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Abstract. Although important contributions have been made in re-
cent years within the field of bioprocess model development and val-
idation, in many cases the utility of even relatively good models for
process optimization with current state-of-the-art algorithms (mostly of-
fline approaches) is quite low. The main cause for this is that open-loop
fermentations do not compensate for the differences observed between
model predictions and real variables, whose consequences can lead to
quite undesirable consequences. In this work, the performance of two
different algorithms belonging to the main groups of Evolutionary Al-
gorithms (EA) and Differential Evolution (DE) is compared in the task
of online optimisation of fed-batch fermentation processes. The proposed
approach enables to obtain results close to the ones predicted initially by
the mathematical models of the process, deals well with the noise in state
variables and exhibits properties of graceful degradation. When compar-
ing the optimization algorithms, the DE seems the best alternative, but
its superiority seems to decrease when noisier settings are considered.

Keywords: Fermentation processes, Online optimization, Differential
Evolution, Real-valued Evolutionary Algorithms.

1 Introduction

In recent years, many efforts have been devoted to the optimization of processes
in bioengineering as a number of valuable products such as recombinant pro-
teins, antibiotics and amino-acids are produced using fermentation techniques.
A problem that has received special attention is the dynamic optimization of fed-
batch bioreactors. This process has traditionally been conducted on the substrate
feed rate as key manipulated variable in operation. The optimization problem
is therefore solved before the beginning of the fermentation process (open-loop
optimal control) and consists on finding an expression or a sequence of values for
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the feeding rate that maximizes an objective function that represents the process
productivity, subject to the constraints represented by a dynamical model.

Several optimization methods have been applied to solve this kind of problem.
It has been shown that for relatively simple bioreactor systems, which are ex-
pressed in differential equations models, the optimization problem can be solved
analytically from the Hamiltonian function by applying the Minimum Principle
of Pontryagin [14]. However, in the majority of the cases reported, determination
of the optimal feed rate profile has a problem of singular control.

Numerical methods make a distinct approach to dynamic optimization. The
gradient algorithms are used to adjust the control trajectories in order to iter-
atively improve the objective function [3]. In contrast, dynamic programming
methods discretize both time and control variables to a predefined number of
values. A systematic backward search method in combination with the simula-
tion of the system model equations is used to find the optimal path through the
defined grid. However, in order to achieve a global minimum, the computational
burden is very high [3].

An alternative comes from the use of algorithms from the Evolutionary Com-
putation (EC) field, which have been used in the past to optimize nonlinear
problems with a large number of variables. These techniques have been applied
with success to the optimization of feeding or temperature trajectories [8][1],
and, when compared with traditional methods, usually perform better [12][5].

However, even when the mathematical models used for open-loop optimiza-
tion are reliable and validated by experimentation, in a real environment several
sources of noise can contribute to changes in the observed values of the state
variables. These issues are of particular importance when dealing with recom-
binant high-cell density fermentations, as the process, besides the nonlinearities
exhibited, tends to change dramatically upon some events, like induction. Also,
it is likely that there exists a time-variance of both yield and kinetic parameters
not contemplated in most process models. These scenarios have an important
impact on the experimental results that end up being worse than the ones pre-
dicted after running the offline optimization.

An alternative to cope with model inaccuracies is the use of online opti-
mization algorithms that periodically generate new solutions as the process is
running, making use of the measurement of relevant state variables for update
of the internal model. Indeed, unlike the previously stated alternatives where
the optimization is conducted prior to the experimental process, in this case,
the optimization is performed simultaneously, taking into account values of the
state variables measured by sensors within the fermentation process.

In this work, the performance of two different algorithms belonging to the
main groups of Evolutionary Algorithms (EA) and Differential Evolution (DE)
is compared in this task of online optimization. These methods were the ones
that performed better in offline optimization, in a previous study [6]. Three case
studies were taken from literature in order to test the performance of both algo-
rithms. These are used to perform an offline optimization and then a simulation
of a real-world fermentation is conducted. The relevant state variables are, in
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each case, disturbed by adding a small noise value, at regular periods of time.
The behavior of both algorithms is compared, as well as the performance of the
initial optimization results given the perturbations considered.

The paper is organized as follows: firstly, the fed-batch fermentation case
studies are presented; next, the algorithms of DE and a real-valued EA are
described; next, the results of the application of the different algorithms to the
case studies are presented; finally, the paper presents a discussion of the results,
conclusions and further work.

2 Case Studies: Fed-Batch Fermentation Processes

The case studies used in this work are related to the simulation of fed-batch fer-
mentation processes. In these processes there is an addition of certain nutrients
along the process, in order to prevent the accumulation of toxic products, allow-
ing the achievement of higher product concentrations. During this process the
system states change considerably, from a low initial to a very high biomass and
final product concentrations. This dynamic behavior motivates the development
of optimization methods able to find the optimal input feeding trajectories in
order to improve the process performance. For the optimization of the process
white box mathematical models are developed, based on differential equations
that represent the mass balances around the relevant state variables.

2.1 Case Study I

This case study is related to a fed-batch recombinant Escherichia coli fermenta-
tion process which was previously optimized in [10][11].

The dynamical model can be described by the following equations:

dX

dt
= (μ1 + μ2 + μ3)X − DX (1)

dS

dt
= (−k1μ1 − k2μ2)X +

Fin,SSin

W
− DS (2)

dA

dt
= (k3μ2 − k4μ3)X − DA (3)

dO

dt
= (−k5μ1 − k6μ2 − k7μ3)X + OTR − DO (4)

dC

dt
= (k8μ1 + k9μ2 + k10μ3)X − CTR − DC (5)

dW

dt
� Fin,S (6)

where X , S, A, O, C represent biomass, glucose, acetate, dissolved oxygen and
carbon dioxide concentrations (in g/kg); μ1 to μ3 are time variant specific growth
rates and ki are constant yield coefficients. D is the dilution rate, Fin,S the
substrate feeding rate (in kg/h), W the fermentation weight (in kg), OTR and
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CTR are the oxygen and carbon dioxide transfer rates. The kinetic behaviour
is given by the specific growth rates μ1 to μ3, which are non-linear functions of
the state variables. This dependence can be found in [9].

The purpose of the optimization is to determine the feeding rate profile
(Fin,S(t)) that maximizes the productivity of the process, defined as the units
of product (recombinant protein) formed per unit of time. In this case, this is
usually related with the final biomass obtained. Thus, a performance index (PI)
is defined by the following expression:

PI =
X(Tf)W (Tf ) − X(0)W (0)

Tf
(7)

The state variables are initialized with the values: X(0) = 5, S(0) = 0, A(0) =
0, W (0) = 3. Due to physical limitations the value of Fin,S(t) must be in the
range [0.0; 0.4] and W (t) ≤ 5. The final time (Tf ) is set to 25 hours.

2.2 Case Study II

This case study handles a hybridoma reactor described by the equations [12]:

dXv

dt
= (μ − kd)Xv − F1 + F2

V
Xv (8)

dGlc

dt
=

F1

V
Glcin − F1 + F2

V
Glc − qGlcXv (9)

dGln

dt
=

F2

V
Glnin − F1 + F2

V
Gln − qGlnXv (10)

dLac

dt
= qLacXv − F1 + F2

V
Lac (11)

dAmm

dt
= qAmmXv − F1 + F2

V
Amm (12)

dMab

dt
= qMabXv − F1 + F2

V
Mab (13)

dV

dt
= (F1 + F2) (14)

where the state variables Xv, Glc, Gln, Lac, Amm, Mab, V are the concentra-
tions of viable cells, glucose, glutamine, lactate, ammonia, monoclonal antibodies
and culture volume, respectively. The control variables F1 and F2 are the volu-
metric feed rates. The complete kinetic expressions are given in [12].

A single feed problem can be obtained by considering F = F1 + F2. The
target of the optimization process, in this case, is to increase the total amount
of monoclonal antibodies produced. So, the PI is given by:

PI =
∫ Tf

0
−qMabXv(t)V (t) (15)
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Initialization values for the state variables are the following:Xv=2.0×108cells/L,
Glc = 25g/L, Gln = 4g/L, Lac = 0g/L, Amm = 0g/L, Mab = 0g/L, V = 0.8L.
Tf is 10days and the value of V (t) is constrained by V (t) ≤ Vmax.

2.3 Case Study III

This system is a fed-batch bioreactor for the production of ethanol by Saccha-
romyces cerevisiae, firstly studied by Chen and Huang [4]. The aim is to find the
substrate feed rate profile that maximizes the final amount of ethanol.

The model equations are the following:

dx1

dt
= g1x1 − u

x1

x4
(16)

dx2

dt
= −10g1x1 + u

150 − x2

x4
(17)

dx3

dt
= g2x1 − u

x3

x4
(18)

dx4

dt
= u (19)

where x1, x2 and x3 are the cell mass, substrate and ethanol concentrations
(g/L), x4 the volume of the reactor (L) and u) the feeding rate (L/h).

On the other hand, the kinetic variables g1 and g2 are given by:

g1 =
0.408
1 + x3

16

x2

0.22 + x2
(20)

g2 =
1

1 + x3
71.5

x2

0.44 + x2
(21)

The performance index (PI) is given by: PI = x3(Tf )x4(Tf ).
The final time is set to Tf = 54 hours, and the initial values for the state

variables are the following: x1(0) = 1, x2(0) = 150, x3(0) = 0 and x4(0) =
10. Additionally, there are physical constraints over the variables, namely: 0 ≤
x4(t) ≤ 200 for all time points and the feeding rate 0 ≤ u(t) ≤ 12.

3 The Optimization Algorithms

The aim of the offline optimization is to find the feeding trajectory, represented
as an array of real-valued variables, that yields the best performance index. Each
variable will encode the amount of substrate to be introduced into the bioreactor,
in a given time interval, and the solution will be given by the temporal sequence
of such values. In this case, the size of the solution will be determined based on
the final time of the process (Tf ) and the discretization step (d) considered in the
numerical simulation of the model, given by the expression: Tf

d . To reduce the
solution size, feeding values were defined only at certain equally spaced points,
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and the remaining values are linearly interpolated. The size of the genome (G)
becomes G = Tf

dI + 1, where I stands for the number of points within each
interpolation interval. The value of d used in the experiments was d = 0.005, for
all case studies and the value of I is 200, 100 and 500 in case studies I, II and
III, respectively.

The evaluation process, for each solution, is achieved by running a numerical
simulation of the defined model, giving as input the feeding values in the solution.
The numerical simulation is performed using a linearly implicit-explicit (IMEX)
Runge-Kutta scheme, used for stiff problems, included in package OdeToJava
[2]. The fitness value is then calculated from the values of the state variables
according to the PI defined for each case.

3.1 Differential Evolution

Differential Evolution (DE) is a population-based approach to function opti-
mization that generates trial individuals by calculating vector differences be-
tween other randomly selected members of the population. In this work, a vari-
ant of the DE algorithm called DE/rand/1 was considered that uses a binomial
crossover [13]. In this case, the following scheme is followed, in every generation,
for each individual i in the population:

1. Randomly select 3 individuals r1, r2, r3 distinct from i;
2. Generate a trial vector based on: t = r1 + F · (r2 − r3)
3. Incorporate coordinates of this vector with probability CR;
4. Evaluate the candidate and use it in the new generation if it is at least as

good as the current individual.

3.2 Real-Valued EA

In this work, a real-valued EA was adopted that provided good results in previous
work [11][6]. A brief presentation of the algorithm is given in this section. A more
detailed description can be found in those references. The EA uses real-valued
representations and a number of mutation and crossover operators to create new
solutions, namely:

– Random Mutation, which replaces one gene by a new randomly generated
value, within the allowed range [7];

– Gaussian Mutation, which adds to a given gene a value taken from a Gaussian
distribution, with a zero mean.

– the standard Two-Point crossover;
– the Arithmetical crossover [7];
– the Sum crossover, where the offspring genes denote the sum or the subtrac-

tion of the genes in the parents.

The mutation operators are applied to a number of genes randomly generated
between 1 and N (value of N was 10 in the experiments). In each generation
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half of the population is kept from the previous generation and the remaining is
replaced by the new individuals created using the above reproduction operators.
Selection is performed by using a ranking of the individuals in the population
and applying a roulette wheel scheme.

4 Online Optimization

During the fermentation process, some of the state variables can be measured,
but its values are scarcely used for closed-loop optimization purposes, and are
rather employed to evaluate qualitatively the performance of the process. How-
ever, it is possible to develop dynamic optimization algorithms capable of timely
reacting to this new knowledge generated by updating the corresponding internal
model and generating new solutions.

EAs and DE are promising approaches to this real-time optimization task,
since they keep a population of solutions that can be easily adapted to perform
re-optimization. Indeed, a population of solutions previously obtained can be
evaluated under the new scenario and better adapted solutions can be created
through the use of reproduction operators. The fact that a set of solutions is
kept, and not only the best solution, makes a faster adaptation to new conditions
possible, while taking advantage of previous optimisation efforts.

In this work, an online optimization strategy based on EAs and DE is pro-
posed, working in two stages: before the fermentation process starts, an offline
optimization is conducted with the algorithms described in the previous sections.
After this preliminary optimization, online optimization algorithms use informa-
tion gathered by measuring the value of relevant state variables to improve the
PI during the real fermentation process. These algorithms react by updating its
internal model and reaching a new solution, that is available to be sent back to
the fermentation monitoring software.

The version of the EA/DE used to perform online optimization is similar to
the ones described before. When new information regarding the state variables
is received, the following steps are followed by both EA and DE:

1. a starting point (in time) is determined for the re-optimized solution, by
adding the time label of the received data with the predicted time necessary
to compute a new solution (since it is impossible to reach and therefore apply
a solution before that time).

2. the last available population is adapted by removing from the genome of each
individual the genes that encode feeding values for elapsed time periods.

3. half of the individuals in the population are replaced by new randomly gen-
erated solutions (these individuals are chosen randomly, although the best
individual is always kept). This helps in maintaining genetic diversity, a
specially needed feature for the optimization in changing landscapes.

4. the internal model of the fermentation used by the EA/DE is updated with
the new information available from the real process and each of the individ-
uals is re-evaluated taking this new knowledge into consideration.
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5. the normal process of the DE or EA proceeds for a given number of iterations.
6. the best solution obtained is sent to the fermentation process and can be

used in the real process.

5 Experiments

5.1 Setup

In this study, and given time and physical constraints, real fermentations were
not conducted and instead these were replaced by simulating the fermentation
process and adding noise to state variables. This process is implemented by
considering two interacting components: an optimizer, that implements the op-
timization algorithm (DE or EA), and a noise simulator (NS), that simulates
the real fermentation process adding noise to the state variables.

This is performed by considering that there is a deviation between the model
prediction and the behaviour of the process due to inaccuracies of the model.
Therefore, for each sampling time, the state variables that represent the
real process are obtained from the simulated variables by adding white noise.
These new values of the state variables would originate a major deviation of the
process from its optimal behavior, which had been defined during offline opti-
mization. To partially compensate for this deviation, the new values. of the state
variables will be used by the optimization algorithm to calculate a new feeding
profile.

The following sequence of events takes place:

1. an offline optimization is performed by the optimizer and its results are
passed on to the NS, used to compute the predicted values of the state
variables. The optimizer stops and waits for new information.

2. the variable t, which stores the simulated time in the NS is set to t = 0.
3. while t < Tf (where Tf denotes the final time of the fermentation process)

the following steps are executed:
(a) the values of all state variables at time t are disturbed by the NS by

adding/ subtracting noise, given by the original value multiplied by a
value taken from an uniform distribution with range [0, U ]. The new
values of the state variables are sent to the optimizer.

(b) the optimizer receives this information and runs the steps for online
optimization listed in the previous section. The best solution reached is
sent to the NS that updates its model accordingly.

(c) the NS updates t = t + Δt

Each run for the initial optimization is stopped after 100, 000 function evalu-
ations. For the DE, the population size is set to 20, F was set to 0.5, CR to 0.6.
In terms of the real-valued EA, the population size is set to 200. The value of
Δt was set to 1 (h.) in case study I, 0.5 (d.) in II and 2 (h.) in III.
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5.2 Results

The results will be presented in terms of the mean of the PI values obtained in 30
runs, as well as 95% confidence intervals. The Tables 1, 2 and 3 show the results
of the algorithms obtained on case studies I, II and III, respectively. In every case,
the first column represents the parameter U of the uniform representation used
to generate noise (an increase in this parameter implies noisier setups). The next
two columns show the results for the DE and the EA during offline optimization;
columns 4 and 5 show the results obtained for the same algorithms, but applying
the noise disturbances without changing the solutions of offline optimization
(simulating the case where there are discrepancies between model predictions
and real processes but without intervention of online optimizers) and, finally,
the last two columns show the results obtained by the online optimization.

Table 1. Results obtained by the DE and EAs in case study I

U Initial optim. Initial+noise Online opt.
DE EA DE EA DE EA

0.01 9.47 ± 0.00 8.85 ± 0.04 4.67 ± 0.70 4.79 ± 0.73 9.11 ± 0.14 8.72 ± 0.14
0.02 9.47 ± 0.00 8.83 ± 0.05 4.41 ± 0.75 4.69 ± 0.78 8.80 ± 0.24 8.53 ± 0.25
0.03 9.47 ± 0.00 8.81 ± 0.05 4.20 ± 0.76 4.35 ± 0.81 8.47 ± 0.34 8.17 ± 0.35

Table 2. Results obtained by the DE and EAs in case study II

U Initial optim. Initial+noise Online opt.
DE EA DE EA DE EA

0.01 394.7 ± 0.2 386.3 ± 0.8 371.7 ± 8.5 367.9 ± 7.1 386.2 ± 4.8 379.8 ± 3.8
0.02 394.7 ± 0.2 385.2 ± 0.7 353.9 ± 14.9 351.2 ± 12.3 374.1 ± 9.2 371.8 ± 8.3
0.03 394.7 ± 0.2 386.1 ± 0.9 330.0 ± 23.5 343.0 ± 15.4 364.5 ± 13.0 367.6 ± 11.0

Table 3. Results obtained by the DE and EAs in case study III

U Initial optim. Initial+noise Online opt.
DE EA DE EA DE EA

0.01 20405 ± 4 20374 ± 9 20097 ± 133 20236 ± 108 20421 ± 115 20408 ± 119
0.02 20407 ± 3 20379 ± 7 19832 ± 305 19986 ± 244 20404 ± 243 20392 ± 242
0.03 20405 ± 5 20376 ± 9 19711 ± 357 19938 ± 393 20282 ± 317 20236 ± 335

The first conclusion to draw from the results in that, in every case study,
even a low level of noise is enough to clearly disturb the results, although that
effect is clearly more visible in case study I. In fact, the levels of noise stud-
ied are certainly within the range of the differences observed between model
predictions and experimental results in biotechnological processes. However, the
consequences in terms of process performance when an open-loop fermentation
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(without online optimization) is performed are quite extreme, implying that in
many cases the utility of even relatively good models for process optimization
with current state-of-the-art optimization techniques (mostly offline approaches)
is quite low. Therefore, the results obtained with online optimization strategies
indicate that the reward obtained in terms of process productivity is probably
enough to justify its implementation and the corresponding costs.

In fact, the results obtained for all 3 case studies are quite close to the ones
predicted by offline optimization without added noise, thus implying that the
optimization scheme is robust to the levels of noise studied in this work. Fur-
thermore, the degradation of the results that is caused by the increase of U is
quite graceful, as an increase in U does not cause dramatic effects in the PI.

A comparison of the results obtained by both optimization algorithms show
that DE seems to be more effective than the EAs. The difference is very clear
when offline optimization is performed, but decreases when the level of noise
increases. In fact, the differences for U = 0.02 and 0.03 are not significant from
a statistical perspective and in case study II, the EA even outperforms the DE
for U = 0.03. Nevertheless, if an alternative has to be chosen the DE still has
an advantage, since it shows the best results (mean) in almost all scenarios.

6 Conclusions and Further Work

In this work, the task of optimizing feed profiles for fed-batch fermentation
problems was approached by proposing optimization algorithms, such as EAs and
DE, that are able to implement online optimization strategies, i.e., to perform the
optimization simultaneously with the real process. The proposed approach was
validated by conducting a number of experiments that used a noise simulator to
emulate the differences between the values predicted by the mathematical model
and the real values in the fermentation project. The results of the experiments
show that even small differences lead to important disruptions in the behavior
that was predicted by offline optimization.

The proposed approach to online optimization deals well with the noise and
exhibits properties of graceful degradation. When comparing the optimization
algorithms, the DE seems the best alternative, but its superiority that seems to
decrease when noisier settings are considered.

In future work, the priority is to validate these results by implementing this
approach with a real fed-batch fermentation process. Furthermore, other case
studies will be tested and distinct optimization algorithms will be taken into
account.
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