardware acquisition efficiency and data storage and 

processing, along with a need for faster and less subjective approaches has made QIA techniques 

indispensable and increasingly needed in science [60]. There are numerous QIA methods, adapted for 

their specific needs, but some steps are common in those methods, such as pre-treatment of images, 

filtering, and segmentation [66]–[68].  

 

Figure 7 Example of data obtained on an image with QIA. Image adapted from Meijering and Cappellen [60]. 

QIA methods have recently been used to obtain valuable information about biological processes, being 

applied for content and morphology determination in EBPR biomass using bright-field, phase-contrast, 

and/or fluorescence microscopy [69]–[72].  

Despite their uses in microorganism or intracellular storage compounds identification (poly-P, PHA, 

glycogen) [58], [73], these processes are generally not used in routine quantitative analysis, being 

overshadowed by other more widespread and influential methods, such as chromatography. This 

implies a need for the development of even more QIA algorithms and techniques in EBPR systems but 

also on other fields of study. 
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3. Methods 

3.1 Experimental set-up 

Experimental results were obtained in a laboratory-scale sequencing batch reactor (SBR) with a working 

volume of 4L (Figure 8) operated for 29 days. In this experiment, synthetic wastewater was used with 

acetate as main carbon source and dipotassium phosphate as phosphate source. The chemical oxygen 

demand (COD)/P ratio was originally planned to slowly decrease from 27 mg COD per mg P-PO4
-1 to 10 

mg COD per mg P-PO4
-1 to provide advantages to PAO [8], [74], unfortunately phosphate was not 

dissolving properly below 20 mg COD per mg P-PO4
-1 so this ratio was kept throughout the duration of 

the experiment. 

 

Figure 8 Representation of the lab sized bioreactor used. There were 3 tubes permanently connected to the bioreactor, 

namely tubes 1, 2 and 3. Tube 1 had holes at the end of it and was connected to a source of compressed air, being 

responsible for aeration. Tube 2 was responsible for feed, being connected to a jerrycan filled with nutrients, along with the 

carbon and phosphate source. Tube 3 was responsible for the discharge of the effluent. Opening 4 was usually closed, only 

used when a sample was taken. 

Synthetic feed consisted of the carbon and phosphate source along with other key nutrients according 

to [8], [75]. Their composition can be found in Table 1. Trace metals solution was created separately 

and then added to the synthetic feed. Their composition is seen in Table 2. 
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Table 1 Composition and concentration of nutrients that compose the synthetic feed used in the batch reactor. Trace metals 

composition can be seen in Table 2. This feed was based on [8], [75]. 

Synthetic feed (gL-1) 

NH4Cl 0,59 

MgSO4 · 7 H2O 0,95 

CaCl2 · 2 H2O 0,44 

Allyl-N thiourea 0,012 

EDTA 0,03 

Trace metals 3.16 mLL-1 

 

Table 2 Composition and concentration of metals that compose the trace metals solution used in the synthetic medium. This 
solution is based on [8], [75]. 

Trace metals solution (gL-1) 

FeCl3 · 6 H2O 1,5 

H3BO3 0,15 

CuSO4 · 5 H2O 0,03 

KI 0,18 

MnCl2 · 4 H2O 0,12 

Na2MoO4 · 2 H2O 0,06 

ZnSO4 · 7 H2O 0,12 

CoCl2 · 6 H2O 0,15 

 

The system operated with the help of electronic timers, with a cycle of 6h consisting of 120 min 

anaerobic including 45 min feed, 180 min aerobic, and 60 min settling including 5 min wasting. One 

on/off control valve was used, bubbling compressed air into the reactor during aerobic periods. The pH 

was periodically monitored to ensure that it remained around 7.5. 

Samples were obtained from the bioreactor immediately after the end of the aerobic period. Samples 

were also diluted in a 1/10 ratio, with both the diluted and non-diluted samples being stained for 

posterior image analysis. The remaining samples were stored at -20ºC for posterior analytical 

procedures. 
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3.2 Analytical procedures 

Poly-P content, total suspended solids (TSS), and volatile suspended solids (VSS) were always analyzed 

at the end of the aerobic stage using the same samples used for staining and image acquisition. Poly-P 

content was measured using a Hach LCK 350 Phosphate Kit. This kit has two different protocols, one 

for measuring dissolved orthophosphate (a) and the other for measuring the total P (b) content of the 

sample. The orthophosphate procedure involves adding 0.5 ml of Reagent B to 0.4 ml of sample on a 

cuvette and closing it with a DosiCap C. The cuvette is then inverted 2 to 3 times so that the cap’s 

frozen content is dissolved. After 10 minutes the sample is ready for analysis. The total P procedure 

involves a prior hydrolysis step, with DosiCap Zip content and 15 minutes at 170ºC using a HT 200 S, 

before following the same procedure as the orthophosphate analysis. Poly-P concentration was 

calculated by subtracting the dissolved orthophosphate from the total P content (Poly-P=b-a). 

TSS and VSS were measured using the standard methods [76]. Glass fiber filters were placed on top of 

an aluminum dish and weighted (a). Afterwards, 5 ml of sample (V) was filtered using a standard 

filtration system (Figure 9). The biomass filled filters, along with the aluminum dish, were heated at 

105ºC for 24h. They were weighted again after cooling down (b). These were then reheated at 550ºC 

during 2h for removal of volatile substances. All that remains in the filters is inorganic matter, usually 

referred to as fixed solids. The filters were then weighted again after a cooldown period (c). The TSS 

and VSS were calculated using Equation 1 and Equation 2, respectively, and expressed in gL-1. 

 

Figure 9 Filtration system used during VSS and TSS analysis. 

𝐓𝐒𝐒 = (𝐛 − 𝐚) × 𝟏𝟎𝟎𝟎/𝐕 Equation 1 

𝐕𝐒𝐒 = (𝐛 − 𝐜) × 𝟏𝟎𝟎𝟎/𝐕 Equation 2 
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3.3 Staining and image acquisition 

Intracellular poly-P inclusions were observed using standard brightfield microscopy at 20 times 

magnification with MB and TB staining. To keep the process simple, the dyes were used without any 

additives, as sent by the manufacturer (MB’s manufacturer was CONDA Labs while TB’s was PanReac). 

The staining method used was simple: around 0.5 ml of sample was put on top of a slide and spread 

carefully. The sample was dried at room temperature, after which it was covered with dye for no more 

than 30 seconds and washed with distilled water immediately after. After drying at room temperature 

once again, the sample was ready for visualization. 

This method was also used for diluted samples with a 1/10 ratio. This dilution was used to prevent 

biomass overlapping during image visualization. Images were then acquired from all four stained slides 

thus obtaining 4 sets of around 50 images each: MB diluted (MB_dil), MB non-diluted (MB_sd), TB 

diluted (TB_dil), and TB non-diluted (TB_sd). Images were obtained using an Olympus BX51 optical 

microscope (Olympus, Tokyo, Japan), coupled with an Olympus DP72 camera (Olympus, Tokyo, 

Japan). Images were acquired at 1360 × 1024 pixels through the commercial software CellˆB 

(Olympus, Tokyo, Japan). Images were then analyzed with the help of a MATLABTM written image 

analysis algorithm. 

3.4 Image analysis 

The algorithms developed in this thesis were created using solely MATLAB R2015. The image 

processing and analysis were based on the identification of poly-P regions, be they intracellular 

inclusions or other (aggregated, superimposed regions or even ruptured granules), through color 

segmentation. There are several mathematical representations of color, called color spaces, but for this 

thesis three were chosen for the color segmentation process: RGB, HSV, and LAB. They were chosen 

due to their different qualities and their differences in organizing color as to select the most appropriate 

color space for this work. The mechanism through which color segmentation was performed was 

basically the same for all color spaces, dividing each image into three different areas representing poly-

P, biomass, and background. Two different gamma values and contrast settings were used in an 

attempt to better visualize the different colors and perform correct segmentation for posterior data 

analysis. Images obtained by microscopy were organized by day, dye used, and dilution factor, for faster 

analysis.  
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3.4.1 Early script development 

There was an evolution in terms of scripts used during this thesis. A sort of trial and error methodology 

was applied, with scripts being created and discarded if they did not correspond to expectations or 

where deemed too difficult to use. Early in this thesis, a script called RGB_mask_segmentation.m, was 

created for color segmentation. This script operated on the basis of thresholding RGB values on the 

obtained microscopy images. The RGB images were divided into their three color bands, onto which a 

low threshold and a high threshold were designed. The image pixels with values that ranged between 

both thresholds were used to create color masks while the other pixels were discarded. These masks 

were then applied in their respective color band creating masked images for each band, or simply put, 

images corresponding to each color band with their desired values. The combination of all three 

masked images create a colored mask which, when applied on the original image, led to the final image 

showing the desired color. The workflow for this script can be seen in Figure 10.  

 

Figure 10 Representation of the RGB_mask_segmentation.m script’s workflow. 

3.4.2 Late script development 

The final two types of scripts used were Poly_P_analysis_all.m, a script that utilizes the three color 

spaces to segment sets of images on the three different regions and saves the data extracted from 

them on an excel file, and x_color_separation.m, where x stands for HSV, RGB, or LAB, which are 
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scripts that segment an image based on Poly_P_analysis_all.m workflow, and shows them separately 

on images. 

Poly_P_analysis_all.m can be further divided into three separate scripts: Poly_P_analysis_LAB.m, 

Poly_P_analysis_HSV.m and Poly_P_analysis_RGB.m, which process the images in the color spaces 

associated with their respective names. Their workflow is relatively equal, apart from the original RGB 

image being transformed into a LAB or HSV image, depending on the script. On any one of these three 

scripts an image is first selected in order to define the colors belonging to the poly-P, biomass or 

background region. This enables the script to work with any coloring dye, as long as there’s a clear 

difference between these regions. These regions will then have their pixel intensities averaged on all the 

color spaces dimensions. This gives the average color for each region to serve as a reference. Other 

images in the same file folder as the example chosen will have their pixels values compared to the 

reference colors values through Euclidean distance, which is defined as the shortest distance in a 

straight line from one point to another. The pixel will be assigned to the region with the shortest 

distance between their values. The newly assigned regions have their limits smoothed out for a visually 

better structure. The poly-P and biomass regions will then become RGB images, no matter the 

previously used color space, and transformed into grayscale and binary images in order to obtain 

quantitative information. Figure 11 is a representation of the Poly_P_analysis_all.m workflow.  

The scripts x_color_separation.m are similar to the subscripts of Poly_P_analysis_all.m, except that it 

does not store data about all images in a file. A single image is chosen, out of which sample regions will 

be selected. The image will have its pixels color values compared to the sample regions reference color, 

such as in Poly_P_analysis_all.m, dividing the image in three separate RGB images each with its 

intended region. The purpose of this script is simply to visualize the separate regions and better identify 

them.  
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Figure 11 Representation of the Poly_P_analysis_all.m script’s workflow. The step number 1 happens before step number 2 

in order to select the sample regions which will be compared to the remaining images. 

3.5 Linear regression analysis 

In statistics, linear regression is an approach to model the relationship between a dependent variable 

(or the response variable) and one or several independent variables (as predictor variables)[77]. In this 

thesis, ordinary least squares multiple linear regression is used to correlate several QIA predictor 

variables to the analytical response variable. Ordinary least squares (OLS) regression works by 

minimizing the sum of the squares of the residuals (r) on all data points (n), a residual being the 

difference between an observed value (y) and the fitted value provided by the model (ŷ), this way 

increasing the fit between the data and the model[77], [78]. The sum of the squares of the residuals 

can be defined Equation 3. 

∑(𝒓𝒊
𝟐) =∑(𝒚𝒊 − ŷ𝒊)

𝟐

𝒏

𝒊=𝟏

𝒏

𝒊=𝟏

 
Equation 3 

 

A linear model is defined as an equation that is linear in its coefficients, meaning that the data points 

can be modeled by a first-degree polynomial. The linear model can therefore be represented Equation 4 

where the fitted data (y) equals the intersection of the y axis with the regression line (b) plus the sum of 

the product of n number of predictor variables (xn) with their corresponding coefficients (βn). 
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𝒚 = 𝒃 + 𝜷𝟏 × 𝒙𝟏 +𝜷𝟐 × 𝒙𝟐 +⋯+𝜷𝒏 × 𝒙𝒏
 Equation 4 

 

Since there will be a great number of predictor variables on the models created, a simple response vs 

predictor variables plot will be incredibly confusing, therefore an added variable plot will be created to 

represent the model. This type of plot uses the Frisch–Waugh–Lovell theorem [79] to “partial out” 

variables in the model in order to create a plot that allows visualization of the model according to one 

predictor, despite having several predictor variables. Basically, this type of plot will visually show the 

explanatory power of the model as a whole. 
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4. Results and Discussion 

4.1 Samples and images 

A total of 12 samples were obtained for analytical methods during the 28 days of experiment. These 12 

samples were further divided into MB_dil, MB_sd, TB_dil, and TB_sd sets of images after dilution, 

staining and image acquisition, which equals to 48 different sets of images, for a total of 2447 images. 

In this manner around 200 different images were taken for each sample. These images were then pre-

processed into four different combinations of two gamma values (G_2 = 1 and G_4 = 0.8) and two 

contrast settings (C_1 = no contrast and C_2 = higher contrast) during image analysis, leading to four 

different datasets of parameters per set of images, each containing poly-P area (pixels), biomass area 

(pixels), poly-P area per biomass area (ratio), poly-P total grayscale intensity (total grey value), and 

average grayscale intensity per poly-P pixel (on a scale of 0 to 255). 

4.2 Analytical results 

Standard analytical methods were used to determine the TSS and VSS parameters in the reactor, which 

were used as both a measurement of biomass growth as well as to relate to QIA information. TSS and 

VSS values showed high variability during the experimental period, with a decrease from 2.58 gL-1 and 

2.59 gL-1 on day one to values below 1.5 gL-1 on days 8 to 15. Some problems with feeding and wasting 

were observed in the early stages of the experiment, which could have caused the decrease of biomass. 

Values once again increased above 1.5 gL-1 after day 15, however both TSS and VSS experienced 

irregular increases and decreases in their values until the end of the experiment. The highest TSS and 

VSS values were 2.79 gL-1 and 2.59 gL-1 on days 18 and 1, respectively, while the lowest values were 

1.05 gL-1 and 1.14 gL-1, respectively, on day 8. TSS and VSS results can be seen in Figure 12.  
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Figure 12 TSS and VSS content over the experimental period. 

Two poly-P parameters were used to relate to QIA information for calibration of the proposed method: 

intracellular poly-P per volume and per TSS. Only TSS was used since the concentrations were found to 

be similar to VSS, as can be seen in Figure 12. Intracellular poly-P levels increased throughout the 

experiment, from 25.9 mgL-1 to 87.1 mgL-1, as shown on Figure 13. A similar increase can be seen in 

Figure 14, in intracellular poly-P levels per TSS, despite some slight differences due to the abnormal 

variability in TSS content shown in Figure 12. The increase in intracellular poly-P levels was to be 

expected since the high P concentration in the feed should have led to the selective growth of PAO, who 

should in turn have incorporated increasing amounts of P as poly-P reserves. Slight traces of microalgae 

were found in the reactor during the experiment. These organisms competed with PAOs for nutrients 

and might be the cause for  the lower PAO growth, leading to lower intracellular poly-P levels, observed 

in days 6 and 13 (Figure 13 and Figure 14). 
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Figure 13 Intracellular poly-P values obtained with Hach LCK 350 Phosphate Kit. 

 

Figure 14 Intracellular poly-P values per TSS content. 

4.3 QIA results 

4.3.1 Early script development 

The RGB_mask_segmentation.m script was able to properly distinguish poly-P regions in an image 

through color thresholding. The RGB threshold values used for the purple/violet shade of poly-P region 
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while dyed with MB were 50-180, 10-90 and 110-190, respectively, for the red, green, and blue bands 

of images. It was noticed that images possessed different gradients of color throughout the experiment, 

despite similar conditions being applied in all aspects of staining and image acquisition processes. This 

difference could be seen by comparing the different images of Figure 15, which correspond to days 1 

(images a-b), 13 (images c-d), and 29 (images e-f) of the experiment. Exposure time and brightness 

values were deliberately constant over experimental period as to provide similar looking images, 

however these differences could be due to other imaging software settings that were somehow altered 

along the experiment. Accidental variations of the staining time (30s by definition) could have also 

influenced the changes found in poly-P and biomass regions colors (which are lighter in some images 

and darker on others), as can be seen in Figure 15. 

Due to these unexpected variations on color, the abovementioned threshold values used managed to 

properly segment the poly-P region in Figure 15a, seen on Figure 15b, however they were not the 

proper values to use on the images obtained from other days of the experiment. It is clearly seen in 

Figure 15c-d and Figure 15e-f that the darker or lighter, respectively, shade of purple/violet color did 

not correspond to the threshold intervals and was therefore not fully identified by the program. This 

setback causes a need for the discovery of the proper thresholds every day that the samples were 

collected, and the images obtained. Moreover, two different dyes were used on the process of sample 

staining, meaning that threshold values also had to differ based on the dye used. Figure 16 shows 

examples of the MB thresholds values mentioned above used for segmentation of TB stained images. 

The results obtained did not conform to the expected poly-P regions, instead representing both poly-P 

and biomass regions on Figure 16a-b and representing some poly-P and biomass regions on Figure 

16c-d. This implied a proper study of the correct threshold values for each image folder (corresponding 

to day and dye used) prior to the data analysis itself, which greatly undermined the efficiency of this 

automated process. For these reasons, this script’s development was halted, and another script was 

implemented in order to avoid this shortcoming and create a faster and easier poly-P quantification 

method.  
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Figure 15 Images obtained through microscopy (a, c and e) and their respective segmented poly-P regions (b, d and f) 

according to the RGB_mask_segmentation.m script using 50-180, 10-90 and 110-190 threshold values on red, green and 

blue bands respectively. Image a was taken on day 1, c on day 13, and e on day 29. All images were obtained from samples 

with no dilution, dyed with MB. Gamma and contrast settings were not altered for these images. 
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Figure 16 Images obtained through microscopy (a and c) and their respective segmented poly-P regions (b and d) according 

to the RGB_mask_segmentation.m script using 50-180, 10-90 and 110-190 threshold values on red, green and blue bands 

respectively. Image a was taken on day 1 and b on day 13. both images were obtained from samples with no dilution, dyed 

with TB. Gamma and contrast settings were not altered for these images. 

4.3.2 Late script development 

The differences in color and brightness found on the images required the script to reject any manual 

attempts at defining thresholds, as shown on 4.3.1 Early script development. The solution found was to 

define poly-P, biomass and background regions on a selected image, average their pixel values and 

assign the remaining pixels on the image to a certain region considering the Euclidean distance 

between their values. This new script, Poly_P_analysis_all.m enabled the user to visually select the 

regions, which excluded the difficulty in finding the proper threshold values. The difference in color 

between images of different days was also nullified since an image was selected as an example for the 

region assignment for each different image folder. Although a manual selection by the user is still 

required, visually choosing regions was faster than finding and changing thresholds for each image 

folder making this script long term efficient. 

A visual representation of the Poly_P_analysis_all.m script on MB dyed samples can be seen in Figure 

17, Figure 18 and Figure 19, with each figure corresponding to the color space used, RGB, HSV, and 
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c d 
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LAB, respectively. The selection of poly-P, biomass and background regions, represented by the 

numbers 1, 2 and 3, respectively, on image a of all three figures provided a good segmentation of these 

regions on the selected image, seen on the b and c images, but also on other images in the studied 

folder, namely images d and g, with images e-f and h-i representing the poly-P and biomass regions 

found, respectively. It could also be seen that despite the selection of the same example areas on the 

same image, when using different color spaces, a somewhat different result was obtained. It could be 

noticed that when using the RGB color space, the pixels assigned to the poly-P region were somewhat 

lighter in color than when using either HSV or LAB color spaces, which seemed somewhat similar. As 

expected, there was a clear difference between color spaces when segmenting colors, at least visually, 

since HSV and LAB are designed to be more aligned with human perception and therefore possess 

more similarities between them than with RGB, that does not have this quality. 
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Figure 17 Segmentation of image a into poly-P and biomass regions (b and c, respectively), when using areas 1, 2 and 3 of image a as an example of said regions plus background. The 

remaining pixels were assigned to each region by Euclidean distance. Images b and c were also segmented into poly-P and biomass regions (images e and f, and images h and I, respectively) 

with the areas assigned in image a. RGB color space was used for these images. These images were taken on day 8, MB_sd. Gamma and contrast settings were not altered for these images. 
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Figure 18 Segmentation of image a into poly-P and biomass regions (b and c, respectively), when using areas 1, 2 and 3 of image a as an example of said regions plus background. The 

remaining pixels were assigned to each region by Euclidean distance. Images b and c were also segmented into poly-P and biomass regions (images e and f, and images h and I, respectively) 

with the areas assigned in image a. HSV color space was used for these images. These images were taken on day 8, MB_sd. Gamma and contrast settings were not altered for these images. 
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Figure 19 Segmentation of image a into poly-P and biomass regions (b and c, respectively), when using areas 1, 2 and 3 of image a as an example of said regions plus background. The 

remaining pixels were assigned to each region by Euclidean distance. Images b and c were also segmented into poly-P and biomass regions (images e and f, and images h and I, respectively) 

with the areas assigned in image a. LAB color space was used for these images. These images were taken on day 8, MB_sd. Gamma and contrast settings were not altered for these images. 
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4.3.3 Obtained parameters 

Five different parameters were obtained by image analysis, using Poly_P_analysis_all.m: poly-P area (in 

pixels), biomass area (in pixels), poly-P area per biomass area, poly-P total grayscale intensity and 

average grayscale intensity per poly-P pixel.  

To understand the importance of intensity in brightfield microscopy, the average grayscale intensity per 

pixel in the poly-P region was analyzed in all three color spaces and with all gamma and contrast 

settings. In both RGB (Figure 20) and HSV (Figure 21) spaces, there were great amounts of variation in 

grayscale intensity per pixel in a generally random matter, however, in RGB the values differed greatly 

between gamma and contrast settings, while HSV values were similar no matter the gamma values or 

contrast chosen. Likewise, LAB color space (Figure 22) possessed similar values regardless of gamma 

or contrast, however, unlike RGB and HSV, its grayscale intensity per pixel values were found to be 

somewhat constant over time.  

In the RGB color space (Figure 20), MB_dil images appeared to have a higher intensity per poly-P pixel 

in all settings at the final days and early days of the experiment and lower intensity in between, while 

MB_sd, TB_dil and TB_sd were highly inconstant throughout all stages. Figure 20a-d appeared to show 

a higher intensity between days 20 and 27 in all dyes and dilution factor, with MB_dil also showing this 

increase in Figure 20b-c. MB_sd and TB_dil showed inconstant values on all images, making it difficult 

for comparison and discussion. TB_sd showed almost constant values above 100 in intensity, with only 

some days going below it. The days where this happened changed depending on the gamma and 

contrast. In this color space, different gamma values and contrast settings seemed to affect grayscale 

intensity variation, which could be seen by comparing the different values in Figure 20a-b-c-d, however 

these changes appeared to be random. Since these images didn’t present an increase similar to Figure 

13  or Figure 14  it could imply that grayscale intensity per poly-P area does not properly reproduce 

poly-P concentration values in samples, at least in RGB color space. 
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Figure 20 Grayscale intensity per poly-P area in RGB color space during the experimental period. Plots a-b and c-d show data 

from images with 0.8 and 1.0 gamma values, respectively. Plots a-c and b-d show data from images without and with 

contrast, respectively. 

In the HSV color space (Figure 21), there was a clear difference between the image analysis results 

from day 8 to day 13, with a much smaller intensity per poly-P pixel using both dyes and dilution 

factors, and also in all gamma settings. The results for TB images in Figure 21b-d on days 15 and 18 

presented intensity values as low as the ones obtained from days 8 to 13. Apart from this difference all 

graphs showed similar characteristics, with higher values on days 1 and 4, lower values on days 8 to 

13 and again higher values on the remaining days. Therefore, in this color space there seemed to be no 

difference between results obtained with different contrast settings nor with different gamma values. 

Despite the high grayscale intensity variations during the experiment, the results seemed to indicate 

that grayscale intensity per poly-P area in HSV may not correlate to poly-P concentration values in the 

samples. 
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Figure 21 Grayscale intensity per poly-P area in HSV color space during the duration of the experiment. Plots a-b and c-d 

show data from images with 0.8 and 1.0 gamma values, respectively. Plots a-c and b-d show data from images without and 

with contrast, respectively. 

The data obtained through images in LAB color space (Figure 22) presented a less random group of 

values than in RGB or HSV with a distinct difference between MB and TB images. TB images had 

grayscale intensity per poly-P area of around 100 in all settings (Figure 22a-b-c-d), while MB images 

demonstrated a slight decrease from around 60-70 on days 1 to 6, to less than 50 on days 8 to 13 and 

then a big increase from day 15 and onwards. There seemed to be no difference between results 

obtained with different gamma values nor with different contrast settings in this color space. This could 

indicate that MB images in LAB space could correlate to poly-P concentration values. However, taking 

into account the results obtained in MB images of RGB and HSV spaces, and the results from TB 

images in the same LAB space, it is highly unlikely that grayscale intensity values per poly-P area in 

brightfield microscopy obtained images are a determining factor for intracellular poly-P quantification. 

While grayscale intensity does not seem a proper parameter in this thesis, it must be noted that it 

shows great potential in fluorescent microscopy[8]. In this technique, and unlike what happens in 

brightfield microscopy, the concentration of the desired molecule is correlated to the amount of 

fluorescence in an image, which is quantified by the pixel intensity. It is interesting to note that different 

QIA approaches require the use of different image parameters. 
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Figure 22 Grayscale intensity per poly-P area in LAB color space during the duration of the experiment. Plots a-b and c-d 

show data from images with 0.8 and 1.0 gamma values, respectively. Plots a-c and b-d show data from images without and 

with contrast, respectively. 

Some images had high amounts of biomass and poly-P regions present, almost filling the entire image, 

while others had smaller amounts that didn’t account for even half of the entire image. Therefore, the 

poly-P area may not properly correlate to the amount of intracellular poly-P in a sample, while the 

biomass area parameter did not indicate intracellular poly-P concentration at all. However, the amount 

of poly-P found in biomass was expected to increase during the reactor operation, meaning that the QIA 

parameter poly-P area per biomass area could be a proper indicator of intracellular poly-P 

concentration. This ratio was analyzed for all color spaces, gamma values, and contrast settings and 

compared to the intracellular poly-P concentration quantified by analytical procedures. 

In the RGB color space, a high poly-P per biomass ratio was found in TB images (both dil and sd) on 

both gamma values and contrast settings from days 1 to 8 (Figure 23a-b-c-d). Figure 23a showed that 

MB_dil images provided high poly-P per biomass ratio on days 1 and 4. Regarding Figure 23c, MB_sd 

showed similar values on days 4 and 6. Days 11 to 18 showed a lower ratio in comparison, with TB_dil 

images having higher values in Figure 23c. Data from images with higher contrast (Figure 23b-d) 

showed no increase on MB values until day 20. The last days of the experiment, from day 20 onwards, 

showed a higher ratio value for all gamma values and contrast settings regarding both dyes and dilution 

factors with the last day (day 29) experiencing a decrease in ratio values in all settings. Overall, there 
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were signs of an increase on the RGB data, however the initial stages of the experiment and the last day 

(day 29), were contrary to what was expected when looking at the analytical results shown as red and 

green lines, especially on TB dyed images. While this did not outright reject RGB as a possible working 

color space for the desired objective of this thesis, when combined with differences of values between 

sets of images (dye and dilution factor), it seemed to pose some problems for using this color space 

alone to correlate to poly-P analytical data. 

 

Figure 23 Average of poly-P area per biomass area for each day in the different gamma and contrast settings for RGB 

segmented images. Plots a-b and c-d show data from images with 0.8 and 1.0 gamma values, respectively. Plots a-c and b-d 

show data from images without and with contrast, respectively. The analytically measured intracellular poly-P concentration 

and intracellular poly-P per TSS are present as a red and green lines for better comparison between parameters. 

In the HSV color space (Figure 24), results were quite difficult to analyze with several poly-P to biomass 

ratios being over ten times as large, or more, than their counterparts across the experimental period. 

MB images with lower gamma values (Figure 24a-c) presented several outliers over the experiment, 

with values reaching 60 in poly-P per biomass area ratio, while normal ratios were generally below 6. 

On the contrary, Mb images with gamma value of 1 (Figure 24b-d) presented “normal” ratio values, 

with similar to the results obtained in RGB and HSV. TB images showed “normal” results overall, even 

though TB_dil images presented the highest ratio value, which was over 90 on G_4_C_1 conditions 

(Figure 24c). Images with higher contrast and lower gamma, settings G_2_C_2 (Figure 24b), appeared 

to show signs of increase in ratio values from days 15 to 27, despite a decrease from days 1 to 15. 

Images with higher gamma, G_4_C_2, (Figure 24d) showed variations in ratio value that was similar to 
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images G_2_C_2, however, the difference between values was enormous with some values reaching 

20. Unfortunately, HSV color space results differed greatly making it impossible to properly analyze 

them. These differences were the highest found between all three color spaces studied. Overall, HSV 

results seemed to be lacking in all image settings, and while some hope could be seen in Figure 24b , it 

did not seem enough to consider HSV as a good color space for this thesis, and certainly not to use it 

alone to correlate to poly-P analytical data. 

 

Figure 24 Average of poly-P area per biomass area for each day in the different gamma and contrast settings for HSV 

segmented images. Plots a-b and c-d show data from images with 0.8 and 1.0 gamma values, respectively. Plots a-c and b-d 

show data from images without and with contrast, respectively. The analytically measured intracellular poly-P concentration 

and intracellular poly-P per TSS are present as a red and green lines for better comparison between parameters. 

In the LAB color space (Figure 25), the first days of the experiment didn’t have higher poly-P to biomass 

ratio values than the middle or late stages in any image settings or set of images (dye and dilution 

factor), which, unlike in RGB and HSV, went into accordance with the analytical results obtained for 

intracellular poly-P concentration per day and per TSS. A small peak was found on day 13 on all image 

settings for images TB_sd and on settings G_2_C_1 (Figure 25a) for TB_dil, while analytical results 

show a decrease in intracellular poly-P on this day. Other than this, the ratio values were relatively 

uniform throughout the duration of the experiment with increases in days 25 and 27, but not day 29. In 

Figure 25a, an increase was seen on all sets on day 25, all but TB_sd on day 27 and no increase at all 

on day 29. Similarly, with a higher contrast (Figure 25b), the MB images didn’t experience as much of 

an increase in day 25, showing higher values only on day 27, and MB_sd in day 29, while TB images 
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showed higher values on day 27. On settings G_4_C_1 (Figure 25c), day 25 showed an increase in 

values only for MB_dil and TB_sd, day 27 showed an increase for all image sets, and day 29 showed 

no increase at all, while the remaining days were constant in their values. With increased contrast, 

G_4_C_2 (Figure 25d), day 25 and 27 showed an increase in ratio values for both diluted image sets 

(dil), with a small increase for MB_sd in day 27, while day 29 showed only a small increase for TB_sd 

images. TB_dil images showed higher values on day 13 of all image settings, which surprisingly, went 

against the analytical results who show a decrease in poly-P concentration. Overall, despite a more 

uniform set of results than RGB and HSV color spaces, LAB did not show an increase in values from 

days 15 and onwards, which was expected seeing the analytical results also shown in the image (red 

and green lines), instead presenting higher values solely on days 25 and 27. These results seem to 

indicate that LAB alone is not enough to fully represent or correlate to poly-P analytical data. 

 

Figure 25 Average of poly-P area per biomass area for each day in the different gamma and contrast settings for LAB 

segmented images. Plots a-b and c-d show data from images with 0.8 and 1.0 gamma values, respectively. Plots a-c and b-d 

show data from images without and with contrast, respectively. The analytically measured intracellular poly-P concentration 

and intracellular poly-P per TSS are present as a red and green lines for better comparison between parameters. 

Considering the results obtained from all color spaces it was possible to see some similarities, for 

instance, an increase in values on the later days of the experiment, usually from day 20 and onwards. It 

could also be seen that, apart from this increase, the analytical results don’t quite match any of the 

individual results from the three color spaces. This lack of similarity between QIA and analytical 

information could imply some problems with the QIA script itself, or with the staining/image acquisition 
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process. The appearance of several superimposed regions on images with both biomass and poly-P on 

the same space could also be a reason for these differences, since the QIA cannot fully identify these 

regions.  

4.4 Linear regression models 

To correlate between QIA information and analytical data, ordinary least squares linear regression was 

used. Several models were created, with the purpose of finding the one that best fitted the data, and to 

compare different aspects of the sample images, such as color model used, gamma values and 

contrast settings, dyes used and dilution factor.  

4.4.1 Gamma and contrast 

The regression models based on singular gamma and contrast settings showed a really high level of 

error between the model and the data, seen in Figure 26, Figure 27 and Figure 28. It was possible to 

see several data points far from the fitted regression line and in most cases, there were data points 

outside of the 95% confidence bounds. The models corresponding to HSV results had the lowest 

regression coefficient seen, with the G_4_C_2 model having 0.087 when the response variable is 

intracellular poly-P concentration per TSS (Figure 27H). The other HSV models didn’t fare much better 

with their best regression coefficient being 0.450 with the G_4_C_1 model and the same response 

variable (poly-P per TSS) as its lowest counterpart (Figure 27F). LAB models didn’t have coefficient 

values as low as HSV ones, however they also didn’t surpass them by much, with the highest coefficient 

being a disappointing 0.459 on the G_2_C_2 model with intracellular poly-P concentration as the 

response variable (Figure 28C). The worst regression coefficient once again belonged to the G_4_C_2 

model, with a measly 0.200 (Figure 28H). This model also had the worst regression coefficient value for 

the RGB models, with a 0.132 (Figure 26H). It could be assumed by these values that settings 

G_4_C_2 were the worst fit for poly-P quantification. The other RGB models presented more acceptable 

coefficients, with the G_2_C_2 having a promising 0.764 and 0.655 with the response variable 

intracellular poly-P and intracellular poly-P per TSS, respectively (Figure 26C-D). From these values it 

seemed as if a higher contrast and a different gamma value could be a positive change for QIA of poly-

P. Only two gamma values and contrast settings were tested in this thesis, so it is unknown if other 

combinations of these factors or even other preprocessing image changes could improve the 

identification and quantification accuracy. Also, RGB models appeared to present relatively better 

regressions coefficients than the other color spaces, which could imply that RGB was more suitable for 

this kind of image treatment. 
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Figure 26 Linear regression models of RGB treated images using poly-P area per biomass area as predictor variables and 

analytical intracellular poly-P concentration per day (left side) or per TSS (right side) as response variables. The models were 

created using different data based on the image settings: models A and B – G_2_C_1; models C and D – G_2_C_2; models 

E and F – G_4_C_1; models G and H – G_4_C_2. All image sets corresponding to their respective settings were used in 

the models (MB_dil, MB_sd, TB_dil and TB_sd). Data is represented as blue stars, the fitted regression line is represented 

in red and the model’s 95% confidence bounds are represented as light red dotted lines. The models’ regression coefficients 

are the following: A = 0.440, B = 0.519, C = 0.764, D = 0.655, E = 0.442, F = 0.519, G = 0.274 and H = 0.132. The 

models’ p-values are the following: A = 0.334, B = 0.218, C = 0.023, D = 0.079, E = 0.331, F = 0.218, G = 0.639 and H = 

0.890. 
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Figure 27 Linear regression models of HSV treated images using poly-P area per biomass area as predictor variables and 

analytical intracellular poly-P concentration per day (left side) or per TSS (right side) as response variables. The models were 

created using different data based on the image settings: models A and B – G_2_C_1; models C and D – G_2_C_2; models 

E and F – G_4_C_1; models G and H – G_4_C_2. All image sets corresponding to their respective settings were used in 

the models (MB_dil, MB_sd, TB_dil and TB_sd). Data is represented as blue stars, the fitted regression line is represented 

in red and the model’s 95% confidence bounds are represented as light red dotted lines. The models’ regression coefficients 

are the following: A = 0.203, B = 0.202, C = 0.302, D = 0.291, E = 0.358, F = 0.450, G = 0.194 and H = 0.087. The 

models’ p-values are the following: A = 0.773, B = 0.775, C = 0.584, D = 0.605, E = 0.477, F = 0.317, G = 0.790 and H = 

0.948. 
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Figure 28 Linear regression models of LAB treated images using poly-P area per biomass area as predictor variables and 

analytical intracellular poly-P concentration per day (left side) or per TSS (right side) as response variables. The models were 

created using different data based on the image settings: models A and B – G_2_C_1; models C and D – G_2_C_2; models 

E and F – G_4_C_1; models G and H – G_4_C_2. All image sets corresponding to their respective settings were used in 

the models (MB_dil, MB_sd, TB_dil and TB_sd). Data is represented as blue stars, the fitted regression line is represented 

in red and the model’s 95% confidence bounds are represented as light red dotted lines. The models’ regression coefficients 

are the following: A = 0.337, B = 0.250, C = 0.459, D = 0.283, E = 0.417, F = 0.344, G = 0.290 and H = 0.200. The 

models’ p-values are the following: A = 0.517, B = 0.686, C = 0.304, D = 0.621, E = 0.372, F = 0.503, G = 0608. and H = 

0.779. 
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4.4.2 Dye used 

Models based on the dye used (MB or TB) provided a better fit to data than models based on gamma 

and contrast settings and it was possible to see the data closer to the models regression line without 

crossing the 95% confidence bounds in Figure 29, Figure 30 and Figure 31.  

RGB regression models (Figure 29A_B) of MB stained images had better fit to data than their TB 

counterparts (Figure 29C_D), with satisfactory regression coefficients of 0.891 and 0.824, varying on 

the response variable, while TB models had lower values of 0.640 and 0.787.  

 

Figure 29 Linear regression models of RGB treated images using poly-P area per biomass area as predictor variables and 

analytical intracellular poly-P concentration per day (left side) or per TSS (right side) as response variables. The models were 

created using different data based on the dye used: models A and B – MB; models C and D – TB. Data is represented as 

blue stars, the fitted regression line is represented in red and the model’s 95% confidence bounds are represented as light 

red dotted lines. The models’ regression coefficients are the following: A = 0.891, B = 0.824, C = 0.640 and D = 0.787. The 

models’ p-values are the following: A = 0.194, B = 0.349, C = 0.713 and D = 0.434. 

In HSV models, TB data had higher regression coefficients than MB, contrary to what occurred with the 

RGB color space. They presented a satisfactory coefficient of 0.883 in the TB model with intracellular 

poly-P concentration as the response variable (Figure 30C), while the other TB model only had 0.651 

(Figure 30D). The MB models presented even lower regression coefficients with both response 

variables, having 0.403 and 0.431 (Figure 30A-B, respectively). 
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Figure 30 Linear regression models of HSV treated images using poly-P area per biomass area as predictor variables and 

analytical intracellular poly-P concentration per day (left side) or per TSS (right side) as response variables. The models were 

created using different data based on the dye used: models A and B – MB; models C and D – TB. Data is represented as 

blue stars, the fitted regression line is represented in red and the model’s 95% confidence bounds are represented as light 

red dotted lines. The models’ regression coefficients are the following: A = 0.403, B = 0.431, C = 0.883 and D = 0.651. The 

models’ p-values are the following: A = 0.946, B = 0.931, C = 0212. and D = 0.696. 

In LAB models, the MB results (Figure 31A-B) once again displayed a better fit to the model than TB 

ones (Figure 31C-D) with satisfactory regression coefficients of 0.920 and 0.919 depending on the 

response variable. TB models were nowhere near their MB counterparts with disappointing coefficient 

values below the 0.700 line. 

Considering these models, it seems that MB data better described the analytical results, since they 

display the highest coefficient values in both RGB and LAB color spaces. However, TB models 

possessed somewhat reasonable coefficient values in both RGB and LAB, with acceptable values in the 

HSV color space. This could mean that HSV color space could better identify the different tones of color 

between poly-P and biomass regions with TB than with MB. The opposite could be said for RGB and 

LAB color spaces. Still, the higher coefficient values indicated better overall results with MB images.  
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Figure 31 Linear regression models of LAB treated images using poly-P area per biomass area as predictor variables and 

analytical intracellular poly-P concentration per day (left side) or per TSS (right side) as response variables. The models were 

created using different data based on the dye used: models A and B – MB; models C and D – TB. Data is represented as 

blue stars, the fitted regression line is represented in red and the model’s 95% confidence bounds are represented as light 

red dotted lines. The models’ regression coefficients are the following: A = 0.920, B = 0.919, C = 0.690 and D = 0.654. The 

models’ p-values are the following: A = 0.127, B = 0.130, C = 0.630 and D = 0.692. 

4.4.3 Dilution factor 

RGB regression models based on the dilution factor samples presented really good regression 

coefficients on both diluted and non-diluted results with values of 0.869 and 0.978 for diluted samples 

(Figure 32A-B, respectively) and 0.888 and 0.869 for non-diluted ones (Figure 32C-D, respectively), 

depending on the response variable. While the difference was small, diluted samples appeared as more 

reliable, especially when using int. poly-P per TSS as response variable, which could be seen in Figure 

32. 
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Figure 32 Linear regression models of RGB treated images using poly-P area per biomass area as predictor variables and 

analytical intracellular poly-P concentration per day (left side) or per TSS (right side) as response variables. The models were 

created using different data based on the dilution factor: models A and B – diluted samples; models C and D – non-diluted 

samples. Data is represented as blue stars, the fitted regression line is represented in red and the model’s 95% confidence 

bounds are represented as light red dotted lines. The models’ regression coefficients are the following: A = 0.869, B = 

0.978, C = 0.888 and D = 0.869. The models’ p-values are the following: A = 0.246, B = 0.021, C = 0.199 and D = 0.245. 

HSV regressions models based on the dilution factor of samples had high levels of error between model 

and data. Diluted models using this color space had especially low regression coefficients, with 0.218 

and 0.429 depending on the response variable used (Figure 33A-B, respectively). A better correlation 

could be found in the non-diluted data, however even then the regression coefficients of the models 

were acceptable at best, with values of 0.706 and 0.611, depending on the response variable used 

(Figure 33C-D, respectively). The wide confidence intervals and poor correlation between data and HSV 

models were evidences to these low regressions. 
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Figure 33 Linear regression models of HSV treated images using poly-P area per biomass area as predictor variables and 

analytical intracellular poly-P concentration per day (left side) or per TSS (right side) as response variables. The models were 

created using different data based on the dilution factor: models A and B – diluted samples; models C and D – non-diluted 

samples. Data is represented as blue stars, the fitted regression line is represented in red and the model’s 95% confidence 

bounds are represented as light red dotted lines. The models’ regression coefficients are the following: A = 0.218, B = 

0.429, C = 0.706 and D = 0.611. The models’ p-values are the following: A = 0.995, B = 0.932, C = 0.599 and D = 0.757. 

The LAB regression models based on dilution factor showed a stark difference between diluted and non-

diluted models with smaller confidence bounds in diluted samples. The regression coefficients of these 

models reflected the difference found in their plots, with diluted models having incredibly high 

regression coefficients of 0.989 and 0.992, depending on the response variable (Figure 34A-B, 

respectively), and non-diluted samples having meager regression coefficient values of 0.510 and 0.359 

(Figure 34C-D, respectively). 

Considering all these models, diluted data seemed to be a better fit for describing analytical poly-P 

concentration and analytical poly-P concentration per TSS than non-diluted data, which was expected 

since the purpose of the dilution was to diminish the amount of biomass and poly-P superimposition for 

the QIA script to properly recognize poly-P regions, with less chance of hidden poly-P granules. Once 

again, the HSV color model presented poor results that go against the other color spaces. Also, the RGB 

color space seemed more consistent, no matter the predictor variables used, while LAB showed good 

coefficients, but was somewhat inconsistent. From these results, RGB seems to be the most trustworthy 
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color space. Unfortunately, these linear regression models couldn’t be validated, due to an insufficiency 

of data. While some of these models appeared to have acceptable regression coefficients, which was 

already a good head start, the lack of validation presented a problem in that the method did not truly 

show if it properly predicted intracellular poly-P concentration through QIA information.  

 

Figure 34 Linear regression models of LAB treated images using poly-P area per biomass area as predictor variables and 

analytical intracellular poly-P concentration per day (left side) or per TSS (right side) as response variables. The models were 

created using different data based on the dilution factor: models A and B – diluted samples; models C and D – non-diluted 

samples. Data is represented as blue stars, the fitted regression line is represented in red and the model’s 95% confidence 

bounds are represented as light red dotted lines. The models’ regression coefficients are the following: A = 0.989, B = 

0.992, C = 0.510 and D = 0.359. The models’ p-values are the following: A = 0.007, B = 0.005, C = 0.872 and D = 0.965. 
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5. Conclusion and future work 

The use of the Poly_P_analysis_all.m script showed great promise in the proper identification of both 

poly-P and biomass regions through color segmentation. More work could be put into this script to 

make it even more reliable, perhaps with shape identification of poly-P granules in tandem with color 

segmentation, or different distance calculation methods, instead of solely Euclidean distance. Not only 

the script but staining and image acquisition could also be improved. For instance, other methods could 

be performed to completely prevent biomass and poly-P superimposition, or more complex staining 

solutions could be used instead of pure dyes such as MB and TB, to provide a higher visual difference 

between poly-P and biomass regions and facilitate the script’s work. 

The data obtained from this QIA method showed some positive results in the quantification of 

intracellular poly-P, with some linear regression models having high regression coefficients (higher than 

0.900). There were some visible differences between the three color spaces used, when it came to 

correlate data to analytical poly-P. RGB data presented good correlation in all models when comparing 

to the other color spaces, particularly in MB stained images and diluted images. LAB data had worse 

correlation in most models than RGB. However, MB stained images and diluted images in LAB space 

presented the highest correlation coefficients among all models. In contrast, HSV models presented 

unsatisfactory correlation coefficients in all its models. The use of both MB and TB data as variables to 

test the better image settings (gamma and contrast) proved somewhat unfruitful, with low regression 

coefficients being found in all models, except RGB model G_2_C_2, meaning that this setting could be 

ideal for this kind of image treatment. There were also differences between the p-values of all models, 

with only a few having lower p-values than 0.05, indicating that some models were not fit for further 

testing. Unfortunately, the lack of validation due to insufficient data prevented proper corroboration of 

these models.  

In conclusion, MB colored samples seemed to be more effectively analyzed by RGB and LAB color 

spaces, with dilution of the samples providing the same effect, possibly by preventing superimposition 

of poly-P granules and biomass and more accurately identifying poly-P regions. Also, contrast and 

gamma values showed some influence in the results and are therefore a factor to take into 

consideration in this sort of image analysis. 
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