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ABSTRACT

It is well-known that consistency in shared memory concurrent programming comes with
the price of degrading performance and scalability. Some of the existing solutions to this
problem end up with high-level complexity and are not programmer friendly.

We present a simple and well-defined approach to obtain relevant results for shared mem-
ory environments through relaxing synchronization. For that, we will look into Mergeable
Data Types, data structures analogous to Conflict-Free Replicated Data Types but designed to
perform in shared memory.

CRDTs were the first formal approach engaging a solid theoretical study about eventual
consistency on distributed systems, answering the CAP Theorem problem and providing
high-availability. With CRDTs, updates are unsynchronized, and replicas eventually con-
verge to a correct common state. However, CRDTs are not designed to perform in shared
memory. In large-scale distributed systems the merge cost is negligible when compared to
network mediated synchronization. Therefore, we have migrated the concept by develop-
ing the already existent Mergeable Data Types through formally defining a programming
model that we named Global-Local View. Furthermore, we have created a portfolio of MDTs

and demonstrated that in the appropriated scenarios we can largely benefit from the model.
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RESUMO

E bem sabido que para garantir coeréncia em programas concorrentes num ambiente de
memoria partilhada sacrifica-se performance e escalabilidade. Alguns dos métodos exis-
tentes para garantirem resultados significativos introduzem uma elevada complexidade e
ndo sdo praticos.

O nosso objetivo é o de garantir uma abordagem simples e bem definida de alcancar
resultados notaveis em ambientes de memoria partilhada, quando comparados com os
métodos existentes, relaxando a coeréncia. Para tal, vamos analisar o conceito deMergeable
Data Type, estruturas anédlogas aos Conflict-Free Replicated Data Types mas concebidas para
memoria partilhada.

CRDTs foram a primeira abordagem a desenvolver um estudo formal sobre eventual con-
sistency, respondendo ao problema descrito no CAP Theorem e garantindo elevada disponi-
bilidade. Com CRDTs os updates ndo sdo sincronos e as réplicas convergem eventual-
mente para um estado correto e comum. No entanto, ndo foram concebidos para atuar
em memoria partilhada. Em sistemas distribuidos de larga escala o custo da operagdo
de merge é negligencidvel quando comparado com a sincronizagdo global. Portanto, mi-
gramos o conceito desenvolvendo os ja existentes Mergeable Data Type através da criagdo
de uma formalizacdo de um modelo de programagdo ao qual chamamos de Global-Local
View. Além do mais, criamos um portfolio de MDTs e demonstramos que nos cendrios

apropriados podemos beneficiar largamente do modelo.
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INTRODUCTION

1.1 CONTEXT

The CAP theorem [8] states that it is impossible for a distributed system to simultaneously
provide all three of the following guarantees: Strong Consistency [15], Availability and
Partition Tolerance. Strong Consistency assures that every read returns the most recent
write; Availability assures that every request receives a timely response; and Partition Tol-
erance assures that the system continues to operate despite arbitrary partitioning due to
network failures. In other words, the CAP theorem states that in the presence of a network
partition, we have to choose between Strong Consistency and Availability.

In order to provide high Availability, large-scale distributed systems often adopt a more
relaxed consistency model called eventual consistency (EC). Replicating data under eventual
consistency allows any replica to accept updates without remote synchronization, which
ensures performance and scalability. With the exponential growth of peer-to-peer, edge
computing, grid and cloud systems, EC has become an increasing topic of research in high-
available, large-scale, asynchronous systems. Conflict-free Replicated Data Types (CRDTs) [33]
was the first formal approach, grounded on simple mathematical properties, engaging a
solid theoretical study about EC.

CRDTs are mergeable data structures where updates are unsynchronized but replicas still
eventually converge to a correct common state. CRDTs remain responsive, available and
scalable despite high network latency, faults, or disconnection. With these data structures
we can achieve strong eventual consistency (SEC), which is a stronger convergence property,
adding the safety guarantee that any two nodes that have received the same (unordered)
set of updates, will converge to the same state. This is a good approach to ensure high-
availability and also consistency in distributed systems.

In shared memory environments, synchronization is needed and the current methods
are expensive. A good way to describe the behavior of concurrent objects is trough correct-
ness and progress conditions. Linearizability is very useful to reason about the correctness
of concurrent data structures but, implementations often lead to a bottleneck caused by
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synchronization. Many applications apply ad-hoc techniques to eliminate the need of syn-
chronous atomic updates, which may result in non-linearizable implementations.
Mergeable Data Types (MDTs)[4], are convergent data structures, used to relax synchro-
nization in shared memory environments, analogously to CRDTs in distributed systems.
The central idea is that each thread can update its local private copy of an object and later
merge its changes to a shared global object. Each thread’s execution will behave as a fork
of the main branch (global shared object). At the moment that execution starts, each thread
has a local copy of the global shared object, and when the merge operation performs, this

new branch joins its updates into the main branch.

1.2 MOTIVATION

As the number of cores increases in a multi-core system, the synchronization cost becomes
more apparent favouring the relaxation of concurrent object semantics for scaling the pro-
grams [34]. Programming patterns that attempt to limit the associated cost of the required
synchronization on the memory accesses are emerging. As in CRDTs, the concept of merge-
able data types is widely in use on distributed systems. Each replica can be concurrently
updated, and later be merged with other replicas, while it is guaranteed that all nodes reach
a convergent state once all updates have been delivered. Although, high latency network
and possible reordering of messages in distributed systems, resulted in properties much
different from what is required in shared memory systems. It is relatively simple to recog-
nize that the use of such data types could be adapted, with enhanced and specific settings,

to perform on a shared memory environment.

1.3 PROBLEM STATEMENT

Current shared memory solutions, use linearizability as correctness criteria under concur-
rent data structures because is useful to reason about the abstraction. On the other hand, is
a prohibitively expensive criterion and going over it often leads to solutions that are hard
to reason, verify and implement.

The applicability of mergeable data types in a multi-core shared memory setting has ad-
vantages and better performance could be achieved at the expense of linearizability. How-
ever, there is no consolidated theory on such data types in the shared memory ecosystem.

1.4 MAIN CONTRIBUTIONS

In this dissertation, we do an in-depth study and continue the work on Highly-scalable con-
current objects by Deepthi Devaki Akkoorath and Annette Bieniusa [4]. Mostly, we explore how
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relaxing linearizability brings advantages to a shared memory environment by develop-
ing and formalizing MDT’s previously proposed programming model. Part of the work
described in this dissertation is published at Global-Local View: Scalable Consistency for Con-
current Data Types [5], presented at the conferences PMLDC 2017 and Euro-Par 2018. We
will also present a portfolio with different data types and the respective implementations,
comparing them with the linearizable ones. Part of this portfolio was delivered as artifact

for Euro-Par where reviewers actually runned benchmarks over the MDTs.

1.5 DISSERTATION OUTLINE

The remaining chapters of this dissertation are organized as follows. Chapter 2 presents the
current state of the art. Section 2.1 approaches linearizable and non-linearizable methods,
in order to revisit the concepts and study examples of correctness conditions. We also
contemplate some of the existing approaches to relax linearizability. Section 2.2 revisits the
existing mechanisms to handle concurrency in shared memory environments. In Section 2.3
we see some programming models with resemblances to ours, where a per-thread replica is
maintained to perform updates. In Section 2.4 we visit CRDTs and some important notions
to retain.

In Chapter 3, we present the development of our work and an abstraction of our program-
ming model. In Chapter 4 we present a portfolio of MDTs, and in Chapter 5 we present
practical implementations of our portfolio establishing comparisons with the existing meth-

ods. Finally, in Chapter 6 we present some final considerations.



RELATED WORK

2.1 CORRECTNESS CONDITIONS

A correctness condition is a predicate on a history of a system [13]. Each history is a record
of interactions between an object and its external interface calls. A method call is compre-
hended as the interval between its event invocation and the respective event response. When
the call is waiting for a response, the event is described as pending. Concurrent histories
may consist of both overlapping and non-overlapping calls. Correctness conditions are eas-
ier to reason about if concurrent executions are mapped into sequential ones. There are
several well-known existing correctness conditions [20], and we will present some progress

conditions that are often mentioned in the shared memory literature.

2.1.1  Sequential Consistency

Sequential consistency [25], or serializable consistency, is a simple condition requiring the order
of method calls in a concrete history for a single process to be preserved. This is, method
calls act as if they occurred in a sequential order consistent with program order.

Specifically, calls should appear to happen in a one-at-a-time sequential order. Let’s
say we have two concurrent writes A and B on a register holding a value, where a write
operation assigns the value on the register, and a read operation performs a query. In the
presence of concurrent writes the later one overwrites the earlier one. So if we have the
concurrent writes A and B at the end we should not have unexpected results, meaning that
either we have A or B, and not a mixture between them. Also, calls should appear to take
effect in program order, meaning that, the order of each thread’s calls should be preserved.
If we have a sequential execution with two writes A and B, where A takes effect and B takes
effect after A, a following read should display the effect of B.

Calls performed by different threads may be reordered in the history even if the operation
calls do not overlap in the execution. With sequential consistency, we have local order with

arbitrary interleaving between threads executions. Sequential consistency is also not com-
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posable, the result of composing multiple sequentially consistent objects it is not sequential

consistent by itself, as shown in the next example:

Figure 1: Writing and reading from two different registers: r1 and r2

Given the register semantics, Figure 2 represents the possible ordering of operations that
result in a sequentially consistent execution:

Figure 2: Sequentially consistent operation ordering from Figure 1
Assuming that both r1 and r2 are initialized with value 0. From thread’s A and B execu-
tions we have four different possible local scenarios:

« Al :rd(r2) = 0. Justified by the order of operations: (1),(2),(3), (4);

. A2 :rd(r2) = 2. Justified by any ordering on Figure 2 where ( 3 ) happens before ( 2
);

« B1:7d(rl) = 0. Justified by the order: (3), (4), (1), (2);

« B2 :rd(r1) = 1. Justified by any ordering on Figure 2 where ( 1 ) happens before ( 4 );

All these scenarios are independently sequentially consistent but the composition of any
two scenarios is not necessarily sequentially consistent. Al followed by B2 is sequentially
consistent, justified by (1), (2),(3), (4 ); Bl followed by A2 is also sequentially consistent
by the order (3), (4), (1), (2); but the same is not true for the composition of A1 with B1
because there is no operation ordering, respecting the register semantics, where rd(r2) = 0
and rd(rl) = 0.
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2.1.2 Linearizability

Linearizability [21] has turned out to be a fundamental notion on simplifying the reasoning
about the correctness of shared data structures for programmers. It is a real-time guarantee
on the behavior of reads and writes on single objects.

Each method call should appear to take effect instantaneously at some moment be-
tween its invocation and response. In an execution, every method call is associated with a
linearization point, a point in time between its invocation and its response. The call appears
to occur instantaneously at its linearization point, behaving as specified by the sequential
definition. Informally, writes should appear to be instantaneous, once a write completes, all
later reads should return the value of that write or the value of a later write. For instance,
in a lock-base implementation, critical sections can serve as linearization points. On other
implementations, linearization points are typically a single step where the effects of the call
became visible to other methods.

This correctness criteria formalizes the notion of atomicity for high-level operations and
is the strong consistency(C) in Gilbert and Lynch’s conjecture of the CAP Theorem [15].

Linearizability is composable because, if operations on each object at a system are lin-
earizable, then all operations at the system are linearizable. This is an important property
for large and complex systems because it favors a modular implementation of the different
parts of a system, making them proved correct independently.

With linearizability we have global order, being a more restrictive criterion than sequen-
tial consistency. Stronger restrictions yield stronger consistency. Under linearizability, we

have sequential consistency but the reverse is not true.

1 OmO 3 (=
Figure 3: Linearizable opration ordering from Figure 2

Following Figure 2, in Figure 3 we have highlighted, from all the sequentially consistent
operation ordering, the ones that are also linearizable and grayed out the ones that are
only sequentially consistent. As we can observe, all linearizable executions are sequential

consistent but the other way around is not true.
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2.1.3 Serializability

Serializability is a guarantee about transactions, a group of one or more operations over
one or more objects, which ensures that a schedule for executing concurrent transactions
is equivalent to one that executes the transactions serially in some order. An execution is
serializable if we can find a serial execution equivalent to it. Serializability is the isola-
tion(I) in the ACID properties, also know as serializable isolation and is seen as a mechanism
for guaranteeing database correction.

The concept does not impose constraints in transaction ordering, meaning that transac-
tions could be reordered. It ensures that transactions execute as if they were executing one
at a time on a single copy of the database. It is also not composable.

Although the concept has an origin in database systems, the principles tend to converge
with the principles of sequential consistency and are often referred as the same. We will
treat them as separated concepts. Linearizability is also both present on the terminology of
distributed, concurrent, and database systems. It could be seen as a special case of strict
serializability [21] where transactions are restricted to consist of a single operation applied

to a single object.

2.1.4 Other Relaxed Models

Some models attempt to relax the strict semantics of linearizability in order to achieve better
performance.

Quiescent consistency|7] provides high-performance at the expense of weaker constraints
satisfied by the system. As in sequential consistency, method calls should appear to happen
in a one-at-a-time sequential order. Moreover, method calls separated by a period of qui-
escence should execute in their real-time order. An object is in a quiescent state if currently
there is no pending or executing operation on that object

K-linearizability[23] is a criterion between sequential consistency and linearizability allow-
ing to reorder arbitrarily up to k — 1 (k > 0) sequential operations and thus execute con-
currently. This is a relaxed criteria since linearizability only allows to reorder concurrent
operations and not sequential.

Quasi-Linearizability[2] allows each operation to be linearized at a different point at some
bounded distance from its linearization point. For instance, a queue that dequeues in
random order but never returns empty if the queue non-empty is a quasi-linearizable queue.
Allows more parallelism by allowing flexible implementations.

Weak and Medium Future Linearizability [24] is a consistency model applicable to the data
types implemented using futures, which allows flexible reordering of the operations.
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2.1.5 Summary

Correctness criteria are hard to explain and the terminology of distributed, concurrent and
database systems is not consistent.

Sequential consistency is a good way to describe standalone systems, such as hardware
memories, where composition is not an issue. Serializability is a mechanism to ensure
database correctness. Linearizability strengths sequential consistency by requiring the or-
der of non-overlapping operations to be preserved and could be seen as a special case of
serializability. It is a good and simple way to describe components of large systems, where
components must be implemented and verified independently. Because linearizability is

also expensive, due to the imposed constraints, weaker criteria started to gain form.

2.2 CONCURRENCY MECHANISMS

In concurrency control for shared memory systems, we concern about the correct and effi-
cient execution of concurrent operations. Across the time several works have been devel-
oped in this field, and there is no standard or conventional approach, mainly due to the
large variety and diversity of solutions. Also, each one has its own trade-offs, and we can
only state that some approaches are better suitable for specific scenarios than others.

One of the most primitive and popular mechanisms for inter-process synchronization are
mutual-exclusion locks, although their misleading simplicity explains the widespread. In
a context of high-performance applications, more and more efficient concurrency control is
required and, it is well proved that mutual exclusion locks don’t scale with large numbers of
locks and many concurrent threads. Scalability can be captured by a measure known as the
speedup of the implementation. This measure effectively characterizes how an application is
using the machine it is running on. On a machine with P processors, the speedup is the ratio

of the execution time on a single processor(T(1)) to its execution time on P processors(T(P)).

_ T
speedup = TP

Data structures whose speedup grows with P are called scalable.

Highly-concurrent access to shared data demands a complex, fine-grained locking strat-
egy such that non-conflicting operations can execute concurrently. It is a rough path to
design correctly and efficiently such strategies because they carry lots of problems that
need to be avoided. Priority inversion occurs when a lower-priority thread is preempted
while holding a lock needed by higher-priority threads. Convoying happens when a thread

holding a lock is descheduled due to a time-slice interrupt or page fault. Deadlock can occur
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if threads attempt to lock the same objects in different orders. Avoiding deadlocks is difficult
if threads must lock many objects, particularly if the set of objects is not known in advance.
With these known problems, interest in solutions like non-blocking mechanisms grew. It
was expected that efficient and robust systems could be built, but the reality is that most
algorithms are complex, slow and impractical.

Nowadays it is infeasible for programmers to build large systems using these primitive
methods. Therefore, more evolved solutions appeared. In this section, we present, Con-
current Data Structures Libraries and Transactional Memory, two popular approaches in

concurrency control for shared memory systems.

2.2.1  Concurrent Data Structures Libraries (CDSLs)

This first approach is to use libraries with data structures that already handle concurrency.
Concurrent data structures (CDSs) are data structures intended for use in parallel environ-
ments, also called “thread-safe”. By “thread-safe”, we interpret that each data structure
operation executes atomically and in isolation from other operations on the same data
structure. In this scenario, the correctness criteria generally required is linearizability.

The fast adoption of commercial multiprocessor machines has brought about significant
changes in the art of concurrent programming and drew attention to data structures. The
efficiency of these data structures is crucial to performance, yet designing concurrent data
structures is an art currently mastered by few. CDSs are far more complicated to design
than sequential ones because threads executing concurrently can interleave their steps in
many ways, producing unexpected outcomes. Threads execute concurrently in different
processors and operational systems, therefore, can be subject to SO interventions which
difficult concurrency. Also, the drive to improve performance often makes it harder to
design and verify the correctness of a CDS implementation. In fact, when designing CDSs
the use of the primitives presented before is unavoidable, ending up carrying the same
problems.

We will use, a simple example of a shared counter presented by Mark Moir and Nir Shavit
[31] that illustrates some difficulties of the CDS design and some possible improvement
techniques. This counter has a unique operation fetch-and-add, implemented with mutual-

exclusion locks:

acquire (Lock) ;
oldval=X;
X=o0ldval+1;
relase (Lock) ;

return(oldval) ;
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This naive implementation shows that the careless application of this mechanism introduces
three problems: a sequential bottleneck because at any point at most one fetch-and-add
operation is executing, an overhead in traffic in the underlying hardware as a result of
multiple threads concurrently attempting to access the same locations in memory(memory
contention) and a phenom called blocking that occurs when the thread that holds the lock
is delayed. The problems could be worked by using a fine-grained locking scheme, i.e.,
use multiples locks to protect smaller pieces of the code, allowing concurrent operations
to proceed when they’re not accessing the same parts of the data structure. However, fine-
grained locking doesn’t scale. One alternative is to use a sophisticated technique known
as combining tree to implement a scalable counter. This method uses a binary search tree
where each leaf is a thread, and the root contains the actual value. If a thread wants to
increment the counter, it starts from the leaf node and works its way up the tree to the root,
using the intermediate nodes to combine with other threads. When two threads combine
at one node, one is called loser, and another winner. The loser simply waits at the node until
a value is delivered from the winner and the winner climbs the tree carrying the sum of the
values of his sub-tree.

Counter |I|

LA
L

Winner C
Loser B
Result
- N PN
[ [}
Winner B Winner c
Loser A Loser D

Result Result
ar ar ar ar
g T e e ] ™ [ ]
Figure 4: Combining tree upstream process

When a thread reaches the root of the tree, adds its sum to the counter in a single addition,
applying the effects of all the combined operations and fetches the old value passing this
one down the tree. Thus, if multiple threads are increasing the counter at approximately
the same time, the maximum number of threads that will compete for accessing the counter

variable is two, no matter how many threads are making increment requests.

10
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Counter III
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Figure 5: Combining tree downstream process

Combining tree reduces contention for individual memory locations, reduces memory
traffic and allows operations to proceed in parallel when comparing to the previous single
lock version. However, this technique as some disadvantages: it requires a known bound of
the number of threads that access the counter; when accessed by many concurrent threads
under low loads the best case is poor (O(logN)) when compared to the constant time in the
previous version; if a thread fails to combine because it arrived at a node immediately after
a winner left it on its way up the tree, then it must wait until the winner returns before it
can continue its own ascent up the tree; coordination is complex and may lead to deadlocks,
and avoiding deadlocks complicates the design task.

Non-blocking techniques overcome some of the problems presented before related to the
use of locks. Two non-blocking progress conditions should be mentioned: wait-free and
lock-free. A lock-free operation ensures at least some thread is making progress on its work
(system-wide progress). After a finite number of its own steps, some operation completes. A
wait-free operation ensures that any thread will be able to make some progress and even-
tually complete (system-wide and per-thread progress). After a finite number of its own steps
the operation completes, regardless of the timing behavior of other operations. This means
that an operation that is said to be wait-free gives the same (and more) progress guarantees
than a function that is lock-free. Mark Moir and Nir Shavit [31] state that there is no manner
to implement a shared counter in a lock-free or wait-free way using only load and store as sep-
arated instructions. Therefore, they propose to use a synchronization instruction present in
most modern processors called compare-and-swap(CAS) to guarantee that a labeled piece of
code executes atomically.

11
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Furthermore, with the CAS operation, we can perform our fetch-and-add with a wait-
free implementation because it atomically loads from a memory location, compares the
value read to an expected value, and stores a new value to the location if the comparison
succeeds. It is also possible to have only a lock-free implementation by loading the counter’s
value and then use CAS to atomically change the counter value to a value greater by one
than the value read. The CAS instruction fails to increment the counter only if it changes
between the load and the CAS. When it fails, the operation can retry, and the failing one has
no effect. It only fails as a result of another fetch-and-add operation succeeding. Although
this implementation is lock-free it is not wait-free because the CAS can repeatedly fail. Also,
it has some disadvantages of the previous single-lock version: the sequential bottleneck
because at most one operation can perform and high contention for a single location. If
we keep the same line of thought as in the single-lock version, we should try to apply
some improvements to the lock-free version, but generally, improvements lead to expensive
and more complicated techniques because the absence of locks make us concern about
providing a correct implementation, despite actions of concurrent operations, instead of
preventing that other threads interfere with the work that some thread is doing.

This example clearly illustrates that the design of concurrent data structures provides sig-
nificant challenges, by far a lot more complicated than sequential ones. As we surpass some
challenges, new ones arise and we can end up sacrificing performance. On the other hand,
well-designed concurrent data structures can achieve notable performance results, but for
that, it is necessary to achieve a certain maturity in the design. The use of libraries with
data structures that serve our purpose, and where concurrency is optimized in a high-level,
is a comfortable solution although the lack of understanding of the implementation details
is not always accepted. In the next chapter, we present a transactional approach that makes

it much easier and understandable to design systems for shared memory environments.

2.2.2  Transactional Memory(TM)

In the previous section, we have seen that the fundamentals in concurrent data structures
design aim to modify multiple memory locations atomically so that no thread can observe
partial results from other threads. With transactional mechanisms, we can also treat sections
of code that access multiple locations as a single atomic step, which simplifies the design
of data structures in the sense that we don’t have to concern about the problems that are
inherent to the use of the previous mechanisms.

A transaction is a sequence of steps executed by a single thread. Herlihy and Shavit [20]
state that transactions should be serializable. One way to implement serializability is to use
speculative transactions, transactions that make tentatives changes to objects. A transaction

without synchronization conflicts commits and the tentative changes become permanent. A

12
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transaction with synchronization conflicts aborts and the tentative changes are discarded
without the need of concern about deadlocks.

Transactional memory can be implemented in either hardware or software. A hardware
approach may have high performance, but imposes strict limits on the amount of data
updated in each transaction. A software approach removes these limits but incurs high

overhead.

Hardware Transactional Memory(HTM)

Transactional support for multiprocessor synchronization was first introduced by Herlihy
and Moss [19], allowing shared-memory operations to be grouped into atomic transactions.
A hardware-based transactional memory mechanism motivated by the cache-coherency pro-
tocols present in modern multiprocessors was also proposed. These protocols already do
most of the work needed to implement transactions and as they are implemented in hard-
ware, they perform very efficiently. Specifically, in modern multiprocessors, each processor
stores a copy of shared data in a small high-speed cache used to avoid communication with
another copy of shared data present in the processor slow main memory. Each cache en-
try holds a group of neighbor memory addresses called line. Cache lines with the same
memory addresses in different processors are synchronized through the manipulation of a
simple state machine. Simply speaking, this approach keeps track of whether a processor
tried to modify a memory address that another has in its cache. The hardware keeps track
of which cache lines have been read from and which have been written to. If two processors
read the same cache line addresses, there’s no conflict. If either writes to a cache line that
another has read or written to, then there’s a conflict, and one of the transactions will fail.
This allows us to detect and resolve synchronization conflicts to shared memory between
writes, and between reads and writes. Also, tentative changes are buffered instead of up-
dating memory directly. Herlihy and Moss with small changes to these protocols proposed
their HTM but unfortunately, the approach was naive.

When a transaction fails the most apparently obvious thing to do is to restart it, but it is
not so simple. This protocol doesn’t guarantee progress, unless we ensure that at least one
transaction will succeed what is difficult because transactions might fail, for instance, due
to interrupts. It is also difficult, to respect thread priorities. High-priority threads could be
starving while lower-priority threads with shorter transactions always succeed. However,
the major problem with this approach is that hardware transactions have inherent capacity
constraints on the number of distinct memory locations that can be accessed inside a single
transaction because the size of the cache limits the size of a transaction.

Then, it is not viable to design HTM systems since to surpass these problems it would re-
quire hardware modifications, which requires that processor manufacturers concern about

HTM. For many years, efforts to take advantage of the benefits from hardware-transactional
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synchronization were made, combining hardware and software transactional memory im-
plementations, also known as hybrid transactional memory(HyTM), like the ones presented
on [11] or [29]. However, hybrid transactional memory solutions suffer from a significant
drawback: the coordination with the software introduces an unacceptably high instrumen-
tation overhead into the hardware transactions. Intel introduced the concept of Reduced
Transactional Memory (RTM), developing their Haswell microarchitecture, which allowed to

eliminate most of the instrumentation.

Software Transactional Memory(STM)

A purely software-based transactional memory was proposed by Shavit and Touitou [35] ad-
dressing the problems of Herlihy and Moss hardware transactional memory. This STM was
non-blocking, in contrast with the blocking previous HTM, and is implementable on the ex-
isting hardware. A notable feature is that they abort contending transactions rather than re-
cursively helping them. Their design supported only static transactions, that is, transactions
which access a pre-determined sequence of locations. Although this approach couldn’t aim
for the same overall performance than the HTM, some advantages are identified: portabil-
ity among machines and the tolerance on the presence of timing anomalies and processor
failures. In fact, this proposal was the first step for the beginning of transactional memory
widespread. Later, Moir presented an STM design [30] for converting sequential imple-
mentations of dynamic transactions into non-blocking implementations, allowing dynamic
programming in contrast with Herlihy and Moss static approach. Following, various forms
of software transactional memory have been proposed like Herlihy et al. [18] or Harris and
Fraser [16].

The design of transactional memory trends to provide large-scale transactions. Large-
scale transactions are achieved by assuring that transactions are unbounded and dynamic:
unbounded means that there is no limit on the number of locations accessed by a transac-
tion, and dynamic means that the set of locations accessed by the transaction is not known
in advance and is determined during its execution. Dice et al. [12] presented an STM ap-
proach called Transactional Locking 1I, with dynamic and bounded transactions, which is based
on a combination of commit-time locking and a global version-clock based validation tech-
nique, allowing dynamic and unbounded transactions. Although, performance kept being
a problem mainly due to coarse-grain conflict detection, which limits parallelism producing
unnecessary conflicts and high abort rates. Transaction memory systems synchronization
is on the basis of read/write conflicts. As a transaction executes, it records the locations it
reads in a read-set and the locations it wrote in a write-set. Conflicts appear if either a trans-
action read-set or write-set intersects other transaction write-set. Although this kind of

synchronization could happen without the programmer participation, it can severely and
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unnecessarily restrict concurrency for certain shared objects that could be “hot-spots” of the
system, ending up with significant losses of performance.

Let’s take as an example a simple sorted sequence implemented by a linked-list. Consider
that each node of the list holds a unique integer value and a reference to a next node. The
nodes are sorted by value and the operation add(x) is provided, where x is the value of
a new node added to the list. If x is absent, nodes are traversed until it is found x’s
successor(a value greater than x) to insert the new node. This new node reference points to
x successor, and the predecessor(the previous node) points to x. Consider the list initial state
of: {1,3,5,6,7,9}. And, two pending concurrent transactions: Transaction A that performs
add(4) and Transaction B that performs add(8). Neither of the transactions calls depends
on each other, but as illustrated in Figure 6 they conflict.

4 8

\
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read set write set

Tran:::(t:)m A @ @ @ : A

read set write set
Tranas::(t:)m B @ @ @ : .
®0®

Figure 6: TM contflict detection

Conlflicts are caused because the transaction’s steps interleave. Node 3 is on transaction’s
A write-set and at transaction’s B read-set, causing a conflict. Although adding node 3
would not affect adding node 8, the way traditional TM detect conflict produces the unnec-
essary abort from one of the transactions.

In the next section, we will see that some more recent approaches tried to solve the STM
efficiency problem by combining “the best of both worlds”: The efficiency of concurrent

data structures with transactional memory more friendly implementation.
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2.2.3 Combining the two approaches

Addressing the problem of restricted concurrency on software transactional memory Her-
lihy and Koskinen [17] proposed transactional boosting, a methodology to convert concurrent
data structures, implemented with lock or lock-free mechanisms, into transactional ones.
Using the semantics of well-defined data structures is possible to perform better conflict
detection on concurrent transactions, allowing the reduction of abort rates significantly
and consequently better concurrency. Afek et al. [1] showed how to enhance an STM, pre-
senting an approach called consistency oblivious programming (COP) which allows executing
sections of code that meet certain conditions without checking for consistency in order to
improve parallelism. As we have seen before, to provide conflict detection most transac-
tional memory systems keep track of the read and write sets of transactions. In most STMs,
this instrumentation of threads interactions is expensively done with word-based bookkeep-
ing, i.e., keeping track of every memory address that transactions access, results in poor
scalability. COP tries to avoid that, using sequential code from data structures to see if
operations can optimistically execute without keeping track of any transaction interactions.
If they can’t execute, COP just retires to execute them in a more expensive way. Herman et
al. [22] presented an STM, called software transactional objects (STO), which tracks abstract
operations over data structures instead of the read and write sets. When compared to the
conventional STMs, this STO reduces bookkeeping, limits false conflicts and implements
an efficient concurrency control. The last three examples, use concurrent data structures
to improve transactional memory systems. Spiegelman et al. [36] in Transactional Data Struc-
tures Libraries (TDSLs), bring transactions into concurrent data structures libraries (CDSLs), so
that no performance is sacrificed and sequences of operations in a data structure could be
atomic. Their library offers stand-alone operations at the speed of a custom-tailored CDSLs,
and at the same time, provides efficient and scalable transactions that are way faster than

conventional software transactional memory systems.

2.2.4 Summary

Primitive methods for concurrency control, like mutual-exclusion locks, are not viable to
build large-scale concurrent systems. CDSLs are an efficient solution if concurrent data
structures are properly implemented, although their design is hard. Hardware transactional
memory promised to reduce the difficulty of writing correct, efficient, and scalable concur-
rent programs but unfortunately, there is no viable support of hardware. Over the years
purely software alternatives appeared but the efficiency falls short. Recently, appeared so-
lutions that combine transactional memory with concurrent data structures taking the best
of both.
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Transactional Memory CDSLs
advantages disadvantages advantages disadvantages
« Programmer friendly + Alone dont » Can achieve » Difficulty of design
« Simplicity of design performe efficiently incomparable « Carry the problems of primitive
o Pratical efficiency methods
+ Not pratical

Figure 7: Transactional Memory vs CDSLs

Our goal with MDTs, is to provide the advantages that these two approaches can only

provide together in a simple and understandable way:.

2.3 RELATED PROGRAMMING MODELS

Maintaining per-thread replicas and performing updates on them has been considered by

different programming models in the literature.

2.3.1 Concurrent Revisions

In Concurrent Programming with Revisions and Isolation Types[9] a programming model is
presented to simplify the sharing of data between threads. The general idea is the devel-
opment of the fork-join model to suit this purpose. A forked thread’s state is initially, a
copy of its parent state. The forked thread makes changes on its copy, and these changes
are merged to the parent thread when it is joined back. During the join, conflicting updates
are resolved using type-specific merge operations. Specifically, two important notions are
defined: isolation types and revisions.

Isolation types are special types used to declare what data can be shared between threads.
Mainly two categories of isolation types were identified. Versioned types that are suitable
in situations where concurrent modifications happen with low frequency, or when there
is clearly priority between threads. For instance, joinee thread’s effects always override.
Commulative types are useful in situations where the results from different threads should
be combined, and the final result is achieved through a merge function.

Revisions are tasks that are forked and joined, and could themselves be forked. Similar
to branches in source control systems. Each revision read and modify it is own private copy
of the entire shared state, with the guarantee to be consistent, isolated and stable. There is
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no need to perform any synchronization inside revisions, providing simplicity of use. Also,
reason about how threads may see or not each other effects is simplified by revision diagrams
(Figure 8).

c
versioned({int) x; ‘™
versioned(int) y; =
x=0 [x=y=0 |

— 0- >
y==0 2
revision r = rfork {

X = 1| x=1
} =X

y =X
rjoin r; (prints 1, 0)
print x, y; A

Figure 8: Example of Revision Diagram

The focus of this work is on the fork-join model, where threads can communicate their state
only when they join their parent. In contrast, we provide a generic model for data types
where a two-way merge and strong updates can share state among the threads at any point
in the execution, thus enabling applications to tune their use.

2.3.2  Global Sequence Protocol(GSP)

Global Sequence Protocol [10] is a model for replicated and distributed systems. Its used to
describe the system behavior precisely, yet abstractly enough to be suitable as a simple
mental model that can be instantiated to any data type. A data type is abstracted by a set of
Read operations, a set of Update operations, and a set of Values returned by read operations.
The abstract semantics of operations is represented by a function rvalue that receives a read
operation and a sequence of updates. This operation returns the value that results from
applying all of the updates in the sequence to the initial state of the data.

Observing the behavior of programs as a sequence of updates, and not states, is enforced.
A state is the sequence of updates that have led to it. GSP has a global state which is
represented as a sequence of operations. Each client stores a prefix of this global sequence.
It is based on the simple idea that clients eventually agree on a global sequence of updates
while seeing a sub-sequence of the final sequence at any given point of time. For instance,
a counter could be abstractly defined as follows:

1 Update = { inc }
2 Read = { rd }
3 rvalue (rd,s) = s.length
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The above snippet represents a simple read counting the number of updates(increments)
on the sequence of updates s.

On a distributed system, the updates are first appended to a local sequence of pend-
ing operations and then broadcasted to other replicas using a reliable total order protocol
which enforces a single order on the global sequence. There is much less control on replica
divergence and liveness of the global sequence evolution because there are no bounds on
message delays. Liveness[20] is a system property that states that a particular “good” thing
will happen. For instance, a red traffic light will eventually turn green.

In contrast, we address a shared memory concurrent architecture that allows to reason
about bounds on divergence and stronger progress guarantees on the evolution of the
shared state.

2.3.3 Read-Copy-Update and Read-Log-Update

Read-copy-update (RCU) [28] is a synchronization mechanism that allows threads to read a
shared object while a concurrent modification is in progress. This mechanism is widely in
use at Linux kernel since 2002 [27], bringing significant scalability improvements.

Similar to our model multiple versions of an object are maintained, so that, reads observe
a consistent state while a modification is in progress. The core idea of RCU is to duplicate
an object each time it is modified and perform the modifications on the private copy. Reads
access the unmodified data structure while updates modify the copy. Once modifications
are complete, they are installed using a single pointer modification in a way that does not
interfere with ongoing readers. To avoid synchronization, updates wait until all pre-existing
readers have finished their operations, and only then install the modified copies. To ensure
consistency, such updates must be done at a safe point when no reader can potentially hold
a reference to the old data. One important property of RCU is the ability to determine this
safe point. When all threads have passed through a quiescent state since a particular point
in time, they are all guaranteed to see the effects of any change made before the beginning
of the interval. This guarantee allows many algorithms to be constructed using fewer locks
or even no locks at all.

RCU defines and uses efficient and scalable mechanisms for publishing and reading
new versions of an object, and also for garbage-collecting old versions. These mechanisms
distribute the work among reads and updates in such a way that makes reads extremely
fast. Although introducing significant improvements while avoiding synchronization, RCU
it is only suitable for a scenario where we have multiple readers and only a writer. Also,
threads experience delays when waiting for readers to complete their operations. Besides,
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some crucial aspects as synchronization between writes and the duplication of objects are
not delivered out of the box by RCU and need to be concerned at implementation time.

Read-log-update (RLU) [26] is an extension over RCU to solve the problems presented be-
fore. The RLU core is a logging coordination mechanism inspired by transactional memory
algorithms. It provides support for multiple writes in a single operation by combining RCU
ability to determine the safe point to perform writes with clock-based logging mechanism
that replaces the manual creation and installation of objects.

RLU maintains a per-thread write-log where write operations log each object they modify.
Objects are automatically copied into the write-log and manipulated there. Also, RLU
maintains a global-clock, which is a memory location that is updated by threads when they
wish to establish a synchronization point. This global clock is read at the start of every
operation and is used as a timestamp for thread’s operations.

Each writer thread, after completing the modifications to the logged object copies, com-
mits them by incrementing the clock to a new value. At this point, operations are divided
between old and new operations. Old are the ones that started before the clock increments
and will read old object copies. The new ones started after the clock increment. Then, the
writer waits for old operations(reads) to finish, as in RCU, and after that writes the objects
in the writer log to memory using locks, overriding the old objects. Meanwhile, new op-
erations started using the ongoing write-log without waiting for objects to be written in
memory.

In contrast with our model, on RCU and RLU concurrent writes are sequential consistent

which is achieved by sequentially order the writes or by fine-grained locking.

2.3.4 Summary

In this section, we visited four programming models that perform updates on per-thread
replicas. Concurrent Revisions is an expansion of the fork-join model where forks can
do work and later merge it to their parent. Global Sequence Protocol is an abstraction
that looks into shared memory programs state as sequences of updates, allowing threads
to work seeing only sub-sequences of these updates and later append the updates on the
global sequence. Read-Copy-Update and Read-Log-Update maintain shared and thread
local representation of objects to provide scalability enabling multiple-readers/one-writer
and multiple-readers/multiple-writers respectively.

2.4 CONFLICT-FREE REPLICATED DATA TYPES (CRDTS)

MDTs use concepts from analogous data structures for replicated distributed systems, called
Conflict-Free Replicated Data Types [33]. CRDTs were the first formal approach, grounded on
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simple mathematical properties, engaging a solid theoretical study about eventual consis-
tency, answering to the CAP Theorem problem. With CRDTs, updates are unsynchronized,
and replicas eventually converge to a correct common state. CRDTs remain responsive,
available and scalable despite high network latency, faults, or disconnection.

In this chapter, we will visit some important concepts, and some work with CRDTs that
we consider relevant. There are two types of CRDTs: Convergent Replicated Data Types
(CvRDTs) and Commutative Replicated Data Types (CmRDTs). Also, we will present some
examples from the CRDTs portfolio that later we will use with MDTs.

2.4.1  CAP Theorem and Strong Eventual Consistency

The CAP Theorem [8] states that it is impossible in a distributed system to provide, simul-
taneously consistency, availability and partition-tolerance. Availability assures that every
request receives a response. Partition-tolerance assures that the system continues to operate
despite arbitrary partitioning due to network failures. Consistency assures that every read
returns the most recent write, meaning that every node is up to date and in the same state.
Actually, there are several forms of consistency. This one, linearizability, is known as strong
consistency [15] and is expensive and hard to achieve. In the last years, weaker consistency
forms, as eventual consistency started to gain some attention.

Eventual consistency (EC) seeks to ensure that replicas of a same mutable shared object
converge without synchronization in the first plan. It is not guaranteed that nodes are
always synchronized, but eventually, they will converge and be consistent. In Conflict-
Free Replicated Data Types, EC intuition is captured by: eventual delivery, convergence and
termination.

Eventual delivery: An update delivered at some correct replica is eventually delivered to all
correct replicas.

Convergence: Correct replicas that have delivered the same updates eventually reach equivalent
state.
We say that two states s and s” are equivalent if all queries return the same result for s and

7

s.

Termination: All method executions terminate.

The eventual consistency model sacrifices consistency to provide both availability and
partition-tolerance. However, executing operations without coordination between replicas
can originate conflicts that must be resolved. In order to be able to apply updates imme-
diately without later conflicts, CRDTs satisfy a stronger property than EC, called strong
eventual consistency (SEC). If we have EC to achieve SEC we need to add strong convergence:
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Strong convergence: Correct replicas that have delivered the same updates have equivalent state.

In CRDTs updates are commutative, meaning that can be applied in any order. An update
has two phases: a first one, a client performs a query in one of the replicas, designed source;
and a second one, called downstream phase, where the update is transmitted asynchronously
to all replicas. In the next section, we present state-based CRDTs or Convergent Replicated Data
Types (CvRDTs).

2.4.2  Convergent Replicated Data Types (State-based)

In state-based, replication is passive, and an update occurs entirely at the source. In the
downstream phase, updates are propagated transmitting the modified payload between arbi-
trary pairs of replicas. The payload could be the full state of the object or a delta of the state
[6]. There is no need to know all the replicas involved, updates are propagated between
arbitrary pairs of replicas. When a replica receives a payload, updates his payload with
the output of the merge operation invoked with two arguments, the received state, and his
payload: merge (value1, valuez) : payload mergedValue.

State-based objects take their payload values from a join semilattice, defined as follow:

Join semilattice: An ordered set (S, <,) is a join semilattice iff: Vx,y € S, x L, y exists.

Least Upper Bound: m = x U, y is a least upper bound of {x,y} under <, iff: x <, m and
y <, m and there is no m" <, m such that x <, m' and y <, m’.
Partial order (<,): A binary relation <, on a set S, is said to be a partial order if Vx,y,z € S
the following properties are satisfied:
« x <, x (reflexive property)
. if x <, yand y <, x then x=y (antisymmetric property)
o ifx <y, yandy <, z then x <, z (transitive property)
The pair (S,<y) is called partially ordered set.

The definition of the operation compare(x,y) gives us the partial order definition x <, y.
By the antisymmetric property, two states are said equal if x <, y and y <, x. The merge
operation converges towards the LUB of the replica payload and the received payload:
merge(x,y) = x L, y. By the properties of LUB, merge is commutative and idempotent, which
allow us to receive updates out of order and receive the same update multiples times with-
out problem. In order to assure that messages can be lost, we need to guarantee that the
payload after an update is greater or equal that the one before (<;), this is know as a
monotonic join semilattice. This way, recent updates, carry all the modifications in previous

updates.
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Counters

A Counter is a replicated integer supporting the operations increment and decrement for up-
dates, and the operation value for reads. The idea is that the value of the counter converges
with the global number of increments minus the number of decrements. As we can see
increments and decrements commute.

P-COUNTER A P-Counter is a counter that only allows the increment operation. For

illustration purposes, we will use a state-based approach presented in Specification 1.

Specification 1: State-based increment only-counter (vector version)

=

payload integer[n|P
initial [0,0,...,0];
update increment ()
let ¢ = myld() ;
Plg] =Plg]+1;
query value () : integer v
let v =Y P[] ;
compare (X,Y) : boolean b
let b= (Vie[0,n—1]): X[{] <YI[i]);
10 merge (X,Y) : payload Z
1 letVie[0,n—1]: Z[i] = max(X[i], Y[i]);

N

O o N o U W

The payload is a vector of integers, where each entry represents a replica. When a replica
wants to increment adds 1 to the respective entry. To check the value of the counter, it is
just needed to sum all the entries of the vector. The comparison of states is made with the
partial order: X <Y, if all of X elements are lower or equal to the respective elements in Y.
Merge operates taking the maximum of each entry. This data type is a CvRDT because the
merge operation produces the LUB and his states form a monotonic join semilattice since the
payload after increment respects the partial order.

In this example were made two assumptions that should be mention. The integer payload
does not overflow, and contrary to what is expected in state-based, is assumed to know the
full set of replicas.

Sets

Sets are data structures where there are no repeated elements. The sequential specification
of a set has two fundamental operations: add, performing the union of a new element with

the set; and remove, which performs the set minus with the element. These operations are
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not commutative, factor that complicates the CRDT desgin. For an element x of a given set:

add(x).remove(x) # remove(x).add(x).

G-sT  The Grow-only Set is the simplest of CRDT sets, due to the fact that the operation
remove is not allowed, supporting only add and lookup. Specification 2 shows a state-based
approach for the G-Set.

Specification 2: State-based grow only-set

payload set A
initial @ ;

update add (element e)
A:=AU{e};

query lookup ( element e) : boolean b
letb=(ec A);

compare (S,T) : boolean b
letb=SCT;

merge (S,T) : payload U

10 let U=SUT;

-

N

O v g S U W

As expected, this approach works even when the number of replicas is not known. The
partial order is given by set inclusion. The operation add respects the partial order because

the set only grows and merge produces the LUB. So, we are in the presence of an CvRDT.

2.4.3 Commutative Replicated Data Types (Operation-based)

In operation-based, replication is active, and an update is sent to all replicas in the form
of an operation, requiring to know the full set of replicas. A reliable broadcast is needed, in
order to guarantee that every replica receives an update. Updates need to be in a delivery
order <, , specified by the data type. An operation not ordered by the delivery order <; is
said concurrent.

Concurrent operations: two operations f and g are concurrent (f||49) iff: f £q4gand § £, f.

The delivery order needs to ensure that all concurrent operations commute in order to all
replicas converge to the same state. Operation-based CRDTs use causal delivery <_, which
satisfies the delivery order.

Causal history (Operation-based): The causal history of a replica x; (C(x;)) is defined as
follows:
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« Initially, C(x;) = @.
. After executing the downstream phase of f at replica x;: C(f(x;)) = C(x;) U{f}.

Happens-before (—): f — ¢ < C(f) C C(g).

Causal delivery: if f — g then f is delivered before g.

Updates need to be delivered exactly once, which means that we can’t apply an update

more than one time and we can’t miss updates, but the last is assured by a reliable broadcast.

2.4.4 Summary

CRDTs operate under the CAP constraints, using a weak form of consistency to provide
high-availability. There are two kinds of CRDTs: CvRDTs and CmRDTs.

CvRDTs send updates as state, using passive replication, and are simpler to reason about
since the state captures all necessary information. Also, they require weak channel assump-
tions allowing any number of replicas. However, sending the entire state could be very
inefficient and, sometimes, simple sequential specifications require some effort to design
a CvRDT. CmRDTs send updates as operations, using active replication and are depen-
dent on the communication channel implementation. Also, they are more complex since
they require reasoning about history. However, they have greater expressive power and,
sometimes, the payload could be simpler.

2.5 MERGEABLE OBJECTS

CRDTs are not designed to perform in shared memory. In large-scale distributed systems,
the merge cost is negligible when compared to network-based synchronization, but for
our purpose it is inefficient. In order for the merge operation to be efficient, we will need
mergeable objects properties. First introduced by Deepthi Devaki Akkoorath and Annette Bieniusa
in Transactions on Mergeable Objects [3], and later adapted in Highly-scalable concurrent objects
[4].

A mutable shared object O is said to be mergeable when concurrent updates can be merged
meaningfully. Two main properties of these objects were identified: persistence and merge-
ability.

A data structure is said to be persistent if multiple versions of it are accessible, i.e, older
versions of the data structure are preserved when in the presence of modifications. This
is effectively related to immutability since updates create newer versions. This is an im-
portant property because it allows multiple versions of the same object, and, consequently,
concurrent accesses to multiple-versions. Persistence could be partial if all versions are ac-
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cessible but, only some versions of it are modifiable, or full if all versions are accessible and
modifiable. If a data structure is fully persistent and there is also a merge operation that
creates a new version from two versions, the data structure is said to be confluently persis-
tent. The ability to merge branches is what differentiates these two types of persistence.
Persistence could be achieved by different mechanisms regarding the implementation and
it is important to know which versions must persist.

Mergeability is the ability to merge different versions of the same object in a correct new
version. Two different aspects are worth mention in this field: semantic mergeability and
structural mergeability. Semantic is related to the merge operation and how data types
behave after the merge. Structural is associated with the efficiency of the merge and with
low-level implementation details.

In section 3.1 we will see how these properties relate directly to MDTs.
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The concept of Mergeable Data Types (MDTs) appeared on Highly-scalable concurrent objects
by Deepthi Devaki Akkoorath and Annette Bieniusa [4]. Motivated by the fact that, currently, in
shared memory environments, synchronization is needed and is a bottleneck. MDTs, are
convergent data structures, used to relax synchronization in shared memory environments,
analogously to CRDTs in distributed systems.

Data structures that implement an abstract data type are often called objects and, MDTs
central idea is that each thread can update its local private copy of any object and later merge its
changes to a shared global object.

Later, in Global-Local View: Scalable Consistency for Concurrent Data Types [5], we have
proposed a new programming model for concurrent access to objects in a shared memory
system, defining a specification for the model and providing the respective correctness

definitions.

3.1 PERSISTENCE AND MERGEABILITY

Following the work on Highly-scalable concurrent objects [4], mentioned on Section 2.5, we
can see an MDT as a mergeable object O. An object that provides a global copy with the
last committed version, which is accessible to all threads. Also, an interface with methods
for merge and updates is provided. When a thread wants to update O, makes a thread-local
copy of the object and uses the available update methods on the interface to change his
copy. Then, the changes to the global copy are committed using the merge function.

Thread-local and global versions co-exist, thread-local versions can be modified by the re-
spective thread and the global version can be modified by merging thread-local operations,
ensuring that MDTs are confluently persistent data structures. Different versions should per-
sist while threads are doing effective work. After that, non-used versions should be garbage
collected.

The behavior of the merge operation should be deterministic to guarantee that any con-
current updates can merge their results and obtain a consistent deterministic state. Also,

the updates should be reflected in the merged version (semantic mergeability).
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MDTs should have a well-defined semantics of concurrent updates and the semantics of
merging two different versions. Every thread-local instance must be mergeable with the
global shared object, but local versions from different threads do not need to be merged

(structural mergeability).

3.2 GLOBAL-LOCAL VIEW PROGRAMMING MODEL

As the name suggests, each thread maintains different views on the shared object. A local
view, or thread-local view, where threads can read and perform updates without synchro-
nization costs because there is no shared data. And, a global view, or shared global view, that
is visible to every thread.

Local updates become visible to other threads only after the thread-local view is merged
with the shared global view. And, threads observe the changes once they synchronize, by
merge, their local view with the global view. This is a result of the merge being an explicit
two-way merge operation.

deliver thread updates

N

Local Global

\_/

observe other threads updates

Figure 9: Two-way merge operation

Moreover, if all operations in the data type are commutative, there will be no conflicts
at merge time. If we have non-commutative operations, the conflicts are resolved by a
type-specific merge operation.

In addition to local operations, the model also provides synchronous operations on the
global view. Operations that perform only on the local view are called weak operations,
and those on the global view, strong operations. Combining operations on the global and
local views, give us the flexibility to build data types with customizable semantics on the

spectrum between sequential and purely mergeable data types.
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merged local
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with shared thread-local view
global view

Figure 10: Mergeable Data Types basic workflow

We will designate data types that only provide weak operations as Mergeable Data Types

and the ones that offer both weak and strong operations as Hybrid Mergeable Data Types(HMDTs).

An application that uses HMDTs may use weak updates when non-linearizable access is suf-
ficient and can switch to use only strong operations when stronger guarantees are required.
A good example is a queue where enqueues are executed on the local view and, to ensure
that elements are dequeued only once, dequeues are executed atomically on the global view.
Better performance at the expense of linearizability because threads can do work without

synchronization costs and we have simple correctness criteria to reason about.

3.3 SYSTEM MODEL

Consider a system built upon the classic shared memory-architecture as supported by the
memory models at C++ and Java languages. Where we have a variable number of threads
and any thread can spawn new threads that may outlive their parents. Also, threads do not
fail independently.

A system where we can distinguish different memory types. Specifically, a thread-local
memory that can be accessed only by the respective thread and a shared memory that can
be accessed by anyone.

The communication between threads is done via shared memory objects where threads
and objects are identified by a unique identifier. Also, threads do not inherit any local
objects from their parents.
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We assume an abstract global time that can be used to determine relative ordering of

events happening in concurrent threads.

3.4 NOTATION

An operation opKind on an object can be formalized as a function:
opKind,(m, g,s:,1t) = (r,¢,s1,11)

The first parameter m represents an optional type-specific update(u) or query(g) method
applied on the object, ¢ denotes the shared global object on which the operation is applied,
and t is a thread identifier that refers to the non-shared local version (s, I;) of the object.
Where, s; denotes a local snapshot of the shared object state g which gets updated upon
synchronization, and /; refers to the local updates not yet incorporated in the shared global
state ¢. The operation returns a tuple (7, ¢’,s},1;) where r is the return value of the method
m and the other variables refer to the updated global ¢’ and local state s},I;. State variables
- 8,5+, 1t — are each modeled as a sequence of updates, initially empty; a sequence x can be
concatenated with another sequence y (or a single update), denoted by x - y.

3.5 SPECIFICATION

Using the previous notation, basic operations that are type-independent can be specified as
follows:

. pull updates the local object snapshot with the global object state; local operations

are not changed.

pu”t(g/ St, lt) - (J—/g/g/ Zt)

. weakRead returns the result of a type-specific read-only operation g4 on the state
obtained by applying local updates on the local snapshot.

weakRead;(q,¢,st,1t) = (q(st - 1t), & st, 1)

. strongRead returns the result of a type-specific read-only operation g on the state
obtained by applying local updates on global state. Neither the global state or the
local snapshot are changed.

strongRead, (g, ¢, st,1t) = (q(g - 1t), & 5t, 1t)



3.6. Relation with CRDTs

. weakUpdate applies the update method u on the local copy without any synchroniza-
tion to the global state.

weakUpdate, (1, g, 5¢,1t) = (st - 1y -1, g, 5S¢, 1¢ - )

. strongUpdate applies the update method u on the global state atomically. The previ-
ous weak updates that are batched in /; are not merged at this point.

strongUpdate; (1, g, s¢,1t) = (-1, 8- u,st,1t)

. merge incorporates the local updates to the global state and updates the local snap-
shot.

merge; (g, s1,11) = (L, 8,8, 1)

where ¢’ = merge(g, (st,1;)) and merge is type specific merge operation. In general,
if the updates are commutative, g’ = ¢ - I;. The data types can also specify a conflict

resolving merge operation, in case of non-commutative concurrent updates.
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While weakRead and weakUpdate act exclusively on the local copy, strongRead and strongUpdate

act on the global state. The combination of these two operations supports flexible optimiza-
tions on each individual data type.

36 RELATION WITH CRDTS

MDTs fit its own corner in the design space, but we can see some resemblances with CRDTs,
either state-based or operation-based. In a general way, the shared-memory environment
leverages us to a simpler approach, since we have fewer factors to consider. For instance,
we don’t need to concern about messages lost due to network errors, which means that we
can immediately update the thread-local/global state.

Synchronization is avoided akin to CRDTs, allowing threads to do effective work on its
own version while converging to the same global version trough merge. The merge oper-
ation is idempotent like in the state-based CDRTs. Every time the merge is performed the
local pending updates [} are incorporated, so performing the merge without local pending
updates, will, as much, only update the local snapshot s;.

A way of performing updates is by merging state as in state-based CRDTs. Moreover, if
we have commutative operations, the order of merge does not influence the result. However,
the applicability of CRDTs as described in literature [33] is limited in a concurrent shared
memory environment. For example, a CRDT counter is implemented as a map of replica
id to an integer. The merge operation iterates over the two maps to be merged and returns

a map with the maximum for each entry. Thus, the relative cost in space and time of the



3.7. Summary

merge is linear in the number of entries and as such unfeasibly high. In the global-local
view model, the merge is executed synchronously on the global view. If the cost of merge
is high, we lose the benefits of allowing parallel updates.

Results of queries can be determined by the partial order of updates that are known (by
visibility) at any given point. Merge is just a way of making operations that were only
locally known in a thread, visible to other threads. On the other hand, contrasts with state-
based, where all versions from different replicas should be mergeable. Two thread-local
versions don’t need to be mergeable since every thread-local versions are branched from the
global version and committed back to it.

On thread identity, we don’t need to know the set of threads involved, since they can
initialize their own state. Although knowing them is useful for joins, it does not look to be
a mandatory property as is the knowledge of the group of replicas in operation-based, for

the broadcast operation.

3.7 SUMMARY

To our knowledge, the GL view programming model introduces the first consolidated the-
ory on mergeable data types in the shared memory ecosystem by proposing a specification
that allows building any data type.

Fewer restrictions to concurrency are presented since we only need synchronization when
the merge operation is performed or when in the presence of strong operations.

CRDTs introduced the fundamentals, and we can establish many resemblances between
the data types. Persistence and mergeability give us important properties to achieve a
suitable merge operation for the environment.

In the next section, we present our portfolio of mergeable data types, tailored for shared

memory concurrent programs.
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PORTFOLIO OF MDTS

Each mergeable type defines a subset of the basic operations from the global-local view
model, depending on the semantics needed. A purely mergeable counter defines only weak
operations and merge, while a hybrid mergeable counter also defines strong operations. In
this section, we discuss the specification of several data types and a design pattern for their

implementation.

4.1 SPECIFICATION
4.1.1  P-Counter

As we have seen on Section 2.4.2, a counter is a replicated integer supporting the update
operation of increment, which increases the counter by one unit, and the operation value for
reads.

In a shared counter, the final value should reflect all the increments, but the order between
them is not relevant since they are commutative. If each increment by each thread is an
atomic operation made visible to all other threads, it can become a bottleneck. This situation
leverages an approach such as the one presented in our programming model because it is
sufficient to execute the increment on a thread-local variable and to apply a combined
update to the shared object.

The operations of a shared counter are presented by the specification as follows:

. weakValues () = weakRead; (value, _, s, 1)
. weaklnc;() = weakUpdate, (inc, _, _, I})

. merge(g, (s, 1t)) =g 1t

. stronglnc,() = strongUpdate;(inc, g, -, -)

. strongValue,() = strongRead,(value, g, -, 1)
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A purely mergeable counter could be given by the first three operations. weakValue re-
turns the value of the counter considering only the local snapshot and the not incorporated
local operations; weaklnc increments only locally; merge appends the local increments to the
global sequence g, because the increments are commutative.

A hybrid mergeable counter could be provided with the addition of stronglnc, that in-
crements synchronously on the global copy and strongRead that returns the value of the
counter considering the not incorporated yet local increments and the global shared copy.

Without much effort we can have a PN-Counter by adding a decrement operation that

could be specified similarly to the previous update operations:

. weakDec; () = weakUpdate, (dec, -, , I)

. strongDec,() = strongUpdate, (dec, g, -, -)

4.1.2  Add-only Bag

A bag, or multiset, is an unordered collection of elements with duplicates. An add-only bag
has available the add operation for updates and the lookup operation for reads. The update
operation adds one element to the bag, and the lookup operation verifies if a given element
is present.

Since the order at which elements are added does not affect the final state of the bag, this
is another good situation to apply the global-local view model.

The operations are presented by the specification as follows:

. weaklLookup;(e) = weakRead;(lookup(e), -, st, I)
. weakAdd;(e) = weakUpdate,(add(e), _, _, 1)

. merge(g, (s, 1t)) =g 1t
. strongAdd,(e) = strongUpdate, (add(e), g, -, -)

. stronglLookup;(e) = strongRead, (lookup(e), g, -, 1)

weaklLookup will search for a given element in the local pending operations and local
snapshot returning if the element is present or not; weakAdd will add the element to the
local pending operations; merge will simply add the local pending elements to the global
bag because the update operation add is commutative. With these three operations, we can
have a purely mergeable add-only bag, allowing threads to concurrently and efficiently add
elements without violating its semantical correction.

If more restricted guarantees are needed, we can switch to stronger operations. A hy-
brid mergeable data type can be specified by adding strongAdd, where elements are added
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4.1. Specification

directly to the global bag, and stronglLookup, where the lookup is performed on the global
copy and in the local not incorporated operations. It is preferable in terms of efficiency if
tirst, the lookup starts on the local pending operations and only after moves to the shared
global copy allowing elements on the bag to be found without requiring any synchroniza-
tion.

This is a case were might be inefficient/unnecessary to store a full snapshot of the bag’s
global view on the local view. In Section 5 we show how we can benefit from the data type
semantics to mitigate this problem.

4.1.3 OR-Set

An Observed-Removed Set(OR-Set) is a collection without duplicated elements which sup-
ports the update operations of add and remove. These two operations, under the same
element, are not commutative between them and might lead to conflicts: add(e) - remove(e)
# remove(e) - add(e).

Concurrent adds of the same element make the element available in the set. On merge,
the two concurrently added elements are considered as the same element. When two ver-
sions merge, where one has an add operation and the other a concurrent remove of the
same element, then the resulting version retains the element in the set(add-wins). An ele-
ment can only be removed if the thread that is trying to remove it can observe the element
(observed-removed). A lookup is also provided for reads, where given an element returns if
the element is present in the set or not.

The operations are presented by the specification as follows:
. weakLookup;(e) = weakRead;(lookup(e), -, st, 1)
. weakAdd;(e) = weakUpdate, (add(e), _, _, I})
. weakRemove;(e) = weakUpdate, (remove(e), _, , I})
- merge(g, (st, 1)) =g - It
. strongAdd,(e) = strongUpdate,(add(e), g, -, -)
. strongRemove,(e) = strongUpdate,(remove(e), g, -, )
. stronglLookup;() = strongRead, (lookup(e), g, -, 1)

weakAdd, strongAdd, weakLookup and stronglLookup will behave as in the Add-only Bag.
Since elements can only be removed if observed by a given thread, weakRemove will have
to check in the local pending operations if there is a local add for the same element, and

in the local snapshot if the element can be observed; strongRemove removes the element if
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4.2. Implementation Pattern

present on the global copy; merge performs the local pending updates on the global copy,
having in consideration the add-wins semantics.

The detection of concurrent adds and removes is delegated to the implementation. In
Section 5 we show how we use version numbers to do it.

4.1.4 Queues

A sequential queue is a collection of elements that are inserted and removed according
to the first-in first-out (FIFO) principle. The update operations enqueue(e) and dequeue are
provided. A hybrid mergeable queue with mergeable enqueue and synchronized dequeue
defines the following operations:

. enqueue;(e) = weakUpdate, (enqueue(e), -, _, 1)
. dequeue,() = strongUpdate, (dequeue, g, -, )

. merge(g, (st It)) = gl

In the above semantics, if the global copy is empty, dequeue returns null even if there
are local enqueue operations by the same thread which have not been merged yet. We can
allow dequeue to include local enqueue operations by defining:

dequeue; () = strongUpdate, (dequeue,g’, ., ) with (., ¢'_, .) = merge, (g, st,1¢).

This way we can combine operations to give different semantics. For example, a queue
with weak enqueue and weak dequeue may be useful if redundant dequeue is not a prob-
lem for the application. A queue with both strong enqueue and strong dequeue behaves as
a linearizable queue.

4.2 IMPLEMENTATION PATTERN

Mergeable data types consist of two parts - a local view and global view that may or may not
be of the same type. From the specification, a generic design pattern for implementations

could be described by the following object-oriented programming pseudo-code:

type MDT A{
ThreadLocal Tl localView;
T2 globalView;

weakRead (param) {

localView.read (param);
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4.2. Implementation Pattern

weakUpdate (param) {

localView.update (param) ;

strongRead (param){
atomic {

globalView.read (param, localView) ;

strongUpdate (param) {
atomic {

globalView.update (param) ;

merge () {
atomic {
globalView.merge (localView) ;
localView.reset(globalView) ;

The types of localView and globalView (T1,T2) may or may not be the same. localView
comprises the local pending operations and the local snapshot and are understood as
thread-local instances as identified by ThreadLocal. A variable specified as ThreadLocal
exists per thread in the thread’s private storage and guarantees that each thread is access-
ing its own private view. Many programming languages support some form of thread-local
storage (TLS). A mergeable data type can also implement its thread local storage by map-
ping thread ids to different instances of the object.

atomic refers to any synchronization mechanism, such as mutex or compare and swap,
that atomically executes the code block within.

Regarding the operations, the param argument in each operation is optional. weak op-
erations act only on the localView. strongUpdate performs updates synchronously on the
globalview. strongRead returns a query on the globalView that considers information on
the localView, i.e., the non-incorporated updates. merge synchronously incorporates the
updates on the localView into the global view. reset updates the localView accordingly
with globalView.
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4.3. Summary

4.3 SUMMARY

The GL view model can be used to specify any mergeable data type. We have provided a
portfolio with the specification of some known data types, leveraging efficiency by main-
taining and using the data types semantics.

We can also use the model to provide different semantics on the same data types as in
the queue specification.

The model specification translates to a general design pattern that will be used in our
implementations of the data types in the next chapter.
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EVALUATION

In this chapter we will evaluate some of the theoretical contributions made among this

dissertation, answering the questions:

. Is a thread local approach, such as the one presented, efficient when compared with

the existing concurrency mechanisms?
. Are CRDTs inefficient for shared memory environments?

. Are MDTs more efficient than the respective linearizable versions of the same data
type?

. Are MDTs efficient in situations where no divergence is allowed between threads?

« Do MDTs have real-world scenarios to be applied?

All the code used to implement and benchmark the MDTs is written in C++ and can be
found at https://github.com/josebrandao13/MDTs.

The evaluations were performed on a 12 core CPU (2 NUMA nodes) with 2-way hyper-
threading on a Ubuntu 16.04 OS. The compiler used was CLANG++ with C++14 support.

We also used the widely known Boost C++ Libraries in the version 1.58 .

5.1 THREAD-LOCAL STORAGE

Thread-Local Storage (TLS) is a dedicated storage area that can only be accessed by one thread.
Specifically, each thread accesses an independently initialized copy of the state that is only

available at the thread’s scope and where changes only persist during thread’s execution.

5.1.1 Proof of Concept

In this section, we will compare a thread-local approach to handle concurrency with some of
the existing mechanisms on the C++ language. To do it, we have implemented four versions

of a simple counter that stops after each thread performs a given number of increments.
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5.1. Thread-Local Storage

A first version of the counter with no synchronization mechanism that we will refer as
no sync counter; a version implemented using the traditional mutual exclusion locks (lock

counter); another version using C++ atomic types (atomic counter); and a thread-local counter,
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implemented using Boost’s thread specific ptr.

unsigned int c = 0;
atomic<unsigned int> v;

mutex m;

boost::thread_specific_ptr<unsigned int> t;

void noSyncInc (int incNumber){

for (int i = 0; i < incNumber;

void lockInc (int incNumber){
for (int i = 0; i < incNumber;
m.lock ();
Rtz

m.unlock () ;

void atomicInc (int incNumber){

for (int i = 0; i < incNumber;

i++){ c++; }

i++){

i++){ v++; }

void threadLocallInc (int incNumber){

t.reset (new unsigned int(0)); //init thread-local wvar

for (int i = 0; i < incNumber;

*t += 1;

.lock () ;
c = c + *xt; //add thread-local

m.unlock () ;

=]

i++){

increments to a shared wvar

As we can see from the previous code snippet, in the thread-local counter each thread incre-
ments a thread-local variable, and at the end, adds its increments synchronously to a shared
variable. In the atomic counter we don’t need to concern about concurrency due to the fact
that we are using C++ atomic types. It makes use of lock-free mechanisms in the imple-
mentation of some operators, if multiple threads try to increment the counter the behavior
is well-defined, and consequently, we have no data races. It is a more straightforward and

performant approach when compared to mutex.


https://en.cppreference.com/w/cpp/atomic/atomic
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To compare the four counters we have done two benchmarks: a first one where we
have a fixed number of increments per thread (1 million) and will gradually increase the
number of threads; and a second one where for a fixed number of threads(24=2*number of

machine cores) we had increased the number of increments to be done. The results were

the following:
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The lock counter was by far in both benchmarks the one whose performance was worst,

where the values were completely out of bounds relatively to the other versions.
In opposition and as also expected, the no sync counter achieved the best results but

mostly failed on achieving the target value of the counter due to concurrency not being

handled.



5.1. Thread-Local Storage

With the atomic counter, we were able to correctly process from 2M operations to 20M in
a time interval of 1 to 10 seconds at the machine’s optimal number of threads(24). When
increasing the number of threads for the same number of increments (1M) the processing
time has not decreased.

Finally, the thread-local counter was able to correctly process the same number of opera-
tions in a time interval between 0.06 and 0.4 seconds. For a fixed number of increments,
as we have increased the number of threads, we could see that the time needed to process
them was reducing until we reach the machine’s optimal thread number of 24.

These results gave us the motivation to keep exploring the thread-local approach in other

scenarios.

5.1.2  Why use Boost libraries ?

The main motivation under the use of Boost libraries was their flexible and performant
thread-local storage implementation. We have excluded C++ standard thread-local imple-
mentation merely because of the limitations imposed to create a clean object-oriented de-
sign. The thread_local identifier is not allowed on variables without the static identifier. In
order to have static identifiers inside of instance variables it is required for those variables
to be initialized outside of classes, not allowing to encapsulate all the logic needed inside
the class definition.

Boost, on the other side, allows the use of thread_specific_ptr inside of a class definition
without these concerns. The thread_specific_ptr represents a pointer to an object where each
thread must have a distinct value, providing a thread-local storage mechanism.

An alternative is a manual thread-local strategy, implemented by us, where the idea consists
on a map of thread ids to objects, where each thread only changes the respective entry.

We have compared this last manual mechanism with Boost’s in order to choose the one
that performed better. We have used a purely mergeable P-Counter class to emulate the
complete experience of implementing a mergeable data type. The code can be found here.

The benchmark consists on making threads increment the counter until reaching a value
of 50 million. Throughput is measured by changing the number of threads and the syn-
chronization intervals (increments). The results are the average between 5 runs for the
same number of threads and synchronization frequency (as in every benchmark results
presented on this dissertation).

The following plot presents the results for threads synchronizing in intervals of 64, 512

and 4096 increments:
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The manual version is clearly outperformed by the Boost’s one. In fact, it scales poorly
when increasing the number of threads or synchronization frequency.

As expected in a purely mergeable counter, the two implementations overshoot the target
value and for a matter of simplification and performance perspective we are not presenting
overshoot information but we will do it in detail on P-Counter evaluation at Section 5.2.

Our technology choice ended up in Boost due to good performance and the fact that we
wanted MDTs to have a clean design, to be programmer-friendly and to deliver a single
object that encapsulates all the needed logic. This way the fact that MDTs deal with thread-
local storage and concurrency mechanisms is not a concern to the final user.

Boost libraries also provided other useful libraries for this dissertation: Lock free data

structures, Chrono and Synchronization mechanisms.

5.2 P-COUNTER

The P-Counter was the example used to decide on which of the different technology op-
tions should we go. This chapter will focus on making a deeper benchmark, starting by
comparing a purely mergeable P-Counter with an atomic counter using only the compare
and swap operation and later with a hybrid mergeable P-counter.

The following code snippet shows our implementation of the P-Counter:

template <typename V = int> class counter {
private:
atomic<V> gcount;
mutex m;
boost::thread_specific_ptr<V> lcount;
boost::thread_specific_ptr<V> lgcount;
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5.2. P-Counter

public:

void init(){ //instatiate thread local object parts
lcount .reset (new V(0));
lgcount.reset (new V(0));

void weakInc(V tosum = {1}){ //weakUpdate

*lcount += tosum;

V weakValue O){ //weakRead
V readed = *1lgcount + *lcount;

return readed;

void merge(){ //mergeToGlobal
gcount .fetch_add (*1lcount); //merging thread local state with global state
*lgcount = gcount; // updating the snapshot
x*lcount = 0; //resetting thread local state

The init operation will be used to instantiate the thread local variables, in this case, the
per-thread counter and the per-thread counter snapshot (Igcounter).

The fetch_add operation atomically replaces the current value with the result of adding
the new value. The operation is read-modify-write, and the memory order used by de-
fault is std :: memory_order_seq_cst, meaning that it respects the correctness condition of
sequential consistency. A read-modify-write operation in this memory order performs both
an acquire operation and a release operation, plus a single total order exists in which all
threads observe all modifications in the same order. In our P-Counter the operation is used
at merge time to aggregate the values of the different threads on the global counter.

We are using c++ templates in order to provide more generic implementations, allowing
the counter to be extended to other c++ data types that accept the available operations.

The atomic counter that we built separately makes use of a compare and swap operation:

atomic<unsigned int> c;

int inc (){
unsigned int oldValue = c.load();

unsigned int newValue;

do{
if (oldValue < TARGET) newValue = oldValue + 1;
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else break;

}

while (!c.compare_exchange_weak(oldValue, newValue));

return oldValue;

}

The increment operation starts by atomically loading the value of the counter to a vari-
able. Then it will make use of the compare_exchange_weak operation to try to change the
value of the counter atomically. In more detail, the operation starts by comparing the
oldValue with the counter value, if they are the same then it will update the counter value
with the newValue, that is equal to the previous one plus one unit, and return true mak-
ing the cycle to finish and consequently the increment operation. If is not equal, it means
that another thread has changed it and the compare_exchange weak operation will return
false and it will update the oldValue with the latest counter value, iterating until the com-
pare_exchange_weak returns true. When the oldValue is already equal to the target value,

the inc operation simply returns the value.

In the first experiment, we allow threads to increment the shared purely mergeable P-
Counter until a target value of 50 million is reached and compared it with the atomic
counter. Since threads might not know about non-merged increments from other threads,
they typically end up overshooting the target on the purely mergeable version. As in
the previous section, we evaluated several merge-intervals, labeled with how many local
increments are allowed between merges. The full code can be found here.
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Figure 16: Purely mergeable P-counter overshoot Figure 17: P-counter vs atomic counter

Figure 16 shows that the throughput scales linearly with the number of threads and with
the merge-intervals. At the same time, the overshoot increases. However, the percentage
of the overshoot is small. (Notice that overshoot is upper bound by the number of threads
times the merge-interval, as this reflects the number of increments not yet accounted for).


https://github.com/josebrandao13/MDTs/tree/master/src/P-Counter

5.2. P-Counter

The atomic version in Figure 17, never overshoots the target, but since threads are always
competing on the increment, performance is very low, and no speedup is obtained. In
contrast, the mergeable counter can scale linearly up to a good fraction of the available

concurrency, in particular with merge-interval of > 4096.

While some applications could tolerate an overshoot, in general, applications will require
to further bound the overshoot. To address this, we provide a variant of the mergeable
counter that makes a hybrid use of initial weak local increments and later switches to
strong atomic increments (with our atomic counter) when approaching the target. The first
thread that, upon the periodic merges, detects that it is close to the target, initiates a barrier

synchronization to ensure that all threads have switched to strong operations.

The entire code used to perform the barrier and the hybrid P-counter can be found here.

A snippet of the code is presented:

1 bool switchToStrong = false;

2 int THRESHOLD = TARGET - ( THREAD_NUMBER * SYNQ_FREQ );
3 int thresholdThreadNumber = O0;

4 boost::condition_variable cond;

5 boost::mutex mut;

6

7 for (int i = 0; i < LOOP; i++){

8 if (! switchToStrong){

9 if (mdt.weakValue () >= THRESHOLD) {

10 mut.lock () ;

11 thresholdThreadNumber ++;

12

13 if (thresholdThreadNumber == THREAD_NUMBER) {
14 cond.notify_all();

15 ¥

16 mut .unlock () ;

17

18 boost::unique_lock<boost::mutex> lock(mut);
19 while (thresholdThreadNumber < THREAD_NUMBER){
20 cond.wait (lock) ;

21 }

22

23 switchToStrong = true;

24 continue;

25 ¥

26 performWeakInc () ;

27 }

28

29 elseq{

30 if (mdt.atomicInc () >= TARGET){

31 break;
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}

In this case, the chosen threshold was a relationship that we have established between the
thread number and the synchronization frequency regarding the target value. Threads will
perform weak increments while swicthToStrong is false. As soon a thread weakly detects
that has passed the defined threshold (line 25), we increment thresholdThread Number and
use boost::condition_variables to make the thread wait on a condition. The last thread that
detects that the threshold was surpassed will notify all threads that are waiting. After
that, swicthToStrong is updated, and only strong atomic increments are performed until
the target is achieved without overshoot.

In the second experiment, we have repeated the previous scenario of threads increment-
ing a counter until a target value of 50 million is reached, but this time using the hybrid

P-Counter version:

3.5x10%

2x10° |-

ops/sec

1.5x108 I~

threads

Figure 18: Hybrid P-Counter vs atomic counter

Figure 18 shows that under this approach, overshoot is eliminated while the performance
is almost identical to the mergeable counter.

A PN-Counter could be easily implemented by adding weak and strong decrement oper-
ations to the P-Counter:

void weakDec (V tosum = {1}){

*1lcount -= tosum;

void strongDec(V tosub = {1}){
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7 gcount .fetch_sub(tosub) ;

5.2.1 P-Counter CRDT evaluation

In this experiment, we demonstrate that CRDT’s design has significant overhead when
used in a shared memory environment. We have implemented a P-Counter CRDT on the
global-local view model, where each local view and global view are a CRDT replica. The
counter value is obtained by getting all values on a replica, and the operation merge is the
maximum of all values on a local replica and the global one.

We have built two versions, a first one where a replica is represented using a Map (C++
standard map) of thread-id to counter and a second one using an Array where each index
corresponds to a thread-id. The code can be found here.
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Figure 19: Atomic counter vs CRDT map vs CRDT array

Figure 19 shows that the array scales better when the merge-interval is large. However,
the size of the array must be fixed to the number of threads. The implementation using
the standard C++ map has an overhead on insertions when compared with the array one
because it is implemented using a binary search tree form. The map has O(logN) complexity
for insertions vs O(1) on the array.

In both cases the merge operation is expensive because it requires to iterate over the

entire replicas, negating the benefit achieved by the asynchronous local increment.
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5.3. Add-only Bag
5.3 ADD-ONLY BAG

A Grow-only Bag or Add-only Bag [4] can be implemented using a multi-headed list as

shown in Figure 20.
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Figure 20: Mergeable grow-only bag

Each thread-local view consists of a pointer to a local head, and the global view is a
pointer to a global shared head.

Insertions are performed to the head: weakAdd is performed to the thread local head
and strongAdd is performed to the global head. Merge updates the global head of the list
by adding the local pending elements to the global list by, synchronously, adjusting the
head pointer’s and not changing other threads local views. strongLookup traverses the list
starting from the local head and if the element is not found the search will proceed on the

global view.

1 template <typename V= int> class gBag {

N

private:
//global state
node<V> *x globalHead = NULL;

//thread-local state
boost::thread_specific_ptr< node<V>*x > localHead;
boost::thread_specific_ptr< node<V>x*x* > localGraft;

O 00 N o U B~ W

boost::thread_specific_ptr<bool> hasValuesLocally;
10
11 //class auziliars

12 mutex m;

13
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public:
void weakAdd (const V value){
node<V>* tempNode = new node<V>;

tempNode -> payload = value;

tempNode -> next = *localHead;

if (!(xhasValuesLocally)){
*localGraft = &(tempNode -> next);
*hasValuesLocally = true;

}

*localHead = tempNode;

void strongAdd(const V value){
node<V>* tempNode = new node<V>;
tempNode -> payload = value;

m.lock ();
tempNode -> next = globalHead;
globalHead = tempNode;

m.unlock () ;

bool strongLookup(const V value) {

if (xhasValuesLocally && searchlLocally(value)) return true;

m.lock ();
node<V>* tempNode = globalHead;
while (tempNode != NULL){
if (tempNode -> payload == value ) {

m.unlock () ;
return true;
}
tempNode = tempNode -> next;
}

m.unlock () ;
return false;
void merge () {
if (*hasValuesLocally) { //we may not performed a weak add
m.lock(); // protect global head accesses

*xlocalGraft = globalHead;
globalHead = *localHead;
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m.unlock () ;

*hasValuesLocally = false;
*localHead = NULL;

As mentioned in Section 4.1.2, there is a particularity with this implementation since we
have no local snapshot. The semantics of the data type can lead us to scenarios where
it will be expensive to replicate the entire data structure to memory due to high number
of elements. On the other hand, lookups will be expensive because only strongLookup
could be applied. We managed that by looking first in the local pending elements to avoid
synchronization and only later on the globally shared elements. This way multiple threads

can update the bag without copying the entire list to its thread-local storage.

We benchmarked our Add-only bag in a scenario where each thread adds sequentially 1
million elements to the bag and at every 50k additions performs a strongLookup, searching
for the mid element(s500k). Adds are performed weakly and with different frequencies
of synchronization. The following figure shows how our Add-only bag behaved in the

previous scenario when compared with a synchronous version:
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Figure 21: gBag vs sync gBag

As we can see from the results, our Add-only bag behaves well in a scenario with mostly
writes, where we have regular additions to the bag and some searches for elements. We can
observe some problems when scaling with shorter frequencies of synchronization. After
some investigation, we concluded that the cause was our merge operation, which has only

two attributions under a regular mutex, and shouldn’t be causing by itself the bottleneck.
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We noticed that we where paying the price of using a mutex in a scenario were we have
a high-frequency operation holding the lock for short periods, leading to constant context
switching which is expensive and requires time. Based on this, we decided to give it a
try with spin-locks, which are a stubborn implementation of locks. When a thread fails to
acquire a lock because another thread already has it, instead of going to sleep the thread

will actively try to acquire it until succeeds.
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Figure 22: G-Bag vs sync G-Bag

The results show that the change to a spin-lock actually made difference in frequencies of
synchronization other than 32768. For the 4096 synchronization frequency with 20 threads
pushed the throughput from around 2 million of operations to around 2.5 million. More-
over, the 64 synchronization frequency achieved better results in the second experiment

when compared with the 512 frequency.

5.4 OR-SET

A set can be implemented using a form of binary search tree while providing the semantics
of an Observed-Removed Set with an Add-Wins policy[4]. Tree node’s will be versioned
using a list of Versionlnfo, were each VersionInfo is composed by three elements: first denotes
the version when the element was first added, last denotes the version when the element
was last added, removed denotes the version when the element was removed.

Removed nodes will stay present on the tree but marked as removed. When an element
is re-added after a removal, a new Versionlnfo is added to the list.

Given the described structure, the state of our OR-Set will be represented by the follow-

ing:
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template <typename V = int> struct node{
V value;
list< std::tuple<int,int,int> > vinfo; //first,last,remove
node * left;

node * right;

Irg
template <typename T = int> class orset{
private:
//global state
int globalVid;
node<T> *root;
//thread-local state
boost::thread_specific_ptr<int> localVid;
boost::thread_specific_ptr< 1list<T> > localAdd;
boost::thread_specific_ptr< 1ist<T> > localRemove;
}

Our global state is composed by root that is the root of our shared global binary tree and
globalVid that represents the global version id. In the local state we have: localVid that is a
local snapshot of the version id, local Add that is a list with the locally added elements and
local Remove that similarly represents the locally removed elements.

The update and merge operations implementation is presented as follows:

void weakAdd (T value){
(*¥1localAdd) .push_front (value) ;

void weakRemove (T value){
(¥1localRemove) .push_front (value) ;

removeFromLocalAdded (value) ;

void strongAdd (T value){
m.lock ();
addHelper (value) ;

m.unlock () ;

void strongRemove (T value){
m.lock () ;
removeHelper (value) ;

m.unlock () ;
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22 void merge () {
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23 m.lock();

24 int newVid = globalVid + 1;

25

26 //merge weak adds

27 for (T value: *localAdd){

28 addHelper (value, newVid);

29 }

30 (¥*localAdd) .clear () ;

31

32 //merge weak Temoves

33 for (T value: *localRemove){

34 removeHelper (value, newVid);

35 }

36 (*1localRemove) .clear () ;

37

38 globalVid = newVid;

39 *localVid = globalVid;

40 m.unlock () ;

41 }

42

43 void addHelper (T value, int vid){

44 node<T>* n = searchNode (root, value);

45 if (n==NULL){

46 //element does not exist, insert with VersionInfo (vid,vid,0)
47 insert (value, root, vid);

48 ¥

49 elsed{

50 if (get<2>((n -> vinfo).front()) > 0){

51 //element ezists but marked as removed, insert mew VersionInfo
52 (n -> vinfo) .push_front (make_tuple(vid,vid,0));
53 3

54 else{

55 //element exists and it <s wvalid, update last
56 get<1>((n -> vinfo).front()) = vid;

57 b

58 }

59 ¥

60

61 void removeHelper (T value, int vid){

62 node<T>* n = searchNode (root, value);

63 if(n !'= NULL){

64 //check if is mot marked as removed

65 if (get<2>((n->vinfo) .front()) == 0){

66 //mark the element as removed with the current wvid
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get<2>((n->vinfo) .front ()) = vid;

weakAdd adds an element to the local added list and weakRemove similarly adds an
element to the local removed list, removing the element (if present) of the local added list.

merge will synchronously increment the global version id and iterate both local removed
and added lists, calling the respective helpers for each element. The addHelper will handle
the logic to add an element to the tree, it starts by checking if the element already exists and
if not, inserts the element in the tree at the correct position adding the respective VersionInfo
to its list (newVid, newVid, ¢). If the element exists, validates if the element is a removed
one by checking if the head Versionlnfo removed is not @. If it is a removed one inserts a new
VersionInfo, if not updates the head Versionlnfo last. The removeHel per will similarly handle
the logic to remove an element from the tree, by simply marking the element as removed if

the element exists and is not already marked as removed.

bool weakLookup (T value){
//checks if was locally added
for (T localValue: *localAdd){

if (localValue == value) return true;

//searches on the shared copy

m.lock () ;
node<T>* n = searchNode(root, value);
if (n == NULL) {

m.unlock () ;
return false;
}
list<std::tuple<int,int,int>> vinfo (n -> vinfo);

m.unlock () ;

for (auto v : vinfo){
//not marked as removed and first added in an observable version

if (get<2>(v) == 0 && get<0>(v) <= *localVid) return true;
//first added at an observable wversion and removed at a concurrent/

previous version
else if (get<0>(v) <= *xlocalVid && #*localVid < get<2>(v)) return true;

return false;
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}

bool strongLookup(T value){
//checks if was locally added
for (T localValue: *localAdd){

if (localValue == value) return true;

//searches on the shared copy
m.lock ();
node<T>* n = searchNode (root, value);
if (n == NULL) {
m.unlock () ;
return false;

}

list<std::tuple<int,int,int>> vinfo (n -> vinfo);
m.unlock () ;
//validates if the element is not marked as removed
for (auto v : vinfo){

if (get<2>(v) == 0) return true;
}

return false;

}

As in the gBag implementation we will not have an fully local snapshot of the set. On
the other hand, we will leverage the semantics of the data type to perform the weakLookup
with the global copy of the set and the local snapshot of the vid. The lookup starts by check-
ing if the element was locally added if so returns true. Then, it searches for the element
synchronously in the globally shared copy and if it exists checks if the head VersionInfo is
valid according to localVid. An element is valid if removed is ¢ and the element was first
added in a version lower or equal to what we can observe, or if it was first added in a ver-
sion lower or equal to what we can observe and if was removed in a previous/concurrent
version(Add-wins).

strongLookup is similar but will only check if the head Versionlnfo of the element is not ¢.

We have benchmarked our OR-Set in a scenario where each thread alternates between
adds and removes, in a total of 100k operations. A remove is performed for every 10 adds.
At each 5k operations, we perform a strongLookup, searching for the mid element(50k).
Adds and removes are performed weakly and merge is performed within different frequen-
cies of synchronization. We have also used spin-locks because, as in gBag, the shorter

frequencies of synchronization were not scaling with the number of threads. The following

56



5.4. OR-Set 57

tigure shows how our OR-Set behaved in the previous scenario when compared with a
synchronous version:
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Figure 23: OR-Set vs sync OR-Set

Mostly all the synchronization frequencies outperformed the synchronous version. We
can also observe that the 64 frequency of synchronization outperformed all the others,
followed by the 8 frequency. Moreover, from the 128 to the 32768 frequency as short the
frequency is better is the throughput. This is an indicator that merging more elements
(slower merges), were impacting the performance more than merging fewer elements more

frequently.

We have also implemented an alternative version of our OR-Set, where we didn’t delegate

all the work to merge time and instead we did it while performing weak operations:

1 boost::thread_specific_ptr< list< pair<T, node<T>*> > > localAdd;
2 boost::thread_specific_ptr< list< pair<node<T>*, int> > > localRemove;
3

4

5 void weakAdd (T value){

6 m.lock () ;

7 //finding an estimated position for the insertion(possible parent)
8 node<T>* parent = findParentNode (root, value, root);
9 m.unlock () ;

10

11 //storing the estimated position with the wvalue

12 (¥localAdd) .push_front (make_pair (value, parent));

13 }

14

15
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16 void weakAddHelper (T value, node<T>* possibleParent, int vid){

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31}
32

//start searching from the possible parent
node<T>* n = searchNode(possibleParent, value);
if (n == NULL){

//insert starting on the possible parent

insert (value, possibleParent, vid);

}
elseq{
if (get<2>((n -> vinfo).front()) > 0){
(n -> vinfo) .push_front (make_tuple(vid,vid,0));
}
elsed{
get<1>((n -> vinfo).front()) = vid;
}
}

33 void weakRemove (T value){

34
35
36
37
38
39
40
41
42
43
44
45 1}
46

m.lock () ;

node<T>* n = searchNode(root, value);

//only remove if we can observe it

if(n != NULL && (get<2>((n -> wvinfo).front()) == 0)){
int last = get<1>((n -> vinfo).front());
(*¥localRemove) .push_front (make_pair(n,last));

}

m.unlock () ;

removeFromLocalAdded (value) ;

47 void weakRemoveHelper (node<T>* node, int observedLast, int vid){

48
49
50
51
52

53
54
55
56
57 }

//check if was not removed by other threads meanwhile

bool notConcurrentlyRemoved = get<2>((node -> vinfo).front()) == 0;

//check if was not updated by other threads meanwhile (add-wins)
bool notConcurrentlyUpdated = get<1>((node -> vinfo).front()) ==

observedLast;

if (notConcurrentlyRemoved && notConcurrentlyUpdated){

get<2>((node -> vinfo).front()) = vid;

When weakAdd is performed, the potential parent node is identified and this information

is stored on local Add. In merge time, when the weak AddHelper is called, we search for the
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element that we want to insert starting from the possible parent since our set is a binary
tree. Then if the element does not exist, we will insert it starting from the possible parent.
The remaining logic is the same than in the previous implementation.

When weakRemove is performed, we search for the element and if we can observe it,
we will add it to localRemove with the head Versionlnfo last. Then in merge time, the
weakRemoveHelper will check if other threads did not remove the element by checking the
VersionInfo head removed and if was not updated, by checking if the head VersionInfo last is
not different from what was observed when the weak operation was performed. If verified
these conditions, the element is marked as removed.

We benchmarked this version of our OR-Set in the same scenario. The following figure

presents the results:
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Figure 24: OR-Set v2 vs sync OR-Set

As we can see from the results we were able to improve the throughput of the 8 synchro-
nization frequency being almost side by side with the 64 frequency. The other frequencies
also slightly improved in terms of performance.

5.5 QUEUE

A hybrid mergeable queue, as proposed in Section 4.1.4, can be implemented using a singly-
linked list similar to a linearizable queue. The items enqueued are added to the tail of the

list, while dequeue is performed from the head.

1 //global -state
2 node<V>* globalHead NULL;
3 node<V>*x globalTail = NULL;
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//thread-local state

boost::thread_specific_ptr< node<V>*x > localHead;

boost::thread_specific_ptr< node<V>* > localTail;

//class auziliars

mutex m;

void weakEnqueue (V value){

if (*1localHead ==

NULL) {

*localHead = new node<V>;
(¥*localHead) -> payload = value;
(*localHead) -> next = NULL;
*localTail = *localHead;
}
elseq{
node<V> * tempNode = new node<V>;
tempNode -> payload = value;
tempNode -> next = NULL;
(*¥localTail) -> next = tempNode;
*localTail = tempNode;
}
}
V strongDequeue () {
m.lock () ;
if (globalHead == NULL){

m.unlock () ;

return V(EMPTY_QUEUE) ;

V res = globalHead -> payload;

}
elseq
node<V>* n =
globalHead =
m.unlock () ;
return res;
}

void merge (){
if(¥localTail ==

m.lock();
if (globalHead !=

globalHead -> next;

n;

NULL) return;

NULL) {

globalTail -> next = *localHead;

globalTail =

m.unlock () ;

*localTail;

//value rTepresenting an empty queue

5.5. Queue

60



51
52
53
54
55
56
57
58
59
60

5.5. Queue

}

else {
globalHead = *localHead;
globalTail = *localTail;

m.unlock () ;

*localHead

*localTail

NULL;
NULL ;

}

A mergeable queue instance contains a global view — (globalHead, globalTail), which points
to the head and tail nodes respectively of a global list and a local view — (localHead, localTail),
which are the head and tail of a thread’s local list. The local list collects the items enqueued
by a thread (weakEngueue) that are not yet merged. The merge atomically appends the local
list to the global list. The dequeue operation directly updates the shared part of the list. For
some data types, an update on the shared part of the data structure should preserve the old
version, because local views may be keeping a reference to it. However, there is no weakRead
defined that needs to observe a version before a concurrent dequeue. Hence, there is no
need to keep those versions, which simplifies the implementation.

We have benchmarked our queue in a scenario where each thread alternates between
enqueues and dequeues, in a total of 1 million operations. A dequeue is performed for
every 1k enqueues. The following figure shows how our hybrid mergeable queue behaved
in the previous scenario when compared with a multiple-reader/multiple-writer lock-free queue
from boost:

| op —@—

8 ops —A—

64 ops ——
512 ops
4096 ops

32768 ops —®—

boost ——

1x10° [

8x10” |-

ops/sec
o
)
T

*
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threads

Figure 25: Hybrid mergeable queue vs boost lock-free queue
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5.6. Electronic Vote

The time needed to merge a group of nodes is the same as the time needed to enqueue a
single node. By batching the enqueues, we can reduce the number of synchronization oper-
ations, thus improving the overall throughput. In the particular scenario of the benchmark,
we achieved better throughput when performing enqueues in batches of 512, being this our
sweet spot.

Surprisingly we achieved better performance when synchronizing in every operation
than with boost’s lock-free queue.

5.6 ELECTRONIC VOTE

In this section, we will present a time-bounded hybrid MDT, based on a direct use-case
application. Consider a scenario where we have an electronic voting system, for an election,
where we have multiple candidates. The system consists of a machine receiving votes from
multiple connections and each connection is handled by a thread.

At the beginning of the election, threads can receive multiple votes, process them without
synchronizing with other threads and later merge the results when needed. Allowing to
achieve partial results without impacting the global performance of the system.

When the voting time is ending, a more precise approach could be used to get concrete
results by switching to synchronous operations. To satisfy these requirements, we have
built a hybrid mergeable E-Vote:

//global state

std::atomic<bool> globalCanVote;
std::atomic<bool> globalSwitchOn;
std::atomic<int> * globalCandidates;

//thread-local state

boost::thread_specific_ptr<bool> localCanVote;
boost::thread_specific_ptr<bool> localSwitchOn;
boost::thread_specific_ptr<std::vector<int>> localCandidates;

boost::thread_specific_ptr<std::vector<int>> localSnapshotCandidates;

//class auziliars
std::atomic<int> mergeTimeMillis;

int candidateNumber = 0;
void voteClose (){

boost::this_thread::sleep(boost::posix_time::milliseconds (DURATION));
globalCanVote=false;

void activateSwitch(){
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5.6. Electronic Vote

boost::this_thread::sleep(boost::posix_time::milliseconds (THRESHOLD)) ;
globalSwitchOn=true;

An array of integers is used to represent our election candidates, where each entry accu-

mulates the number of votes for a candidate. There is a global shared version of the array
(globalCandidates), and two thread-local ones (localCandidates and localSnapshotCandidates).
There are also two different flags: canVote which indicates whether the voting is still open

or not; and switchOn which indicates if we should switch to synchronous operations.

As this is a time-based MDT, we have two threads responsible to change globalCanVote

and globalSwitchOn when in the respective time. The thread-local versions of these flags are

updated based on the changes to the global ones at merge time.

void weakVote (int id){

if (id < (candidateNumber) ) (*localCandidates) [id]++;

void strongVote (int id){

if (id < (candidateNumber)) globalCandidates[id]++;

void vote(int id){

if (! (x1localSwitchOn)){
weakVote (id) ;

}

else strongVote (id);

void merge (){

//merging
for(int i=0; i<candidateNumber; i++){

globalCandidates [i] += (*localCandidates) [i];

//updating the snapshot
for(int i=0; i<candidateNumber; i++){

(¥localSnapshotCandidates) [i] = globalCandidates[i];

//reseting thread-local state

localCandidates.reset (new std::vector<int>(candidateNumber)) ;

if (globalSwitchOn) *localSwitchOn=true;
if (! globalCanVote) *localCanVote=false;
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5.6. Electronic Vote

}

weakVote increments the position of a given candidate on the localCandidates and strongVote
does the same on globalCandidates; vote is wrapping the use of strongVote or weakVote based
on the localSwitchOn flag; merge starts by adding the local accumulated votes to the global
copy, then updates the localSnapshot candidates by making a copy of globalCandidates. Also,
resets the localCandidates putting all candidates votes to ¢ and checks if the thread should
update the localSwitchOn and localCanVote flags.

std::vector<int> weakResults (){

std::vector<int> results(candidateNumber) ;
for(int i=0; i<candidateNumber; i++){
results[i]l= (*localSnapshotCandidates) [i] + (*localCandidates) [i];
}
return results;
}
std::vector<int> strongResults (){
std::vector<int> results(candidateNumber) ;
for(int i=0; i<candidateNumber; i++){
results[i]l= globalCandidates[i] + (*localCandidates) [i];
}
return results;
}

weakResults can be achieved by adding the locally added votes(localCandidate) to the
most recent copy from global state (localSnapshotCandidates), not impacting the work other
threads are doing. strongResults can be achieved by directly Reading from globalCandidates
and adding the pending local operations.

Our E-Vote MDT was benchmarked in a scenario with five candidates and votes ran-
domly distributed between them. The election lasts for 60 seconds with a defined threshold
of 30 seconds to switch to synchronous operations. While performing weak operations
threads synchronized using time intervals. The following plot shows how our implementa-
tion behaved with different synchronization intervals when compared with a synchronous

version (only strong operations):
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Figure 26: Hybrid e-vote version 1 vs sync

The results were not the expected, the number of votes per second was not growing with
the number of threads and synchronization frequency. At some points, the synchronous
version outperformed all the other versions.

We recognized that in this particular time-bounded MDT we had a problem that we
didn’t realize until now. Threads were syncing based on time, which means that all threads
were merging almost at the same moment causing a slowdown. The solution passed by
making threads within the same frequency of synchronization to sync in different time

instants. The results of this change are notable:

0 5 0 5 20 25 30 35

threads

Figure 27: Hybrid e-vote version 2 vs sync

Although the throughput doesn’t grow with the number of threads, the current results

look much better when compared with the previous version. We now have several frequen-

cies outperforming the synchronous(atomic) one.
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5.7. Summary

Notice that, we are not making any reads on the experience, but we can’t take advan-
tage of our weakRead and obtain preliminary results without significantly impacting perfor-
mance. Also switching to strong operations later in time would improve the throughput.

Until now, we have been using strong operations either when we need to achieve a given
number of operations or when the semantics of the data types require operations to be
synchronous. In the presented case, strong operations are directly tied to the use-case,
we switch to them based on a time threshold. Time-based approaches open the door for

different MDTs applications from the ones presented so far.

5.7 SUMMARY

This chapter started with the formulation of some theoretical questions, and we have an-
swered them. We have compared a thread-local approach with some of the existent con-
currency mechanisms on the C++ language and the results in the tested scenarios showed
that our version outperformed the other mechanisms. Also, performance was very close to
a scenario where we don’t use any synchronization mechanism at all.

We have also built two P-Counters as CRDTs for shared memory and verified that the
approach is, in fact, inefficient for the environment when compared to MDTs, due to unnec-
essary logic on the merge operation.

From the several benchmarks to our MDTs we have also observed that the mergeable
versions are indeed more efficient than the respective synchronous versions. MDTs can be
applied in situations where divergence between threads is not allowed by using only strong
operations, resulting in the linearizable versions. Even more, we can leverage from identi-
fying situations where more relaxed approaches can be used and then switch to versions
where no divergence is allowed. We did it using different types of thresholds: number
of operations and time. With the eVote, we demonstrated that MDTs can be applied on a

real-world use-case.
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FINAL CONSIDERATIONS

6.1 FINAL CONSIDERATIONS

In this dissertation, we migrated an existent concept of data types on distributed systems to
shared memory. The idea consists of relaxing synchronization by letting the different partic-
ipants of a system perform operations asynchronously and later when needed, synchronize
with other participants (without conflicts) converging to the expected result.

Our contribution started by developing the existent concept of Mergeable Data Type by
studying the literature and by exploring the needs of a shared memory environment. Lead-
ing to a programming model that we named Global-Local View and later to the definition
of a formal specification for MDTs. An immediate distinction between two types of MDTs
emerged: purely and hybrid. A purely MDT only has defined weak operations while a
hybrid MDT has both weak and strong operations. Combining weak and strong operations
we have the flexibility to build data types with customizable semantics on the spectrum
between sequential and purely MDTs on a trade-off between update visibility and perfor-
mance.

Using the specification we have defined a portfolio with a range of data types from
counters, queues, and sets to an electronic election use case. Finally, we have added a
practical component to this work where we have implemented each of the data types in
our portfolio using a design pattern created by us that resulted from our programming
model. The results demonstrate that in the appropriated scenarios we can largely benefit
from avoiding synchronization between threads and still achieve precise results without
degrading performance with simple and user-friendly implementations.

All the code used is open-source and published under MIT license.

6.2 FUTURE WORK

As future work, the GL-View model could be extended to other applications that would
enrich our current portfolio of MDTs.
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6.2. Future work

A work-stealing queue is used to distribute tasks among threads running in parallel.
In Cilk runtime [14] each thread owns a queue with operations pushTop, popTop, and
popBottom. There is no pushBottom. When a thread is devoid of tasks, it retrieves one from
its queue using popTop, executes it and may generate new tasks that are added to its queue
using pushTop. When a thread’s task queue is empty, it steals from other thread’s queue
using popBottom. A work stealing queue with this semantics is a natural fit for the global-
local view model. Instead of a queue per thread, we have a multi-view queue with a global
view and a local-view per thread. pushTop and popTop executes on the thread-local views,
and popBottom on the global view. One downside of this design is that it may prevent
threads from stealing tasks when the global view is empty even if there are unmerged tasks
in the local views. To avoid this, threads can be forced to merge when the global view
drops below a threshold.

Another possible application are in-memory multi-core databases. In high contention
workloads, we can achieve high performance by allowing concurrent transactions to pro-
ceed in parallel on different cores. Instead of serializing the access to objects, transactions
can update a per core copy of the object and merge them later. In [32], authors describe
a system that automatically parallelizes contending transactions if all modifications to con-
tending items are commutative. A multi-view data type implemented in the global-local
view model is a natural fit to such a scenario.

Moreover, some of the presented data types on this document would fit directly on exis-
tent applications. Message queues where multiple messages can be batched together and
added to a shared queue is a direct application of our hybrid queue. Applications that
use aggregation counters that are computed by parallel threads can use our mergeable
counter. Similarly, objects that store statistical measures such as sums, min, max etc. that
are computed by parallel threads can also benefit from the global-local view model.

68



BIBLIOGRAPHY

[1]

[5]

(6]

[7]

8]

[9]

Yehuda Afek, Hillel Avni, and Nir Shavit. Towards consistency oblivious program-
ming. In Principles of Distributed Systems - 15th International Conference, OPODIS 2011,
Toulouse, France, December 13-16, 2011. Proceedings, pages 65—79, 2011.

Yehuda Afek, Guy Korland, and Eitan Yanovsky. Quasi-linearizability: Relaxed consis-
tency for improved concurrency. In Principles of Distributed Systems - 14th International
Conference, OPODIS 2010, Tozeur, Tunisia, December 14-17, 2010. Proceedings, pages 395—
410, 2010.

Deepthi Devaki Akkoorath and Annette Bieniusa. Transactions on mergeable objects.
In Programming Languages and Systems - 13th Asian Symposium, APLAS 2015, Pohang,
South Korea, November 30 - December 2, 2015, Proceedings, pages 427-444, 2015.

Deepthi Devaki Akkoorath and Annette Bieniusa. Highly-scalable concurrent objects.
In Proceedings of the 2nd Workshop on the Principles and Practice of Consistency for Dis-
tributed Data, PaPoC@EuroSys 2016, London, United Kingdom, April 18, 2016, pages 13:1—
13:4, 2016.

Deepthi Devaki Akkoorath, José Branddo, Annette Bieniusa, and Carlos Ba-
quero. Global-local view: Scalable consistency for concurrent data types. CoRR,
abs/1705.03704, 2017.

Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. Efficient state-based crdts
by delta-mutation. In Networked Systems - Third International Conference, NETYS 2015,
Agadir, Morocco, May 13-15, 2015, Revised Selected Papers, pages 62—76, 2015.

James Aspnes, Maurice Herlihy, and Nir Shavit. Counting networks and multi-
processor coordination. In Proceedings of the 23rd Annual ACM Symposium on Theory
of Computing, May 5-8, 1991, New Orleans, Louisiana, USA, pages 348—358, 1991.

Eric A. Brewer. Towards robust distributed systems (abstract). In Proceedings of the
Nineteenth Annual ACM Symposium on Principles of Distributed Computing, July 16-19,
2000, Portland, Oregon, USA., page 7, 2000.

Sebastian Burckhardt, Alexandro Baldassin, and Daan Leijen. Concurrent program-
ming with revisions and isolation types. In Proceedings of the 25th Annual ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2010, October 17-21, 2010, Reno/Inhoe, Nevada, USA, pages 691—707, 2010.

69



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Bibliography

Sebastian Burckhardt, Daan Leijen, Jonathan Protzenko, and Manuel Fdhndrich.
Global sequence protocol: A robust abstraction for replicated shared state. In 29th Eu-
ropean Conference on Object-Oriented Programming, ECOOP 2015, July 5-10, 2015, Prague,
Czech Republic, pages 568-590, 2015.

Irina Calciu, Justin Gottschlich, Tatiana Shpeisman, Gilles Pokam, and Maurice Her-
lihy. Invyswell: a hybrid transactional memory for haswell’s restricted transactional
memory. In International Conference on Parallel Architectures and Compilation, PACT '14,

Edmonton, AB, Canada, August 24-27, 2014, pages 187-200, 2014.

David Dice, Ori Shalev, and Nir Shavit. Transactional locking II. In Distributed Comput-
ing, 20th International Symposium, DISC 2006, Stockholm, Sweden, September 18-20, 2006,
Proceedings, pages 194—208, 2006.

Brijesh Dongol and Lindsay Groves. Towards linking correctness conditions for concur-
rent objects and contextual trace refinement. In Proceedings 17th International Workshop
on Refinement, Refine@FM 2015, Oslo, Norway, 22nd June 2015., pages 107-111, 2015.

Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of the
cilk-5 multithreaded language. In Proceedings of the ACM SIGPLAN 98 Conference on
Programming Language Design and Implementation (PLDI), Montreal, Canada, June 17-19,
1998, pages 212—223, 1998.

Seth Gilbert and Nancy A. Lynch. Brewer’s conjecture and the feasibility of consistent,

available, partition-tolerant web services. SIGACT News, 33(2):51-59, 2002.

Timothy L. Harris and Keir Fraser. Language support for lightweight transactions.
In Proceedings of the 2003 ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications, OOPSLA 2003, October 26-30, 2003, Anaheim, CA,
USA, pages 388-402, 2003.

Maurice Herlihy and Eric Koskinen. Transactional boosting: a methodology for highly-
concurrent transactional objects. In Proceedings of the 13th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPOPP 2008, Salt Lake City, UT, USA,
February 20-23, 2008, pages 207—216, 2008.

Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer III. Software
transactional memory for dynamic-sized data structures. In Proceedings of the Twenty-
Second ACM Symposium on Principles of Distributed Computing, PODC 2003, Boston, Mas-
sachusetts, USA, July 13-16, 2003, pages 92—101, 2003.

Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural support
for lock-free data structures. In Proceedings of the 20th Annual International Symposium
on Computer Architecture. San Diego, CA, May 1993, pages 289-300, 1993.

70



Bibliography

[20] Maurice Herlihy and Nir Shavit. The art of multiprocessor programming. Morgan Kauf-

mann, 2008.

[21] Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for
concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463-492, 1990.

[22] Nathaniel Herman, Jeevana Priya Inala, Yihe Huang, Lillian Tsai, Eddie Kohler, Bar-
bara Liskov, and Liuba Shrira. Type-aware transactions for faster concurrent code. In
Proceedings of the Eleventh European Conference on Computer Systems, EuroSys 2016, Lon-
don, United Kingdom, April 18-21, 2016, pages 31:1—-31:16, 2016.

[23] C Kirsch, Hannes Payer, and Harald Rock. Scal: Non-linearizable computing breaks
the scalability barrier. Technical report, Technical Report 2010-07, Department of Com-

puter Sciences, University of Salzburg, 2010.

[24] Alex Kogan and Maurice Herlihy. The future(s) of shared data structures. In ACM
Symposium on Principles of Distributed Computing, PODC ‘14, Paris, France, July 15-18,
2014, pages 30-39, 2014.

[25] Leslie Lamport. How to make a correct multiprocess program execute correctly on a
multiprocessor. IEEE Trans. Computers, 46(7):779-782, 1997.

[26] Alexander Matveev, Nir Shavit, Pascal Felber, and Patrick Marlier. Read-log-update: a
lightweight synchronization mechanism for concurrent programming. In Proceedings
of the 25th Symposium on Operating Systems Principles, SOSP 2015, Monterey, CA, USA,
October 4-7, 2015, pages 168-183, 2015.

[27] Paul E McKenney, Silas Boyd-Wickizer, and Jonathan Walpole. Rcu usage in the linux
kernel: one decade later. Technical report, 2013.

[28] Paul E. Mckenney and John D. Slingwine. Read-Copy Update: Using Execution His-
tory to Solve Concurrency Problems. In Parallel and Distributed Computing and Systems,
pages 509518, Las Vegas, NV, October 1998.

[29] Chi Cao Minh, Martin Trautmann, JaeWoong Chung, Austen McDonald,
Nathan Grasso Bronson, Jared Casper, Christos Kozyrakis, and Kunle Olukotun. An
effective hybrid transactional memory system with strong isolation guarantees. In 34th
International Symposium on Computer Architecture (ISCA 2007), June 9-13, 2007, San Diego,

California, USA, pages 69-80, 2007.

[30] Mark Moir. Transparent support for wait-free transactions. In Distributed Algorithms,
11th International Workshop, WDAG ’97, Saarbriicken, Germany, September 24-26, 1997,

Proceedings, pages 305-319, 1997.

71



Bibliography

[31] Mark Moir and Nir Shavit. Concurrent data structures. In Handbook of Data Structures
and Applications. 2004.

[32] Neha Narula, Cody Cutler, Eddie Kohler, and Robert Tappan Morris. Phase reconcili-
ation for contended in-memory transactions. In 11th USENIX Symposium on Operating
Systems Design and Implementation, OSDI "14, Broomfield, CO, USA, October 6-8, 2014.,

pages 511-524, 2014.

[33] Marc Shapiro, Nuno M. Preguica, Carlos Baquero, and Marek Zawirski. Conflict-Free
Replicated Data Types. In Stabilization, Safety, and Security of Distributed Systems - 13th
International Symposium, SSS 2011, Grenoble, France, October 10-12, 2011. Proceedings,

pages 386—400, 2011.
[34] Nir Shavit. Data structures in the multicore age. Commun. ACM, 54(3):76-84, 2011.

[35] Nir Shavit and Dan Touitou. Software transactional memory. In Proceedings of the Four-
teenth Annual ACM Symposium on Principles of Distributed Computing, Ottawa, Ontario,
Canada, August 20-23, 1995, pages 204—213, 1995.

[36] Alexander Spiegelman, Guy Golan-Gueta, and Idit Keidar. Transactional data structure
libraries. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016, pages
682-696, 2016.

72






	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Problem Statement
	1.4 Main Contributions
	1.5 Dissertation Outline

	2 Related Work
	2.1 Correctness Conditions
	2.1.1 Sequential Consistency
	2.1.2 Linearizability
	2.1.3 Serializability
	2.1.4 Other Relaxed Models
	2.1.5 Summary

	2.2 Concurrency Mechanisms
	2.2.1 Concurrent Data Structures Libraries (CDSLs)
	2.2.2 Transactional Memory(TM)
	2.2.3 Combining the two approaches
	2.2.4 Summary

	2.3 Related Programming Models
	2.3.1 Concurrent Revisions
	2.3.2 Global Sequence Protocol(GSP)
	2.3.3 Read-Copy-Update and Read-Log-Update
	2.3.4 Summary

	2.4 Conflict-Free Replicated Data Types (CRDTs)
	2.4.1 CAP Theorem and Strong Eventual Consistency
	2.4.2 Convergent Replicated Data Types (State-based)
	2.4.3 Commutative Replicated Data Types (Operation-based)
	2.4.4 Summary

	2.5 Mergeable Objects

	3 Mergeable Data Types(MDTs)
	3.1 Persistence and Mergeability
	3.2 Global-Local View Programming Model
	3.3 System model
	3.4 Notation
	3.5 Specification
	3.6 Relation with CRDTs
	3.7 Summary

	4 Portfolio of MDTs
	4.1 Specification
	4.1.1 P-Counter
	4.1.2 Add-only Bag
	4.1.3 OR-Set
	4.1.4 Queues

	4.2 Implementation Pattern
	4.3 Summary

	5 Evaluation
	5.1 Thread-Local Storage
	5.1.1 Proof of Concept
	5.1.2 Why use Boost libraries ?

	5.2 P-Counter
	5.2.1 P-Counter CRDT evaluation

	5.3 Add-only Bag
	5.4 OR-Set
	5.5 Queue
	5.6 Electronic Vote
	5.7 Summary

	6 Final considerations
	6.1 Final Considerations
	6.2 Future work


