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Abstract—Privacy sensitive applications that store confidential
information such as personal identifiable data or medical records
have strict security concerns. These concerns hinder the adoption
of the cloud. With cloud providers under the constant threat of
malicious attacks, a single successful breach is sufficient to exploit
any valuable information and disclose sensitive data. Existing
privacy-aware databases mitigate some of these concerns, but
sill leak critical information that can potently compromise the
entire system’s security.

This paper proposes d’Artagnan, the first privacy-aware multi-
cloud NoSQL database framework that renders database leaks
worthless. The framework stores data as encrypted secrets in
multiple clouds such that i) a single data breach cannot break
the database’s confidentiality and ii) queries are processed on
the server-side without leaking any sensitive information. d’Arta-
gnan is evaluated with industry-standard benchmark on market-
leading cloud providers.

I. INTRODUCTION

Motivation. To this day, commercial databases still store
and process data with mediocre security guarantees. Despite
the existence of data access control safeguards [1], a single
breach is usually sufficient to compromise the entire sys-
tem [2]. Moreover, with the shift from private infrastructures
to cloud environments, databases are far more exposed to daily
attacks. In 2018 alone, cloud services were attacked 1.5 million
times every day [3], with a successful data breach costing on
average 3.86 million dollars [4]. This cost is expected to rise
in the future, with an average data breach reaching the 150
million dollars in 2020 [5].

To minimize the database’s vulnerability to attacks, sensitive
data should never be stored or processed as plaintext. Unfortu-
nately, query processing over ciphertexts poses a long-standing
problem. Recent efforts have tackled this challenge with novel
property-preserving encryption (PPT) schemes that sacrifice
security for efficient secure processing [6]. The trade-off con-
sists in leaking some partial information, such as the equality
or order [7] of ciphertexts, to enable the database engine to
process queries without fully disclosing the plaintexts. State-
of-the-art privacy-preserving databases such as CryptDB [8]
and SQL Server Always Encrypted [9] follow this approach.

However, privacy-aware databases are no panacea, as the
same security guarantees that make PPT schemes attractive
end up compromising the user’s confidentiality. For example,
a common attack vector consists in performing frequency
analysis on datasets without a uniform distribution. Notably,

prior work has shown that, depending on the dataset, more than
50% of the data can be disclosed by correlating information
from different columns [6]. Inference attacks are also effective
at disclosing sensitive data with more than 90% accuracy from
a single database snapshot encrypted with PPT schemes [10].

Our Approach. This paper tackles the limitations of
privacy-aware databases with a novel approach that makes no
security compromises. In a nutshell, we propose d’Artagnan,
a secure multi-cloud NoSQL database framework that decen-
tralizes information by encrypting data in secrets and storing
them in independent databases, each hosted on a different
cloud provider. A single secret does not leak any information
and the original plaintext value can only be decrypted if the
majority of the secrets are obtained by a single entity (e.g.:
client application). Furthermore, with these secrets d’Artagnan
can process any query on the server-side by evaluating secure
cryptographic protocols. An immediate result of such system
is that a data breach of a single cloud is inconsequential and,
for any significant information to be obtained, the majority of
the clouds that constitute d’Artagnan must be compromised.
Clearly, the effort required to break the system grows with the
number of cloud providers used.

At the core of d’Artagnan are secret sharing schemes and
secure multi-party protocols (SMPC) [11]. Secret sharing
schemes encrypt data in multiple secrets while SMPC pro-
tocols enable a set of independent parties (clouds) to evaluate
functions over such secrets. These cryptographic techniques
have been overlooked by SQL and NoSQL databases as a
practical alternative to PPT schemes even though they can as-
sure security guarantees unmatched by state-of-the-art privacy-
aware databases. One of the hindering factors that prevents
the widespread use of such protocols is the highly-specialized
cryptographic knowledge necessary to integrate them in a real-
world system. Furthermore, coordinating the multiple parties
of an SMPC protocol to process database queries raises its
own set of challenges.

Contributions. Our contributions address this gap with the
design of a high-level, modular and extensible multi-cloud
database framework that encrypts data in secrets and process
queries with SMPC protocols. The system hides the details
of the underlying cryptographic protocols and the distributed
execution of secure queries under a standardized NoSQL API.
Note that we chose to focus on key-value NoSQL systems to



distill d’Artagnan’s architecture in a set of core components
applicable to any database, including SQL databases. In sum-
mary, our contributions are:

• A novel multi-cloud NoSQL database framework (d’Arta-
gnan) that decentralizes confidential data over multiple
independent parties and leverages SMPC protocols to pro-
cess queries. The framework is designed with a modular
and extensible architecture that enables the integration of
distinct SMPC protocols tailored fit to application specific
use-cases. Furthermore, the framework is open-sourced 1.

• A NoSQL database prototype built on the d’Artagnan
framework that leverages Apache HBase as underlying
database and the state-of-the-art SMPC protocols to se-
curely process queries over encrypted data.

• A thorough evaluation of the prototype under different
environment including a real-word deployment on the
market-leading cloud providers (namely Google, Ama-
zon, Azure and Digital Ocean). The experiments shows
that d’Artagnan’s lowest overhead is 39%.

Layout. Section II introduces the fundamental concepts
of NoSQL databases and SMPC. Section III defines d’Arta-
gnan’s security model. Section IV presents the architecture
and Section V describes how every component in the system
interacts to securely process queries. Section VI describes the
prototype implementation. Section VII presents and discusses
the experimental evaluation. Finally, Section VIII overview the
related work and Section IX concludes the paper.

II. BACKGROUND

This section presents key concepts on key-value NoSQL
databases and SMPC protocols that are crucial to understand
d’Artagnan’s architecture.

A. NoSQL databases

Key-value NoSQL databases are d’Artagnan’s storage back-
end. These databases are suitable for applications that handle
eventually consistent data, support lack of database-wide trans-
actions and require a flexible data scheme [12]. Conceptually,
data is stored in named multi-dimensional maps, similar to
hash tables, where values are indexed by a unique key and
a column. The map data structure does not follow a static
schema and is dynamically adjusted as new rows are inserted.
Clients interact with the database to store or process data
through an interface similar to the following [13]:

• Put(Table, Column,Key, V alue) - Given a table, store
a value indexed by the row key and column.

• Update(Table, Column,Key, V alue) - Given a table,
update the record indexed by the row key and column
with the specified value.

• Get(Table, Column,Key) - Retrieve the value of a table
indexed by a row key and a column.

• Delete(Table, Column,Key) - Delete the value of the
table indexed by a row key and a column.

1https://dbr-haslab.github.io/tools/dartagnan

• Scan(Table, Start, Stop) - Retrieve the records of a
table whose index is greater than or equal to the identifier
Start and lower than the identifier Stop.

• Filter(Table, Condition) - Given a table, retrieve all
the records that validate the condition predicate. The
condition can specify columns, propositional formulas,
and regular expressions.

Generally, NoSQL databases trade strict consistency and
transactional support for a highly scalable, distributed archi-
tecture [12], [14]. This trade-off is key to design “shared
nothing” databases that scale horizontally by partitioning data
into shards, subsets of table rows uniquely defined by a first
and last row key. Shards are created as a table grows, replicated
and balanced between a pool of computing nodes. Every node
manages a subset of the database shards and directly answers
client queries without requiring a proxy master node. In case
of a node failure, the remaining live nodes can take over shards
while a new node is added to the cluster.

B. Secure Multi-Party Protocols

Secure multi-party protocols enable a set of independent
parties to jointly compute any function f on their private inputs
without disclosing information besides an agreed upon out-
put [11]. Currently, there are two main approaches to build an
SMPC protocol: secret sharing and garbled circuits [11]. Both
rely on compiling functions into secure circuits composed of
addition and multiplication gates [11]. The compiled circuits
can be viewed as one-way functions that specify a secure
protocol to be run by the parties to obtain a common result.
However, garbled circuits are limited to only two participating
parties and require expensive public-key operations [15]. As
such, d’Artagnan focus on secret sharing SMPC protocols that
use simple arithmetic operations and can support an arbitrary
number of parties.

Secret Sharing enables the construction of SMPC protocols
for an arbitrary number of parties [16]. Consider an extended
version of the classical Yao’s millionaire problem where the
parties are n millionaires that wish to know who is the richest
without ever revealing their wealth to each other. In this
scenario, every party starts by encrypting its private input (e.g.:
the millionaire wealth) with a (n,t)-secret sharing scheme that
creates n shares in an arithmetic field [17]. Every individual
share is a seemingly random ciphertext that has no relevant
information by itself. The original private inputs can only be
recovered if more than t shares are brought together in a
single party. After a party encrypts its private input in multiple
shares it sends a single share to every party participating in the
protocol. Once the shares are exchanged, the parties start to
evaluate an agree upon circuit to jointly compute the function
result. The evaluation of every circuit gate takes secret shares
as inputs and outputs new secret shares that hide a secret
result value. The output of a gate is the input of the next gate
until the entire circuit is evaluated. Since shares are values of
an arithmetic field, addition gates can be locally computed
by the parties without requiring any communication [18].
However, multiplication gates require parties to communicate

https://dbr-haslab.github.io/tools/dartagnan


and exchange shares to reach a correct secret result. When
every gate is evaluated, the output of the final gate returns
a single share of the function result. Parties exchange their
resulting share with each other to disclose and learn the final
function result.

Besides confidentiality, SMPC protocols ensure additional
security properties such as: fairness, output correctness, output
delivery and identifiable aborts. These properties provide
additional guarantees to the parties if a malicious adversary
is present. The goal of the adversary is to corrupt honest
parties, parties that correctly follow a protocol, in an attempt
to compromise a protocol confidentiality or execution. For
instance, in the millionaire’s problem, a corrupted adversary
may attempt to disclose another party’s wealth or prevent
some parties to learn the final result. Informally, the properties
ensured by SMPC protocols are defined as follows [19]:

• Fairness - Corrupted parties only receive a protocol
output if all honest parties also receive their outputs.

• Output Correctness - Every party receives a correct
output.

• Output Delivery - Corrupted parties cannot prevent
honest parties from receiving their output.

• Identifiable Aborts - Honest parties receive identification
of corrupted parties.

III. THREAT MODEL

Before presenting d’Artagnan’s architecture we describe
the framework’s security guarantees. d’Artagnan protects the
user’s confidentiality by decentralizing data between multiple
clouds, each hosting an individual database. In a n-cloud
system, d’Artagnan encrypts sensitive values with a (n,t)-
secret sharing scheme and stores each share on a single
database. These schemes ensure that data at rest, data not
processed by queries, remains secure as long as no more than
t clouds are compromised. Even if a subset of the cloud
providers leak multiple database snapshots, its proven to be
impossible to decrypt the original values [17].

Besides protecting data at rest, d’Artagnan’s goal is to
protect user’s confidentiality during query processing. In this
case, d’Artagnan security guarantees rely on the properties
and trust model of SMPC protocols to protect data from
external attackers and malicious insiders. An external attacker
is anyone who attempts to infiltrate a cloud provider or
eavesdrop on the communication of a protocol execution. A
malicious insider is any cloud or database administrator that
uses privileged access to read or leak data. Both adversaries
can have different behaviors after successfully corrupting a
cloud provider. For instance, an adversary may either decide
to actively corrupt a protocol execution by modifying the
circuit gate evaluation, and risk detection, or act cautiously and
only read available data while attempting to break the secrets
in a different infrastructure. Depending on its behavior, the
adversary is modeled as follows [11]:

• Semi-honest adversary has access to a corrupted party
internal state and reads every message received or sent

from/to a party. However, the adversary does not modify
in any way the protocol execution.

• Malicious adversary corrupts a fixed set of parties and
actively attempts to break a protocol confidentiality by
modifying the corrupted parties’ behavior.

d’Artagnan is designed to leverage different SMPC proto-
cols to protect user’s data against these adversaries. Conse-
quentially, the system’s security guarantees acquire the same
properties as the protocols used. Furthermore, depending on
the adversary the protocols ensure slightly different security
properties. Let us first consider a client that entrusts the cloud
providers to protect an application from external attacks. The
client’s main concern is preventing a semi-honest malicious
adversary, a malicious insider, from accessing the databases’
data. Against this adversary, d’Artagnan leverages SMPC
protocols that guarantee not only the user’s confidentiality
during query processing but also fairness, output correctness
and output delivery, even if every cloud has a malicious
insider [20].

The threat escalates when the cloud providers’ infrastruc-
tures are not safe from an external attacker. In this case,
the attacker’s attempts to corrupt multiple clouds providers.
For instance, the attacker explores different attack vectors
such as SSL/TLS exploits (e.g: Heartbleed) [21], Hypervisor
attacks [22] and even hardware faults such as Meltdown [23].
If the attacker successfully corrupts a cloud provider, it
gains the same control as a malicious insider. In this model,
d’Artagnan can securely process queries with SMPC protocols
that ensure fairness, output correctness, output delivery and
identifiable aborts if the attacker cannot successfully corrupt
the majority of the cloud providers [16]. However, without
an honest majority the system is limited to protocols that
only ensure confidentiality [16], [11]. Nonetheless, d’Artagnan
has a significant advantage over state-of-the-art privacy-aware
databases in both models. It forces the adversary to spend far
more resources than those necessary to break into a single
cloud deployment.

IV. ARCHITECTURE

d’Artagnan’s architecture, depicted in Figure 1, coordinates
independent key-value databases, hosted at different cloud
providers, to create a logical NoSQL database capable of
processing queries over encrypted data. This decentralized
approach prevents a single cloud provider or a database
vulnerability from corrupting and compromising the entire
system’s security guarantees. When taken to the limit, it is
entirely possible to have a system deployment where the first
cloud (Party 1) is a BigTable database on Google’s Cloud, the
second cloud (Party 2) hosts a Dynamo DB in Amazon AWS
and the remaining clouds host entirely different databases.

From a high-level perspective, the framework operates
across a trusted domain and an untrusted domain. The trusted
domain is the system’s entry-point where the client application
resides sheltered from attacks. This domain, possibly a private
trusted infrastructure, is where sensitive data is encrypted
before being outsourced to the cloud. The untrusted domain



Logical NoSQL Database

Cloud (Party 1)

NoSQL API

Safe Client

T
r
u

s
te

d
 D

o
m

a
in

U
n

tr
u

s
te

d
 D

o
m

a
in

NoSQL

Client 1

NoSQL

Client 2

NoSQL

Client 3

NoSQL DB

Client

Plaintext

Share 1

Safe Server

Multi-Party 

Library

Network 

Middleware

Cloud (Party 2)

NoSQL DB

Safe Server

Multi-Party 

Library

Network

Middleware

Cloud (Party N)

NoSQL DB

Safe Server

Multi-Party 

Library

Network

Middleware

Discovery Service

Share 2 Share N

Fig. 1. d’Artagnan architecture has two parts: a Safe Client and a Logical
Database. The Safe Client resides on a trusted domain and intercepts client
requests. The Logical Database consists of independent NoSQL databases
hosted at independent cloud providers. Cloud providers are considered an un-
trusted domain. In both parts, the gray boxes refer to d’Artagnan components
and white boxes represent unmodified third-party components.

is where all the data storage and query processing take place.
This domain has two or more clouds, each playing the role
of a SMPC protocol party. Every party (cloud) hosts an au-
tonomous key-value NoSQL database which has no knowledge
of the remaining parties. Without d’Artagnan’s components,
the party’s databases are nothing more than a storage system
that holds encrypted data. This section describes these com-
ponents and their role on the framework architecture.

A. Trusted domain

The first component is the Safe Client, a privacy-preserving
layer between the trusted and untrusted domain. This com-
ponent has two main goals, abstract the multiple underlying
NoSQL databases and protect sensitive data. The first goal
is accomplished by exposing an high-level NoSQL API, as
defined in Section II-A, that enables applications to use d’Arta-
gnan as a single NoSQL database. The high-level queries
are transformed into multiple low-level requests made to the
untrusted domain. However, before any query is sent to the
untrusted domain, the Safe Client encrypts sensitive user
information. The client can specify, on a column basis, the
SMPC protocols used to process queries. For instance, a
client can choose to protect a subset of table columns with
protocols that ensure confidentiality and fairness guarantees
while another subset is protected with protocols that just
ensure confidentiality. To ensure different security guarantees
each protocol implements a different secret sharing scheme.
As such, the Safe Client delegates the encryption and
decryption of data to external software libraries that implement
the following API:

• Encode(secret, n, k)→ [shares] – Encode a secret in n
shares such that only k shares are required to decode the
secret. This function returns a list of shares.

• Decode([shares]) → secret – Given a list of shares,
decode them and return the secret.

B. Untrusted Domain

The Safe Server component is the processing engine of the
untrusted domain. This component is a distributed layer with
multiple nodes, at least one node per party, that intercepts
high-level Safe Client requests and converts them into
secure operations. The conversion process depends on the
client request, the security model and the underlying databases,
but it ensures that every client key-value NoSQL query is
converted into a sequence of database-specific requests and
SMPC protocols that have a semantically identical function-
ality with additional security guarantees. Overall, the Safe
Server initializes the necessary resources and leverages
every available component, the Multi-Party Library,
Network Middleware, Discovery Service and the
underlying database to securely process client requests. A
detailed description of the query transformation process and
interaction of each component is presented in Section V.

The Multi-Party Library component contains the imple-
mentation of the secure multi-party protocols. This compo-
nent abstracts the details of protocol implementations from
the Safe Server with a high-level interface. Let p =
{sp0, sp1, . . . spn} and k = {sk0, sk1, . . . skn} be two secret
shared values and p ◦ k a comparison operation such that
◦ ∈ {=, <,>,≤,≥}. The multi-party library API supports
the following operation set •:

• Equal(spi, ski)
• LessThan(spi, ski)
• GreaterThan(spi, ski)
• LessThanOrEqualTo(spi, ski)
• GreaterThanOrEqualTo(spi, ski)
such that p ◦ k ≡ spi • ski. This interface has a set of

core operators capable of satisfying the high-level key-value
NoSQL API. However, this set is extensible and can support
additional application-specific functions.

This library also defines a clear boundary between the
database execution and the SMPC protocols’ implementa-
tions. It encapsulates the details of the NoSQL database
from the protocol implementations, enabling expert cryptog-
raphers to integrate new protocols without having to write
database-specific logic. All of the necessary context to inte-
grate new protocols is provided by an execution environment
that contains a Safe Server party ID and a Network
Middleware client. The party ID determines how the library
evaluates a protocol circuit and the Network Middleware
client enables the parties to exchange shares.

The Network Middleware component establish a mesh
network between every party and ensures the protocols ex-
change shares correctly. The parties can evaluate protocols and
communicate via the following network interface:

• Send(playerID, share) – send a share to a player.
• Receive(playerID) – receives a share from a player.

This simple interface can support a wide range of SMPC
protocol implementations and abstracts the Multi-Party
Library from concurrent protocol executions. At any time,
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Fig. 2. Interaction of d’Artagnan components to process a client request.

a single Safe Server node can process multiple con-
current requests and start parallel SMPC protocols in the
Multi-Party Library. If concurrent protocol executions
have to send shares from party A to party B, the Network
Middleware multiplexes the shares sent by party A and
forwards them to the correct protocol execution environ-
ment in party B. With this approach, the protocols in the
Multi-Party Library only need to implement the cir-
cuit’s logic without having to deal with concurrency issues.

Besides concurrent protocol execution, the Network
Middleware also handles the execution of protocols in a
dynamic setting. The set of key-value databases that play the
role of parties in a protocol is not static and can be added
or removed as necessary. For instance, the set of available
parties can increase to improve the system availability and
performance while ensuring the same security guarantees. As
such the Network Middleware adapts to the dynamic set
of parties and routes the shares to the correct participants by
leveraging the Discovery Service.

The Discovery Service component keeps track of the Safe
Server’s nodes status and location. Every time a node
goes online in any of the clouds it notifies the Discovery
Service with a payload. The payload contains meta-data
regarding the node, such as the node’s IP address and the
database tables it manages. When a node goes offline, it reports
its new status to the service. None of the information regarding
the shared secrets is kept on the Discovery Service and
the connections between the nodes are made directly with
the Network Middleware without using the Discovery
Service as a proxy. d’Artagnan makes no assumptions on
the actual implementation of the Discovery Service.
Since the meta-data contains no sensitive information, it can be
stored on a distributed NoSQL database to avoid a single point
of failure and deployed in any public or private infrastructure.

V. SECURE QUERY PROCESSING

This section describes how d’Artagnan securely process
queries and how every component interacts using a Filter op-
eration as example. Figure 2 depicts an illustrative deployment
scenario with N clouds to be used throughout this section. The
first cloud hosts a BigTable database and the N cloud hosts

an HBase database. In this example, d’Artagnan stores a Table
T with M columns, from column C1 to column CM . In this
table only the columns store sensitive data and the row keys
are simple plaintext identifiers (e.g: K1 and K2 in Figure 2).

Consider a client plaintext Filter(T,C1 == D) request on
table T to search for every record where the column C1 has
the value D. The table can have several records matching this
condition, but, for simplicity purposes, let us consider that
only the record with key k4 (last row of table T) has value D.
Every value stored in the tables is encrypted in shares, with
each database storing a single secret. The Safe Servers
task is to find its party’s secrets of the matching rows and send
it to the Safe Client. Upon receiving all secrets, the Safe
Client can disclose the result and send it to the client.

The first step in d’Artagnan’s execution flow consists in
protecting the client’s plaintext Filter (Figure 2-¶). Upon re-
ceiving the request, the Safe Client has three main tasks.
First, it checks the client’s security requirements to select the
secret sharing scheme to use. Secondly, it encrypts the search
value D in N shares with the proper secret sharing scheme.
Finally, it generates N secure Filters, each containing a single
secret instead of the client’s plaintext values. Afterwards, the
filters are sent in parallel (Figure 2-·) to the cloud providers,
one filter per party. It’s worth noting that the encrypted shares
are always random and not deterministic. As such, the shares
generated in the Safe Client for the value D are different
from the shares stored in the databases for the same value.
The only way the database can process the incoming request
is with an SMPC protocol.

Every party’s Safe Server intercepts the secure queries
and start an execution flow to process the secure Filter. The
flow is identical in every party and executed in parallel by each
party’s Safe Server. Thus, we describe the execution flow
from the viewpoint of party 1 depicted in Figure 2. Upon in-
tercepting the request, the Safe Server scans the database
(BigTable) in batches. In this example there is only a single
batch, from K1 to K4. Afterwards, it creates an execution
environment containing its player ID (1) and a Discovery
Service client. With the execution environment, the Safe
Server is ready to find the records that satisfy the Filter
condition and starts an Equal protocol (Figure 2-¹) with the
shares stored in column C1.

The Multi-Party Library starts to participate in the
protocol execution by evaluating the Equal encrypted cir-
cuit (Figure 2-º). Eventually, every party’s Safe Server
reaches this point and also starts to participate in the protocol
by invoking the same function with their own shares. The
compiled Equal circuit is composed of multiplication gates
that requires parties to exchange shares during the circuit eval-
uation. However, before any share can be sent, the Network
Middleware contacts the Discovery Service to store
a payload signaling its location and the request it’s processing
(Figure 2-»). This information enables each party’s Safe
Server to find its peers in the computation. For instance,
if party 1 has to send a share to party N , the Network
Middleware asks for the IP address of the Safe Server



in party N that is processing an Equal protocol on table T . In
a real execution, additional information is required since there
can be multiple concurrent protocols being executed. However,
for the Multi-Party Library these details are abstracted
by the Network Middleware. When the parties learn
each other’s locations, the party’s Network Middleware
establish a communication channel and exchange the necessary
shares to evaluate the protocol (Figure 2-¼).

The protocol evaluation either successfully completes or
aborts. Protocols abort if the implementation ensures fairness
guarantees and an active attack is detected. Moreover, a
protocol with identifiable aborts [19] returns the party ID
of the corrupted party. In this scenario, the information is
sent to the client that decides the proper course of action.
A successful protocol evaluation returns the rows satisfying
the Filter request. In the example, it’s the row with key K4
depicted in Figure 2. An attacker also learns this information
if a party is corrupted. Even though this information by itself
is not sufficient to break the system’s confidentiality, it’s an
open problem that can be addressed with protocols that ensure
oblivious execution [24]. The server-side processing ends with
every Safe Server sending the shares of the rows that
satisfy the protocol to the Safe Client (Figure 2-½) which
discloses the original row values and returns the correct result
to the client (Figure 2-¾).

VI. IMPLEMENTATION

We implemented a complete and fully-functional d’Arta-
gnan prototype. This prototype supports Apache HBase, a
scalable, open-source NoSQL relational database [25]. HBase
stores data in a multi-dimensional map similar to the NoSQL
data model previously presented in Section II. However, tables
are partitioned automatically by the system in multiple shards.
A shard is a storage unit of a subset of consecutive tables rows
that enables the system to scale horizontally by balancing the
workload between the database’s computing nodes.

A single HBase deployment is a distributed system with two
types of nodes: a single Master node and multiple Region-
Servers (computing nodes). The Master stores meta informa-
tion regarding cluster configuration and database tables. The
RegionServers stores and processes all of the database data.
Each RegionServer hosts a set of shards and each shard can
only be served by a single RegionServer. The query execution
is handled directly between clients and RegionServers.

d’Artagnan’s components are implemented in Java. The
Safe Client prototype provides the same API as the
HBase client but manages multiple HBase client connections,
one for each party. As described in Section IV, this compo-
nent transforms plaintext HBase queries into secure HBase
requests. However, the Safe Client prototype contains a
pool of threads that executes the secure requests in parallel.
The results of the secure requests are decrypted and aggregated
in a single final result forwarded to the client application.

The Safe Server component is integrated as an HBase
coprocessor, a feature that enables developers to extend Re-
gionServers behavior with plugins. The coprocessors intercept

every request sent to a RegionServer and have access to an
internal database API capable of modifying the RegionServers
core behavior. This approach brings secure query processing
closer to the data by removing a network hop between the
Safe Server nodes and the parties databases.

In this prototype a Safe Server node is instantiated
per RegionServer. Since each HBase database cluster can
have more than a single RegionServer, the role of a single
SMPC party is in fact played by multiple Safe Server
nodes. To manage the multiple nodes as a single party, the
Safe Server nodes store a payload on the Discovery
Service, implemented as a Redis [26] database. The pay-
load contains the address of each Safe Server node,
the party it belongs to and a unique request identifier for
each client query. This information enables the Network
Middleware to discover which Safe Server nodes are
evaluating an SMPC protocol and establish a mesh network.
Even when one or more parties have multiple Safe Server
nodes, each processing concurrent requests, the Network
Middleware is able to route shares between the nodes
participating in a protocol. The information stored on the
Discovery Service reveals no information on the actual
shares as the communication between the parties is made
directly through TCP channels without using the Discovery
Service as a proxy. Furthermore, all of the data stored on the
Discovery Service can be cryptographically signed to
prevent a malicious attacker from corrupting the information.

The Multi-Party Library is implemented in Java and
currently supports the protocols proposed by Bogdanov et
al. [18]. These protocols are among the most efficient in the
state-of-the-art and are one of the few protocols applied in the
industry to protect critical information [15]. This protocol suit
is optimized for three independent parties with a single dealer
and ensures confidentiality against a semi-honest adversary.

d’Artagnan inherits the security guarantees of the underly-
ing secure multi-party protocols. As such, this prototype pro-
tects the user’s confidentiality against malicious insiders and
external attackers that do not modify the protocol execution.
Although the current prototype does not support protocols that
protects the user’s confidentiality against a malicious adver-
sary, the integration of such protocols does not pose additional
challenges. The current framework can easily leverage new
protocols such as the SPDZ Protocol Suite [27] which detects
the presence of a corrupted party. Supporting these protocols
only requires writing two wrappers: the wrapper for the encode
and decode functions in the Safe Client; the protocols
wrappers for the Multi-Party Library. The remaining
components, the Safe Server, Network Middleware
and Discovery Service are orthogonal to the underlying
protocol implementations and require no modifications.

VII. EVALUATION

This section presents the evaluation of d’Artagnan’s pro-
totype in two experimental settings, including a complete
system deployment on public cloud providers. Furthermore,
it demonstrates the current performance bottleneck of one of



the most efficient SMPC protocols with an industry-proven
benchmark.

A. Experimental Setup

Methodology. The evaluation measures d’Artagnan
throughput, operations per second (OP/s), and latency in two
different settings. The first is a controlled setting of a fully
distributed deployment designed to establish the system’s
performance baseline. The second scenario validates the
prototype with a real-world deployment on the leading cloud
providers: Google Cloud Platform [28], Microsoft Azure [29],
Digital Ocean [30] and Amazon AWS [31]. HBase is the
baseline used in both scenarios.

Use case. We use a synthetic use case of a medical clinic
with an appointments table. The table contains the columns:
Physician ID, Patient ID, Date, Type and Institution ID.
Records in this table contain private data that must be pro-
tected. The information stored on the table reveals the location
(Institution ID), Type (e.g.: Cardiology, Oncology) and date of
an appointment. Furthermore, it leaks the relation between a
physician and a patient. To protect this information, columns
are encrypted with an additive (3,1)-secret sharing scheme.
The table records are indexed by a numeric identifier (Key)
stored as plaintext. These identifiers reveal no information and
are only used to access the data.

Benchmark. For a standard evaluation across environments
and NoSQL databases we use the industry-proven Yahoo!
Cloud Serving Benchmark (YCSB) [32]. This benchmark has
six standard workloads (A-F), each with a different read-write
ratio and value distribution. Following the approach commonly
seen in related literature [33], [32], we omit the results of
workload C as they are identical to the results obtained in
workload B. The operators on these workloads only process
the plaintext keys and do not measure the overhead of SMPC.
However, the workloads are essential to evaluate d’Artagnan’s
overhead of protecting data with a secret sharing scheme and
issuing concurrent requests to multiple clouds. Furthermore,
it establishes a direct comparison with a standard HBase
deployment without any secure processing.

We designed a new workload G to measure the overhead
of SMPC protocols. The workload simulates a clinic use case
where the staff frequently browses through the daily appoints
but sporadically schedules or updates a new appointment.
The workload filters through the Type of appoints using
SMPC protocols. The request distribution of every workload
is presented in Table I.

One important aspect to the entire evaluation is the value
distribution on the Appointments table and how the values for
the NoSQL operations are chosen by the YCSB benchmark.
On both scenarios the table identifiers are integer values that
increase monotonically with every new row. Each table column
value is sampled from a uniform distribution of the data type.
The same applies for the input values of the Put, Update
and Get operators. The Scan and Filter operators choose a
starting key from a uniform distribution and iterate over every
row until the last table row. The operator read-modify-write

Workloads Get Update Insert Scan R-M-W Filter
A 50% 50% - - - -
B 95% 5% - - - -
D 95% - 5% - - -
E - - 5% 95% - -
F 50% - - - 50% -
G 40% 20% 20% - - 20%

TABLE I
BENCHMARK WORKLOADS. EACH WORKLOAD ISSUES A REQUEST WITH

THE NOSQL API PRESENTED IN SECTION II. THE OPERATOR
R−M −W IS THE COMPOSITION OF A GET AND UPDATE OPERATION.

(R-M-W) presented in Table I is the composition of a Get
and Update operation.

B. Controlled Setting

Experimental set-up. d’Artagnan’s prototype was deployed
on a private infrastructure divided in three independent clus-
ters. Each cluster is in itself a distributed HBase deployment
with 2 Region Servers, each one with a Safe Server. In
total, this deployment consisted of 10 nodes, 3 per HBase
cluster plus the client machine with the YCSB benchmark
that contains the Safe Client. Every node had an i3 CPU
4 cores at 3.7 GHz, 8 GB of main memory and a 128 GB
SSD. Hosts were connected over a shared Gigabit Ethernet
network with an average latency of 0.3 ms.

YCSB workloads. Figure 3 presents the results of the
YCSB workloads with the Appointments table containing 1
million rows divided between 20 shards. Each plot has latency
versus throughput curves that depict the systems scalability
with an increasing number of clients, from 1 to 256 in a
logarithmic scale base 2. Each dot (×, ◦) in a plot represents
an experiment with a different number of clients. Experiments
consists of 3 hour runs.

From workload A to F d’Artagnan prototype scales with
the number of clients but starts to reach a plateau with 32
clients as requests latency increase at a higher rate than the
throughput. For instance, on Workload A d’Artagnan prototype
has a throughput increase of 10% from 32 clients to 256 clients
but the latency increases 87%. Both d’Artagnan prototype
and HBase follow a similar pattern across the workloads
with a higher throughput on read-intensive workloads. The
highest throughput reached by both systems is found on
workload B with d’Artagnan prototype peaking around 17
KOP/s and HBase at 49 KOP/s. With a maximum overhead
of 2.88× the baseline, d’Artagnan’s overhead is acceptable
considering that for each client, the Safe Client has to
encrypt every column value with a secret sharing scheme,
send three concurrent requests, one per cloud, and wait for
all parties to process the request. On the maximum load of
256 concurrent clients, d’Artagnan has 768× more requests
to manage than the baseline.

Workload G on Figure 3 is the first workload to measure
the impact of SMPC protocols. Even though only 20% of
the workload operations are filters that require SMPC, the
protocols have a significant impact on the system throughput.
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Fig. 3. d’Artagnan and baseline (HBase) performance with the YCSB
Workloads. The benchmarks consider a dataset with 1 Million rows with
an increasing number of concurrent clients, from 1 to 256 in a logarithmic
scale. The dots (×, ◦) in the plot represent an experiment with the increasing
number of clients.
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Fig. 4. Baseline (HBase) and d’Artagnan cumulative distribution function
(CDF) of the network usage on workload G with a single client.

d’Artagnan prototype is limited to 5 OP/s and reaches an
average latency of 78 seconds with 32 clients. HBase scales
with the increasing number of clients and peaks at 33 OP/s
with an average latency of 10 seconds with 32 clients. With
the highest throughput of both systems, d’Artagnan proto-
type is 6.6× slower than HBase. Even with the specialized
SMPC protocols, d’Artagnan prototype main bottleneck is the
network bandwidth used to evaluate the multiplication gates
of the encrypted circuits, as depicted with the cumulative
distribution function (CDF) in Figure 4. The presented CDFs’
results were collected during the execution of Workload G
with a single client on both systems. A single database
client is sufficient to saturate the network bandwidth with
just 10% of the d’Artagnan network usage bellow 140 MB/s.
Computational resources are not a critical factor as the CPU
usage in every experiment, even when evaluating protocols
with 256 concurrent clients, never rises above 30%.
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with 100% Filters. These plots present both systems throughput with an
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Multi-party protocols. We also evaluated the SMPC pro-
tocols throughput isolated from any other operations. In par-
ticular, we evaluate two encrypted circuits: Equality (EQ)
and GreaterThanOrEqualTo (GTE). These circuits are the
backbone of the protocols implemented on the prototype as
they enable the database to answer the NoSQL API defined in
Section II. The evaluation measured the protocols performance
with different Appointments table size, ranging from 1000
records to 1M. Furthermore, it assesses the protocols scala-
bility for each dataset with an increasing number of clients,
from 1 to 32 in a logarithmic scale base 2. The number of
clients was restricted to 32 as d’Artagnan prototype reaches
a saturation point. The table and request value distributions
followed the same approach as the previous evaluation. The
baseline was HBase’s Equal filter.

Figure 5 shows the evaluation results with throughput versus
number of clients curves. Overall, both systems throughputs
decrease as data size increases, but only the baseline scales
with the number clients. For the smaller data set, 1K rows,
d’Artagnan prototype EQ protocol peaks at 310 OP/s. In
contrast, the baseline has a maximum of 2431 OP/s for the
same filter operation. Still on the smaller datasets, the GTE
protocol reaches a maximum throughput of 52 OP/s for 32
clients. On the larger datasets, 100 K and 1 M, d’Artagnan
prototype has a consistent overhead of 99% compared to the
baseline as the system cannot scale with the increasing number
of clients. Similar to Workload G, the main bottleneck is the
network. On the smallest datasets the network usages ranges
on average from 4 MB/s to 90 MB/s as the number of clients
increase. After 10 K the bandwidth becomes saturated with
just a few clients.

C. Multi-cloud deployment

A multi-cloud deployment requires a careful analysis of the
cloud providers’ location and the interconnecting network. The
most important aspects are the distance between the third-
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party infrastructures and their distance to the Safe Client.
Ideally, the client machine should be a private infrastructure
located in the same city as the cloud servers to minimize the
requests latency. However, this is not often possible either
because the private infrastructure is far from any of the cloud
provider servers, as is our case, or because the cloud providers
do not have datacenters at the client’s geographical area. As
such, we present a scenario that illustrates a realistic use-case
where deployment on a single city is not available but the
Safe Client is in a private infrastructure near different
cloud providers.

Experimental Set-up. The entire deployment consisted of
4 nodes, three independent HBase servers hosted on Google
Cloud, Microsoft Azure and Digital Ocean, and the YCSB
benchmark client hosted on Amazon AWS. The nodes were
spread out through European countries and were selected to
minimize the latency and maximize the available bandwidth.
Google’s HBase server was located on Frankfurt, Azure’s was
on Holland and Digital Ocean’s was on Belgium. The client
machine was also located on Frankfurt. The latency between
nodes ranged from 1 ms to 12 ms and the bandwidth from 1
Gbps to 3 Gbps. d’Artagnan’s servers were hosted on machines
with 4 vCPUs, an SSD Disk and at least 10 GB of main
memory. The client machine had 1 vCPU allocated, an SSD
Disk and 1 GB of main memory.

This scenario follows a similar approach to the controlled
environment but adjusts the appointments table size to 100 K
rows. This adjustment was made to simulate a realistic use case
where critical data is stored on an untrusted cloud [33]. As the
system’s scalability is presented in the controlled environment,
this evaluation only considers the YCSB workloads and SMPC
protocols for 32 clients. Experiments consists of 3 hour runs.

Figure 6 presents d’Artagnan prototype results as the over-
head percentage in relation to the baseline, an HBase server on
Microsoft Azure. All YCSB workloads follow the same distri-
bution as in the controlled environment. d’Artagnan prototype
throughput on workload A and B has a maximum overhead
of 95%, peaks at 797 OP/s on workload A while the baseline
reaches the 10 KOP/s on workload B. On the workloads D,
E and F the overhead is slightly smaller and never surpasses
the 43%. On Workload G the prototype peaks at 21.48 OP/s
and the baseline at 38.53 OP/s, an overhead of 44%. The EQ
protocol has the lowest overhead of 39% in contrast to HBase.

Overall, both experimental settings show that the d’Arta-

gnan main source of overhead are the SMPC protocols. Even
though these protocols are among the most efficient in the
state-of-the-art the network bandwidth used to evaluate the
multiplication gates decreases the overall system’s throughput.
However, the system’s performance is acceptable for privacy-
sensitive application without real-time performance require-
ments. In a realistic deployment with cloud providers, the
system has an overhead as low as 39%. Furthermore, the
current performance is not a hard-limit as novel, ground-
breaking SMPC protocols have broken the 1 Billion gates
per second barrier [34] as well as achieved global-scale
secure computation [35]. The proposed framework can support
additional protocols to tailor the performance for specific
application requirements.

VIII. RELATED WORK

Privacy-aware databases. Secure database systems make
up a wide spectrum of solutions that provide trade-offs be-
tween privacy, efficiency, query capabilities and scalability.
CryptDB [8] was the first system to support ciphertext pro-
cessing of complex SQL queries with a modest overhead
by integrating distinct cryptographic techniques in a single
onion-layer storage model. This system protects values un-
der increasingly stronger layers of encryption that limit the
database engine query capabilities. The most outer layer leaks
no information about the plaintext data, however, inner layers
leak the order between values to enable the process queries.
Monomi [36] expands CryptDB’s query execution capabilities
with new cryptographic techniques and a novel query planner
that delegates most computation to the backed server. Unlike
these systems, d’Artagnan is not limited to encryption schemes
that leak some information to process queries. The system can
process any complex query without compromising the user’s
confidentiality with SMPC protocols [11]. Furthermore, while
a single successful attack on a privacy-aware database could
compromise the system, such attack has little impact on a
d’Artagnan system.

Multi-Party Systems. Multi-party protocols are mostly
used to process special functions over data stored in inde-
pendent database systems [18]. However, the protocols are
not part of the databases and are implemented as a separate
system. Wong et al. [37] proposed the first SQL database that
relied on secure two-party computation protocols. This system
is limited to two-party system where one of the parties is the
database backend and the other is the database client. This
approach requires the client application to do more processing
than d’Artagnan and shares a similar problem to privacy-aware
databases. A single successful attack on the cloud provider
hosting the database server is sufficient to compromise the
system. Furthermore, as a two-party system that leverages
secret sharing it requires the client to store part of the secrets
necessary for reconstructing the original values.

IX. CONCLUSION

This work presents d’Artagnan, a novel NoSQL database
framework that deals with the inherent challenges of managing



multiple clouds, each with an independent database, to create
a single logical secure database. Furthermore, the framework
securely processes queries with SMPC protocols. A prototype
is implemented from the architecture and validated with an
industry standard-benchmark on a realistic deployment in the
market-leading cloud providers. To achieve this, d’Artagnan
can be configured with multiple privacy-preserving techniques,
which include SMPC protocols. d’Artagnan’s prototype was
evaluated with state-of-the-art benchmarks and deployed in
market-leading cloud providers. The results show d’Arta-
gnan’s practicality and effectiveness. Additionally, d’Arta-
gnan’s shown overhead in performance is not an hard-limit
as novel research continues to improve SMPC protocols’
performance and these can be easily integrated to the system.
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