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Abstract

A decision model - the expected utility, entropy and variance (EU-EV) model -

is proposed, where the decision criterion depends on the uncertainty risk factors

entropy and variance and on the subjective expected utility. The EU-EV model

is applied to decision problems existing in the literature, and it is shown that

they can be well explained with this model.
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1. Introduction

Measuring risk and taking decisions under risk is important for many prob-

lems in various contexts of science, such as in economics, finance or medicine.

Several decision models and risk measures have been proposed in the litera-

ture. Some of them privilege decision analysis based on the expected utility

model developed by von Neumann and Morgenstern [1] describing how deci-

sion makers choose between uncertain prospects. According to that model,

there exists a utility function u(·) to appraise different risky outcomes and a

decision maker chooses the outcome which maximizes expected utility E[u(·)].
However the empirical validity of expected utility alone was questioned, due to

the non-conformity with experimental studies (see e.g.[2],[3]). Therefore, sev-

eral new models generalizing the expected utility model were proposed. Dyer

and Jia [4] presented relative risk-value models, incorporating a relative risk
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variable into the expected utility model, and generalized those models extend-

ing them for non-expected utility preferences, see also [3] and references therein

for non-expected utility models of preferences. Measures of perceived risk have

been developed satisfying empirically verified properties [5], [6] (e.g. the prop-

erty that perceived risk increases if there is an increase in range, variance or

expected loss). The mean-variance model presented in [6] or the Markowitz

mean-variance model for Modern Portfolio Theory [7],[8] is one of those models.

The main idea of the mean-variance model was to measure return as expected

value and risk as variance. Jia et al. [9] constructed two-attribute models for

perceived risk combining the effect of the expected value and a standard mea-

sure of risk (for example the expected utility or a combination of variance and

skewness). The structure of those models has the intuitive interpretation, that

people judge risk considering the effect of the expected value of a risky outcome

and also its variation or uncertainty. See [9] for a review of perceived risk mea-

sures. Ortobelli [10] emphasized that risk cannot be assessed by measuring only

the uncertainty. Popular uncertainty measures, such as the standard deviation

or variance, are not always adequate as a proxy for risk [11]. Even so there are

cases where the variance can serve as an index for risk as discussed in [12].

Another kind of decision models and risk measures are based on entropy,

which has the advantage that it can be computed from nonmetric data and

is free from an assumption concerning the underlying distribution. In finance

and economic literature one can find entropy models and measures to model an

uncertain environment and to obtain optimal economic decisions, e.g to model

portfolio (investment) risk [13], [14]. Nawrocki and Harding [15] proposed state-

value weighted entropy as a measure of investment risk, because in their opinion,

entropy was not a good measure of security risk since the dispersion of security

frequency classes was not taken into account. Many other authors constructed

models using entropy as risk measure for portfolio selection and investment deci-

sions, e.g the expectation-variance-indeterminacy models [16], the mean-entropy

models [17], fuzzy cross-entropy models [18] or the mean-entropy-skewness mod-

els [19] and recently a logarithmic expectation entropy model [20].
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Models, combining both expected utility and entropy (EU-E models) were

proposed by Yang and Qiu [21], [22], who showed that these models can be used

to explain some famous decision paradoxes, e.g. the Allais paradox. Luce et al.

[23], [24] provided entropy-modified expected utility models, that are similar to

the EU-E models. Park et al. [25] suggested Bayesian decision models based on

expected utility and the prior distribution of the state variables. In their study,

these models, called expected utility and uncertainty risk (EU-UR) models, were

compaired with the EU-E models and they were also shown to be compatible

with the interpretation of the decision paradoxes.

In this paper a new decision model is proposed, which is based on expected

utility, entropy and variance. This model, the expected utility, entropy and

variance (EU-EV) model, is an extension of the EU-E model, since it includes

the variance as an additional risk factor. The rest of the paper is organized as

follows. In section 2, the EU-EV decision model and the associated measure

of risk are defined. In Section 3, three different problems, considered in the

literature, are studied using the EU-EV model. The results are compared with

the results obtained from the EU-E model (problems in Sub-sections 3.1, 3.2

and 3.3) and with the EU-UR model (problems in Sub-sections 3.2 and 3.3). It

is shown that the EU-EV model can be used to explain decision problems and

that it can serve as a reasonable decision model to analyze uncertain actions

and preferences. Section 4 contains the conclusions about this work.

2. Expected utility, entropy and variance model

Consider the decision model under risk G(Θ, A,X), where Θ = {θ} is the

state space, A = {a} the action space and X = X(a, θ) the payoff function.

Let u(X) = u(X(a, θ)) be the utility function of the decision maker. Then,

the decision model under risk can be written as G(Θ, A, u). For a finite action

space, let A = {a1, a2, . . . , am} and suppose that the state θi corresponding

to action ai, i = 1, . . . ,m, has ni outcomes: θi = {θi1, θi2, . . . , θini
}, the state

space being Θ = {θ1, . . . , θm}. Let pij , i = 1, . . . ,m, j = 1, . . . , ni, denote the
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distribution law of θi, where
∑ni

j=1 pij = 1 and pij ≥ 0. Then pij = P (θ =

θij |a = ai) denotes the probability that state θij occurs when taking action ai.

The corresponding payoff, when taking action ai while state θij occurs, is given

by X = X(ai, θij) = xij , i = 1, . . . ,m, j = 1, . . . , ni.

In decision analysis the decision maker’s choice of an action is determined

by the following two main factors: the uncertainty of outcomes, resulting from

the uncertainty of state occurrence, and the decision maker’s expected utility

when taking a certain action. These factors are related to risk as follows. The

higher the uncertainty of an outcome is, the higher the risk. The higher the

expected utility of an action is, the lower the risk. Since uncertainty is related

to the state’s entropy and variance, the perception of risk is that risk increases

with entropy and with variance. Considering the expected utility of an action,

risk decreases, when the expected utility increases.

One can therefore think of a risk measure combining entropy and variance

on the one hand and expected utility on the other hand. The expected utility,

entropy and variance (EU-EV) risk measure is defined as follows.

Definition 1. Let G(Θ, A, u) be a decision analysis model, where the utility

function u = u(X(a, θ)) is increasing and a ∈ A. Then, the expected utility,

entropy and variance (EU-EV) measure of risk for an action a is defined by

R(a) =
λ

2

⎡
⎣Ha(θ) +

Var[X(a, θ)]

max
a∈A

{Var[X(a, θ)]}

⎤
⎦− (1− λ)

E[u(X(a, θ))]

max
a∈A

{E[u(X(a, θ))]} , (1)

where λ is a real constant satisfying 0 ≤ λ ≤ 1 and Ha(θ) is the entropy of the

state distribution corresponding to action a.

One says that R(a) is the risk of action a. The constant λ is called trade-

off coefficient, since it is used in the definition to balance the decision maker’s

expected utility of an action and the uncertainty reflected by the state’s entropy

and variance associated with the action. In this risk measure, the entropy and

variance are combined as arithmetic mean. If λ = 0, then the risk measure is

based only on the expected utility and if λ = 1 the risk measure depends only
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on the uncertainty given by the entropy and variance. If λ ∈ (0, 1), then the

effect of the expected utility on the risk measure is bigger if λ approaches 0 and

if λ approaches 1, the risk measure will be more influenced by the uncertainty

than by the expected utility.

Here, the entropy defined by Shannon [26] will be used. When θ is a discrete

random variable having n outcomes with corresponding probabilities pi, i =

1, . . . , n, then the entropy of the state θ corresponding to action a is

Ha(θ) = −
n∑

i=1

pi ln pi. (2)

If a decision maker must choose between two actions a1 and a2, then he com-

pares R(a1) with R(a2) by taking into account the subjective attitude towards

risk given by the expected utility and the objective uncertainty. The decision

maker chooses the action with lowest EU-EV risk.

The expected utility, entropy and variance (EU-EV) decision model can then

be defined as follows.

Definition 2. Let G(Θ, A, u) be a decision analysis model.

1. Consider two actions a1, a2 ∈ A with corresponding EU-EV risk measures

R(a1) and R(a2). Then:

(i) a1 is strictly preferred over a2, a1 � a2, if R(a1) < R(a2).

(ii) a1 is weakly preferred over a2, a1 � a2, if R(a1) ≤ R(a2).

(iii) a1 is indifferent to a2, a1 ∼ a2, if R(a1) = R(a2).

2. Consider various actions, A = {a1, a2, . . . , am}, then they can be ordered

using the EU-EV measure of risk. The optimal action is the one with

minimum EU-EV risk. In that case, one chooses ai if

R(ai) = min
ak∈A

R(ak).

Next, some properties of the EU-EV risk measure and the associated decision

model will be presented. For simplicity, E[u(X(a, θ))] will be denoted by E[u(a)]

and Var[X(a, θ)] by Var[a]. First, observe that for λ = 0, the decision model is

reduced to the expected utility model: given two actions a1 and a2, R(a1) <
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R(a2) if and only if E[u(a1)] > E[u(a2)]. In particular, for a linear utility

function u(x) = ax + b, a > 0, decisions are taken according to the expected

value principle, i.e. R(a1) < R(a2) if and only if E[a1] > E[a2].

The EU-EV risk measure satisfies the properties in the following two theo-

rems. The result in Theorem 1 states that risk decreases if a positive constant

is added to all outcomes of an action. The result in Theorem 2 states that risk

increases if all non-negative outcomes of an action with zero mean are multiplied

by a positive constant greater than one.

Theorem 1. Let G(Θ, A, u) be a decision analysis model with increasing utility

function u. Consider the EU-EV risk measure defined in (1). If A = {a, a+k},
where k is a positive constant, then,

R(a+ k) < R(a). (3)

Proof 1. Since Ha(θ) = Ha+k(θ), Var[a] = Var[a+k] and E[u(a)] < E[u(a+k)],

one has

R(a) =
λ

2
[Ha(θ) + 1]− (1− λ)

E[u(a)]

E[u(a + k)]

and

R(a+ k) =
λ

2
[Ha(θ) + 1]− (1− λ).

From the fact that the utility function is increasing, it follows that R(a + k) <

R(a).

Theorem 2. Let G(Θ, A, u) be a decision analysis model with non-negative out-

comes and increasing utility function u. Consider the EU-EV risk measure de-

fined in (1). If A = {a, ka}, where k > 1 is a constant, and E[a] = 0, then,

R(ka) > R(a) (4)

for
1− E[u(a)]

E[u(ka)]

3
2 − 1

2k2 − E[u(a)]
E[u(ka)]

< λ ≤ 1.

Proof 2. Since Ha(θ) = Hka(θ), Var[ka] = k2E[a2] > Var[a] = E[a2] and

E[u(a)] < E[u(ka)], one has

R(a) =
λ

2

[
Ha(θ) +

1

k2

]
− (1− λ)

E[u(a)]

E[u(ka)]
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and

R(ka) =
λ

2
[Ha(θ) + 1]− (1− λ).

It follows that R(ka) > R(a) if and only if

λ

(
3

2
− 1

2k2
− E[u(a)]

E[u(ka)]

)
−
(
1− E[u(a)]

E[u(ka)]

)
> 0.

Analysing the last inequality and the expression on the left side as function of λ,

one concludes that there exist intervals for λ contained in [0, 1], which increase

with k, where the condition is satisfied. Therefore, one has R(ka) > R(a) for

1− E[u(a)]
E[u(ka)]

3
2 − 1

2k2 − E[u(a)]
E[u(ka)]

< λ ≤ 1.

In particular, the results in Theorem 1 and Theorem 2 show that the EU-

EV risk measure satisfies properties concerning the risk perception in lotteries,

namely that perceived risk decreases if a constant positive amount is added to

all outcomes of a lottery (see [27], [28]), and that perceived risk increases if

all outcomes of a lottery with zero mean are multiplied by a positive constant

greater than one [29].

The EU-EV risk measure is an extension of the expected utility and entropy

(EU-E) risk measure proposed by Yang and Qiu [21], since in addition to the

entropy it includes also the variance as uncertainty factor. The EU-E risk

measure is defined by

R(a) = λHa(θ)− (1− λ)
E[u(X(a, θ))]

max
a∈A

{E[u(X(a, θ))]} , (5)

where 0 ≤ λ ≤ 1.

Another model proposed by Park et al. [25], the expected utility and uncer-

tainty risk (EU-UR) model, uses the prior distribution of the states as uncer-

tainty factor and is expressed by

R(a) =
λ

πa(pij)/max
a∈A

{πa(pij)} − (1− λ)
E[u(X(a, θ))]

max
a∈A

{E[u(X(a, θ))]} , (6)

where 0 ≤ λ ≤ 1 and πa(pij) is the prior distribution of action a.
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Yang and Qiu [21] and Park et al. [25] studied classical decision problems,

namely the problem of Levi and the Allais paradox, using the EU-E model and

the EU-UR model, respectively. Now, in the following section, these two prob-

lems will be studied with the EU-EV model and the results will be compared

with those obtained for the EU-E and EU-UR models. Also another problem

analysed by Nawrocki and Harding [15] will be considered as an example for

which the EU-EV measure as an extension of the EU-E measure is more appro-

priate.

3. Numerical examples and results

The following example justifies the use of the EU-EV as risk measure and it

is shown that the classical Levy problem and Allais paradox can be explained

with the EU-EV model (examples in Subsections 3.2 and 3.3). The examples

motivate to derive particular results, which are presented as propositions at the

end of the first two subsections.

3.1. Security problem

Nawrocki and Harding [15] explored the use of the entropy as a measure of

risk and concluded that it is not adequate for the use in finance and economics,

since it ignores the dispersion of frequency classes. They proposed instead a

state-value weighted entropy to increase the investment performance of the en-

tropy risk measure. The following example was considered by Nawrocki and

Harding to illustrate the problem of using the entropy as a measure of security

risk, where two securities have the same entropy, but different levels of risk.

Let a1 and a2 be two securities having the same return state values θi,

i = 1, . . . , 5, with different probabilities p1j and p2j , j = 1, . . . , 5, respectively

(see Table 1).
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Table 1: Outcomes of a1 and a2.

θ1 θ2 θ3 θ4 θ1 Expected value Variance Entropy

a1 x1j 1 2 3 4 5 3 1.2 1.47

p1j 0.1 0.2 0.4 0.2 0.1

a2 x2j 1 2 3 4 5 3 1.8 1.47

p2j 0.2 0.1 0.4 0.1 0.2

In this example, a1 and a2 have the same entropy: Ha1
(θ) = Ha2

(θ) = 1.47,

and the same mean: E[a1] = E[a2] = 3, however, different variances: Var[a1] =

1.2, Var[a1] = 1.8. Although a1 and a2 have the same entropy, a1 is less risky

than a2.

This example will be analysed using the EU-E and EU-EV risk measures for

different utility functions: a risk neutral utility u(x) = x and two risk averse

utilities: u(x) = log(x) and u(x) =
√
x. Table 2 contains the corresponding risk

measures for a1 and a2.

Table 2: Risk measures EU-E and EU-EV for a1 and a2.

Utility function R(ai) EU-E EU-EV

u(x) = x R(a1) 2.47λ− 1 2.07λ− 1

R(a2) 2.47λ− 1 2.24λ− 1

u(x) = log(x) R(a1) 2.47λ− 1 2.07λ− 1

R(a2) 2.42λ− 0.95 2.19λ− 0.95

u(x) =
√
x R(a1) 2.47λ− 1 2.07λ− 1

R(a2) 2.46λ− 0.99 2.23λ− 0.99

Risk-neutral utility: u(x) = x

Note that for the risk neutral utility function, the expected utility equals

the expected value: E[u(x)] = E[x]. Therefore the EU-E measure depends only

on the entropy and expected value and since these are equal for a1 and a2, one

obtains R(a1) = R(a2). In this case, a decision maker is indifferent in choosing

between a1 and a2, although a1 is less risky than a2.
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With the EU-EV risk measure, which contains the variance as additional

risk factor, one obtains R(a1) < R(a2) for 0 < λ ≤ 1, so that a decision maker

would choose a1, which is in fact less riskier than a2. If the effect of entropy

and variance vanishes (λ = 0), then R(a1) = R(a2).

Risk-averse utilities: u(x) = log(x) and u(x) =
√
x

Considering the EU-E measure, one has for both risk-averse utility functions

R(a1) < R(a2) ⇔ 0 ≤ λ < 1 and R(a1) = R(a2) ⇔ λ = 1, so that a decision

maker could choose a2 if he ignores the effect of expected utility (λ = 1). For

other values of the trade-off factors, he would choose a1.

With the EU-EV measure a decision maker with the risk-averse utility func-

tions would always choose a1, because R(a1) < R(a2) for trade-off factors

0 ≤ λ ≤ 1.

This problem shows that it is relevant to consider the variance as additional

risk factor in the risk measure, since it is possible to have actions with the same

entropy and even with the same mean, in which case the expected utility will

be equal for risk neutral decision makers. The following result can be stated,

which follows from Definition 1.

Proposition 1. Let G(Θ, A, u) be a decision analysis model with risk neutral

linear utility functions u(x) = ax + b, a > 0. If a1, a2 ∈ A, with EU-EV risk

measures R(a1) and R(a2), are such that Ha1
(θ) = Ha2

(θ) and E[a1] = E[a2],

then

R(a1) < R(a2)⇔ Var[a1] < Var[a2],

for 0 < λ ≤ 1.

3.2. Levy problem

Consider the following example, presented in [12], with two actions a1 and

a2 and two states θ1 and θ2 shown in Table 3.

10



Table 3: Outcomes of actions a1 and a2.

θ1 θ2 Expected value Variance Entropy

a1 x1j 1 100 20.8 1568 0.5

p1j 0.8 0.2

a2 x2j 10 1000 19.9 9703 0.06

p2j 0.99 0.01

According to the mean variance criterion, since E[a1] > E[a2] and Var[a2] >

Var[a1], a2 is riskier than a1 and one would choose a1. However, according to

the expected utility criterion, since E[u(a2)] > E[u(a1)] for the risk aversion

utility function u(x) = ln(x), a decision maker would choose a2.

Using the EU-EV criterion one concludes the following. For a risk neutral

decision maker with utility function u(x) = x, the risk measures for both actions

read: R(a1) = 1.33λ− 1 and R(a2) = 1.49λ− 0.96, implying R(a1) < R(a2) for

0 ≤ λ ≤ 1 and the decision maker always chooses a1. Considering the risk-averse

utility function u(x) = log(x), one has R(a1) = 0.72λ− 0.39, R(a2) = 1.53λ− 1

and, consequently, R(a2) < R(a1) ⇔ 0 ≤ λ < 0.75. In this case, the decision

maker would choose a2 for 0 ≤ λ ≤ 0.75. Suppose that the decision maker

has the risk-averse utility function u(x) =
√
x, then R(a1) = 1.14λ − 0.81,

R(a2) = 1.53λ − 1 and thus R(a2) < R(a1) ⇔ 0 ≤ λ < 0.49. In this case a2 is

preferable to a1 for trade-off factors 0 ≤ λ < 0.49.

Table 4 contains the risk-measures EU-E, EU-UR and EU-EV for the actions

a1 and a2 for the risk-neutral utility function u(x) = x and for both risk-averse

utility functions u(x) = log(x) and u(x) =
√
x. Using these risk measures,

one obtains the intervals for the tradeoff factors corresponding to the decisions

R(a1) < R(a2) and R(a2) < R(a1) indicated in Table 5.
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Table 4: Risk measures EU-E, EU-UR and EU-EV for actions a1 and a2.

Utility function R(ai) EU-E EU-UR EU-EV

u(x) = x R(a1) 1.5λ− 1 2λ− 1 1.33λ− 1

R(a2) 1.02λ− 0.96 1.21λ− 0.96 1.49λ− 0.96

u(x) = log(x) R(a1) 0.89λ− 0.39 1.39λ− 0.39 0.72λ− 0.39

R(a2) 1.06λ− 1 1.24λ− 1 1.53λ− 1

u(x) =
√
x R(a1) 1.31λ− 0.81 1.81λ− 0.81 1.14λ− 0.81

R(a2) 1.06λ− 1 1.24λ− 1 1.53λ− 1

Table 5: Tradeoff factors for decisions with EU-E, EU-UR and EU-EV.

Utility function Risk decision EU-E EU-UR EU-EV

u(x) = x R(a2) < R(a1) 0.08 < λ ≤ 1 0.05 < λ ≤ 1 —

R(a1) < R(a2) 0 ≤ λ < 0.08 0 ≤ λ < 0.05 0 ≤ λ ≤ 1

u(x) = log(x) R(a2) < R(a1) 0 ≤ λ ≤ 1 0 ≤ λ ≤ 1 0 ≤ λ < 0.75

R(a1) < R(a2) — — 0.75 < λ ≤ 1

u(x) =
√
x R(a2) < R(a1) 0 ≤ λ ≤ 1 0 ≤ λ ≤ 1 0 ≤ λ < 0.49

R(a1) < R(a2) — — 0.49 < λ ≤ 1

Analysing these results, one can observe that with the risk-averse utility

functions one chooses always a2 with the EU-E and EU-UR decision model.

However with the EU-EV decision model, for the risk-averse utility function

u(x) = log(x), a2 is chosen for 0 ≤ λ < 0.75, and for the risk-averse utility

function u(x) =
√
x, a2 is chosen for a smaller range of λ: 0 ≤ λ < 0.49.

Considering the risk-neutral utility function u(x) = x, a1 is always chosen with

the EU-EV model, whereas with the EU-E and EU-UR models a2 is preferred

over a1 for a wide range of values of λ and there is the possibility to prefer a1

over a2 for values of λ close to zero (see Table 5).

Note that for the risk-neutral utility, the expected utility principle is reduced

to the expected value principle, so that a1 is preferred over a2 in terms of utility.

For this reason and due to the high discrepancy of the variances, which has an
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higher impact than the entropies on the difference of the EU-EV measures for

a1 and a2, a1 is always chosen using the EU-EV measure. This suggests the

following result, which follows from Definition 1.

Proposition 2. Let G(Θ, A, u) be a decision analysis model with risk neutral

linear utility functions u(x) = ax + b, a > 0. If a1, a2 ∈ A, with EU-EV risk

measures R(a1) and R(a2), are such that

E[a1] > E[a2]

and
Var[a1]−Var[a2]

max
a∈A

{Var[a]} +Ha1
(θ)−Ha2

(θ) < 0 (7)

then R(a1) < R(a2) for 0 ≤ λ ≤ 1.

For the Levy problem the normalized difference of the variances in expression

(7) is −0.84 and the difference of the entropies 0.44, leading therefore to the

preference of a1 over a2.

3.3. Allais paradox

The problem known as Allais paradox [30] shows that expected utility may

not describe the behavior of decision makers adequately. It consists of two

experiments, in each of which people can choose between two possible capital

gains: a1 or a2 in the first experiment and a3 or a4 in the second experiment,

see Table 6.
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Table 6: Outcomes of actions a1 and a2, a3 and a4 of Allais paradox.

θ1 θ2 θ3 Expected value Variance Entropy

a1 x1j 1

p1j 1 1 0 0

a2 x2j 1 5 0

p2j 0.89 0.1 0.01 1.39 1.46 0.38

a3 x3j 1 0

p3j 0.11 0.89 0.11 0.1 0.35

a4 x4j 5 0

p4j 0.1 0.9 0.5 2.25 0.33

From experimental economy it is known that, if there is the possibility to

choose between a1 and a2, on the one hand, and a3 and a4, on the other hand,

then people prefer a1 over a2 and a4 over a3. However this is not consistent

with the expected utility hypotheses, since the preference E[u(a1)] > E[u(a2)]

is equivalent to 0.11u(1) > 0.1u(5) + 0.01u(0) and the preference E[u(a4)] >

E[u(a3)] leads to the opposite inequality.

The EU-EV decision model will be applied to this paradox and the results

will be compared with those obtained with the EU-E and EU-UR decision mod-

els.

Risk-neutral utility: u(x) = x

From the risk measures in Table 7 and the tradeoff factors in Table 8, one

can observe the following. The risk measure R(a1) is equal for EU-E, EU-UR

and EU-EV, because in this case it depends only on the expected value as risk

factor:

R(a1) = −(1− λ)
E[a1]

max{E[a1],E[a2]} .

The preference of a1 over a2 is better explained with the EU-EV model, since

this leads to a wider range for the tradeoff factor (0.29 ≤ λ ≤ 1), when compared

with the other models. As for the second decision, where a4 is preferred over a3,

it can also be explained with the EU-EV model, however the higher variance of
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a4 reduces the interval for the tradeoff factor (0 ≤ λ ≤ 0.62) for this decision.

Table 7: Risk measures EU-E, EU-UR and EU-EV for a risk-neutral utility function u(x) = x

for actions a1, a2, a3 and a4.

EU-E EU-UR EU-EV

R(a1) 0.72λ− 0.72 0.72λ− 0.72 0.72λ− 0.72

R(a2) 1.38λ− 1 1.1λ− 1 1.69λ− 1

R(a3) 0.43λ− 0.08 1.08λ− 0.08 0.42λ− 0.22

R(a4) 0.69λ− 0.36 1.32λ− 0.36 1.67λ− 1

Table 8: Tradeoff factors for decisions with EU-E, EU-UR and EU-EV with a risk-neutral

utility function u(x) = x.

EU-E EU-UR EU-EV

R(a1) < R(a2) 0.42 < λ ≤ 1 0.75 < λ ≤ 1 0.29 ≤ λ ≤ 1

R(a4) < R(a3) 0 ≤ λ ≤ 1 0 ≤ λ ≤ 1 0 ≤ λ ≤ 0.62

Risk-averse utility: u(x) =
√
x

Considering the risk-averse utility, one has

R(a1) = −(1− λ)
E
[√

a1
]

max
{
E
[√

a1
]
,E

[√
a2
] }

for the EU-E, EU-UR and EU-EV risk measure, which depends only on the

expected utility as risk factor. Therefore, one obtains the same expression

R(a1) = 0.9λ − 0.9 for the three measures (see Table 9). Again, the choice

of a1 over a2 is better explained with the EU-EV model, since this leads to a

wider range for the tradeoff factor (0.13 ≤ λ ≤ 1), when compared with the

other models (see Table 10). Concerning the preference of a4 over a3, it can

be explained with the EU-EV model as well, however the higher variance of a4

reduces the interval for the tradeoff factor (0 ≤ λ ≤ 0.5).
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Table 9: Risk measures EU-E, EU-UR and EU-EV for a risk-averse utility function u(x) =
√
x

for actions a1, a2, a3 and a4.

EU-E EU-UR EU-EV

R(a1) 0.9λ− 0.9 0.9λ− 0.9 0.9λ− 0.9

R(a2) 1.38λ− 1 1.1λ− 1 1.69λ− 1

R(a3) 0.44λ− 0.1 1.1λ− 0.1 0.7λ− 0.5

R(a4) 0.53λ− 0.2 1.16λ− 0.2 1.67λ− 1

Table 10: Tradeoff factors for decisions with EU-E, EU-UR and EU-EV with a risk-averse

utility function u(x) =
√
x.

EU-E EU-UR EU-EV

R(a1) < R(a2) 0.21 < λ ≤ 1 0.52 < λ ≤ 1 0.13 ≤ λ ≤ 1

R(a4) < R(a3) 0 ≤ λ ≤ 1 0 ≤ λ ≤ 1 0 ≤ λ ≤ 0.5

Risk-seeking utility: u(x) = x2

With the risk-seeking utility function one can observe again, as expected,

an equal risk measure R(a1) = 0.29λ− 0.29 for EU-E, EU-UR and EU-EV (see

Table 11). In this case, the expression for R(a1) reads

R(a1) = −(1− λ)
E
[
a21
]

max
{
E [a21] ,E [a22]

} .
The same behaviour as in the risk-neutral case and risk-averse case can be

observed for the EU-EV model in the risk-seeking case, when comparing the

choice of a1 over a2 and of a4 over a3. The range of the tradeoff factor is wider

for the first decision with EU-EV (0.51 ≤ λ ≤ 1) and it is reduced for the

second decision (0 ≤ λ ≤ 0.67), see Table 12. One concludes that also in the

risk-seeking case, the results are consistent with the Allais paradox.
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Table 11: Risk measures EU-E, EU-UR and EU-EV for a risk-seeking utility function u(x) =

x2 for actions a1, a2, a3 and a4.

EU-E EU-UR EU-EV

R(a1) 0.29λ− 0.29 0.29λ− 0.29 0.29λ− 0.29

R(a2) 1.38λ− 1 1.1λ− 1 1.69λ− 1

R(a3) 0.38λ− 0.03 1.03λ− 0.03 0.24λ− 0.04

R(a4) 1.06λ− 0.74 1.7λ− 0.74 1.67λ− 1

Table 12: Tradeoff factors for decisions with EU-E, EU-UR and EU-EV with a risk-seeking

utility function u(x) = x2.

EU-E EU-UR EU-EV

R(a1) < R(a2) 0.65 < λ ≤ 1 0.88 < λ ≤ 1 0.51 ≤ λ ≤ 1

R(a4) < R(a3) 0 ≤ λ ≤ 1 0 ≤ λ ≤ 1 0 ≤ λ ≤ 0.67

One can observe further interesting properties from the results presented in

Tables 7-12. Comparing the intervals of the tradeoff factors for the decision

R(a1) < R(a2) with EU-E, EU-UR and EU-EV, the intervals increase with the

increase of risk-aversion (cf. Tables 8,10,12). This is consistent with the decision

maker’s preference of the certain gain a1 over a2. Risk-averse decision makers

are more likely to choose a1 than risk-neutral ones, and both are more likely

to choose a1 than risk seeking decision makers. This behavior is expressed well

with all three risk measures.

As for the decision R(a4) < R(a3), with the EU-E and EU-UR models the

intervals of the tradeoff factors are equal, 0 ≤ λ ≤ 1, independently of the utility

function. However, with the EU-EV model, the increasing in the degree of risk

aversion is reflected in the intervals’ decreasing range. Note that a risk-seeking

person chooses a4 for tradeoff factors 0 ≤ λ ≤ 0.67, a risk-neutral person, for

tradeoff factors 0 ≤ λ ≤ 0.62 and a risk-averse person, for tradeoff factors

0 ≤ λ ≤ 0.5.

One can conclude that the Allais paradox can be described by the EU-EV

decision model.
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4. Conclusions

Decision models based on von Neumann and Morgenstern utility theory

alone cannot characterize all types of human behavior, as recognized in the lit-

erature. However, risk can also not be assessed measuring only uncertainty, e.g.

reflected in entropy or variance. It is reasonable to have decision models taking

into account both, the preference based on expected utility and the perception

of risk given by uncertainty, whose associated risk measures are consistent with

the decision maker’s preference ordering. The EU-EV model proposed in this

paper is one of these decision models. It is shown that this model can be used

to analyze and explain many decision problems. Its corresponding risk measure

is defined using expected utility, entropy and variance. Since this model also

includes the variance, when compared with the EU-E model, it performs bet-

ter in certain cases (e.g. it is possible to have different actions with the same

entropy, the same expected utility and different variances).
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