
 

 
Universidade do Minho 
Escola de Engenharia 
Departamento de Informática 
 

José Jorge Sampaio Bastos  
 
Modelling interspecies interactions of 
syntrophic communities of 
Syntrophobacter fumaroxidans and 
Methanospirillum hungatei 

March 19 
 

 



 

 
 

  



 

 
 

 

 

 

Universidade do Minho 

Escola de Engenharia 

Departamento de Informática 
 

José Jorge Sampaio Bastos  

 

Modelling interspecies interactions of 

syntrophic communities of Syntrophobacter 

fumaroxidans and Methanospirillum 

hungatei 

Thesis Dissertation 

Master’s Degree in Bioinformatics 

 

Supervisors  

Oscar Dias  

Alfons Stams 

 

 

 

 

 

 

 

 

 

 

 

March 19 

 



    
 

 



 

i 
 

 

 

ACKNOWLEDGEMENTS 
 

 It comes to an end one more challenge of my life. During this journey, I found help and 

support in many people who without them this work would not be concluded. I use this section to 

thank all of those that in a way or another kept me on the right way. 

 First of all, I would like to thank my supervisor, professor Oscar Dias, and my co-supervisor 

Alfons Stams, for all the help and guidance through this work. I would like to thank professor Oscar 

for providing the opportunity to embrace this challenge. 

 I would also like to thank Sophia Santos and Fernando Cruz for all the help that they 

provided and for all the doubts they help me clarify. A big thanks to the two of you. 

  A special thanks to all my friends and especially to my housemates that without them 

this journey would have been really boring. An enormous thank you to my three partners that were 

always there for everything, but they still owe me a reward for winning our hearts competition. 

Thanks to all of you! 

 A particular word to my good old friend, my non-blood brother, Nuno Alves for being the 

greatest friend a person can have and for being there when I needed most. My sincere thanks for 

all the countless talks and advices.  

 To Inês, the person that was always there for me when I needed. Thanks for all the help, 

support, and for making me the happiest person every single day. Thank you carola for being 

everything that I need. 

 Last but not least, a huge thank to all my family: my mother, my father, my sister, my 

brother, and my grandparents. A huge thank to my parents that raised me in the right way and 

always guided me to make the right decisions in life. If I am what I am today, I owe that to all of 

you. 

To all, I thank you deeply!  

  



 

ii 
 

 

 

ABSTRACT 
 

Microbial communities have gained particular interest and have been used for practical 

applications such as biorefineries, and bioremediation. However, studying these communities has 

proven to be difficult due to the absence of experimental protocols and computational tools like 

the ones available for single organisms. 

In this work, we present Genome-Scale Metabolic models both for Methanospirillum 

hungatei strain JF1 and Syntrophobacter fumaroxidans strain MPOBT, together with a model that 

combines both into one community model. The genome-scale metabolic model reconstruction of 

S. fumaroxidans was performed in merlin whereas, the methane-producing archaeon M. hungatei 

was reconstructed in KBase’s environment and the model curation was performed in merlin. 

OptFlux and BioCoISO, a tool implemented over COBRApy developed specifically for debugging 

model pathways, were used for curating and validating both models. 

 The metabolism of each individual organism was assessed through its model 

reconstruction. In silico simulations demonstrated the production of various compounds of interest 

such as formate in M. hungatei and acetate in S. fumaroxidans. The meta-model representing the 

community composed by both organisms was assembled using FRAMED, and it was able to 

describe the metabolic exchanges between the formate scavenger M. hungatei and the syntrophic 

partner S. fumaroxidans. 

The reconstructed models can be used to study further the metabolic interactions between 

these bacteria. 

 

Keywords: Systems Biology, Genome-Scale Metabolic Models, Metabolic Networks, 

Constraint-Based Modelling, merlin, Syntrophobacter fumaroxidans, Methanospirllum hungatei, 

Syntrophic Community, KBase 
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RESUMO 

 

As comunidades microbianas são de especial interesse e têm sido usadas para 

aplicações práticas como em biorrefinarias e biorremediação. No entanto, o estudo destas 

comunidades tem sido difícil devido há falta de protocolos experimentais e ferramentas 

computacionais, como os que existem para cada organismo individualmente. 

Neste trabalho são apresentados os modelos metabólicos à escala genómica para estirpe 

JF1 de Methanospirillum hungatei e a estirpe MPOBT de Syntrophobacter fumaroxidans, 

juntamente com um modelo que combina ambos os modelos criados num modelo de 

comunidade. A reconstrução do modelo metabólico à escala genómica de S. fumaroxidans foi 

realizada no merlin, enquanto que o modelo da bactéria produtora de metano M. hungatei foi 

reconstruído na KBase e a curação manual efetuada no merlin. OptFlux e BioColSO, uma 

ferramenta implementada sobre o COBRApy, desenvolvida especificamente para a correção de 

vias do modelo, foram usadas para a curação e validação de ambos os modelos. 

O metabolismo de cada organismo foi acedido através das respetivas reconstruções 

realizadas para cada um. Simulações in silico demonstraram a produção de vários compostos de 

interesse como o formato no caso de M. hungatei e acetato no caso de S. fumaroxidans. O meta-

modelo criado que representa a comunidade formada por ambos os organismos foi criado a partir 

de uma ferramenta presente no FRAMED, e este é capaz de descrever as trocas metabólicas entre 

M. hungatei e S. fumaroxidans. 

Os modelos reconstruídos podem ser usados para estudar no futuro as interações 

metabólicas entre estas duas bactérias. 
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CHAPTER 1 
 

INTRODUCTION 
 

The current chapter aims to present the context, motivation 

and goals of this thesis. 

 

1.1 CONTEXT AND MOTIVATION  

Metabolic engineering (ME) is a branch of the engineering that, through the modification 

of biochemical reactions, can improve cellular properties, such as increasing the production of a 

particular metabolite in the organism. This field plays a vital role in the manipulation of metabolic 

fluxes and is also focused on metabolic pathways that are all biochemical reactions steps that 

connect a specific set of input and output metabolites [1]. At present, many tools can be used to 

perform ME in different ways by using new advanced methodologies and Systems Biology (SB) 

tools, such as COBRA Toolbox [2], to improve strain optimization and predict cellular behavior. 

Nowadays, the possibility of sequencing and performing automatic genome annotations, 

using SB tools, such as Rapid Annotations using Subsystems Technology (RAST) [3], allow 

creating network reconstructions at the genome scale, enabling the development of genome-scale 

metabolic (GSM) models for all organisms that have their genome sequenced [4]. GSM models 

represent the organism at the mathematical level and are used to predict the phenotypical role. 

Computational tools are essential in the automation of specific tasks, such as genome 

annotation and metabolic network reconstructions. Data obtained from these tasks can be studied 

along with other sets of data from a different organism, for instance when the goal is to understand 
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the metabolic interaction between such organisms. Interactions between dependent microbial 

partners, which are called syntrophic relationships, are common in microbial communities [5]. 

Microbial communities have gained particular interest and are used for practical 

applications such as biorefineries, bioelectricity generation and bioremediation [6]. However, 

studying these communities has proven to be difficult due to the absence of experimental protocols 

and computational tools like the ones available for single organisms [7]. 

 

1.2 GOALS 

The primary goal of this work will be the development of a GSM model of a syntrophic 

community of Syntrophobacter fumaroxidans (S. fumaroxidans) and Methanospirillum hungatei 

(M. hungatei). For this purpose, both S. fumaroxidans and M. hungatei GSM models will be 

reconstructed and later integrated into a single consortium model. 

The main scientific/technological objectives were: 

• Reconstructing a GSM model for S. fumaroxidans, using merlin to carry out the 

following tasks: 

- Generate an up-to-date, high quality functional annotation of the S. 

fumaroxidans genome; 

- Obtain a GSM draft network utilizing genome annotation;  

- Execute manual curation and refinement of the draft network using 

information obtained from literature or even by experimental data; 

- Build a stoichiometric model of the draft metabolic network; 

- Collect experimental data for refining and validation of the GSM model; 

- Test and validate the GSM model; 

•  Reconstructing a GSM model for M. hungatei using KBase and merlin to perform 

the following steps: 

- Obtain an up-to-date automatic functional annotation of the M. hungatei 

genome; 

- Automatically generate a GSM draft network using genome annotation; 

- Perform manual curation and refinement of the draft metabolic network 

utilizing information retrieved from literature and experimental data. 

- Develop the stoichiometric model of the draft metabolic network; 

- Collect experimental data for refining and validation of the GSM model; 
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- Test and validate the GSM model; 

• Integrate both models into a metamodel, build a common objective function, and 

create compartment exchanges. 

• Perform in silico simulations for metamodel validation. 

• Analyze the genome and search for valuable information. 

 

1.3 STRUCTURE OF THE DOCUMENT  

This document is organized by the following structure: 

• Chapter 2 – State-of-the-art  

- A revision of the tasks and methodologies associated with the reconstruction of 

GSM models. 

- An introduction about the computational tools currently available for 

reconstructing GSM models. 

- A brief explanation concerning syntrophic communities, including both S. 

fumaroxidans and M. hungatei metabolisms.  

 

• Chapter 3 – Material and Methods 

- A detailed description of the tasks related to genome annotation. 

- Methods used to assemble both draft metabolic models including manual 

curation. 

- Biomass formulation. 

- Report on the tools and approaches used to troubleshoot the constructed model. 

- Description of the tools and strategies used to validate the assembled model. 

 

• Chapter 4 – Results 

- Results obtained from the genome annotation tasks. 

- Results of both manual curations. 

- Models reconstructions issues. 

- Models imprecisions. 

- Description of the metabolic models for both S. fumaroxidans and M. hungatei. 

- Description of the reconstructed metabolic community model. 

- Succinct description for both organisms’ networks characteristics. 
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• Chapter 5 – Conclusion and Future Work 

- Assessment for the single-species and community models. 

- Applications of the GSM 
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CHAPTER 2 
 

STATE-OF-THE-ART 
 

This chapter presents the introduction to state-of-the-art 

methodologies and relevant computational tools. 

Furthermore, syntrophic bacteria metabolic landscape and 

studies of Syntrophobacter fumaroxidans and 

Methanospirillum hungatei are presented as well. 

 

2.1 GENOME-SCALE METABOLIC MODELS 

2.1.1 Background 

The human body is made up of many different systems, such as molecules, cells, genes, 

proteins, and regulators of proteins and they all interact in innumerable ways. The volume of 

information is overwhelming, and the language of communication between the interacting parts 

are unknown or only somewhere understood. To better treat diseases, the principles that govern 

the design, function, and interaction of these systems have to be well understood. In case of a 

disruption of the system caused by a virus, one of the main goals for scientists is to track the 

network of genes and proteins responsible for processing information in disease cells which 

involves monitoring hundreds of thousand genes and cells, and communication channels 

simultaneously [8]. Genes and proteins are always interacting with one another, so the first step 

in system biology (SB) research is to collect the data and then analyze it. Systems biologists need 

a background in math, a good understanding of physics and in-depth know-how in bioinformatics 
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to be able to analyze massive datasets. The synthesis of insights and genomics like the sequencing 

of the human genome has catapulted biology to a new level, enabling scientists to explore health 

and sickness in a brand-new way. Classic biology looks at individual parts that comprise the 

human body. SB, by contrast, takes a holistic approach a “bird’s eye” view and has shifted the 

lens through which biology is studied and understood. Therefore, systems biology quantifies the 

components and analyses the interactions between organisms to understand their organizations 

and to predict their behavior [9]. 

In the field of SB the study of the metabolism can be considered as an integrated study 

because of the data availability and the importance of applications. The volume of available data 

is so large that it allows the generation of high-quality models, which allow simulating the organism 

behavior when it is subject to different conditions [10]. Nowadays, it is easy to apply the knowledge 

of the metabolism, learnt for certain organism, to other organisms by performing phylogenetic 

similarity using bioinformatics tools such as the Basic Local Alignment Search Tool (BLAST) [11]. 

On the other hand, it is not easy to do the same for other functions such as transcription regulation 

and signaling, so there is a bigger variety of metabolic models constructed when compared with 

regulatory or signaling models. 

The major challenge in SB is not only to generate high-quality models capable of 

mimicking the cells comportments but also to predict their behavior[12]. SB is closely related with 

industrial biotechnology processes, because the models generated in this field, together with a 

large number of bioinformatics tools, allow identifying genetic targets for increasing technical 

factors such as yields and productiveness [13]. 

Nowadays, the availability of whole-genome sequence for many organisms and high-

quality knowledge of biochemical reactions present in several biological databases [13], allow the 

creation of metabolic networks at the genome scale. The GSM networks are a set of biological 

reactions from the enzymes encoded in the target organism’s genome. These networks allow 

determining the physiological and biochemical properties of the cells. Despite the contributions of 

the GSM networks only the GSM models can be used for predicting the capabilities of the 

metabolic system. For instance, GSM models are being used to predict, in silico, to identify 

potential candidate drug targets and to study the response of microorganisms to 

perturbations[14]. 

GSM models encompass the total metabolic potential encoded in the genome of an 

organism. The main steps for creating a GSM reconstruction include the creation of a draft 
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reconstruction based on the genome sequence, the identification (and amendment) of errors and 

gaps in the network, characterization of drains and the biomass equation and finally to validate 

the model with additional experiments [15]. The reconstruction of GSM models is supported by 

information available in several online databases [16, 17]. These online platforms provide genome 

sequence information, annotation data, and for some cases the functional capabilities of the 

proteins [18].  

The reconstruction of a GSM model is a repetitive process in which the information 

retrieved from various data sources is collected and used for assembling a draft GSM network. 

The results from genome annotation are compiled and used to obtain the initial metabolic 

reconstruction. Then there is a search for errors in the system, and finally, the network is converted 

into a GSM model by adding an equation representing the biomass formation and other 

constraints. In the end, the model obtained must be validated through the comparison of 

experimental data with the GSM model (Figure 1). 

 

 

Figure 1. Illustration representing the iterative processes during metabolic reconstruction. Firstly, it starts with a complex 
compilation of the information available for the microorganism metabolism from different information sources. A reaction set is 
built, and debugging is performed to build a steady-state metabolic model. Next, the comparison of in silico simulation results with 
experimental data is made and when the last is in accordance with in silico predictions, the model is ready to be use in 
biotechnology applications. If the in silico predictions don’t match the experimental results it is necessary to make a revision on 
the information sources. Adapted from [19]  
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2.1.2 Online Bioinformatic Resources 

It is essential to have the most up-to-date available information about the organism being 

studied to have a reasonable reconstruction of GSM models. Several data are needed, such as 

well-annotated genome sequences, functional and molecular knowledge of enzymes or functional 

information of proteins present in membrane transport processes, biochemical and stoichiometric 

information of metabolic reactions. Several online databases are listed in Table 1. These databases 

are sources of the information mentioned above. 

 

Table 1. Online Bioinformatic resources 

Database Acronym WebAddress Reference 
Kyoto Encyclopedia of Genes and 
Genomes 

KEGG http://www.kegg.jp/ [20] 

    
MetaCyc  http://www.metacyc.org/ [21] 
    
BioCyc  http://biocyc.org/ [21] 
    
Biochemical, Genetics and 
Genomic Models 

BIGG http://bigg.ucsd.edu/ [22] 

    
Universal Protein Resource  UniProt http://www.uniprot.org/ [18] 
    
National Center for Biotecnology 
Information 

NCBI http://ncbi.nlm.nih.gov/ [23] 

    
Transport Classification Database  TCDB http://www.tcdb.org/ [24] 
    
ModelSEED  http://modelseed.org/ [25] 
    
Braunschweig Enzyme Database BRENDA http://www.brenda-enzymes. 

org/ 
[26] 

 

One of the sources that can be used for the high-level understanding of a biological system 

is KEGG[20]. It is an online database resource of metabolic data, where the user can find an 

extensive collection of information about genes, metabolites, enzymes, reactions, and pathways. 

All the information is gathered from molecular-level data. First, the data is retrieved from genome 

sequencing and other high-throughput experimental technologies and then is coupled into large-

scale molecular datasets [16]. 

 Another database is MetaCyc which collects metabolic pathways from different organisms 

[21]. It is a curated database and has good quality information about every single organism. 
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Similar to MetaCyc, ByoCyc is a database that details each genome and metabolic pathway of an 

organism [17]. 

 BIGG models is an online database with more than 75 well curated genome-scale 

metabolic network reconstructions and create patterned identifiers for metabolites named BIGG 

IDs [22].  

 The UniProt is a knowledge-base of functional information about proteins, that uses an 

accurate, logical and productive method to gather all the most critical data of proteomics [18]. 

This database is split into two branches: UniProt/Swiss-Prot and UniProt/Translated EMBL 

Database (TrEMBL). The first one relies on manually curated annotations extracted from literature 

or computational analysis. The second one provides unreviewed data waiting for manual curation.  

 One of the most useful databases in the reconstruction of genome-scale metabolic models 

is TCDB which gives transport proteins information [27]. In it, there is available functional 

information about transport proteins for a wide variety of organisms. The TCDB database 

establishes a classification system called the Transport Classification (TC) that has a vast range 

of information, such as structural, functional, mechanical, evolutionary and disease/medical data. 

The ModelSEED online resource can be classified as an open platform with tools that 

allows the reconstruction, comparison, and analysis of metabolic models [25]. It is a curated 

database which contains mass and charged balanced reactions, standardized to aqueous 

conditions at neutral pH. This database integrates biochemistry included in KEGG, MetaCyc, 

EcoCyc, Plant Metabolic Networks [28], and Gramene [29]. It also presents access to biochemical 

reactions and genome annotations by having GSM models integrated.  

 BRENDA is a source of professional curated data for every enzyme [26]. Most enzymatic 

data can be manually retrieved in this online database. The literature search is the method used 

to classify each enzyme function. BRENDA database uses a classification system named Enzyme 

Commission (EC) to organize the available information. 

 

2.1.3 Genome annotation  

The first stage of reconstructing a GSM model is to generate a draft reconstruction based 

on the genome annotation of the target organism and biochemical databases. This automated 

reconstruction is a collection of metabolic functions encoded in the genome, and some of them 

are missing due to wrong or incomplete annotations. 
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The genomic information provided by the organism’s genome is important to define the 

gene properties unambiguously. The draft reconstruction profoundly relies on the genome 

annotation, thus it is important to work with the most recent genome version available because 

this genome will contain all updates and corrections since the genome’s original publication. 

Hence, the genome annotation stage is crucial to the reconstruction quality [30]. 

The metabolic genes identified in the genome annotation need to be retrieved by using 

keywords or gene ontology (GO) categories [31] during the generation of the draft reconstruction. 

The connection between metabolic reactions catalysed by the identified gene products and the 

draft reconstruction is achieved by using the EC numbers [32] and biochemical reaction databases 

such as KEGG and the Brenda database [33]. The list of candidates generated by genome 

annotation may contain many false-positives, for example, proteins involved in Deoxyribonucleic 

Acid (DNA) methylation also have EC numbers, but their functions are rarely considered in 

metabolic reconstructions[34]. Biochemical databases like BRENDA can be used to reduce the 

number of false-positives, but this strategy does not replace manual curation [35]. 

As mentioned before, the quality of the curated genome annotation is directly correlated 

with the quality of the reconstructed model, and for some instances, the reannotation of the 

previously annotated genome may be required [30]. The genome reannotation consists in the 

process of looking for specific data such as Open Reading Frames (ORF) names, product names, 

and EC numbers[36]. The metabolic genes, the ones encoding for enzymes and transport 

systems, are the only set of genes required for the development of GSM models [37]. 

 

2.1.4 Metabolic Network Assembly 

In this stage, the draft reconstruction will be re-evaluated and refined. It is the second 

stage of the reconstruction process, and it is responsible for the curation and refinement of the 

network content [30]. The metabolic functions and reactions retrieved from the draft 

reconstruction need special attention, so they are individually evaluated against organism-specific 

literature. This process is called manual curation, and it is important because not all annotations 

have a high-confidence score, and biochemical databases are mostly organism-unspecific, thus 

listing enzymes activities found in various organisms, and maybe not all of them are present in 

the target organism. The inclusion of organism-unspecific reactions can deeply affect the predictive 

behavior of GSM models [34]. 
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2.1.4.1 Genes, Proteins and Reactions Associations 

The reconstruction of a metabolic model consists of performing a number of tasks. One 

of the tasks is to “build” gene-protein-reaction (GPR) association where all annotated metabolic 

genes are linked to proteins and reactions. The TC and EC numbers are assigned during genome 

annotation give information about enzymatic and transport reactions, respectively. 

The classification system used by BRENDA (EC number) as previously mentioned is 

responsible for classifying the enzymes by their functions [38]. This system uses a four-digit code 

to order the enzymes by the chemical reactions they catalyze. By using this classification, the 

enzymes are categorized into seven categories, transferases. oxidoreductases, hydrolases, ligases, 

lyases, isomerases, and translocases. The first digit of the four-digit code represents the category 

of the enzyme. The following numbers will progressively restrict and specify the enzyme 

classification. 

The classification system used for membrane transport reactions (TC number) is similar 

to the EC system, and it also specifies the protein regarding phylogenetic information [24]. Instead 

of the four-digit code used in the EC system, the TC classification system uses a five-element code: 

four digits and one letter. There are seven main classes of membrane transport proteins, namely, 

primary active transporters, accessory factors present in transport, channels, incompletely 

characterized transport systems, group translocators, and electrochemical potential-driven 

transporters. The first digit in the TC classification system like in the EC digit code also represents 

the transporter class they belong. Next, to the first digit, there is a letter and after it come the 

remaining three digits.   

The GPR association information often comes for the genome annotation, and these 

associations allow to associate genes to reactions [35]. This step includes determining (i) if the 

functional protein is a heteromeric enzyme complex, (ii) if the enzyme complex can promote more 

than one reaction and (iii) if distinct proteins have the same function (i.e., isoenzymes). 

Regarding the first case, the genome annotation has refined information, which suggests 

that at least one more subunit is required for the formation of the protein complex. Databases, 

such as KEGG, list the subunits for these protein complexes in some cases. Most of the times, a 

more comprehensive database like TCDB [24] and literature is required. For the second case and 

third case, information can also be retrieved from biochemical databases and literature [16]. The 

correct assignments in the GPR associations will be directly related to results of in silico gene 

deletion studies. 
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The information retrieved from databases such as KEGG, BRENDA, and TCDB when 

crossed with genome annotation information generates a reaction set with all the data compiled 

(Table 2).  

Table 2. The table below lists the sources and the respective information they provide while creating the GPR associations. 

Source Information 

KEGG Names or identifiers of the reactions; Reactants and products of the 

reactions; Equation of the reaction 

BRENDA EC number; names of enzymes 

TCDB TC number; names of membrane transport proteins 

Genome annotation  Names or identifiers of the genes  

 

The next step is to complete de reaction set with exchange, non-enzymatic, spontaneous 

and reactions that occur in the organism. In the case of missing genes for some of these reactions, 

a literature search must be performed [39].  

The draft GSM network is complete when the first set of reactions is put together. As the 

name indicates it is just a draft and for that reason has many imprecisions. For this reason, the 

GSM network may have some false positives like, having enzymes involved in the nucleic acid 

metabolism and signal transfer that generally are not used in the GSM network assembly [40].  

 

2.1.4.2 Spontaneous reactions 

The spontaneous reactions to be added to the reconstruction must have all metabolites 

connecting them to the network. This approach will avoid dead-end metabolites caused by 

spontaneous reactions [30]. These reactions can be found in literature or online web sources, 

such as KEGG. 

 

2.1.4.3 Reaction stoichiometry 

Metabolites present in databases are usually listed with their uncharged formula, but in 

medium and in cells, many of them are protonated or deprotonated. The pH of interest will 

influence the charged formula by modifying the protonation state [41]. Depending on the 

environmental conditions and target organism the pH value may vary so that the same metabolites 

can have different charges in different organisms.  
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After determining the charge for each metabolite, the reaction stoichiometry can be 

determined by counting the different elements on both sides of the reaction. In some cases, water 

and protons may be required to balance the total charge of the reaction. Notice that unbalanced 

reactions may lead to the synthesis of protons or adenosine triphosphate (ATP) out of nothing 

[42]. 

 

2.1.4.4 Localization and Compartmentalization 

The localization of enzymes inside compartments or outside the cell is vital for the 

development of GSM models, as it identifies the organelles in which the enzymes operate. The 

cellular localization of proteins based on nucleotide or amino acid sequences can be determined 

using algorithms such as PSort [43] and TargetP [44]. The information retrieved from these 

databases is then used to determine the compartments of the metabolites. Other databases like 

UniProt can also contain information about the localization of enzymes and reactions, which can 

be useful to constrain the reactions to a compartment. By default, enzymes are assumed to be in 

the cytosol. Additional gaps in the network can be formed as a result of incorrect 

compartmentalization and consequently lead to misrepresentation of the network properties.  

The distribution of reactions among different compartments must be performed when 

assembling the metabolic network reconstruction. The same metabolite may be present in similar 

reactions, and these may be located in different places inside the cell. For that reason, the name 

and identifier must identify the metabolite localization with the respective compartment. 

While identifying the localization of the metabolites, the extracellular location should be 

included. This location will resemble the extracellular space and exchanges reactions that need to 

be integrated for reactants and products that are located outside the cell [4]. 

 

2.1.4.5 Manual Curation 

 Although automatic methods used in automatic draft reconstruction are very useful, these 

methods are fallible [45]. It will lead to an incomplete draft reconstruction because it will have 

missing reactions and it may contain reactions irrelevant to the GSM model [37]. The revision of 

literature, like publications and textbooks, organism-specific databases, for the validation of the 

reactions, is the last step of the GSM model reconstruction. It is a slower method but very 

important to the final quality of the model. In manual curation step, each reaction of the model 

should be confirmed.  
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 One strategy used by researchers for model refinement is to analyze every pathway by a 

particular order [40]. The analysis should start in the central pathways and end in the secondary 

pathways. All the GSM network characteristics and reactions properties should be deeply 

examined. For instance, routes for known carbon, nitrogen, sulfur and phosphorous sources to 

the biomass’ precursors must be present and have to be cleared of gaps.  

 Errors can occur while building the reaction set. As an example, some reactions may not 

be included due to ambiguous identifiers, or they do not exist in that specific organism [37].  

 The removal of generic terms is important since these metabolites are often created due 

to the lack of information about them. A few examples of these terms are DNA, Ribonucleic Acid 

(RNA) and protein. By removing these from the dataset, the quality of the reconstruction will 

improve. 

 Literature research is fundamental when performing a manual curation of the network 

model. For instance, each organism uses specific substrates or cofactors besides organism-

unspecific databases indicating they have a wide range of possibilities. Information about substrate 

and cofactor usage must be conferred if available. 

 To achieve a high-quality network reconstruction the model must be stoichiometrically 

and massed balanced. Each reaction in the dataset must be balanced, which means that the total 

number of elements (i.e., atoms such as, carbon and hydrogen) should be equal in each side of 

the reaction. If not, the flux distribution of the GSM network will become impaired, thus reducing 

the quality of the model because these unbalanced reactions will be blocked [4].  

Regarding the network model, the last step is to identify missing metabolic functions in 

the reconstruction, the so-called network gaps [46]. These gaps are a consequence of the iterative 

process of the GSM model reconstruction, specifically, by repeating the second and third stage 

partially. After the manual curation, it is recommended to perform a first gap analysis because it 

will reduce the number of “bugs” in the model [30]. To fulfil these gaps, a manual gap-filling 

analysis should be performed. Web services such as KEGG are used in the process of manual 

gap-filling because they provide an extensive collection of manually drawn pathway maps which 

represent molecular interactions and reaction networks. On the other hand, some algorithms can 

be used to turn gap-filling in an automatic process [47]. 
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2.1.5 Stoichiometric Model Assembly 

In this stage, the network is converted into a mathematical format, and most of the 

process can be easily automated. At this time, systems boundaries will be defined, thus turning 

the GSM network into a condition-specific model by providing constraints. Errors in a simulation 

are, most of the times, a direct result of the constraints not being correctly set [37]. The reversibility 

of the reactions are the major factors responsible for the main restrictions that should be added 

to the model. An irreversible reaction is the one that is not constrained, whereas irreversible 

reactions are limited between the minimum/maximum (depending on the direction of the 

reaction) flux and zero.  

The first thing that should be done before converting the GSM network into a model is to 

add an equation representing the biomass formation to the reactions set. That equation represents 

the macromolecular composition of the cell, and the reactants are macromolecules and other 

smaller biomass units named building blocks [48]. For the organism to produce the larger 

precursors (macromolecules) reactions that represent the assembling of the building blocks must 

be present in the GSM network.   

The biomass equation can be expressed as: 

 ∑ Ck.Xk   →  biomass

P

k=1

 (1) 

       P – number of biomass constituents  

       Ck – Coefficient of a metabolite  

 
       Xk – Metabolite 

 
 

The growth or specific growth of an organism (h-1) is represented by the flux that is 

associated with the biomass reaction, and it is normalized to 1 gram of biomass. The unit 

representing the growth express how many grams of biomass are produced per gram of biomass, 

already in the medium, per hour [19].  

Using organism-specific literature to retrieve information about the biomass composition 

is one of the strategies used by researchers, while reconstructing the GSM network. Another 

method is to experimentally study the organism to achieve a detailed biomass composition [49]. 

If it is not possible to perform one of the above strategies the biomass composition known for a 

strictly phylogenetic relative must be used.  
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All organisms require energy to survive. Thus, the biomass equation should include 

growth-associated energy requirements in terms of ATP molecules per mass of biomass 

synthesized. In general, the growth-associated energy is reflected in the biomass reaction as the 

hydrolysis of ATP into Adenosine Pyrophosphate (ADP) and orthophosphate. 

Usually, chemostat growth experiments are used to retrieve information about energy 

requirements [40]. Otherwise, if such data is not available, organism-specific literature or closely 

phylogenetic relative organism’s data should be used. Additionally, a manual estimation of the 

growth-associated energy can be done by determining the energy required for each 

macromolecular synthesis [19].  

As mentioned before the flux associated with the biomass reaction represents the growth 

rate of an organism. The GSM network should also contain non-growth energy requirements 

information. The same strategies used to determine the energy requirements for growth are used 

to calculate the non-growth conditions. This energy is in charge of cell maintenance (cell 

maintenance energy), more precisely in controlling the membrane potential [50]. 

 

2.1.5.1 From Network Reconstruction to Mathematical Model 

The conversion of the reaction set into a stoichiometric matrix is one of the last steps in 

the GSM network reconstruction. At this stage, the classical principles of chemical engineering are 

used to define the dynamic balances of a metabolite. For this purpose, differential equations are 

created for every single metabolite present in the metabolic network [48].  

Equation 2, represents the behavior of the concentration of a metabolite throughout time: 

 dXi

dt
 = ∑ Sij  vj + μX   , i=1,…,M

N

j=1

 (2) 

 Xi - Metabolite i concentration  

 Vj - Rate of reaction  

 Sij - Stoichiometric coefficient of the metabolite i in the reaction j  

 μX
i
 - Growth rate  

 

As mentioned above, the method of associating each metabolite in the network with a 

dynamic mass balance will generate a set of differential equations. However, the kinetic 

expressions and parameters data is insufficient, and as a consequence, it is only possible to 

simulate dynamic conditions to specific pathways of the organism metabolism [19]. To solve this 
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data gap, usually, a steady-state approximation is applied to the network, reducing the mass 

balances to a set of linear equations. If a steady-state paradigm is confined to the model, it means 

that the concentration of a metabolite throughout time will remain constant. In the end, these set 

of linear equations [51] are converted into a stoichiometric matrix. The matrix should also contain 

the exchange fluxes.  

Equation 3, steady-state representation of equation 2 

 S * v = 0 (3) 

 v -- Flux vector   

 S – Stoichiometric matrix; reactions are represented in columns and 

metabolites in rows.  

 

 One of the problems of a stoichiometric model is that the number of fluxes is greater than 

the number of mass balance constraints. For this reason, a stoichiometric model is considered to 

be an underdetermined system, because there is an infinite number of flux distributions that 

accomplish the mass balance constraints and it is impossible to achieve a single solution out of 

it [52]. This is generally classified as the null space of the matrix S [53]. 

 To reduce the space of potential solutions for the system, constraints are used. Using this 

methodology, it is possible to retrieve a set of feasible solutions and giving each one a set of 

conditions.  

 The constraints are defined by imposing limit values to the flux of each reaction. As a 

result, both upper and lower bounds are added as model constraints of the reactions fluxes. Most 

of these constraints can be added to the model as inequalities’ as shown in equation 4 below. 

  

 αj ≤  νj ≤  β
j
    , j=1,…,N. (4) 

 𝛼𝑗  - Lower bound  

 νj  - Flux vector  

 β
j
 - Upper bound  

 

The definition of reversible reaction in a stoichiometric model implies that the bounds are 

set from minus to plus infinity. Differently, irreversible reactions bounds must be configured with 

minus or plus infinity to zero, counting on the directionality [19].  

After the addition of the biomass equation and the non-growth ATP requirements to the 

network model, all reactions can be represented in the form of a stoichiometric matrix. In Figure 
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2, it is described the conversion of a metabolic network with six metabolites and ten fluxes into a 

stoichiometric matrix. This mathematical model can be used to predict the dynamic behavior of 

the metabolite concentration, by performing dynamic balances with ordinary differential equations 

[54]. In the end, the mathematical model created is advised to be saved in the Systems Biology 

Markup Language (SBML) standard format [55]. 

 

 

Figure 2. Example of a metabolic network with 6 metabolites (A to F) and 10 fluxes (V1 to V10). A reaction scheme is 
presented in (1) with outlined system boundaries. The fluxes V1 to V4 represent the exchange fluxes of metabolite 
substrate (A) and products (B, F and E). The reversible reactions are shown with double arrows, and the irreversible 
reactions are identified with a forward arrow. In section (2) is presented the stoichiometric of the network. Section (3) 
represents the steady-state mass balances, and section (4) shows the constraints around the flux values. The final 
section (5) illustrates the representation of the mass balances in matrix format. 
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2.1.6 Stoichiometric Model Validation 

The final stage of the GSM model reconstruction process is to validate the model 

generated by verifying the network, evaluate it and finally validate it. One of the main tests consists 

in studying the ability of the model to synthesize biomass precursors, such as amino acids and 

lipids. 

The validation step consists in predicting the behavior of the target organism and compare 

it to experimental data. If the predictions are not in agreement with experimental data, the previous 

stoichiometric model should be further reviewed. At this stage, all the errors made while performing 

the reconstructing process will be reflected in the model predictions. Moreover, the GSM model 

will only be ready when the predictions match the experimental data. 

Using high-throughput growth phenotyping data, retrieved from the use of bioinformatics 

tools own by companies, such as Biolog Inc. [56], will allow the comparison between the simulated 

results. This method enables the model to be tested for growth in many limiting substrates and 

the results compared with the high- throughput data. 

One of the methods used in the GSM model validation is the quantitative evaluation of 

growth rate and by-product formation of the organism. If the target organism has slow growth, it 

could mean that at least one of the precursors of the biomass function cannot be synthesized 

sufficiently. Depending on the precursor, the model’s biomass production is limited by either 

carbon, nitrogen, oxygen, sulphur, or phosphate. 

A different approach for the GSM model validation is to perform an analysis of false 

positive and false negative predictions, helping to refine the network content further if the 

information is available or instigate new experimental studies. Single gene deletion phenotypes 

accomplish this approach, and this deletion simulated in the GSM model may replicate the 

experimental data, if not, an examination of the genome annotation should be performed. For 

instance, if there are inconsistencies between the results obtained from GSM models’ predictions 

and experimental results, the model should reformulate from the second stage ahead. 

One technique used by researchers to compute a single solution for the GSM model is to 

perform a Flux Balance Analysis (FBA) [57], which relies on linear optimization to determine the 

steady state reaction flux distribution. This method seeks to minimize or maximize an objective 

function represented in equation 5, where C represents a vector of weights indicating how much 

each reaction contributes to the objective function.  
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 Z = CT * ν (5) 

 Z - Linear objective function  

 CT - Vector of weights   

 ν – Fluxes 

 

 

The FBA method was found to be very useful in many reconstruction stages, such as gap 

filling, model validation and model refinement [58].  

Usually, the objective function used is the maximization of biomass formation. For the 

majority of the organisms, the maximization of growth rate is what most researchers seek [1]. It 

has been proved that an organism tends to maximize growth rate and biomass formation when 

restricted to limitations of the carbon source or gene deletions [59]. Moreover, other objective 

functions can be used, and a few examples are the maximization or minimization of ATP 

production or maximization/minimization of a specific metabolite production [60].  

To conclude, a final validation of the GSM model should consider all the decisions that 

were taken in the manual curation step, and the model will only be ready when the prediction 

behavior match the experimental data. 

 

2.2 RELEVANT BIOINFORMATICS TOOLS 

It can be hard for biologists to handle large amounts of data collected during research, 

as these have to be analyzed with advanced mathematics and computation methods [61]. 

Bioinformatics is extremely useful and offers several tools to perform analysis of genome-scale 

datasets. The genome annotation step could take a long time to be completed, but it may be 

automated using bioinformatics tools that use biological databases such as KEGG the process 

may be hastened. In this line of view, this section presents some bioinformatics tools that can be 

useful in the generation of GSM models or tools that have methods which use these models to 

model the organism behavior. 
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2.2.1 Cobra ToolBox  

The Cobra ToolBox 2.0 [2] is a bioinformatics tool that researchers can use to predict a 

variety of metabolic phenotypes using GSM models, and it has been used over the past decade in 

several fields [62–64]. The Cobra ToolBox is released as a MATLAB® package for implanting 

COBRA methods. The name COBRA stands for COnstraint-Based Reconstruction and Analysis, 

and this software has been applied to the field of microbial metabolic reconstructions with success 

[65]. This software is used as a guide in metabolic pathway engineering to model pathogens [66] 

and host-pathogen interactions [67] and is also used to study the effect of diseases in the human 

metabolism [68]. Often, it is used for modelling, analyzing and predicting a variety of metabolic 

phenotypes using genome-scale biochemical networks.  

The COBRAtoolbox 2.0 core pipeline is to employ physicochemical, data-driven, and 

biological constraints to reach the possible phenotypic states of a reconstructed biological network 

(Figure 3). The methods available in COBRA may not provide an optimal solution, but they can 

provide a reduced set of solutions that can be used by researchers to formulate a biological 

hypothesis. 

The GSM networks in COBRA are created using knowledgebase such as BIGG [69]. This 

database uses manually curated genomes’ annotations that relate biological functions to the 

genome, by using the information of gene-protein-reactions [70]. The BIGG strategy has shown 

good results when applied to metabolism, and several GSM models’ reconstructions are available, 

for various organisms [71, 72]. 

The COBRA toolbox 2.0 provides the user with access to different methods such as FBA, 

gene essentiality analysis, gap filling[73], metabolic engineering[74], and visualization of 

computational models of metabolism. 

 

Figure 3. COnstraints-Based Reconstruction and Analysis of biological networks: (A) -Data sources for network reconstruction; (B) 
-Network reconstruction; (C) - Application of constraints to the network; (D)- Analysis of the network model in other to achieve an 
optimal solution. Adapted from [2]. 
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2.2.2 Pathway tools  

Pathway Tools software provides query, editing and visualization operations for pathways 

and genome databases, for EcoCyc and MetaCyc databases.  

MetaCyc is a vast metabolic-pathway database for many organisms. This database defines 

pathways and enzymes for different organisms. EcoCyc is a Pathway/Genome database focused 

on a specific organism named Escherichia coli (E. coli). Pathway Tools is a bioinformatics tool 

that enables the user to curate and computes a genome annotation. This tool can organize objects 

that share similar properties and attributes within classes. 

MetaCyc database contains information about metabolic pathways, reactions, enzymes, 

and substrate compounds. This tool serves as a reference for computational prediction of 

metabolic pathways for organisms that have their genome sequenced. The pipeline of MetaCyc is 

to gather information about pathways that had been reported in the literature, and then label the 

pathway with the organism(s) wherever that pathway is known to occur. One disadvantage of 

MetaCyc, when compared with EcoCyc, is that the metabolic maps are not so well studied as the 

metabolic model for E. coli [17].  

 

2.2.3 RAVEN  

The software name RAVEN[75] stands for Reconstruction, Analysis, and Visualization of 

Metabolic Networks. Like the COBRA Toolbox mentioned above, this tool also runs in MATLAB®. 

It can perform reconstruction, analysis, simulation, and visualization of GSM models. The software 

imports and exports the information in two formats, which are: SBML format and a Microsoft® 

Excel model representation. These formats allow a bigger annotation of model components, such 

as databases for reactions and genes. Models from COBRA Toolbox format can also be imported. 

RAVEN Toolbox is capable of creating a general network, generate functional models, 

assign sub-cellar localization, use user-defined models, integrate gap filling, running offline, and 

GSM models visualization [75]. The mains focus of the software are:  

• Perform the automatic reconstruction of GSM models, based on protein homology 

• Network analysis, modelling, and interpretation of simulation results 

• Using pre-drawn metabolic network maps, visualize the GSM models 
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This software uses both manual and automatic curation for generating draft models. The 

automatic curation relies on the KEGG database for the automatic identification of new metabolic 

functions not included in the manually curated model. Hence, RAVEN initially analyses the 

manually curated model and then uses online databases to find further information [75].  

 

2.2.4 GEMSiRV 

The Genome scale Metabolic model Simulation, Reconstruction and Visualization 

(GEMSiRV) [76] is another bioinformatics tool that can be used to reconstruct metabolic networks 

and provide easy editing, visualization and perform flux balance analysis of the generated models. 

This tool can be used for the GSM model’s reconstruction, computational studies, display, and 

manual curation. 

It is free software, able to run on the user local computer/server, decreasing the 

restrictions related to data size or internet speed. Another advantage of using GEMSiRV is that it 

enables import and manual curation of existing models, thus making it very interesting for GSM 

network reconstructions. This tool also has an interactive interface which allows the user to perform 

gap filling and to visualize the changes in the network further.  

GEMSiRV has three main modules:  

• The metabolic network reconstruction model – involves the tasks of model 

importing data and editing, construction of the references databases, draft reconstruction 

and model refinement. 

• Simulation model – relies on dead-end metabolite identification, objective 

optimization, FBA, robustness analysis, gene/reaction essentiality analysis, and gene 

deletion analysis. 

• Visualization model – GEMSiRV provides an interface for editing and visualizing 

the metabolic networks of interest.  

GEMSiRV software can accelerate the development of biomedical applications of metabolic 

reconstructions [76]. The projects-in-progress using this tool can be easily shared between 

researchers and therefore aids the share of information exchanges in the researchers’ community 

to get high-quality GSM models 
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2.2.5 SuBliMinaL Toolbox 

The SuBliMinaL Toolbox[77] consists of software capable of automating the steps of GSM 

models reconstruction and analysis. This tool has several independent modules that can be used 

independently or chained together to plan a reconstruction workflow allowing the generation of an 

initial draft of a metabolic reconstruction. The reconstructions are generated in the SBML format. 

The COBRA Toolbox can use the models created by SuBliMinaL Toolbox because of the software 

creates a generic biomass function [77]. Thus, allowing to perform constraint-based analyses of 

the model by using techniques such as FBA. 

This JAVA™ software uses web-services such as KEGG and MetaCyc to retrieve the 

required biochemical data. The models used to extract the information from the online databases 

frequently generate formatted models representing the union of all metabolic pathways detailed 

in each resource. These models can be merged, and their annotations can be used in other 

modules.   

The models used for annotation are dependent on the initial draft. The draft model needs 

to have unambiguous identifiers according to the Minimal Information Required In the Annotation 

of Models (MIRIAM) standard [78].  

 

 

Figure 4. Flow diagram of the chained modules present in SuBliMinaL Toolbox working together in order to 

form the draft model. The names of the boxes refer to individual modules of the tool. The grey right-hand 

branch signifies that existing reconstructions or individual pathways can be added to the pipeline of work 

allowing for the generation high-quality drafts. Adapted from [77] 
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2.2.6 merlin  

merlin is an application fully implemented in Java™ that uses genome-scale information 

to reconstruct high-quality, large-scale metabolic models, for any organism that has its genome 

sequenced. merlin can identify and annotate transport protein-encoding genes and assemble 

transport reactions for those carriers. Also, GPR rules are automatically created and included in 

the GSM model. merlin allows the users to visualize the via of the preliminary biochemical network, 

using KEGG pathways, and to curate the network manually. 

This software can accelerate the reconstruction process by performing an optimized 

genome re-annotation while allowing the local manual curation without the need for commercial 

software. merlin uses MySQL® or H2 relational databases for the local data repository and uses 

Java libraries to access web services. 

merlin has two main independent modules [4], namely: 

• Internal model database –used to retrieve and load an initial set of metabolic data such 

as metabolites, enzymes, and reactions into merlin’s internal database, which enables 

the assembly of the GSM model draft. 

• Annotation module, subdivided into three sub-modules: 

- Enzymes annotation – is the submodule responsible for the annotation of enzymatic 

functions to proteins encoded in the genome using homology search tools such as 

BLAST and HMMER [79]. Data retrieved for each homologous gene identified in 

the similarity search is processed individually, and the following data are retrieved: 

locus identifier, expected value, score, and organism. 

- Transporters annotation – these reactions are often only included in models if there 

are pieces of evidences supported in experimental data or literature. However, this 

approach usually originates a minimal number of transporters and does not allow 

performing GPR associations, as often the associated gene is unknown. The 

technology used to fix the problem automatically annotates carriers with TC family 

numbers and generates transport reactions for all metabolites transported by these 

carriers. 

- Compartments prediction module: LocTree performs the determination of the 

proteins' localization in eukaryotic organisms whereas prokaryotic organisms may 

use LocTree 3 [80] as well as PSORTb 3.0[81]. 
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2.2.6.1 Enzymes Annotation 

One of the advantages of using merlin for GSM model reconstruction is to have a complete 

framework capable of retrieving enzymatic, transport, and localization information, in a semi-

automated way. merlin framework can be used for both prokaryotes and eukaryotes. The data 

output from the tools used for enzymes annotations, namely, BLAST and HMMER can be worked 

by merlin in order to retrieve relevant information (Figure 5) [4].  

 

 

Figure 5. Enzyme annotation data collected by merlin after BLAST. The most relevant data for each gene present in the genome 
fasta file is stored. Also, data for every homologue identified for a certain gene is saved [4]. 

For each gene resulting from enzymatic annotation a numeric confidence score is calculated. 

The score will help to choose the product name and the EC number that should be given to every 

gene. This score, also referred to as annotation score, varies from 0 to 1 and it is calculated for 

each EC number and product name, as demonstrated in equation 6. The criteria to select the EC 

number and product name for each gene rely on choosing the one with the highest score. A 

parameter α controls both the weights of frequency and taxonomy. 

 

 
For a given gene, the frequency score (scorefrequency), calculates the number of occurrences of 

certain EC number among all homologues of that gene. The taxonomy score (scoretaxonomy) is 

defined by most common taxonomy data between the first n homologues identified by the blast 

and the target organism. Additionally, the alpha value is the variable that allows merlin’s users to 

choose which parameter has more influence in genome annotation.  

  

 scoreannotation= α ∗  scorefrequency +(1-α) ∗  scoretaxonomy (6) 
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2.2.6.2 Transporters Annotation  

Usually, most of the transport reactions present in a GSM model are identified using 

experimental data and literature. The Transport Proteins Annotation and Reactions Generation 

(TRIAGE) [82] is a tool present in merlin’s framework that allows the user to identify and classify 

all potential membrane transporter proteins of a target genome. The tool will automatically 

generate transport reactions for detected metabolites. Moreover, the data collected can be 

integrated into the GSM model. 

TRIAGE has a database of transport reactions and the information needed to create them 

was retrieved from TCDB. As mentioned before, the TCDB database associates each transporter 

protein with a unique TC number. The transport reactions associated with genes are usually 

catalyzed by proteins present in membranes [83]. For this reason, all proteins identified with 

transmembrane domains are plausible candidates to potential transport systems, including 

transport reactions of genes. The tool used by TRIAGE for the identification of transmembrane 

proteins is the TransMembrane prediction using Hidden Markov Models (TMHMM) [84] tool. The 

methodology used by TMHMM is to search in the target organism genome for genes encoding 

proteins with transmembrane helices [82]. After, the genes that could encode transmembrane 

proteins are identified and aligned using the Smith-Waterman (SW) algorithm for local alignments, 

thus improving the sensitivity when looking for homologous sequences. Furthermore, all the genes 

are associated with the TC family numbers that they match and a wide range of metabolites. 

TRIAGE selects the TC family number and all metabolites associated with each gene using the 

same method mentioned in the enzymatic annotation (Equation 6). 

The final candidates’ annotations for each gene provided by TRIAGE contain a TC family 

number and all metabolites that may be transported. After TRIAGE have finished building the 

database, it can create transport reactions by getting the information needed from its internal 

database [82].  
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2.2.6.3 GSM Model Assembly   

Later, all the information collected in these modules is uploaded into merlin’s database. 

After the compartmentalization module, the data collected during genome annotation is integrated 

into a draft GSM model. merlin also allows the user to perform manual and automatic curations 

using several GUIs. 

 After the enzyme’s annotation merlin can combine this information with more information 

retrieved from KEGG metabolic data and create a draft metabolic model containing all the essential 

reactions to assemble a stoichiometric model. The reactions from the draft network can be 

visualized and edited in a reactions view. Additionally, the user can curate in a “freeway”, meaning 

that the model can be manually modified by adding or removing reactions to the network or from 

the network. Users can also remove entire KEGG pathways from the draft metabolic network. A 

KEGG pathway is a set of reactions linked by matching metabolites. One particularity of these 

group of reactions is that they are associated with genes and EC numbers by KEGG Orthology 

(KO). 

 All the information gathered by merlin tools such as transport protein annotations, 

transport reactions, and GPR associations is going to be integrated into a draft model. The user, 

after the integration, can use merlin’s tools presented in Table 3, to edit the draft model generated 

manually. 

 
Table 3. List of all available tools in merlin’s repertoire for curation of draft metabolic networks. 

Tool Function 

blocked reactions Identifies unconnected metabolites  

unbalanced reactions Identifies possible unbalanced reactions  

drains (create) Automatically creates drains/exchange reactions  

Gene-protein-reaction rules Generates GPR rules using KO’s information 

e-biomass equation Generates biomass reaction using genome sequencing data 

correct reversibility  Corrects the reversibility of reactions in the network  

Export Allow to export at any time the stoichiometric model in the 

SBML format, export genome files and reactions. 
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2.2.7 OptFlux  

OptFlux[85] is another bioinformatics tool that can aid in metabolic engineering tasks, 

such as Metabolic Control Analysis (MCA), by using available models of metabolisms together with 

mathematical tools or experimental data to identify, for example, targets for genetic engineering 

[86]. This tool is implemented in Java™ language. OptFlux is divided into four main modules and 

they are (i)-Model Handling, (ii)-Simulation, (iii)-Optimization and (iv)-Pathway Analysis. 

Regarding the first module, OptFlux provides the user with several operations to visualize, 

import and export stoichiometric metabolic models, containing reactions, metabolites, equations 

and, if available, gene-reaction associations. The user can also upload models either from text files 

containing the lists of reactions, metabolites, the stoichiometric matrix, from files in SBML format 

or text files following the Metatool [87]. The model should identify external metabolites and 

biomass formation reactions from the input files based, for example, on explicit information. The 

user can later validate or edit this information. 

The second module corresponds to the metabolic phenotype simulation methods 

implemented in OptFlux. One method is to use algorithms to calculate the values for the fluxes 

over the whole set of reactions in the model. The results obtained for this model include flux values 

and net conversions. In the simulation module, the user can define specific environmental 

conditions. OptFlux provides the user to perform simulations using three different methods: FBA, 

Minimization of Metabolic Adjustment (MOMA) [88] or Regulatory on/off Minimization of 

Metabolic flux changes (ROOM) [57].  

In the third module, the user can identify sets of reactions deletions that maximize a given 

objective function connected with an industrial objective. All the algorithms implemented in this 

module are used so the user can identify genetic modifications that force the microorganism to 

produce a specific metabolite, but at the same time continue to maximize the biomass production.  

The fourth module, Pathways visualization, includes visualization which allows the user to 

have a graphic visualization of the pathways of the model. This tool associate’s numerical values 

to the different types of nodes (i.g., metabolites, enzymes, reactions) and edges (connections). 

Thus, allowing the visualization of the metabolic network overlapped by the values of the fluxes 

obtained in a simulation.  
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2.2.8 KBase  

The United States Department of Energy (DOE) Systems Biology Knowledgebase (KBase) 

is a software and an online data platform that provides the user with many resources for analyzing 

public data together with their experiments, thus enabling a better understanding of the results 

they obtained. Using the KBase platform is possible to get biochemical information about the 

genome being studied. Information’s, such as biochemical species (compounds), reactions, roles, 

media, metabolic maps, and metabolic pathways, are given to the user if he uses the annotation 

applications provided by KBase. One of the functionalities of this software is to predict and design 

biological functions. It provides the user with data and tools in a simple GUI, which is very similar 

among all the applications that KBase provides.  

KBase has over than 160 apps that can offer the user different approaches for 

(meta)genome assembly, contig binning, sequence homology analysis, tree building, comparative 

genomics, metabolic modelling, community modelling, gap-filling, genome annotation, RNA-seq 

processing, and expression analysis. Additionally, in Table 4 are listed the KBase supported data 

objects. It also provides data integration along with easy access to shared user analyses of public 

microbial reference data from external resources like the NCBI and the DOE Joint Genome Institute 

(JGI). They allow the user to complete the task and get to the results that they will later study. 

KBase purpose is to make it easier for scientists to create, execute and share analyses of their 

biological data.  

 

Table 4. KBase supported data objects 

 

 

 

 

 

 

 

 

 

Supported Data Objects 
reads 
contigs 
genomes 
metabolic models 
growth media 
RNA-seq 
expression 
growth phenotype data 
flux balance analysis conclusions 
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This platform is expected to grow wider, and as it does, the data, analysis tools, and 

computational experiments contributed by users should also increase, aiming to broader biological 

applications with enhanced support for functional prediction and comparison. 

KBase’s GUI is called Narrative, and it enables researchers to efficiently work together 

within the same platform (Figure 6). This GUI is built on the Jupyter® Notebooks, allowing 

researchers to design, carry out, record and share computational experiments in the form of 

Narratives. These are interactive documents that consist of all the data, analysis steps, 

parameters, visualizations, scripts, commentary, results, and conclusions of an experiment. KBase 

also has public Narratives that can be seen as tutorials for users. The main advantage of Narratives 

being built upon the Jupyter® Notebooks framework is that users can create and run scripts within 

a narrative using a “code cell”. The user can also use the flexibility of the code cells to customize 

analysis steps into their Narratives.  

 
Figure 6. Illustration of a Narrative in KBase where (1) refers to the data field where the user stores all the imputed/generated data 
along the narrative. (2) is the apps field, the user has access for over than 160 applications. (3) Represent the analysis steps of 
each app. The (4) field is pointing towards the share symbol, meaning that the users can share their narratives with other users. 
In field (5), Markdown cell, it is possible to add commentaries. The last field, (6), points out the custom scripts with which the user 
can a python script. Adapted from [89]. 

KBase has a reference database which includes all public genome sequences from 

RefSeq [90] and Phytozome [91]. The software keeps the genomes with their original IDs and 

annotations, and the pipeline of KBase can maintain gene calls and annotations updated. This 

platform stores lots of data sets shared by users. 
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2.2.8.1 KBase Apps for reconstructing a GSM model 

When the genome from an organism is uploaded to KBase interface, it should be re-

annotated using the application named “Annotate Microbial Genome”. This annotation app uses 

components from the Rapid Annotation using Subsystem Technology (RAST) toolkit, to update the 

annotations of a genome, or to perform computations on multiple of genomes. The tool receives 

as input an annotated genome and allows the user to re-annotate it, so the annotations are in 

accordance with other KBase genomes. As a result, the re-annotated genome is ready to be further 

analyzed by other KBase apps. The identifiers generated by this tool are consistent with SEED 

subsystem naming conventions. 

This application has the following pipeline: 

1. Annotate protein-encoding genes with k-mers.  

It consists in defining a set of signature k-mers (all the possible substrings of 

length k that are contained in a string, for this case amino acid 8-mers) built from 

information regarding annotations in the CoreSEED.  The CoreSEED is a 

microbial genome database and is most used by RAST for manual annotations. 

This annotation strategy promotes a better estimative of the core gene functions. 

2. Annotate remaining hypothetical proteins with k-mers 

In this stage will be used a set of k-mers that was built using the public annotation 

version of the SEED database named PubSEEED.  

3. Find close neighbours and Annotate proteins similarity  

All the hypothetical proteins that were possibly missed in steps 1 and 2 are going 

to be annotated by searching against close relative genomes. BLAST is used in 

the search.  

 The next stage in automated GSM model reconstruction in KBase is to use the app “Build 

Metabolic Model”. The pipeline consists of steps, namely, step 1) Re-annotating Imported 

Genomes, step 2) Preliminary Reconstruction, step 3) Initial Gapfilling, step 4) Flux Balance 

Analysis. 

 Step 1 - Re-annotating Imported Genomes  

 This method was already described above using the application “Annotate Microbial 

Genome”. 
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 Step 2 – Preliminary Reconstruction  

After the genome reannotation using RAST at step 1, the genome can be inserted in the 

pipeline for preliminary reconstruction. At this step, the annotations retrieved by RAST at step 1 

are used to generate draft metabolic models. The draft model will have a biomass reaction that is 

organism-specific, which was created using a template biomass reaction. When the template 

biomass reactions, such as, for, gram-negative, gram-positive, and plant were generated they were 

based on the use of RAST functional annotations to commit non-universal biomass components 

(i.e., cofactors) that serve as unique biological functions within all a wide range of organisms or a 

smaller set of organisms. The draft model uses GPR associations to represent the mapping 

between the biochemical reactions and the functional gene rules assigned when the RAST 

annotation was performed. The primary goal of creating GPR associations is to allow the pipeline 

to comprehend between different scenarios such as cases where protein products from different 

genes form an enzymatic complex to catalyze a reaction and cases where proteins products from 

different genes can individually catalyze the same reaction. In this step, spontaneous reactions 

are added. At the end of this step, the draft metabolic model will contain all reactions associated 

with one or more enzymes encoded in the genome that are identified in the annotations. 

 

 Step 3 – Initial Gapflling 

 It is an optional step, but it runs by default thus meaning it is recommended to be done. 

This step will enhance the quality of the draft metabolic model because most of the genomes are 

not thoroughly annotated and therefore usually draft metabolic models have gaps that inhibit the 

production of some biomass precursors. An optimization algorithm runs at this step, to identify 

the minimal set of reactions that have to add to each model to fill the gaps. This step will ensure 

that every model can simulate growth. The reactions inserted or modified during gapfilling are 

retrieved from the ModelSEED biochemistry database.  

 

 Step 4 – Flux Balance Analysis 

 The FBA method can be performed when the model reconstruction is complete in order 

to get knowledge of the capacity of reactions to carry flux and reaction essentiality. Additionally, 

KBase uses Fluxes Variability Analysis (FVA) to classify the reactions in essential, active or blocked. 

An essential reaction is defined as a reaction that must carry flux for growth. Active reactions are 

the ones that only optionally carry flux, and blocked reactions are not able to carry flux. 
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 The “Gapfilling” application can be used inside the “Build Metabolic Model” app, or it 

can be done separately. With this application the user can choose the minimal set of reactions to 

add to a draft metabolic model, thus enabling it to produce biomass in a specific media. Using 

this app, it is also possible to set the media condition; for example, it enables the user to study 

the metabolites involved in the growth of the organism being studied. By default, KBase’s gapfilling 

app uses a “complete” media (media containing all metabolites present in KBase’s biochemistry 

database). Additionally, KBase provides more than 500 media conditions that can be used for 

gapfilling. Besides this wide media range alternatives for default media, the user can also upload 

their media or create it by using the app “Create or Edit Media”.  

 Regarding the upload method, the media as to be in a personalized Tab-Separated Values 

(TSV) or Excel file with four columns like in Table 5. 

 

Table 5. Format of TSV or Excel file to be uploaded into KBase’s Narrative.  

Column  Name Data 

1st Compound identifier  ModelSEED identifier, 

KEGG identifier, PubChem 

identifier, or compound 

name such as “lactose”  

2sd Concentration Concentration of 

compound in mol/L  

3rd Min flux Minimum allowed 

uptake/excretion of 

compound  

4th Max flux Maximum allowed 

uptake/excretion of 

compound 

 

 The “minflux” and “maxflux” columns are the connection between the media to an FBA 

model. Absolute units must be used in these two columns, and they represent the range of possible 

fluxes for exchange reactions (i.e., reactions that transport the media compounds into an out of 

the cell. Negative values represent the excretion, transport out of the cell, and positive values 
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correspond to uptake, transport into the cell. Both minflux and maxflux units are mmol per gram 

cell dry weight per hour.  

 If the user runs more than one time this app, all the multiple gapfilling solutions are 

gathered into the same model. For example, if in the “Build Metabolic Model” app the user 

chooses complete media the gapfill will only add all the reactions needed for simulating growth. 

After, if the user runs again this app for an already gapfilled model but this time it uses a minimal 

media, the algorithm will only add additional reactions needed to grow on the minimal media. 

 KBase uses two solvers for Gapfill optimization, namely, GNU Linear Programming Kit 

(GLPK) and Solving Constraint Integer Programs (SCIP). The first one is used for most pure-linear 

optimizations and the second one is used for more complex problems. 

Most of the apps built on KBase software were based on ideas from previous systems 

designed to hold large-scale bioinformatics analysis and model building. KBase is very different 

from other systems such as COBRA toolbox, Pathway Tools, and RAVEN Toolbox, which are 

capable of predictive modelling of metabolism because of these lack support for genome 

assembly, annotation, and comparison. In contrast, systems such as Galaxy[92], Taverna [93] 

and GenePattern [94] allow the user to develop and run bioinformatics workflows, but lack tools 

for genome annotation or predictive modelling. 

As shown in Table 6, KBase and merlin are currently the two frameworks more suitable 

for reconstructing GSM models, according to these criteria. KBase is a broader platform because 

it enables the user to perform not only GSM reconstructions but also genome assembly and 

comparative genomics. 

Table 6. Comparison of the features of software tools developed for aiding the reconstruction of genome-scale metabolic models, 
mentioned above. 

Software KBase 
 

merlin 
 

RAVEN  
 

Pathway 
tools 

Includes general network x x x x 
Generates functional models x x x x 
Assigns sub-cellular localization x x x - 
Can use user defined models x x x x 
Integrates gap filling x x x  
Offline software  x x x 
Graphical interface for manual 
curation 

x x - x 

Reactions stoichiometry validation x x - x 
Includes visualization x x x x 
Enzymes annotation x x x  
Transporters annotation x x - X 
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2.3 SYNTROPHIC BACTERIA COMMUNITY 

2.3.1 Background 

First, it is essential to understand the meaning of the term “Syntrophy”. This definition is 

used to characterize microbial cross-feeding. The term syntrophy has several classical definitions, 

such as: 

• The cooperation between two microorganisms that depend on each other to perform their 

metabolic activity and in which the mutual dependence cannot be overcome by the addition 

of a co-substrate or any nutrient [95]. 

• A “thermodynamically independent lifestyle where the degradation of a compound, such as 

a fatty acid occurs only when degradation end products, usually hydrogen, formate, and 

acetate, are maintained at deficient concentrations” [96]. 

• A “nutritional situation in which two or more organisms combine their metabolic capabilities 

to catabolise a substrate that cannot be catabolised by either one of them alone” [97]. 

• “Relationships in which both partners depend on each other for energetic reasons and 

perform together a fermentation process that neither one or both could run on its own” [98]. 

• An “obligated mutualistic metabolism” [5]. 

This relationship resembles a beneficial symbiosis (i.e., mutualism [99]). These two 

relationships differ on one another because symbiotic relationships are not necessarily based on 

metabolism but, for example, on protection against chemical or mechanical stress [100]. The type 

of metabolism in a syntrophic relationship between two organisms, most of the times, can be 

defined as one partner providing a chemical compound that is consumed by the other in exchange 

for something. The chemical outcome of syntrophic activities differs from the outcome of each 

organism when they act separately. Usually, the benefits of the metabolic interaction between two 

microorganisms come at the cost of low energetic yields and slower growth rates [5].  

Syntrophic microorganisms play an important role in carbon cycling, for example under 

anoxic conditions. The metabolic process of a syntrophic organism can change the environment 

around them. Studying the mechanisms behind metabolic interactions of syntrophic organisms 

will allow the microbial process to be better engineered to, for instance, treat wastewater or recover 

methane gas from proliferous resources.  
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The general process of such syntrophic relationship consists of anaerobic degradation of 

complex chemical compounds. It is often two- or three-step process, in which polysaccharides, 

proteins, nucleic acids, and lipids are primarily fermented to intermediates, such as hydrogen, 

formate, carbon dioxide (CO2), and acetate, for methanogenesis and to smaller organic 

compounds (i.e., lactate and butyrate) (Figure 7). These intermediate products are further 

degraded by secondary fermentation process if the microorganisms live in an environment that 

lacks external electron acceptor. Thus, allowing the production of substrates that can enter directly 

into methanogenic pathways [98].  

 

Figure 7. Schematic drawing of “classical” syntrophy depending on the environmental conditions (methanogenic environment). 
The thicker dashed line represents the border of the system. 

Regarding methanogenesis, it plays a vital role in carbon cycling, leading to the formation 

of methane from small carbon sources. Methanogenic archaea directly influence the metabolism 

of syntrophic microorganisms, because they are responsible for the removal of significant electron 

carriers, such as hydrogen and formate, in the lack of other terminal electron acceptors. Also, 

methanogens need fermenting microorganisms to produce their substantial metabolic 

intermediate products.  
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2.3.2 Syntrophobacter fumaroxidans strain MPOBT 

  In nature, there are four species of the genus Syntrophobacter. The name of the genus 

refers to a rod-shaped bacterium that establishes a syntrophic association with hydrogen and 

formate using microorganisms [101]. Species from this genus can grow on propionate. This 

substrate is an essential intermediate for microorganisms that live in methanogenic environments. 

To the moment, only seven syntrophic propionate-oxidation bacteria species have been discovered. 

Between them, a group of four mesophilic (warm temperatures) species can be identified, they 

are related to the mesophilic sulphate reducers. They are Syntrophobacter wolinii [102], S. 

fumaroxidans [101], Syntrophobacter pfennigii and Smithella propionica [103], and they are all 

Gram-negative bacteria. All members of the genus Syntrophobacter are able to use sulphate as 

an electron acceptor and oxidize propionate via the methylmalonyl coenzyme A (CoA) pathway 

[104]. 

Regarding the organism of interest, S. fumaroxidans, the species name derives from the 

Latin word “fumaricum” referring to fumaric acid and “oxidans” that refers to oxidizing, pointing 

out to fumarate fermentation. The most studied species of the genus Syntrophobacter is the strain 

MPOBT. The cells from S. fumaroxidans strain MPOBT have a rod shape (Figure 8) and do not form 

endospores. The metabolism of these organisms can be respiratory or fermentative, but it is 

essentially strictly anaerobic [104].  

In pure culture S. fumaroxidans uses sulphate or fumarate as an electron acceptor, but 

when in co-culture with a hydrogen and formate-scavenger methanogen organism it uses 

propionate syntrophically via the methylmalonyl-CoA pathway [105].  

The genome of S. fumaroxidans was sequenced at JGI [106]. Genome annotation was 

performed using Critica [107] supplemented with the output of the Generation and Glimmer 

models [108]. All the predicted coding DNA sequences (CDSs) were translated and searched in 

databases, such as NCBI’s non-redundant database, KEGG, and UniProt. 

S. fumaroxidans genome has a length of 4,990,251 bp and holds a circular chromosome 

with a 59.95% GC content. The genome annotation also showed that S. fumaroxidans has 4,179 

predicted genes, of which 4,098 were protein coding genes, 81 RNAs and 34 pseudogenes. The 

percentage of genes that have been given a supposed function is around 67%, and the remaining 

genes are considered to be hypothetical proteins [109].  
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Figure 8. Microscopy photograph of cells of S. fumaroxidans. Adapted from [109]. 

 

2.3.3 Methanospirillum hungatei strain JF1 

In methanogenic environments, it is common to find many different species able to 

produce biogenic methane. Between them there is one of particular interest, that is M. hungatei 

which belongs to the family of Methanospirillaceae, and the only genus is Methanospirillum. The 

species epithet comes from the Latin in honour of Dr. R. E. Hungate. He was the man responsible 

for the invention of methodologies for modern isolation and cultivation of strictly anaerobic bacteria 

and archaea [110]. The strain JF1 was the first isolated type species for M. hungatei, and it was 

first isolated from sewage sludge [111]. M. hungatei strain JF1 is Archaean hydrogen- and formate-

utilizing, that produces methane. The cells of this microorganism are narrow and curved rods 

(Figure 9). The metabolism of this organism is strictly anaerobic, and it uses hydrogen plus carbon 

dioxide and/or formate as the methanogenic substrate. M. hungatei uses acetate as the main 

supply for cell carbon [112]. The ideal growth temperature for this organism is around 37 °C.  

Microorganisms like M. hungatei that can produce methane have a crucial role in the 

global carbon cycle, and they are also used in the treatment of organic waste, and they can also 

be used to produce biofuel from biomass [95].  

The genome of M. hungatei strain JF1, like the genome of S. fumaroxidans, was also 

sequenced at the JGI. M. hungatei had the genome annotated using Prodigal [113] and pursued 

by a manual curation using the JGI GenePRIMP pipeline [114]. The procedure used in the 

characterization of CDSs is the same used for S. fumaroxidans, with some differences in the 

databases that were used for the identification of transporter proteins. For this microorganism, 

membrane transport protein analysis was performed with IMG [115].  
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The genome of the formate-utilizing organism M. hungatei is one circular chromosome of 

3,544,738 bp with 3,307 predicted genes of which 3,239 are protein-coding genes and a GC 

content of 45.15%. About 61%, of the protein-coding genes, have a putative function and the 

remaining genes do not have a function assigned [116]. This genome is among the largest within 

the Archaea domain, and it suggests the presence of unrecognized biochemical/physiological 

properties that probably extend to close organisms belonging to the family Methanospirillaceae 

and the ability to interact with syntrophic bacteria, like S. fumaroxidans. M. hungatei strain JF1 

has multiple archaeal-type flagella filaments at the cell ends [111]. These filaments are very 

important to this microorganism because they may function in cell-cell adhesion or cell-cell 

communication and genes for multiple hydrogenases and formate dehydrogenases to metabolize 

certain compounds, such as formate. 

 

Figure 9. Cells of M. hungatei showing tufts of polar flagella. Black arrow pointing towards tufts. Adapted from [111] 

 

2.3.5 Syntrophic Relationship of S. fumaroxidans strain MPOBT and M. hungatei 
strain JF1 

S. fumaroxidans is a bacterium that degrades propionate in a syntrophic association with 

formate scavengers, such as M. hungatei. Studies revealed that the transference of both hydrogen 

and formate are essential mechanisms of electron transference between species [117]. The 

degradation of propionate in the absence of an external electron acceptor requires low hydrogen 

and formate concentrations, and M. hungatei is the ideal partner for S. fumaroxidans because 

this organism can maintain these low concentrations. M. hungatei uses both hydrogen and carbon 

dioxide in order to produce methane (Figure 10).  
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Figure 10. Simplified illustration of the syntrophic relationship between S. fumaroxidans and M. hungatei. S. fumaroxidans uses 
propionate from the environment to produce acetate and in the process, it can produce hydrogen (H2). The hydrogen can later be 
very important in the metabolism of M. hungatei more exactly in stage (A) where it will participate in the reduction of the ferredoxins 
that assist the reaction that converts intermediate 3 into intermediate 4. Adapted from [117] 

The metabolism of both organisms is dependent on the electron flux, allowing for all 

reduction and oxidation reactions to happen. This flux is generated by the action of several 

hydrogenases and dehydrogenases present in each organism [118]. Hydrogenases are enzymes 

that catalyse the reversible oxidation of molecular hydrogen, and they have an important role in 

anaerobic metabolism [119]. Dehydrogenases are another kind of enzymes that promote the 

oxidation of substrates through the reduction of an electron acceptor, usually Nicotinamide 

Adenine Dinucleotide (NAD+)/ Nicotinamide Adenine Dinucleotide Phosphate (NADP).  
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CHAPTER 3 
 

MATERIALS AND METHODS 
 

This chapter is focused on the materials and methods used 

in the reconstruction of the GSM models for M. hungatei 

and S. fumaroxidans. 

 

3.1 GENOME ANNOTATION 

In this section, the strategies that were used to annotate the genome of Syntrophobacter 

fumaroxidans and Methanospirillum hungatei will be presented. Since the GSM’s model’ 

reconstructions for both M. hunagtei and S. fumaroxidans were performed in different ways the 

methods used must be presented separately. 

3.1.1 Enzymes and transporters annotations for M. hungatei using KBase 

The enzymatic annotation for M. hungatei was performed in KBase. First, a fasta file 

containing M. hungatei’s amino acid sequences was uploaded into the Narrative. This file was 

retrieved from the NCBI database using the free Uniform Resource Locator (URL) access: 

ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/013/445/GCF_000013445.1_ASM1344v1 

(accessed at 19 of February 2018). There are two methods for importing the files into the KBase 

interface, one to download the documents from NCBI manually, and the other is, to use a tool 

named “Add Data” that allows automatic access to public databases such as NCBI. The last-

mentioned method was the one it was used.  
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After uploading the genome to the Narrative, it was reannotated using the app “Annotate 

Microbial Genome”. This tool used the RAST algorithm to annotate the genome, and as a result, 

it created a file containing 2085 annotated genes with 1390 distinct functions. 

 

3.1.2 Building GSM draft model of M. hungatei in KBase 

In KBase the models are generated based on template models, such as Gram-negative 

microbe model, Gram-positive microbe model, Core pathways microbe model, and Plant model. 

The main difference in these models is the biomass composition and biochemical reaction 

functional associations. The “Build Metabolic Model” app present in KBase was used to generate 

a draft model for M. hungatei. In order to run this app, the genome previously uploaded to the 

Narrative was used as the input genome together with a complete media (Table 7) for gapfilling. 

The template model chosen was the Gram-negative microbe model to match the fact that the 

organism being studied is also of the same Gram stain.  
 

Table 7. Complete basal bicarbonate-buffered medium used for gapffilling. Adapated from [120]. 

Category Formula Concentration Cont. (…) 

 Na2HPO4 0.53 g/L 
Alkaline 

trace 

solution 

Na2SeO3 0.10 mmol/L 

 KH2PO4 0.41 g/L Na2WO4 0.10 mmol/L 

 NH4Cl 0.30 g/L Na2MoO4 0.10 mmol/L 

 CaCl2 0.11 g/L NaOH 10.00 mmol/L 

 MgCl2 0.10 g/L 

Vitamins 

Biotin 0.02 g/L 

 NaCl 0.30 g/L Niacin 0.20 g/L 

 NaHCO3 4.00 g/L Pyridoxine 0.50 g/L 

 

 

Acid 

Trace 

Solution 

 

FeCl2 7.50 mmol/L Riboflavin 0.10 g/L 

H3BO4 1.00 mmol/L Thiamine 0.20 g/L 

ZnCl2 0.50 mmol/L Cyanocobalamin 0.10 g/L 

CuCl2 0.10 mmol/L p-aminobenzoic 

acid 
0.10 g/L 

MnCl2 0.50 mmol/L Pantothenic acid 0.10 g/L 

CoCl2 0.50 mmol/L    

NiCl2 0.10 mmol/L    

HCl 50.00 mmol/L    

 

The output of the app generated a draft model as an “FBAmodel” object in the Narrative. 

The file type only reflects the type of model. The output of gapfilling is also added to the Narrative 
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panel. The draft created has eight tabs for browsing the data, namely, Overview, Reactions, 

Compounds, Genes, Compartments, Biomass, Gapfilling, and Pathways.  

• Overview : The key information about the model, such as the associated genome, the 

number of reactions, and the number of compounds are summarized. 

• Reactions : All reactions are identified by a reaction ID, name, biochemical equation, 

associated gene IDs, and an indication informing if the reaction was added by the 

gapfilling stage or not. 

• Compounds : Presents the information about the compounds in the model such as 

chemical formula and charge. 

• Genes : Represent the genes by gene IDs and associated reaction IDs. 

• Compartments : Detailed information about subcellular localization of the compounds 

and enzymes. Usually, there are different types of compartments in microbes, namely, 

Cytosol (c), Periplasm (p), and Extracellular (e). For each compartment all the 

compounds and reactions are identified using compartment notation (i.e., 

rxn00001[c0], cpd00001[c0]). 

• Biomass : Indicates the biomass composition of the model. In the majority of models, 

the biomass is defined as an equation where biomass compounds and ATP would make 

1 gram of biomass. In this tab, it is also possible to check the coefficient of each biomass 

compound in the Coefficient column. The positive and negative coefficients indicate if 

the compounds are on the right or the left side of the biomass equation, respectively.  

• Gapfilling : In this section, the reactions that were added in order to fill metabolic gaps 

as a direct result of missing genes or inconsistences annotations. The objective of the 

gapfilling process is to add a minimal number of reactions and compounds to make the 

GSM network generate biomass. 

• Pathways : This tab has KEGG maps representing the metabolic network of the model.  

Using the draft model of M. hungatei present in the Narrative, it was possible to browse 

the linkage between reactions and protein-encoding genes, search for all compounds used in a 

model, and identify possible gaps in the model that were not found by the automatic annotation 

tools.  
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3.1.4 Enzymes annotation in merlin for S. fumaroxidans  

Different from M. hungatei the enzymatic annotation for S. fumaroxidans was performed 

using merlin’s framework. First, a workspace was created in merlin with the name 

“sfumaroxidansMPOBT”. A plugin present in merlin’s interface named “open” was used to open 

the workspace. In this plugin the taxonomy number of S. fumaroxidans (taxonomy identifier: 

335543) was added and a button named “search” was pressed in order to retrieve information 

from different online databases such as NCBI automatically. Then, inside merlin’s interface, the 

NCBI locus tag identifier (i.g., “Sfum_0001”) was nominated to each enzyme encoding gene. 

Afterward, the BLAST algorithm was used to make a homology search for every gene. The 

databases used as sources of homologous amino acid sequences in BLAST were from UniProt, 

namely, UniProt/Swiss-Prot (curated database) and UniProt/TrEMBL (non-curated database). The 

maximum e-value was inferred as 1E-30 to get a high-quality set of homologies. The e-value 

measures the statistical difference of a BLAST hit and for that reason can display the quality of a 

homology. Values of e-value near to zero (low e-values) represent good homologies results and 

indicate a high similarity between sequences. The results field was limited to a maximum of 100 

hits per gene.  

merlin automatically processed the information provided by BLAST and the annotations 

of the metabolic genes, uniformly labelled as Enzyme Encoding Gene Candidate (EEGC), were 

analysed. For a gene to be considered an EEGC, at least, one of its homologous’ genes has an 

enzymatic function associated with an EC number.  

The next stage was to automatically annotate the genome using a new plugin in merlin 

named “automatic workflow”. Note that this plugin is not yet available in the current version of 

merlin. It consists of selecting seven close phylogenetic relatives to S. fumaroxidans and select 

different e-values for each of them. The lowest e-values (1E-10/1E-20) are assigned for the three 

organisms that have information curated in UniProt’s databases, more precisely in 

UniProt/SWISS-Prot. The remaining five organisms are assigned with an e-value higher than 1E-

20 (1E-30/1E-40) and are the ones that do not have curated information. The annotations of 

these organisms are retrieved from the non-curated UniProt’s database, the UniProt/TrEMBL. 
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3.1.3 Transporter Proteins 

TRIAGE method is implemented in merlin as previously mentioned and was the one 

chosen to perform the transporters annotation. This merlin’s tool was able to identify genes 

encoding transport systems based on S. fumaroxidans strain MPOBT genome information. Using 

the following URL http://www.tcdb.org/public/tcdb, TRIAGE was able to access the TCDB 

sequences fasta files. Next, the algorithm used was SW in order to align the sequences and the 

similarity threshold value was defined as 10%. Additionally, the minimum number of helices was 

set to 1 (Figure 11).  

The tool generated records with TC family number and UniProt accession number for 

each gene homology. The TC number is used to access transport protein description available on 

TCDB database.  

 

 

Figure 11. TRIAGE standards for retrieving genes encoding transport systems in S. fumaroxidans MPOBT  
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3.2 Syntrophobacter fumaroxidans MPOBT DRAFT NETWORK ASSEMBLY 

This section describes all the strategies used during the assembly of the draft network of 

Syntrophobacter fumaroxidans and the manual curation methods used to curate the draft network. 

3.2.1 Metabolic Data Integration  

merlin can automatically retrieve KEGG metabolic data, such as metabolites, 

proteins/enzymes, and biochemical reactions. Next, the enzymatic annotation was fully 

automatically integrated, thus generating a draft network. merlin automatically gathered all 

metabolic reactions and associated them with complete EC numbers creating KEGG metabolic 

pathways. Moreover, all spontaneous and non-enzymatic reactions were integrated into the 

network.  

 

3.2.2 Transporter Proteins Data Integration  

The TRIAGE plugin generated a list of metabolites that can be transported for each 

transported protein that was previously annotated, but only the ones with a score above a specific 

threshold were integrated into the network. The strategy adopted allowed to select a set of reactions 

associated with the assigned transporter protein encoding genes and integrate them into the 

network. 

3.2.3 Exchange reactions Integration and Compartmentalization 

As a result, of using TRIAGE to build the transporter reactions, an outside compartment 

for the extracellular space was created. merlin automatically generated the exchange reactions, 

that are reactions slightly different from the usual reactions. These only have a single reactant 

metabolite and are only created for every metabolite present in the outside compartment.  

Merlin also created a compartment for the intracellular space (inside compartment) that 

is separated from the extracellular space (outside compartment) by the cellular membrane. 

Additionally, the core of the metabolic network is allocated in the inside compartment. 
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3.2.4 Manual Curation of the Draft Network of S. fumaroxidans 
 

In this stage will be presented all the strategies used to revise the draft network of 

Syntrophobacter fumaroxidans. 

 

3.2.4.1 Pathway-by-pathway Analysis 
 

In merlin, it is possible to visualize all the KEGG pathways present in the draft network, 

previously built, on a web browser (Figure 12). A KEGG pathway is a set of reactions that belong 

to the network, paired with the corresponding enzymes (associated with an EC number) connected 

by metabolites. merlin can highlight the reactions and enzymes present in each KEGG pathway 

map and allows the user to have a better visualization of that section of the metabolic network. 

Both reactions and EC numbers available in the network are colored by merlin using the 

standards present in Table 8. 

 

Table 8. Standards used by merlin to colour the reactions and enzymes in the network 

Colour Meaning  
Green Presence of the enzyme and reaction in the pathway 
Blue Presence of the reaction in the pathway but absence of the enzyme 
Cyan blue Presence of the enzyme in the pathway but the reaction is a connection to 

a dead-end of the draft network 
Red  Presence of the enzyme but the reaction is a dead end of the draft network 
Colorless Absence of both reaction and enzyme in the pathway 

  

 
A pathway-by-pathway analysis was performed in order to proceed with the manual 

curation. Both KEGG’s and MetaCyc’s S. fumaroxidans reference pathway were used to possible 

undercover issues with the network. One by one, the core metabolic pathways (pathways for the 

synthesis of essential metabolites) of the draft network were compared against the reference 

pathways from KEGG and MetaCyc, to find potential missing EC numbers and reactions. 
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Figure 12. Example of a partial metabolic KEGG’s pathway map coloured by merlin tool. 

 

3.2.4.2 Gap Filling  

For gap filling information about S. fumaroxidans genome and metabolism was retrieved 

from literature. The main topics about the metabolism, such as the central carbon metabolism, 

the carbohydrate metabolism, and biosynthesis of macromolecules were investigated. Relevant 

literature about the metabolism of strictly phylogenetic organisms of S. fumaroxidans was also 

investigated to differentiate the gaps that had to be filled from the gaps that were originated by 

auxotrophies, an absence of functional genes (i.e., pseudogenes), and metabolic incapacities. 

While investigating for potential errors when performing the pathway-by-pathway analysis, 

sometimes some reactions or even GPR associations were added to the network to fill gaps, but 

only if supporting evidence was available in the literature or genome annotation. For a few cases, 

the literature was the only source available to corroborate the veracity of the reactions due to the 

lack of information at the genome level. These set of reactions were, therefore, added to the 

network but they have missing enzymes or enzyme encoding genes associated.  
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3.2.4.3 Mass Balance 

Inside merlin’s framework, there is a semi-automatic tool to identify unbalanced reactions. 

This tool will highlight as bold and italicized all the reactions that have an unequal number of 

atoms between reactants and products.  

Regarding the charge balance, only neutral and unprotonated formulas of the compounds 

are used by KEGG. merlin’s tool allowed to define the proton name and for that purpose was 

established as “H+”. To all the highlighted unbalanced reactions was added a tab corresponding 

to the balance mass, and it indicated the numerical difference of chemical elements present on 

both sides of the reaction. After investigating the reactions in terms of stoichiometry and mass 

balance, the reactions were modified and updated in merlin by the addition or removal of chemical 

elements. 

 

3.3 M. hunagtei DRAFT METABOLIC NETWORK CURATION IN merlin 

This section describes the manual curation methods used to curate the draft network of 

Methanospirillum hungatei. 

 

3.3.1 M. hungatei draft GSM model integration in merlin 

Besides the easy and fast generation of a GSM model in KBase, performing manual 

annotation in the KBase’s narrative was very hard, and it would take too long to be finished. In 

this line of view, the draft GSM model was exported from KBase in the SBML format and integrated 

into merlin. 

For this work, a tool named BioCOISO, previous developed for merlin (not yet published) 

was used and it is able to import models in the SBML format. This tool is available at the following 

URL: https://drive.google.com/open?id=0B8m5ZTO9b_cCbUhLb2lVeHNZWWM. To that date, 

merlin could not import GSM models from other genome-scale metabolic model reconstruction 

tools. The tool was developed based on the SMBL files generated by KBase, and for this reason, 

the tool is better suited to accept SBML files with modelSEED identifiers. 

 

3.3.2 Manual curation of the Draft Network of M. hunagtei 

The first task performed in the manual curation of the draft network occurred inside KBase 

though it involved the use of the merlin tool named “e-biomass equation”. The biomass reaction 

generated by KBase includes three macromolecules, namely, DNA, RNA, and Protein without 

https://drive.google.com/open?id=0B8m5ZTO9b_cCbUhLb2lVeHNZWWM
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reactions to biosynthesize these compounds. merlin’s tool was used to identify the precursors and 

assign a stoichiometric value to each one. Note that this method is identical to the one used in 

the next section since both organisms are of the type Gram-negative, which means that the tool 

will be performed using the same standards, only differing in the information retained in the 

genome files (Figure 13). For more information about the tool, read the next section. 

 

 

Figure 13. merlin’s e-biomass equation tool used to formulate the biomass composition of Methanospirillum hungatei 

The output of the tool allowed the addition of precursors to the three macromolecules 

together with the respective content values. The three synthesis reactions for these three 

macromolecules were modified inside KBase using an application named “Edit Metabolic Model”, 

to edit those reactions manually. After modifying these reactions, the model was exported format 

KBase using the export tool, which enables it to be exported in different formats such as JavaScript 

Object Notation (JSON), EXCEL and SBML. 

The pipeline used in the manual curation in merlin of S. fumaroxidans was adapted to 

perform the manual curation of M. hungatei. The same tasks were performed, starting in a 

pathway-by-pathway analysis following the same standards used before. The next step, gap filling, 

was conducted in the same way although the network has been previously gap-filled using KBase’s 

tool for gap filling. The last task, mass balance, was also carried out in the same standards. 
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3.4 BIOMASS AND ENERGY REQUIREMNTS FORMULATION FOR M. 

hungatei and S. fumaroxidans  

  The biomass reaction, as mentioned before, is the reaction responsible for the formation 

of biomass from precursors or macromolecules. In this work, the strategy used was to use complex 

macromolecules has the precursors in the biomass reaction. For this purpose, eight entities were 

created. Each one of these represented a macromolecule, and when combined, they accounted 

for the overall composition of Syntrophobacter fumaroxidans MPOBT. The stoichiometry of each 

reactant (macromolecule) in the biomass reaction was defined as the value of a gram of 

macromolecule per gram of biomass.  

 merlin’s “e-biomass equation” was used to formulate the biomass reaction [121]. This tool 

generated a draft biomass reaction using the genome information (Figure 12). It uses the fasta 

files of assembled whole-genome sequences, such as genome nucleotide sequence, genome 

amino acid, genome Transfer Ribonucleic Acid (tRNA) sequence, genome mRNA sequence and 

genome Ribosomal Ribonucleic Acid (rRNA). These files were automatically downloaded from the 

NCBI database when the workspace was created. The contents of the macromolecules for Gram-

negative bacteria were previously estimated in the study mentioned above [121] and integrated 

into merlin’s tool. The draft biomass reaction for S. fumaroxidans MPOBT was then retrieved by 

using the standards illustrated in Figure 14. 

 

 

Figure 14. merlin’s e-biomass equation tool used to formulate the biomass composition of Syntrophobacter fumaroxidans 
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 Another method was used to complement the biomass equation. Firstly, research was 

performed in order to identify the phylogenetic closest organisms. Among the organisms identified 

the Geobacter sulfureducens (G. sulfureducens) [122] was the only one to have a GSM model 

available. This GSM was then used to help in the formulation of the biomass equation of the 

Syntrophobacter fumaroxidans GSM model. Two new macromolecular entities were assigned to 

the S. fumaroxidans model, the “e-Fatty Acid” and “e-Peptidoglycan” based on G. sulfureducens 

model. In merlin, for each macromolecule, a reaction was created representing the bio assembly 

of the monomers into the macromolecules  

 Two reactions associated with lipid metabolic biosynthesis and metabolism were added 

to the draft model in the biomass pathway. These reactions were assigned with the following IDs: 

• “R_e-Acyl-CoA”  

• “R_e-Fatty_Acid” 

 The first reaction, “R_e-Acyl-CoA”, represents the link between the “Fatty Acid” and the 

Acyl-CoA. The term “Fatty Acid” was chosen to represent the fatty acid profile in S. fumaroxidans 

MPOBT, and it is an average long-chain fatty acid. Note that Acyl-CoA metabolite makes the 

connection between CoA and a long-chain fatty acid and therefore it is a lipid precursor.   

 In the GSM model of G. sulfureducens, the lipid fraction belonging to the biomass is 

represented by the monomeric units of lipids, the fatty acids. The same approach was used to 

create the “e-Fatty Acid” present in S. fumaroxidans. Therefore, the lipid content in the biomass 

equation of S. fumaroxidans corresponds to the fatty acids. 
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CHAPTER 4 
 

RESULTS AND DISCUSSION 
 

In this chapter, the results obtained from the reconstruction 

Syntophobacter fumaroxidans and Methanospirillum hungatei 

GSM models will be discussed. 

 

4.1 GENOME-SCALE METABOLIC MODEL OF S. fumaroxidans strain MPOBT 

The GSM model reconstruction of S. fumaroxidans strain MPOBT 1 is presented in this 

section. The model can be accessed by the following URL: 

https://nextcloud.bio.di.uminho.pt/s/FMpWBpYeySykeJA 

GSM models of Geobacter sulfureducens ATCC 51573 [122], Geobacter metalreducens 

ATCC:53774 [123] were used to guide in the reconstruction of S. fumaroxidans strain MPOBT 

GSM model. 

 

4.1.1 Manual curation of the draft metabolic network of S. fumaroxidans  

In this section will be presented all the modifications made to the S. fumaroxidans GSM 

model while performing the manual curation. 
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4.1.2.1 Pathway-by-pathway analysis 

Several KEGG metabolic pathways during manual curation were modified, and others 

were ignored. The ignored KEGG pathways were removed since they did not have reactions 

connected to the remaining network. Additionally, in Table 9 lists all the pathways, with the 

respective number of reactions, which were studied when performing the manual curation phase. 

 
Table 9. List of metabolic pathways available in the GSM model of Syntrophobacter fumaroxidans MPOBT. 

Pathway Number of reactions 
Glycolysis / Gluconeogenesis 26 
Citrate cycle (TCA cycle) 18 
Pentose Phosphate Pathway 14 
Pentose and glucuronate interconversions 4 
Fructose and mannose metabolism 13 
Galactose metabolism  7 
Starch and sucrose metabolism 17 
Amino sugar and nucleotide sugar metabolism 32 
Pyruvate metabolism  30 
Propanoate metabolism  18 
Butanoate metabolism  12 
Nitrogen metabolism  15 
Sulphur metabolism 14 
Fatty acid biosynthesis  43 
Glycerolipid metabolism  6 
Glycerophospholipid metabolism 12 
Biosynthesis of unsaturated fatty acids 5 
Purine metabolism  75 
Pyrimidine metabolism 32 
Alanine, aspartate and glutamate metabolism 20 
Glycine, serine and glutamate metabolism  28 
Cysteine and methionine metabolism 21 
Valine, leucine and isoleucine metabolism  41 
Lysine biosynthesis  14 
Arginine and proline metabolism  27 
Histidine metabolism  15 
Tyrosine metabolism  10 
Phenylalanine metabolism  5 
Phenylalanine, tyrosine and tryptophan biosynthesis  23 
Selenocompound metabolism  12 
D-Glutamine and D-glutamate metabolism  6 
D-Alanine metabolism 2 
Glutathione  12 
Peptidoglycan biosynthesis  19 
Thiamine metabolism  13 
Riboflavin metabolism  10 
Vitamin B6 metabolism  8 
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Nicotinate and nicotinamide metabolism  22 
Pantothenate and CoA biosynthesis  16 
Biotin metabolism  13 
Lipoic acid metabolism  4 
Folate biosynthesis  25 
One carbon pool by folate 11 
Porphyrin and chlorophyll metabolism  35 
Terpenoid backbone biosynthesis  11 
Polyketide sugar unit biosynthesis  6 
Aminoacyl-tRNA biosynthesis  25 
2-Oxocarboxylic acid metabolism 31 
Biomass Pathway  9 
Non-enzymatic 2 
Spontaneous  122 
Transporters Pathway 97 
Drains Pathway  64 
Non-associated to Pathways  238 

 
After the pathway-by-pathway analysis 52 metabolic reactions were added to the draft 

metabolic network. As mentioned before in this chapter, the G. sulfurreducnes GSM model was 

used to infer some metabolites for the biomass composition. Metabolites identified in the fatty 

acid composition were assumed to be the same composing the fatty acid group in S. 

fumaroxidans. Likewise, reactions present in Table 10 were added to the model to enable the 

production of the target metabolites. 

Table 10. Reactions added to the fatty acid biosynthesis pathway. 

Reaction ID Reaction 

R00742 ATP + Acetyl-CoA + HCO3- + H+ <=> ADP + Orthophosphate + Malonyl-CoA 

R01624 Acetyl-CoA + Acyl-carrier protein <=> CoA + Acetyl-[acyl-carrier protein] 

R01706 Hexadecanoyl-[acp] + H2O <=> Acyl-carrier protein + Hexadecanoic acid 

R02814 Oleoyl-[acyl-carrier protein] + H2O <=> Acyl-carrier protein + (9Z)-Octadecenoic acid 

R03370 Octadecanoyl-[acyl-carrier protein] + 2 Reduced ferredoxin + Oxygen + 2 H+ <=> Oleoyl-
[acyl-carrier protein] + 2 Oxidized ferredoxin + 2 H2O 

R04430 Butyryl-[acp] + NADP+ <=> But-2-enoyl-[acyl-carrier protein] + NADPH + H+ 

R04725 Dodecanoyl-[acyl-carrier protein] + NADP+ <=> trans-Dodec-2-enoyl-[acp] + NADPH + 
H+ 

R04956 Hexanoyl-[acp] + NADP+ <=> trans-Hex-2-enoyl-[acp] + NADPH + H+ 

R04959 Octanoyl-[acp] + NADP+ <=> trans-Oct-2-enoyl-[acp] + NADPH + H+ 

R04962 Decanoyl-[acp] + NADP+ <=> trans-Dec-2-enoyl-[acp] + NADPH + H+ 

R04967 Tetradecanoyl-[acp] + NADP+ <=> trans-Tetradec-2-enoyl-[acp] + NADPH + H+ 

R04970 Hexadecanoyl-[acp] + NADP+ <=> trans-Hexadec-2-enoyl-[acp] + NADPH + H+ 
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R07764 (R)-3-Hydroxyoctadecanoyl-[acp] <=> (2E)-Octadecenoyl-[acp] + H2O 

R07765 (2E)-Octadecenoyl-[acp] + NADH + H+ <=> Octadecanoyl-[acyl-carrier protein] + NAD+ 

R08159 Tetradecanoyl-[acp] + H2O <=> Acyl-carrier protein + Tetradecanoic acid 

R08161 Hexadecanoyl-[acp] + 2 Reduced ferredoxin + Oxygen + 2 H+ <=> Hexadecenoyl-[acyl-
carrier protein] + 2 Oxidized ferredoxin + 2 H2O 

R08162 Hexadecenoyl-[acyl-carrier protein] + H2O <=> Acyl-carrier protein + (9Z)-Hexadecenoic 
acid 

R08163 Octadecanoyl-[acyl-carrier protein] + H2O <=> Acyl-carrier protein + Octadecanoic acid 

 

4.1.2.2 Transport reactions 

TRIAGE automatically identified and integrated 87 transport reactions into the GSM 

model. All these reactions were manually verified before they were integrated into the model. 

Additionally, transport reactions were created and included in the model in order to fulfil the 

absence of end-products transportation. These transport reactions described the metabolites 

facilitated diffusion, meaning that only one metabolite was present in those reactions. Moreover, 

transport reactions for several ions, cofactors, and vitamins were also assembled into the model. 

4.1.2.3 Gap Filling  

In this phase of the manual curation different reactions were added or corrected to fill 

metabolic gaps. A total of 52 reactions were assembled into the model in order to fulfil the 

metabolic gaps found during manual curation of metabolic pathways. Different gaps were found 

in different metabolic pathways of the gram-negative bacterium Syntrophobacter fumaroxidans 

MPOBT.  

 

4.1.2.4 Mass Balance 

merlin’s tool “unbalanced reactions” unveiled 51 reactions, which were manually 

corrected. The most frequent cases of unbalanced reactions were the ones where protons were 

either missing or in excess (46 reactions). merlin also flagged as unbalanced reactions the ones 

containing KEGG metabolites without chemical formula associated. Special attention was given to 

these reactions to ensure that they would not impair the flux through the network if one these 

reactions were able to make the flux unstable it was immediately removed (35 reactions removed). 

Additionally, 70 drains were ignored since they were drains or reactions associated with the 

biomass pathway. In Table 11 are summarized the number of occurrences for the primary cases 

during the mass balance curation procedure. 
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Table 11. Summary of reactions corrected according to the mass balance curation. 

Cases Number of Reactions 
Protons added to products 16 
Products added to reactants  24 
Protons removed from products  2 
Protons removed from reactants 4 
Removed from the model 35 
Others 7 
Ignored 70 

 

4.1.2 Biomass and energy requirements formulation 

In this section, the biomass was “break down” into six entities, classified as “e-

Metabolites” (electronic metabolites). The purpose of this classification is enabling the model to 

represent biological macromolecules and cell structures. In the six entities are summarized, the 

fraction of each one in the overall biomass composition, grams of cellular dry weight (CDW) 

normalized to 1 gram of biomass, and the reference study. 

 
Table 12.  Biomass composition of Syntrophobacter fumaroxidans MPOBT. 

e-Metabolite Stoichiometry (wt/wt) Reference 
e-DNA 0.025 

[48] 

e-RNA 0.152 
e-Protein 0.591 
e-Lipid 0.094 
e-Cofactor 0.054 
e-Peptidoglycan 0.084 

  

The “e-Protein” represents the average cellular protein composition. The merlin’s tool “e-

biomass” was able to retrieve the stoichiometric coefficients of every amino acid, listed in Table 

13, by performing the codon usage method [40]. The “e-Protein” metabolite content was defined 

as 0.591 grams of protein per 1 gram of biomass according to [48].  

Table 13. Protein composition of Syntrophobacter fumaroxidans MPOBT. The R present in every chemical formula represents the 
R group abbreviation, meaning it represents any group or any formula linked to a carbon or hydrogen atom on the rest of the 
molecule. 

e-Protein precursor  Chemical Formula Stoichiometric coefficient 
L-Cysteinyl-tRNA(Cys) C18H26N6O11PSR(C5H8O6PR)n 0.1060 
L-Histidyl-tRNA(His) C16H24N3O11PR2(C5H8O6PR)n 0.1706 
L-TryptophanyltRNA(Trp) C26H31N7O11PR(C5H8O6PR)n 0.0995 
L-Methionyl-tRNA C20H30N6O11PSR(C5H8O6PR)n 0.1982 
L-Prolyl-tRNA(Pro) C15H24NO11PR2(C5H8O6PR)n 0.3867 



RESULTS AND DISCUSSION 

 59  
 

Glutaminyl-tRNA C20H29N7O12PR(C5H8O6PR)n 0.5250 
L-Tyrosyl-tRNA(Tyr) C24H30N6O12PR(C5H8O6PR)n 0.2198 
L-Arginyl-tRNA(Arg) C21H33N9O11PR(C5H8O6PR)n 0.6083 
L-Asparaginyl-tRNA(Asn) C14H23N2O12PR2(C5H8O6PR)n 0.2251 
L-Phenylalanyl-tRNA(Phe) C19H26NO11PR2(C5H8O6PR)n 0.3336 
L-Threonyl-tRNA(Thr) C14H24NO12PR2(C5H8O6PR)n 0.3734 
Glycyl-tRNA(Gly) C12H20NO11PR2(C5H8O6PR)n 0.5682 
L-Aspartyl-tRNA(Asp) C14H22NO13PR2(C5H8O6PR)n 0.4057 
L-Seryl-tRNA(Ser) C13H22NO12PR2(C5H8O6PR)n 0.4286 
L-Alanyl-tRNA C13H22NO11PR2(C5H8O6PR)n 0.6731 
L-Glutamyl-tRNA(Glu) C20H28N6O13PR(C5H8O6PR)n 0.2324 
L-Valyl-tRNA(Val) C20H30N6O11PR(C5H8O6PR)n 0.5826 
L-Lysyl-tRNA C16H29N2O11PR2(C5H8O6PR)n 0.3394 
L-Isoleucyl-tRNA(Ile) C21H32N6O11PR(C5H8O6PR)n 0.4297 
L-Leucyl-tRNA C21H32N6O11PR(C5H8O6PR)n 0.7934 

 

 The fractions 0.025 and 0.152 grams of DNA and RNA, respectively, per 1 gram of 

biomass were selected from [48]. merlin’s tool “e-biomass” assembled the DNA and RNA 

reactions by using the genome sequence data to retrieve information about the general 

deoxyribonucleotide and ribonucleotide composition. In Table 14 and Table 15 are presented both 

DNA and RNA structural units, respectively, along with the corresponding stoichiometric 

coefficient. 

Table 14. DNA composition of Syntrophobacter fumaroxidans MPOBT. 

e-DNA Chemical Formula Stoichiometric coefficient 
dATP C10H16N5O12P3 0.4156 
dCTP C9H16N3O13P3 0.5999 
dTTP C10H17N2O14P3 0.4065 
dGTP C10H16N5O13P3 0.6302 

 

Table 15. RNA composition of Syntrophobacter fumaroxidans MPOBT. 

e-RNA Chemical Formula Stoichiometric coefficient 
ATP C10H16N5O13P3 0.4804 
CTP C9H16N3O14P3 0.4672 
UTP C9H15N2O15P3 0.3718 
GTP C10H16N5O14P3 0.6702 

  

In Table 16 are listed the metabolites belonging to the “e-Cofactor” metabolite. These 

metabolites are grouped within the cofactors group and are neither building blocks nor energy 

metabolism associated compounds, but in some cases, they can be associated with the catalysis 

of enzymes. The stoichiometry coefficient given to these metabolites varies from one another 

depending on their molecular weight. 
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Table 16. Cofactors composition of Syntrophobacter fumaroxidans MPOBT. 

e-cofactor Chemical formula Stoichiometric coefficient 
Thiamine C12H17N4OS 0.3141 
Tetrahydrofolate C19H23N7O6 0.1871 
S-Adenosyl-L-methionine C15H22N6O5S 0.2091 
Riboflavin C17H20N4O6 0.2214 
Pyridoxal phosphate C8H9NO3 0.4985 
Pantothenate C9H17NO5 0.3801 
NADPH C21H30N7O17P3 0.1118 
NAD+ C21H28N7O14P2 0.1254 
Glutathione C10H17N3O6S 0.2712 
FMN C17H21N4O9P 0.1826 
FAD C27H33N9O15P2 0.1061 
CoA C21H36N7O16P3S 0.1086 

  
The lipidic composition of Syntrophobacter fumaroxidans MPOBT was assumed to be the 

same present in the Geobacter sulfureducens GSM model. Therefore, the lipidic fraction was 

assumed to be constituted by the monomeric units the fatty acids. In Table 17 are presented the 

fatty acids that were retrieved from the G. sulfureducens and are present in the metabolic network 

of S. fumaroxidans. Note that some of the fatty acids present G. sulfureducens metabolic network 

were not present in S. fumaroxidans GSM model. Therefore, the molar fraction of the missing fatty 

acids was distributed along the ones present in both models. 

Table 17. S. fumaroxidans fatty acid composition 

Fatty Acid Chemic Formula Stoichiometric coefficient  
Tetradecanoic acid C14H28O2 0.1992 
Hexadecanoic acid C16H32O2 1.5312 
(9Z)-Hexadecenoic acid C16H30O2 1.8695 
Octadecanoic acid C18H36O2 0.0958 
(9Z)-Octadecenoic acid C18H34O2 0.2208 

 

The peptidoglycan composition was copied from the G. sulfurreducens model. Usually, 

the peptidoglycan structure unit has a glycan filament composed by one N-Acetyl-Muramate 

connected to one N-Acetyl-D-Glucosamine. Next, a peptide subunit composed of four amino acids 

is covalently linked to the glycan filament. The four amino acids are covalently linked to each other 

in the following order alanine, glutamate, lysine, and alanine. 
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Table 18. S. fumaroxidans peptidoglycan composition 

e-Peptidoglycan Chemic Formula Stoichiometric coefficient  
UDP-N-acetylmuramate C20H31N3O19P2 0.7893875 
UDP-N-acetyl-alpha-D-glucosamine C17H27N3O17P2 0.5160856 
UDP-glucose C15H24N2O17P2 0.2733019 

 
In Figure 15 is presented a schematic representation of the peptidoglycan structure where 

alanine is connected to the N-Acetyl-Muramate monomer, while lysine is connected to an 

interpeptide bridge composed of monomers of glycine. Due to the lack of data regarding the amino 

acid percentage in peptidoglycan composition, the peptidoglycan fraction in S. fumaroxidans did 

not comprise stoichiometric coefficients for the monomeric units of proteins. 

 

Figure 15. Schematic representation of the peptidoglycan structure in S. fumaroxidans. 

In terms of energy requirements, the GSM model of G. sulfureducens was used once 

again and the standards for this equation are presented in Table 19. The “R_ATP maintenance” 

reaction represents the non-growth-associated. 

Table 19. Energy requiremnts of Syntrophobacter fumaroxidans MPOBT. 

Energy requirement Reaction Stoichiometry coefficient 
Growth-Associated e-Biomass 41 
Non-Growth-Associated R_ATP_maintenance 0.45 
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4.2 GENOME-SCALE METABOLIC MODEL OF M. hungatei strain JF1 

The GSM model reconstruction of M.hungatei is presented in this section and it can be 

accessed by the following URL: https://nextcloud.bio.di.uminho.pt/s/zfyfRg3BWSzXESS. The 

GSM model of Methanosarcina acetivorans strain C2A [124] was used to guide in the 

reconstruction of M. hungatei GSM model. 

 

4.2.1 Manual curation of the draft metabolic network of M. hungatei JF1 

At this stage will be presented all the modifications made to the M. hungatei JF1 GSM 

model during the manual curation. 

 

4.2.1.1 Pathway-by-Pathway analysis 

In Table 20 are listed all the pathways, with the respective number of reactions, that were 

studied during the manual curation phase of the M. hungatei draft metabolic network. 

 
Table 20. List of metabolic pathways available in the GSM model of Methanospirillum hungatei JF1. 

Pathway Number of reactions 
2-Oxocarboxylic acid metabolism 27 
Alanine, aspartate and glutamate metabolism 15 
Amino sugar and nucleotide sugar metabolism 23 
Anthocyanin biosynthesis 6 
Arginine and proline metabolism 23 
Ascorbate and aldarate metabolism 4 
Benzoate degradation 7 
beta-Alanine metabolism 7 
Biosynthesis of amino acids 85 
Biotin metabolism 3 
Butanoate metabolism 6 
Carbon metabolism 52 
Chlorocyclohexane and chlorobenzene degradation 4 
Citrate cycle (TCA cycle) 8 
Cysteine and methionine metabolism 19 
D-Glutamine and D-glutamate metabolism 4 
Drains pathway 132 
Fatty acid biosynthesis 16 
Fatty acid metabolism 18 
Folate biosynthesis 14 
Galactose metabolism 5 
Fructose and mannose metabolism 4 
Glutathione metabolism 6 
Glycerophospholipid metabolism 7 
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Glycine, serine and threonine metabolism 17 
Glycolysis / Gluconeogenesis 19 
Glyoxylate and dicarboxylate metabolism 14 
Histidine metabolism 15 
Inositol phosphate metabolism 7 
Lipopolysaccharide biosynthesis 16 
Lysine biosynthesis 11 
Methane metabolism 91 
Naphthalene degradation 8 
Nicotinate and nicotinamide metabolism 15 
One carbon pool by folate 14 
Pantothenate and CoA biosynthesis 17 
Pentose and glucuronate interconversions 6 
Pentose phosphate pathway 8 
Peptidoglycan biosynthesis 12 
Phenylalanine metabolism 5 
Phenylalanine, tyrosine and tryptophan biosynthesis 21 
Porphyrin and chlorophyll metabolism 34 
Purine metabolism 45 
Pyrimidine metabolism 46 
Pyruvate metabolism 19 
Starch and sucrose metabolism 5 
Streptomycin biosynthesis 6 
Terpenoid backbone biosynthesis 13 
Thiamine metabolism 8 
Transporters pathway 139 
Tryptophan metabolism 7 
Ubiquinone and other terpenoid-quinone biosynthesis 8 
Valine, leucine and isoleucine biosynthesis 15 
Valine, leucine and isoleucine degradation 13 

 

 During the analysis of the listed pathways above, 66 non-gene associated reactions were 

manually added to the model gap-fill the model. In the next section, those reactions will be 

presented separately by metabolite category, thus ordering these by pathways. 

4.2.1.2 Gap Filling  

The initial simulations using the draft metabolic model revealed some gaps in the network. 

Some of these gaps were found in the methane biosynthesis pathway and were further studied in 

detail. Regarding the gapfilling of Methanospirillum hungatei JF1 draft GSM model, it was mainly 

performed on the pathways of methane production. The original draft model of this organism was 

not able to produce methane since the metabolite methanofuran, a crucial precursor in the 

methane pathway, was identified as a dead-end metabolite. 
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The first stage to fill the gap created by the dead-end metabolite was to introduce a 

complete synthesis pathway for methanofuran. A total of 16 non-gene associated reactions were 

added to the model based on literature found for methanofuran biosynthesis [125–128]. All the 

reactions, with the respective reaction id (“_reac”), added to the model to build the methanofuran 

biosynthesis pathway are listed in Table 21. 

Table 21. Reactions added to the metabolic network of M. hungatei JF1 in order to create a pathway for methanofuran 
biosynthesis. The following letters are unique for this table: A - 4-[N-gamma-L-glutamyl-)-p-(beta-aminoethyl)phenoxy-methyl]-2-
(aminomethyl)furan_c0; B - 4-[N-gamma-L-glutamyl-gamma-L-glutamyl-)-p-(beta-aminoethyl)phenoxy-methyl]-2-
(aminomethyl)furan_c0. 

Reaction ID Reaction 

R_reac002 H_plus__c0 + Phosphoenolpyruvate_c0 + Glycerone_phosphate_c0 => methanofuran biosynththesis 
intermediate MF1_c0 

R_reac003 Methanofuran biosynththesis intermediate MF1_c0 <=> methanofuran biosynththesis intermediate MF2_c0 
+ Phosphate_c0 

R_reac004 methanofuran biosynththesis intermediate MF2_c0 <=> methanofuran biosynththesis intermediate MF3_c0 
+ H2O_c0 

R_reac005 methanofuran biosynththesis intermediate MF3_c0 <=> phosphate-ester-of-dihydrofuran_c0 

R_reac006 phosphate-ester-of-dihydrofuran_c0 <=> 2,4-substituted-furan phosphate_c0 + H2O_c0 

R_reac007 NADPH_c0 + H_plus__c0 + ATP_c0 + 2,4-substituted-furan phosphate_c0 <=> NADP_c0 + ADP_c0 + 
Phosphate_c0 + 2-furaldehyde phosphate_c0 

R_reac008 L-Alanine_c0 + 2-furaldehyde phosphate_c0 <=> pyruvate + 2-methylamine-furan phosphate_c0 

R_reac009 2-methylamine-furan phosphate_c0 + Tyramine_c0 <=> Phosphate_c0 + p-(beta-aminoethyl)phenoxy-methyl-
2-(aminomethyl)furan_c0 

R_reac010 L_Glutamate_c0 + p-(beta-aminoethyl)phenoxy-methyl-2-(aminomethyl)furan_c0 <=> A_c0 + H2O_c0 

R_reac011 A_c0 + L_Glutamate_c0 <=> B_c0 + H2O_c0 

R_reac012 2_Oxoglutarate_c0 + Acetyl_CoA_c0 <=> H_plus__c0 + trans-homoaconitate_c0 + CoA_c0 

R_reac013 Acetyl_CoA_c0 + trans-homoaconitate_c0 + H2O_c0 <=> H_plus__c0 + pentane-1,3,4,5-tetracarboxylate_c0 
+ CoA_c0 

R_reac014 H_plus__c0 + pentane-1,3,4,5-tetracarboxylate_c0 + CO2_c0 => hexane-6-keto-1,3,4,6-tetracarboxylate_c0 + 
H2O_c0 

R_reac015 H_plus__c0 + hexane-6-keto-1,3,4,6-tetracarboxylate_c0 => hexane-6-ol-1,3,4,6-tetracarboxylate_c0 

R_reac016 H_plus__c0 + hexane-6-ol-1,3,4,6-tetracarboxylate_c0 => HTCA_c0 + H2O_c0 

R_reac017 B_c0 + HTCA_c0 <=> H2O_c0 + Methanofuran_c0 

 

The gap filling curation method identified another four metabolites without a biosynthesis 

pathway. Therefore, they were only being consumed and never produced. One of them is named 

tetrahydromethanopterin (H4MPT), and as for the methanofuran metabolite, there was a need to 

create a biosynthesis pathway for this metabolite too. The use of literature as the information 

retrieved from the MetaCyc database helped to assemble this pathway [129–134]. In  
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Table 22 are listed the non-gene associated reactions that compose the H4MPT 

biosynthesis pathway. 

 

 

 

Table 22. Reactions added to the metabolic network of M. hungatei JF1 in order to create a pathway for H4MPT biosynthesis. The 
following letters are unique for this table: A -- 4-(?-D-ribofuranosyl)hydroxybenzene 5'-phosphate; B -- 4-(?-D-ribofuranosyl)-N-
succinylaminobenzene 5'-phosphate; C -- [1-(2-amino-7-methyl-4-oxo-7,8-dihydro-3H-pteridin-6-yl)]ethyl diphosphate; D -- [1-(2-
amino-7-methyl-4-oxo-7,8-dihydro-3H-pteridin-6-yl)]ethyl-4-(?-D-ribofuranosyl)aminobenzene 5'-phosphate; E -- [1-(2-amino-7-
methyl-4-oxo-7,8-dihydro-3H-pteridin-6-yl)]ethyl-(4-aminophenyl)-1-deoxy-D-ribitol 5'-phosphate; F -- [1-(2-amino-7-methyl-4-oxo-7,8-
dihydro-3H-pteridin-6-yl)]ethyl-(4-aminophenyl)-1-deoxy-D-ribitol; G -- [1-(2-amino-7-methyl-4-oxo-7,8-dihydro-3H-pteridin-6-yl)]ethyl-
(4-aminophenyl)-1-deoxy-5-[1-? -D- ribofuranosyl 5-phosphate]-D-ribitol; H -- [1-(2-amino-7-methyl-4-oxo-7,8-dihydro-3H-pteridin-6-
yl)]ethyl-(4-aminophenyl)-1-deoxy-5-[1-? -D- ribofuranosyl triphosphate]-D-ribitol 

Reaction ID Reaction 

R_reac018 chorismate_c0 => 4-hidroxybenzoate_c0 + pyruvate_c0 

R_reac019 4-hydroxibenzoate_c0 + PRPP_c0 => A + CO2_c0 + PPi 

R_reac020 A + L-aspartate_c0 + ATP_c0 => B + ADP_c0 + Phsophate_c0 + 2H_plus_c0 

R_reac021 B  => 4-(?-D-ribofuranosyl)aminobenzene-5'-phosphate_c0 + fumarate 

R_reac022 2 S-adenosyl-L-methionine + 6-hydroxymethyl-dihydropterin + 2 5,10-methylene-tetrahydromethanopterin + 

NADH => 2-amino-6-[1-hydroxyethyl]-7-methyl-7,8-dihydropterin + 2 5'-deoxyadenosine + 2 L-methionine + 2 

7,8-dihydromethanopterin + NAD+ 

R_reac023 2-amino-6-[1-hydroxyethyl]-7-methyl-7,8-dihydropterin + ATP => C + AMP + H_plus 

R_reac024 4-(?-D-ribofuranosyl)aminobenzene-5'-phosphate + C => D + PPi 

R_reac025 D + NADH + H+ => E + NAD+ 

R_reac026 E + H2O => F + Phosphate 

R_reac027 F + 5-phospho-?-D-ribose 1-diphosphate => G + PPi 

R_reac028 G + ATP + H+ => H + AMP 

R_reac029 H + (S)-2-hydroxyglutarate =>  7,8-dihydromethanopterin + PPi 

R_reac031 7,8-dihydromethanopterin + NADH + H+ => H4MPT + NAD+ 

 
The other metabolite that had to be analyzed was coenzyme M, also involved in the 

methane biosynthesis pathway. Based on the literature and the MetaCyc database a pathway for 

the biosynthesis of coenzyme M (CoM) was created [135–137]. The non-gene associated reactions 

assembled into the model for the CoM biosynthesis are listed in  

Table 23, and each one has a specific ID starting with “R_M” followed by a number. 

Table 23. Reactions present in the coenzyme M biosynthesis. 

Reaction ID Reaction 
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R_M001 Sulfite + Phosphoenolpyruvate => (2R)-O-Phospho-3-sulfolactate 

R_M002 (2R)-O-Phospho-3-sulfolactate + H2O => (2R)-3-Sulfolactate + phosphate 

R_M003 (2R)-3-Sulfolactate + NAD+ <=> 3-Sulfopyruvate + NADH + H+ 

R_M004 3-Sulfopyruvate + H+ => Sulfoacetaldehyde + CO2 

R_M005 Sulfoacetaldehyde + H+ +NADPH + L-cysteine => NADP + CoM + Pyruvate + NH3 

 
The last metabolite identified as a dead-end was coenzyme B (HTP) that like the previous 

two gap metabolites was only consumed in the metabolic network and never produced. By using 

information retrieved from the literature and MetaCyc database, a coenzyme M biosynthesis 

pathway was created [138–143]. The non-gene associated reactions added to this pathway are 

presented in Table 24 with the assigned identifiers. 

Table 24. Reactions present in the coenzyme B biosynthesis pathway. 

Reaction ID Reaction 

R_M007 Homocitrate => Homoaconitate + H2O 
R_M008 homocitrate + NAD+ <=> 2-oxodipate + CO2 + NADH 
R_M009 2-oxoadipate + Acetyl-CoA + H2O <=> dihomocitrate + CoA + H+  
R_M010 dihomocitrate => homo2aconitate + H2O 
R_M011 homo2aconitate + H2O <=> homo2citrate 
R_M012 homo2citrate + NAD+ <=> 2-oxopimelate + CO2 + NADH 
R_M013 trihomocitrate2-oxopimelate + acetyl-CoA + H2O <=> trihomocitrate + CoA + H+ 
R_M014 trihomocitrate <=> homo3aconitate + H2O 
R_M015 homo3aconitate + H2O => homo3citrate 
R_M016 homo3citrate + NAD+ => 2-oxosuberate + CO2 + NADH 
R_M017 2-oxosuberate + H+ => 7-oxoheptanoate + CO2 
R_M018 7-oxoheptanoate + H2S + NADPH => 7-mercaptoheptanoate + H2O + NADP 
R_M019 7-mercaptoheptanoate + L-threonine + ATP <=> 7-mercaptoheptanoylthreonine + ADP 

+ Phosphate + H+ 
R_M020 7-mercaptoheptanoylthreonine + ATP <=> HTP + ADP  

 

The last metabolite identified as dead-end in the methanogenic pathway of M. hungatei 

JF1 was the Coenzyme F420. The same procedure used in the last three metabolites was used, 

and therefore, a biosynthesis pathway was created based on the same sources, such as literature 

and the MetaCyc database [144–146].  All reactions retrieved from those sources, and associated 

unique identifiers are listed in Table 25. 

Table 25. Reactions present in the coenzyme F420 biosynthesis pathway. 

Reaction ID Reaction 

R_reac032 2-oxoglutarate + NADH + H_plus <=> (S)-2-hydroxyglutarate + NAD+ 

R_reac033 formaldehyde + H4MPT => 5,10-methylene tetrahydromethanopterin + H2O + H+ 
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R_reac034 p-Hydroxyphenylpyruvate + 4-1-D-Ribitylamino-5-aminouracil + 2 S-Adenosyl-L-

methionine + H2O => 7,8-Didemethyl-8-hydroxy-5-deazariboflavin + L-Methionine + 

Deoxyadenosine + Oxalate + NH3 + H+ 

R_reac035 Glycerol-3-phosphate + GTP => lactyl-(2)-diphospho-(5')-guanosine + PPi 

R_reac036 7,8-Didemethyl-8-hydroxy-5-deazariboflavin + Lactyl-2-diphospho-5'-guanosine => 

Coenzyme F420-0 + GMP  

R_reac037 Coenzyme F420-0 + GTP + L-Glutamate => Coenzyme F420-1 + GDP + Phosphate 

R_reac038 Coenzyme F420-1 + GTP + L-Glutamate => Coenzyme F420 + GDP + Phosphate 

 

 As seen above, during manual curation of the methanogenic pathway in Methanospirillum 

hungatei JF1 a total of five metabolites were identified as dead-ends. These metabolites block the 

flux through this pathway when performing techniques to evaluate the flux distribution. As 

mentioned before in this section, one of the main pathways in M. hungatei is the methanogenic 

pathway, and therefore, it was studied in detail. This pathway with red colored metabolites 

representing the gap metabolites blocking the flux distribution is presented in Figure 16. 

The strategy used to correct the gaps started by the analysis of the pathway by first 

correcting the dead-end metabolites at the beginning of the pathway such as methanofuran. The 

reactions were these metabolites participate as reactants were turned into irreversible to make the 

flux distribution only to follow one direction to check if the gap was corrected. If in the end, the 

reaction was able to produce the products the gap was assigned as corrected. The last metabolite 

to be studied and corrected was HTP which intervenes in the final reaction of the pathway. After 

all the gaps in this pathway were corrected all the reactions presented flux distribution meaning 

that the manual curation was successful, and the gram-negative bacterium Methanospirillum 

hungatei JF1 was then able to produce methane. 
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Figure 16. Methanogenic pathway in Methanospirillum hungatei JF1. The metabolites coloured in red were the ones identified as 
gaps in this pathway. CoM – Coenzyme M; H4MPT – tetrahydroneopterin; HTP or CoB – Coenzyme B; Adapted from [147] 

 

4.2.1.3 Mass Balance 

The mass balance for the GSM draft model of M. hungatei was performed in the same 

terms as for S. fumaroxidans. The tool “unbalanced reactions” was used and reactions identified 

as unbalanced were highlighted and later were either removed or balanced. 
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4.2.2 Biomass and energy requirements formulation  

The same methodology used in the formulation of the biomass equation for S. 

fumaroxidans was performed to achieve the biomass equation of M. hungatei. As for S. 

fumaroxidans, six entities were created, labelled as “e-Metabolites” that represent bacterial cell 

components of M. hungatei such as biological macromolecules and cell structures. In Table 26 

bellow is listed the macromolecules composing the biomass equation with the respective 

stoichiometry coefficient in grams per CDW normalized to one gram of biomass.  

Initially, the biomass equation comprised all macromolecules and their precursor. In order 

to obtain a clearer perception of the biomass components, it was divided into the six entities 

mentioned, namely e-Protein, e-DNA, e-RNA, e-Cofactors, e-Lipid, and e-Peptidoglycan. 

 
Table 26. Biomass composition of Methanospirillum hungatei JF1 

e-Metabolite Stoichiometry 
Coefficient (wt/wt) 

Reference  

e-DNA 0.025 
[48] e-RNA 0.152 

e-Protein 0.591 
e-Lipid  

KBase e-Cofactors 0.054 
e-Peptidoglycan  

 

 The “Protein biosynthesis” metabolite in Table 27 corresponds to the “e-Protein” 

metabolite present in Table 26. This metabolite represents the average cellular protein 

composition. Using merlin’s “e-biomass tool”, the stoichiometry coefficients for each amino acid 

were retrieved.  

Table 27. Protein composition of Methanospirillum hungatei JF1. 

Macromolecule Metabolite Formula Stoichiometry Coefficient 
(mmol monomer/ g e-Protein) 

Protein 
biosynthesis 

L-Phenylalanine C9H11NO2 0.3193 
L-Glutamine C5H10N2O3 0.2512 
L-Tryptophan C11H12N2O2 0.0864 
L-Methionine C5H11NO2S 0.2080 
L-Glutamate C5H8NO4 0.2512 
L-Asparagine C4H8N2O3 0.2800 
L-Serine C3H7NO3 0.4988 
L-Valine C5H11NO2 0.4968 
L-Isoleucine C6H13NO2 0.6612 
L-Proline C5H9NO2 0.3537 
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L-Lysine C6H15N2O2 0.3968 
L-Aspartate C4H6NO4 0.4473 
L-Alanine C3H7NO2 0.4995 
L-Histidine C6H9N3O2 0.1752 
L-Arginine C6H15N4O2 0.4178 
L-Cysteine C3H7NO2S 0.1051 
L-Leucine C6H13NO2 0.7099 
L-Tyrosine C9H11NO3 0.2785 
L-Threonine C4H9NO3 0.4403 
Glycine C2H5NO2 0.4999 

    
 The stoichiometric coefficients of both nucleic acids were assumed based on the literature 

available for the biomass composition of Gran-Negative bacteria [48]. The fractions 0.025 and 

0.152 grams of DNA and RNA, respectively, per one 1 gram of biomass were selected. Both DNA 

and RNA precursors in triphosphate forms are present in Table 28 and Table 29, respectively.  

Table 28. DNA composition of Methanospirillum hungatei JF1. 

Macromolecule Metabolite Formula Stoichiometry Coefficient 
(mmol monomer/ g e-DNA) 

e-DNA 

dATP C10H16N5O12P3 0.4156 
dCTP C9H16N3O13P3 0.5999 
dTTP C10H17N2O14P3 0.4065 
dGTP C10H16N5O13P3 0.6302 

 

Table 29. RNA composition of Methanospirillum hungatei JF1. 

Macromolecule Metabolite Formula Stoichiometry Coefficient  
(mmol monomer/ g e-RNA) 

e-RNA 

ATP C10H16N5O13P3 0.5056 
CTP C9H16N3O14P3 0.5436 
UTP C9H15N2O15P3 0.4209 
GTP C10H16N5O14P3 0.5297 

 

 The cofactors present in the GSM model of Methanospirillum hungatei are listed in Table 

30. The “e-Cofactor” metabolite represent a group of metabolites constituted by cofactors, 

enzymes, and ions. All the cofactors were automatically assigned by KBase when building the draft 

metabolic model.  
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Table 30. Cofactors composition in Methanospirillum hungatei JF1. 

e-Metabolite Metabolite Formula Stoichiometry Coefficient 
(mmol monomer/ g e-Cofactor) 

e-Cofactors 
 
 

Thiamine C12H17N4OS 0.114200 
Tetrahydrofolate C19H23N7O6 0.068031 
S-Adenosyl-L-methionine C15H22N6O5S 0.076054 
Riboflavin C17H20N4O6 0.080516 
Pyridoxal phosphate C8H9NO3 0.181282 
Pantothenate C9H17NO5 0.138225 
NADP C21H30N7O17P3 0.040652 
NAD+ C21H28N7O14P2 0.045608 
GSH C10H17N3O6S 0.098604 
FMN C17H21N4O9P 0.066405 
FAD C27H33N9O15P2 0.038576 
CoA C21H36N7O16P3S 0.039481 
Siroheme C42H36FeN4O16 0.033351 
Spermidine C7H22N3 0.204377 
Co2+ Co 0.514221 
Mg Mg 1.246525 
Mn2+ Mn 0.551566 
Ubiquinone-8 C49H74O4 0.041676 
Fe2+ Fe 0.542628 
fe3 Fe 0.542628 
Putrescine C4H14N2 0.336066 
Ca2+ Ca 0.756064 
10-Formyltetrahydrofolate C20H21N7O7 0.064280 
Cu2+ Cu 0.476838 
Cl- Cl 0.854810 
Zn2+ Zn 0.463420 
TPP C12H17N4O7P2S 0.071588 
Menaquinone 8 C51H72O2 0.042257 
K+ K 0.775014 
2-Demethylmenaquinone 8 C50H70O2 0.043100 
5-Methyltetrahydrofolate C20H23N7O6 0.066245 
Calomide C72H102CoN18O17P 0.019160 

    
Different from the approach made for S. fumaroxidans the lipid composition of M. 

hungatei was retrieved from KBase. KBase assigned the lipidic composition in Methanospirillum 

hungatei JF1 as for a gram-negative bacterium. The “e-lipid” metabolite represents the lipidic 

fraction in M. hungatei, and at Table 31 are listed all the lipids with the respective stoichiometry 

coefficient assigned. 
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Table 31.  Lipid composition in Methanospirillum hungatei JF1. Note that the sum of all stoichiometric coefficients is accounted 
to one. 

e-Metabolite Metabolite Formula 
Stoichiometry 

Coefficient 
(g monomer/ ge-lipid) 

e-Lipid 

Dianteisoheptadecanoyl 
phosphatidylglycerol 

C40H78O10P 0.08575 

Stearoylcardiolipin C81H156O17P2 0.16740 

Anteisoheptadecanoylcardiolipin C77H148O17P2 0.16100 

Diisoheptadecanoyl 
phosphatidylethanolamine 

C39H78NO8P 0.08232 

Phosphatidylethanolamine 
dioctadecanoyl 

C41H82NO8P 0.08553 

Diisoheptadecanoyl 
phosphatidylglycerol 

C40H78O10P 0.08896 

Isoheptadecanoylcardiolipin C77H148O17P2 0.08576 

Dianteisoheptadecanoyl 
phosphatidylethanolamine 

C39H78NO8P 0.16098 

 

 The “e-Peptidoglycan” metabolite represents the peptidoglycan fraction of the gram-

negative bacterium M. hungatei. KBase tools assigned two peptidoglycans for M. hungatei, 

namely, Core oligosaccharide lipid A and Bactoprenyl diphosphate. Both metabolites have the 

same stoichiometry coefficient as presented in Table 32. 

Table 32. Peptidoglycan composition in Methanospirillum hungatei JF1. 

e-Metabolite Metabolite Formula 
Stoichiometry 

Coefficient 
(mmol monomer/ g e-RNA) 

e-
Peptidoglycan 

Core oligosaccharide 
lipid A 

C176H303N2O100P4 

0.02501 
Bactoprenyl 
diphosphate 

C55H90O7P2 

 

 The energy requirements for M. hungatei in terms of ATP were defined based on the GSM 

model of Methanosarcina acetivorans and both growth-associated and non-growth-associated 

reactions are listed in Table 33.  

Table 33. Energy requirements of Methanospirillum hungatei JF1. 

Energy Requirements  Reaction Stoichiometry Coefficient  
Growth-Associated e-Biomass 47 
Non-Growth-Associated R_ATP_Maintenance 0.6 
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4.3 GSM MODELS COMPARISON  

In this section is presented a comparison between models reconstructed in KBase and 

merlin. 

4.3.1 KBase GSM models 

GSM models’ reconstructions were performed in KBase for M. hungatei JF1 and S. 

fumaroxidans MPOBT, and the results of these reconstructions can be accessed by the following 

URLs: 

• M. hungatei narrative - https://narrative.kbase.us/narrative/ws.35875.obj.1 

• S. fumaroxidans narrative - https://narrative.kbase.us/narrative/ws.36026.obj.1  

In order to access these results, a KBase account must be created. Both GSM draft 

models reconstructed in KBase were exported in the SBML file format and are available at the 

following URLs: 

• M. hungatei: https://nextcloud.bio.di.uminho.pt/s/caLX9TrqDrDA389 

• S. fumaroxidans: https://nextcloud.bio.di.uminho.pt/s/2GAC5ZFeTRZHKap 

Regarding biomass equations in KBase models, the single biomass equation contains 

reactants such as DNA replication, Protein biosynthesis and RNA transcription without associated 

pre-precursor, meaning that the only reaction associated to these metabolites is a drain reaction 

(Table 34). Hence, reactions to synthesize these macromolecules were added to the model to 

overcome the problem. 

Table 34. [c0] – cytosol compartment; (*) – Stoichiometric coefficient relative to biomass equation 

GSM model DNA equation Protein equation RNA equation 

M. hungatei GSM 
model (KBase) => DNA replication[c0] => Protein 

biosynthesis[c0] 
=> RNA 

transcription[c0] M. hungatei GSM 
model (KBase) 
Stoichiometric 
coefficient (*) 

-1 -1 -1 

  

https://narrative.kbase.us/narrative/ws.35875.obj.1
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4.3.2. KBase GSM model’s vs merlin GSM model’s 

As demonstrated in Table 35, using merlin for GSM models’ reconstructions is possible 

to include more reactions and genes in the model when compared with KBase’s model. merlin’s 

models differ from KBase models in most of the parameters, which can be justified by the manual 

curation performed when reconstructing merlin’s GSM models instead of using fully automatic 

tools as occurs in KBase. 

Table 35. Summary of the principle characteristic of KBase GSM models and merlin GSM models. (*) This GSM model was first 
reconstructed in KBase and later integrated into merlin. 

GSM model 
N. º of 
genes 

N. º of 
reactions 

File format GPR association 

M. hungatei KBase 
GSM model 

727 960 SBML  

M. hungatei merlin 
GSM model (*) 

727 1027 SBML  

S. fumaroxidans 
KBase GSM model 

891 975 SBML  

S. fumaroxidans 
merlin GSM model 

1595 1433 SBML  

 

Additionally, reconstructing models with merlin seems to be a more viable solution than 

reconstructing GSM models with KBase because merlin is more user-friendly. As explained 

previously, manual curation of GSM models in KBase is an arduous task to be done because every 

modification in the draft model generates a new draft. 

In the table above is showed that the GSM model of M. hungatei, reconstructed using 

merlin does not have GPR associations due to the lack of capacity of the merlin tool “import 

model” to recognize them when importing into merlin database the draft model that was previously 

reconstructed on KBase. 

One of the KBase advantages over merlin is the way of exporting models. In merlin the 

only available way to it is by exporting in the SBML file format while in KBase the user can export 

the draft models in SBML, TSV, EXCEL and JSON file formats. On the other hand, merlin GSM 

models showed to be well built due to the comfortable and very user-friendly manual curation an 

entire model presenting tools not only for identifying biomass macromolecules precursors and 

their stoichiometric coefficients, but also tools for editing reactions. 
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4.3.3 GSM models comparison with literature 

A draft model of M. hungatei is available (iMhu428)[148]. This GSM draft model was built 

by copying the reactions from a GSM model of a close phylogenetic organism Methanosarcina 

acetivorans and only removing certain pathways which lead to the non GPR association for a vast 

number of reactions in the model. A GSM model of S. fumaroxidans (iSfu648) was also found in 

literature. Both models found on literature were compared against the ones that were assembled 

in this work.  

Since iMhu428 is only a draft metabolic model and it was obtained by simply copying the 

reactions from another model, it was assumed that a new GSM model reconstruction for this 

organism was the logic choice in order to better represent the metabolism behaviour of M. 

hungatei.  

The iSfu648 was built using the semi-automatic reannotation tool RavenToolbox with 

further manual refinement of certain metabolic pathways. During this work another GSM model 

for S. fumaroxidans was also assembled but instead of using RavenToolbox, merlin was used.  

One of the reasons for developing new GSM models for both organisms was because one 

was only a draft model and the other was built using a semi-automated tool. Another reason was 

to update both GSM models to have more confidence in them and assemble a viable community 

model. 

In Table 36 the four GSM models are compared, and the GSM model fully reconstructed 

using merlin has more reactions than iSfu648 showing good prospects for further metabolic 

behavior studies. Regarding the M. hungatei, the model reconstructed in this work has more 

reactions than iMhu428.  The reconstruction of all four GSM models required using information 

from close phylogenetic organisms. 

Table 36. Summary of the comparison of the four GSM models built using different approaches. *(a)- GPR association only for 
some reactions; *(b)- The GPR associations are not yet present in the model; *(c)- The validation was performed upon a draft 
model  

Model 
N.º of 

reactions 

Manual 

curated 

GPR 

association 

Model 

validation 

Close phylogenetic 

organism GSM model 

iSfu648 850     

Sfu 1507     

iMhu428 721  *(a) *(c)  

Mhu 1027  *(b)   
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4.4 META-MODEL ASSEMBLY 

In this section the process of merging M. hungatei GSM model with S. fumaroxidans 

GSM model is presented.   

4.4.1 Single model troubleshooting  

The troubleshooting process occurred in the same way for both GSM models. The tool 

used for this stage was BioCOISO. 

The tool allowed to identify which metabolites, composing the biomass equation, were not 

being produced by the target organism. Some functions such as test_e_precursors and 

test_reaction were convenient for debugging metabolic pathways in order to allow the production 

of biomass precursors such as amino acids. 

The metabolic syntrophic interaction between S. fumaroxidans and M. hungatei is 

represented in Figure 17. The metabolism of S. fumaroxidans is able to use propionate to produce 

acetate, formate, and H2. These metabolites can be used by M. hungatei to produce methane. 

The metabolic pathways represented in this figure are an example of the pathways studied using 

BioCOISO. For example, during debugging of the metabolic pathway represented in S. 

fumaroxidans, it was found that acetate was not being produced due to the incorrect direction of 

the reaction that consumes fumarate to produce malate. The error was only found when using the 

function test_reaction for all the reactions in the pathway. This function uses FBA, and the output 

indicates if the metabolites are being produced in a particular reaction or not.   

 
 

Figure 17. Schematic representation of the metabolic interactions between S. fumaroxidans and M. hungatei.;                                                                                                       
- Hydrogenase       - Formate dehydrogenase  
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4.4.2 Meta-Model Assembly troubleshooting  

A tool for building a GSM metabolic model for a microbial community was used. This tool 

will merge both GSM models that were reconstructed during this work, meaning that a meta-model 

will be assembled using both M. hungatei JF1 and S. fumaroxidans MPOBT GSM models.  

The tool implemented in FRAMED[149] can be accessed in the following URL: 

https://github.com/cdanielmachado/framed.The script allows merging two GSM models into a 

single model with values for biomass reaction and exchange reactions shared by both previous 

models. 

The primary objective of assembling a community model is to study the interactions 

between the involved organisms. This relationship is represented akin drain reactions in both 

models. For example, S. fumaroxidans excretes acetate, and M. hungatei consumes it by using 

drain reactions.  

The GSM models are exported from merlin in the SBML format. The SBML file assigns for 

each metabolite a unique identifier, such as “M_*****”, M represents “Metabolite” and the 

following five “*” represent the KEGG identifier. Changes were performed in both GSM models to 

merge them, as they were reconstructed in different ways meaning that the internal metabolites 

identifiers in the SBML file will be different for each model. For this reason, in both models, drain 

reactions with the same metabolite will only differ in the metabolite identifier. This difference would 

not allow both models to be merged by the selected tool. 

The only way to solve the problem was to develop a new tool, capable of overcoming this 

issue. The developed tool can be accessed in the following URL: 

https://nextcloud.bio.di.uminho.pt/s/2eByteTZ47ajLpK. It has different functions for solving the 

problems found when trying to merge both models. The first function developed was 

get_model1_mets which retrieves a python dictionary with the names of the metabolites within 

the keys, and the values are represented by metabolite identifier. These metabolites were retrieved 

from the exchange (drain) reactions of the first model. An identic function to the previous one, 

named get_model2_mets, was also created to retrieve the exchange metabolites from the second 

model. Next, a function named name_matches was developed only to identify metabolites with 

the same name in both models, and it retrieves a list with the names of those metabolites.  

One of the developed functions named changeIDs_by_name_match aims to assign the 

same id in both models for metabolites identified using the matches function. The new ids for 
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these metabolites were assigned as “NMIC_***” with “NMIC” being a diminutive of “Name Match 

Identifier Change” and the following three “*” as numbers.  

Another problem found when developing this tool was that in both models, for a few cases, 

the internal metabolite id in the first model did not match the same metabolite in the second 

model. The changeIDs_by_id_match function overcomes this problem by assigning in each model 

a unique id for those different metabolites. For the first model the ids were changed to the following 

format “IMCO_***” and “IMCO” stands for “Identifier Match Change model One”, and the next 

three “*” are random numbers. The same classification is applied to the second model but with 

a slight difference in the format, “IMCT_***” meaning “Identifier Match Change model Two”. The 

pipeline of the tool is schematized in figure 18. 

The names of the compartments in both models were different, and it represented an 

obstacle for the primary tool to run properly. In this line of view, a straightforward function named 

change_compartment_names was created, and it assigns the names of the first model 

compartments to the second model compartments names. The function works for this work, but 

it needs to be developed for cases were the compartment identifier in a model does not match 

the compartment identifier in the second model. 

Some other functions such as export_model1 and export_model2 were also added to the 

tool in order to retrieve the models in the proper way to be used in the primary tool, thus allowing 

the merge of S. fumaroxidans and M. hungatei GSM models.  

The method developed for implementing the modifications in the model relies on the 

following principles:  

• Metabolites names and ids present in exchange reactions are retrieved for each 

model and are saved in two different lists; 

• If the same metabolite id is found in both lists, each id will be modified to a 

specific identifier.  

• If the metabolite name is found in both lists (match), the id for that metabolite is 

changed in order to be the same in both models.  

• The compartments names from the first model are assigned to the 

compartment’s names of the second model. 
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Figure 18. Scheme representing the pipeline of the tool developed to modify both models so they could be merged by the 
COMMUNITY tool. Functions are highlighted by grey boxes. 
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CHAPTER 5 
 

CONCLUSIONS AND FUTURE WORK 
 

In the final chapter of this dissertation, the main 
conclusions of the present work are drawn, and topics for 
future work are proposed.  

 

 

5.1 General conclusions 

The main goal of this work was to develop two metabolic models of Syntrophobacter 

fumaroxidans MPOBT and Methanospirillum hungatei JF1 based on an up-to-date genome 

annotation and also to reconstruct a community GSM model based on the two reconstructed 

models. The GSM model of M. hungatei was first developed in KBase and later imported to merlin 

where manual curation was performed. S. fumaroxidans GSM model was reconstructed using 

merlin. The reconstructions comprise knowledge retrieved from the organism’s genome 

sequences, biochemical databases and organism-specific literature. These in silico assembled 

models characterize the metabolism behavior of both organisms through complete set of 

biochemical reactions that occur in each organism to maintain life. 

Literature and previous GSM models of close phylogenetic organisms to S. fumaroxidans 

and M. hungatei were used to determine the overall biomass composition of each organism. An 

experimental determination of the biomass composition in both organisms would have been a 

major advantage in this work.  
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A tool implemented in Python language that uses COBRApy was developed to allow the 

models to be ready to be merged using one of the FRAMED tools for merging GSM models. Other 

tools not presented on this work were developed in order to retrieve information from GSM models 

of taxonomy close organism such as Geobacter sulfurreducens, which speed up some tasks of 

manual curation of S. fumaroxidans and M. hungatei GSM models. 

The comparison of all GSM models reconstructed using different tools and different 

strategies showed that models reconstructed using merlin had more reactions with GPR associated 

and their reversibility was more consistent with either literature or reliable online biochemical 

databases. 

The GSM model of M. hungatei JF1 was able to produce methane by consuming formate 

and acetate as carbon sources when in silico simulations were performed. 

Regarding the GSM model of S. fumaroxidans MPOBT, performing in silico simulations 

showed that this model was able to produce acetate and formate by consuming either propanoate 

or fumarate as carbon sources. 

When performing in silico simulations on the community GSM model it was possible to 

simulate growth with production and consumption of certain metabolites such as methane and 

acetate, respectively. 

 

5.2 Future work 

The GSM models developed in this work can be used separately for studying organism-

specific behavior. Additionally, the community GSM model reconstructed during this work requires 

further studying and evaluation. This model should be able to simulate the metabolic behavior of 

the community formed by M. hungatei JF1 and S. fumaroxidans MPOBT. In the future, this 

community model can be used to study the capacity of this community to be used in different 

applications such as optimizing or minimizing the production of interest metabolites.   

In this work two different strategies for reconstructing GSM models were used, one 

consisted of using a semi-automatic tool (KBase), and the other way was to use merlin which is 

not an automatic tool. To date, there is not any M. hungatei GSM model reconstructed without 

using a semi-automatic tool, and it would be interesting, in the future, to fully reconstruct a GSM 

model for M. hungatei on merlin to see if there are significant differences when comparing with 

the existing GSM models. 
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