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Abstract. A material model for the analysis of anisotropic plates 
and shells is described. The proposed plasticity model includes 
two different yield criteria: one to represent tensile failure and 
another to represent compressive failure. The model describes 
adequately the failure behaviour of cohesive-frictional materials, 
with large differences in the magnitude of uniaxial tensile and 
compressive strength. Additionally, independent elastic and ine-
lastic behaviour can be described along each material axis. To 
validate the numerical implementation, a comparison between 
experimental and numerical results in masonry shell panels is also 
presented. 

 
 
1  INTRODUCTION 
 
It is known that most structural materials exhibit some 
degree of anisotropy. Materials, such as timber, are natu-
rally anisotropic, cold-worked metal sheets manifest pre-
dominant-directional properties which are intensified with 
increasing degree of plastic deformation. Other materials 
are anisotropic due to the manufacturing process such as 
plywood, reinforced concrete, masonry and most laminat-
ed composites.  
 
The difficulties in accurately modelling the behaviour of 
anisotropic materials are, usually, quite strong. This is due, 
not only, to the fact that comprehensive experimental re-
sults (including pre- and post-peak behaviour) are general-
ly lacking, but also to intrinsic difficulties in the formula-
tion of anisotropic inelastic behaviour. To describe the 
failure behaviour of anisotropic composites a criterion is 
needed which is able to describe the complex phenomena 
that govern failure in this type of materials. Criteria such 
as those of Hill [1], Hoffman [2] and Tsai-Wu [3] have 
been defined with the aim of meeting this requirement. 
These anisotropic plasticity models have been proposed 
both from purely theoretical and experimental standpoints 
as failure criteria. But only a few numerical implementa-
tions and calculations have actually been carried out. Ex-
amples are given by the work of de Borst and Feenstra [4] 
and Schellekens and de Borst [5] which fully treated the 
implementation, in modern plasticity algorithmic concepts, 
of, respectively, an elastic-perfectly-plastic Hill yield cri-
terion and an elastic-perfectly-plastic Hoffman yield crite-
rion. In principle, inelastic behaviour could be simulated 
with the fraction model of Besseling [6] but not much 
effort has been done in this direction. 
In fact, one of the serious problems that remains associated 

to the application of the above criteria is the description of 
inelastic behaviour. Besides the fraction model, other at-
tempts can be found in the work of Owen and Figueiras 
[7], which included material-axis-dependent hardening in 
the Hill criterion, Swan and Cakmak [8], which included 
linear tensorial hardening in the Hill yield criterion, and Li 
et al [9], which included linear hardening in a modified 
(pressure dependent) Von Mises criterion to fit either the 
uniaxial tensile or compressive behaviour. Nevertheless, 
all these approaches to model inelastic behaviour are rela-
tively crude. In this article, the approach of [7] is extended 
to include softening behaviour and independent fracture 
energies along each material axis. 
 
The other problem associated with criteria such as Hill, 
Hoffman and Tsai-Wu is the poor representation of mate-
rials with a large difference between uniaxial compressive 
strength and uniaxial tensile strength, Lourenço [10]. Due 
to the smoothness of these criteria, unacceptable overesti-
mation of strength can be found in the tension-
compression regime. Figure 1 illustrates the problem of 
aiming to represent a plane stress isotropic no-tension 
material with such anisotropic paraboloid yield criteria. 
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Figure 1    Plane stress representation of the Hoffman 
criterion and a no-tension material (fc is the 
uniaxial compressive strength) 

 
 

To obtain a better representation of materials with consid-
erable difference in the magnitude between compressive 
and tensile strength, individual yield criteria are consid-
ered, according to different failure mechanisms, one in 
tension and the other in compression. The former is asso-
ciated with a localised fracture process, denoted by crack-
ing of the material, and, the latter, is associated with a 
more distributed fracture process which is usually termed 
crushing of the material. The material model has been 
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developed for shells, which represents an extension of the 
work previously carried out for plane stress, Lourenço et 
al [11]. It is noted that a representation of an anisotropic 
yield criterion solely in terms of principal stresses is not 
possible. For shells, which is the case of the present article, 
a graphical representation in terms of the full stress vector 
in a predefined set of material axes is necessary.  Aniso-
tropic material behaviour including a Hill type criterion for 
compression and a Rankine type criterion for tension is 
proposed. This represents an extension of conventional 
formulations for isotropic quasi-brittle materials to de-
scribe anisotropic behaviour. In particular, it is an exten-
sion of the work of Feenstra and de Borst [12], who uti-
lised this approach for concrete with a Rankine and a 
Drucker-Prager criterion. 
 
Modern algorithmic plasticity concepts - including implicit 
Euler backward return mapping schemes and consistent 
tangent operators for all regimes of the model - are utilised 
to combine anisotropic elastic behaviour with anisotropic 
plastic behaviour. The proposed yield criterion combines 
the advantages of modern plasticity concepts with a pow-
erful representation of anisotropic material behaviour, 
which includes different hardening/softening behaviour 
along each material axis. It is thus capable of reproducing 
independent (in the sense of completely diverse) elastic 
and inelastic behaviour along a prescribed set of material 
axes. The energy-based regularisation technique, which is 
employed to obtain objective results with respect to mesh 
refinement, resorts then to four different fracture energies. 
 
The numerical implementation and performance of the 
model is evaluated by means of a comparison between 
numerical results and experimental results for the case of 
masonry panels with out-of-plane loading. 
 
 

2  DESCRIPTION 
 

2.1  Adopted Shell Element 
 
The finite element adopted is the curved shell element 
degenerated from a 3-D formulation. This element, origi-
nally proposed by Ahmad et al [13] for the linear analysis 
of moderately thick shells, has been extensively used for 
the geometrical and non-linear analysis of shell structures. 
 
Typical characteristics of this element are the two hypoth-
eses on which the degeneration is based: “straight nor-
mals” and “zero normal stress”. The first hypothesis as-
sumes that the normals to the mid-plane of the element 
remain straight after deformation, but not necessarily per-
pendicular to the mid-plane. The second hypothesis states 
that the normal stress component perpendicular to the mid-
plane equals zero, and the element formulation has been 
obtained ignoring the strain energy resulting from this 
stress. Assuming that the local z-axis represents the normal 
to the mid-plane, the five stress components left are x, y, 
xy, yz and xz. 
 
Five degrees of freedom are defined for each element 
node: three translations and two rotations, see Figure 2. 
The definition of the independent translations and rotations 

includes the influence of shear deformation. The rotations 
are not coupled to the gradient of the mid-plane. 
 
In this article, two by two Gauss integration in plane and 
seven-point Simpson integration in the thickness direction 
are used. 
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Figure 2    Curved shell element (applicable for thin 

shells with t << b) 
 
 

2.2 Thin Shells and its Plane Stress Behaviour 
 
For laminated structures (plates and shells with one dimen-
sion substantially smaller than the other two dimensions), 
the behaviour is typically two-dimensional, see Figure 3, 
and it is possible to adopt a yield criterion developed for 
plane stress conditions enhanced with the two new stress 
components. 
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Figure 3    Thin shells. (a) Layered shell with five stress 

components; (b) Layer, essentially, in plane 
stress conditions 

 
 
Therefore, the adopted yield criterion is based on the plane 
stress anisotropic yield criterion of [11] which includes a 
Hill type criterion for compression and a Rankine type 
criterion for tension, see Figure 4. Note that the word type 
is used here because the yield criteria adopted are close to 
the original yield criteria. Nevertheless, they represent 
solely a fit of experimental results. 



The implementation of the model in modern algorithmic 
plasticity concepts - implicit Euler backward return map-
ping, local and global Newton-Raphson method, consistent 
tangent stiffness and proper treatment of the singular 
points - has been fully described in [11] and will not be 
reviewed here. In the following, only constitutive aspects, 
with particular reference to the shell behaviour, will be 
discussed. 
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Figure 4    Proposed plane stress composite yield crite-

rion with iso-shear stress lines 
 
 

2.3  Tension - A Rankine Type Criterion 
 
For modelling tensile behaviour, it will be assumed that 
cracks, at each integration point, always arise normal to 
the mid-surface of the element. This assumption means 
that each layer of the shell element is considered to be in 
plane stress and the additional stresses from the shell for-
mulation (yz and xz) will be ignored. Of course, the as-
sumption entails some approximation as diagonal “shear” 
cracks in the thickness direction are replaced by cracks 
stepwise normal to the mid-surface. Nevertheless, this is a 
widely used simplification in thin shell analysis which, for 
the case of anisotropic shells, becomes particularly attrac-
tive because the input data are heavily reduced. In particu-
lar, the material behaviour along the z-axis (normal to the 
element mid-plane) and the contribution to failure of the 
two additional shear stresses do not have to be described. 
 
An adequate formulation of the Rankine criterion is given 
by a single function, which is governed by the first princi-
pal stress and one yield value 

t
 that describes the soften-

ing behaviour of the material as, see [14], 
 

      f x y x y

xy t t1

2

2

2 2





F
HG

I
KJ  

   
  ( )      (1) 

 
where the scalar t  controls the amount of softening. This 
expression can be rewritten as 
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where coupling exists between the stress components and 
the yield value. Setting forth a Rankine type criterion for 
an anisotropic material, with different tensile strengths 
along the x, y directions, is now straightforward if eq. (2) 
is modified to 
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where the parameter , which controls the shear stress 
contribution to failure, reads 
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Here, ftx, fty and u,t are, respectively, the uniaxial tensile 
strengths in the x, y directions and the pure shear strength. 
Note that the material axes are now fixed with respect to a 
specific frame of reference. Thus, it shall be assumed that 
all stresses and strains for the elastoplastic algorithm are 
given in the material reference axes, see also section 2.5. 
 
Eq. (4) can be recast in a matrix form as 
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where the projection matrix [Pt] reads 
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the projection vector {} reads 
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the reduced stress vector {} reads 
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the stress vector {} reads 
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and the back stress vector {} reads 
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Exponential tensile softening is considered for both equiv-
alent stress-equivalent strain diagrams, with different frac-
ture energies (Gfx and Gfy) for each yield value, which read 
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where the standard equivalent length h is related to the 
element size [15]. 
 
A non-associated plastic potential g1 
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is considered, where the projection matrix [Pg] represents 
the original Rankine plastic flow, i.e.  = 1 in eq. (6). 
 
The inelastic behaviour is described by a strain softening 
hypothesis given by the maximum principal plastic strain 


t

p.
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which reduces to the particularly simple expression 
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2.4  Compression - A Hill Type Criterion 
 
In case of crushing it is physically appealing and it results 
quite simple to include the contribution of the additional 
stresses from the shell formulation (yz and xz) in the fail-
ure criterion. 
 
The simplest yield criterion that features different com-
pressive strengths along the material axes is a rotated cen-
tred ellipsoid in the full plane stress space. The expression 
for such a quadric can be written as 
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where  

cx c
( )  and  

cy c
( ) are, respectively, the yield 

values along the material axes x and y. The  and  values 
are additional material parameters that determine the shape 
of the yield criterion. The parameter  controls the cou-
pling between the normal stress values, i.e. rotates the 
yield criterion around the shear stress axis, and must be 
obtained from one additional experimental test, e.g. biaxial 
compression with a unit ratio between principal stresses. 
The parameter , which controls the shear stresses contri-
butions to failure, can be obtained from 
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where  fcx , fcy and u,c are, respectively, the uniaxial com-
pressive strengths in the x, y directions and a fictitious pure 
shear in compression. 

For the purpose of numerical implementation, it is conven-
ient to recast this  yield criterion in a matrix form as 
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where the projection matrix [Pc] reads 
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the yield value 

c
 is given by 
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and the scalar c controls the amount of hardening and 
softening.  
 
The inelastic law adopted comprehends parabolic harden-
ing followed by parabolic/exponential softening for both 
equivalent stress-equivalent strain diagrams, with different 
compressive fracture energies (Gfcx and Gfcy) along the 
material axes [11]. The problem of mesh objectivity of the 
analyses with strain softening materials is a well debated 
issue, at least for tensile behaviour, and the stress-strain 
diagram must be adjusted according to an equivalent 
length h to provide an objective energy dissipation [12]. 
 
An associated flow rule and a work-like harden-
ing/softening hypothesis are considered. This yields  
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2.5  Orientation of the material axes 
 
For the sake of simplicity, the formulation of the plasticity 
model was presented based on the assumption that the 
principal axes of anisotropy coincided with the frame of 
reference (local or global) for stresses and strains in finite 
element computations. Since this is not necessarily the 
case, such non-alignment effects must be taken into ac-
count. 
 
Two different approaches can be followed. In the first 
approach, with each call to the plasticity model, stresses, 
strains and, finally, consistent tangent stiffness matrices 
must be rotated into and out of the material frame of  ref-
erence, respectively, as pre- and post-processing. In the 
second approach,  before the analysis begins, the elastic 
stiffness matrix [D], the projection matrices [Pt], [Pg] and 
[Pc], and the projection vectors {} and {} must be rotat-
ed from the material frame of reference into the global 
frame of reference at each quadrature point, eliminating 



the need of all subsequent rotation operations. The draw-
back of the latter approach is that the matrices then lose 
their sparse nature, resulting in less clear algorithms. For 
this reason, the plasticity model is implemented employing 
the former option. 
 
 

2.6  Behaviour of the Model 
 
The behaviour of the model in uniaxial tension, compres-
sion and pure bending along the material axes is given in 
Figure 5. The values chosen for the material parameters 
(different tensile strengths, compressive strengths and 
fracture energies along each material axis) illustrate the 
fact that completely different behaviour along the two 
material axes can be reproduced. 
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Figure 5    Possible behaviour of the model along the 

material axes: (a) uniaxial tension; (b) uni-
axial compression; (c) pure bending 

2.7  The Concept of Flexural Strength 
 
Two arguments can be used in favour of using bending 
tests (three-point or four point bending) to obtain the flex-
ural strength of a material. Firstly, the tests are relatively 
easy and inexpensive to perform and, secondly, if one is 
dealing with shell analysis it seems natural to directly 
characterise the bending tests behaviour. Nevertheless, one 
question that arises in practice is the relation between ten-
sile and flexural strengths. 
 
In the following, we will assume for simplicity that only 
tensile inelastic behaviour occurs in a structure. For a cross 
section of a beam or plate in pure bending, see Figure 6, 
the elementary linear elastic beam theory yields a tensile 
flexural strength 
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where fft is the flexural tensile strength, M is the bending 
moment, and b, h are the dimensions of the cross section 
of the beam. 
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Figure 6    Beam under pure bending. Linear elastic 

theory 
 
 
But this value is not the real uniaxial tensile strength. If the 
beam is subjected to increasing load, at a certain stage the 
tensile strength of the extreme fibre will be reached. The 
stress in this fibre starts to follow the descending branch, 
the micro-crack propagates upwards and the neutral axis of 
the cross section shifts towards the fibres in compression. 
Although micro-cracking is occurring the bending moment 
can still be increased until the peak moment is reached. 
Only at the ultimate stage, a fully developed crack occurs. 
The internal stress distribution in the cross section through 
the all process is shown in Figure 7. 
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Figure 7    Normal stress distribution in a cross-section 

subjected to pure bending 



It is obvious that the influence of the descending branch in 
the stress-crack width diagram diminishes with increasing 
height h of the cross-section. As an example, for concrete, 
the Model Code 90 provides the following expression 
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where ft  is the uniaxial tensile strength and the height of 
the cross section h is expressed in meters. 
 
 

3  APPLICATION: 
    MASONRY SHELL PANELS 
 
Masonry is a composite material made of units and mortar. 
The effective constitutive behaviour of masonry features 
anisotropy arising from the geometrical arrangement of 
units and mortar, even if the properties of these constitu-
ents are isotropic. The proposed model is, therefore, 
adopted for the analysis of two masonry rectangular panels 
for which sufficient experimental data are available, Gaz-
zola et al [16]. The masonry panels are simply supported 
in the four edges and are loaded until failure by a uniform-
ly distributed out-of-plane pressure of increasing magni-
tude. Two panels with dimensions 5000 × 2800 × 150 mm3 
will be analysed: Panel WII and Panel WP1, where the 
first panel has no in-plane action and the second panel is 
subjected to a in-plane compressive load of 0.2 N/mm2, 
see Figure 8. The material axes are defined by the joints 
directions (x- and y-axis) and the normal to the plate (z-
axis) 
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Figure 8    Masonry shell panels: (a) out-of-plane load-

ing; (b) geometry and in-plane loading 
 
 
For the given geometry and loading conditions it was ob-
served in the experiments that only tensile failure oc-
curred. Compressive and mixed tensile-compressive fail-
ure are likely to occur in the case of point loads or in the 
presence of high in-plane stresses. These in-plane stresses 

arise normally due to the confinement of the supports or 
the arching action in curved shells, which is not the case 
here. Therefore, the present example only effectively vali-
dates the tensile criterion of the proposed model. In a sub-
sequent publication the tensile and compressive criteria 
will be evaluated. For the case of plates, the reader is re-
ferred to [11] where analyses which activate both regimes 
of the model are presented. 
 
 

3.1  Inelastic Material Properties 
 
Masonry samples have been tested in four-point bending 
samples making different orientations with regard to the 
material axes (0, 15, 45, 75 and 90 degrees) [16]. For each 
direction five tests have been carried out. Figure 9 shows 
the results of the tests, represent by the average flexural 
tensile strength and its standard deviation, and the best fit 
of the model. It is possible to conclude that the model can 
reasonably approximate the numerical results. 
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Figure 9    Comparison between experimental [16] and 
numerical strengths along different  loading 
directions 

 
 
It is noted that eq. (22) was utilised to estimate the uniaxial 
tensile strength along each material direction (ftx and fty). 
The fracture energies along each direction (Gfx and Gfy) 
were then calculated by inverse fitting so that the correct 
bending moments would be obtained. The inelastic ma-
terial properties calculated this way are given in Table 1. 
 
Table 1    Inelastic material properties 
 

ftx fty  
    

Gfx Gfy 

0.95 0.35 0.40 0.90 0.06 
N/mm2 N/mm2  N.mm/mm2 N.mm/mm2 

 
 

3.2  Results 
 
Figure 10 shows the load-centre displacement diagram 
obtained in the numerical analysis. This gives a good im-
pression about the numerical implementation because it is 
possible to trace the response of the structure through ini-
tial cracking, failure load and post-failure behaviour. The 
comparison with the experimental failure loads is shown  
in Figure 10 and Table 2. Good agreement is found be-
cause the difference between predicted and observed re-
sults is smaller that 10 %. Noteworthy is the fact that a 



small confinement (pre-compression of 0.2 N/mm2) gives 
an increase of strength of 30 %. 
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Figure 10  Numerical load-displacement diagrams and 

experimental failure loads [16] 
 
 
Table 2     Numerical vs. experimental failure loads 
 

Panel WII WP1 

pexp [N/mm2]† 6.82 8.80 

pnum [N/mm2] 6.59 9.72 

Num. / Exp. 0.97 1.10 

† Experimental results are the average of three tests 

 

The results in terms of (incremental) deformed meshes at 
ultimate stage are represented in Figure 11. The cracking 
contours are illustrated in Figure 12. Cracking is repre-
sented by the equivalent plastic strain. The figure shows 
that slightly different failure modes are obtained for both 
panels. The yield-line type of results, typical of shell anal-
ysis, shows that the yield-line parallel to the panel side is 
closer to the sides of the panel for WII and is closer to the 
centre of the panel for WP1. 
 

 
(a) 

 
(b) 

Figure 11  Incremental deformed mesh: (a) WII at ul-
timate stage; (b) WP1 at ultimate stage 

4  CONCLUSIONS 
 
An elastoplastic model for the analysis of anisotropic 
plates and shells has been presented. The model is 
especially suited for materials which feature a large 
difference in magnitude between uniaxial tensile and 
compressive strengths. 
 
Application of the model to the analysis of masonry 
shell panels demonstrated the good performance of 
the model and the robustness of the numerical im-
plementation. 
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Figure 12  Cracking: (a) WII at peak; (b) WII at ultimate stage; (c) WP1 at peak; (d) WP1 at ultimate stage 


