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Abstract: This work presents new analytical and semi-analytical solutions for the pure
Couette and Poiseuille–Couette flows, described by the recently proposed (Ferrás et al.,
A Generalised Phan-Thien–Tanner Model, JNNFM 2019) viscoelastic model, known as the generalised
Phan-Thien–Tanner constitutive equation. This generalised version considers the Mittag–Leffler
function instead of the classical linear or exponential functions of the trace of the stress tensor,
and provides one or two new fitting constants in order to achieve additional fitting flexibility. The
analytical solutions derived in this work allow a better understanding of the model, and therefore
contribute to improve the modelling of complex materials, and will provide an interesting challenge
to computational rheologists, to benchmarking and to code verification.

Keywords: generalised simplified PTT; Phan-Thien–Tanner (PTT) model; Mittag–Leffler; Couette
flow; Poiseuille–Couette flow

1. Introduction

It is well known that much can be learned about a physical phenomenon if a mathematical model
exists that can mimic and predict its behavior. The world of complex fluids is no different, and,
therefore, several models have been proposed over the years for that purpose. These models can be
more or less complex, depending on the properties of the fluids that are taken into account.

In this work, we are interested in viscoelastic materials [1], for which several models have been
proposed in the past. One can classify these models as: differential (that make use of the local
deformation field only) and integral (that take into account all the past deformation at each instant).
Differential models usually allow a faster numerical solution of the differential equations involved,
while integral models are computationally expensive and may lead to error propagation. On the other
hand, integral models allow a better modelling, since they incorporate the real world fluid memory
(the present state is influenced by all past weighted deformations). It is therefore of major importance
to improve the fitting capabilities of differential models and reduce the computational effort needed to
compute integral models.

In a recent work, Ferrás et al. [2] proposed an improved differential model based on the model by
Nhan Phan-Thien and Roger Tanner (PTT [3]), derived from the Lodge–Yamamoto type of network
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theory for polymeric fluids. The constitutive equation proposed by Nhan Phan-Thien and Roger
Tanner, for the case of an isothermal flow, is given by:

f (τkk) τ + λτ̊ = 2ηpD (1)

with

f (τkk) = 1 +
ελ

ηp
τkk, (2)

where D is the rate of deformation tensor, τ is the stress tensor, λ is a relaxation time, ηp is the
polymeric viscosity, τkk is the trace of the stress tensor, ε represents the extensibility parameter and τ̊

represents the Gordon–Schowalter derivative defined as

τ̊ =
∂τ

∂t
+ u · ∇τ − (∇u)T · τ − τ · (∇u) + ξ (τ ·D + D · τ) . (3)

Here, u is the velocity vector, ∇u is the velocity gradient and the parameter ξ accounts for the
slip between the molecular network and the continuous medium (it should be remarked that for the
derivation of the analytical solutions we will consider ξ = 0). Later, Phan-Thien proposed a new
model, based on an exponential function form [4] and showed that this new function would be quite
adequate to represent the rate of destruction of junctions, but the parameter ε should be of the order
0.01. The function f (τkk) is given by:

f (τkk) = exp
(

ελ

ηp
τkk

)
. (4)

Ferrás et al. [2] considered a more general function for the rate of destruction of junctions, the
Mittag–Leffler function where one or two fitting constants are included, in order to achieve additional
fitting flexibility [2]. The Mittag–Leffler function is defined by,

Eα,β (z) =
∞

∑
k=0

zk

Γ (αk + β)
, (5)

with α, β real and positive. When α = β = 1, the Mittag–Leffler [5] function reduces to the exponential
function. When β = 1, the original one-parameter Mittag–Leffler function, Eα, is obtained. Thus, the
new function of the trace of stress tensor (now denoted by K(.) instead of f (.), to distinguish from the
classical cases) describing the network destruction of junctions is written as:

K (τkk) = Γ (β) Eα,β

(
ελ

ηp
τkk

)
, (6)

where Γ is the Gamma function and the normalisation Γ (β) is used to ensure that K(0) = 1, for all
choices of β.

The linear and the exponential model of the Phan-Thien–Tanner has been frequently used in the
literature, and in fact Ferrás et al. [6] considered a new quadratic version of the PTT model, i.e., a
second-order expansion of the exponential model given by:

f (τkk) = 1 +
ελ

ηp
τkk +

1
2

(
ελ

ηp
τkk

)2
. (7)

Here, we compare the generalised Phan-Thien–Tanner (gPTT), given by Equation (6), with the
linear, the exponential and the quadratic versions of the PTT (Equations (2), (4) and (7), respectively).

To compare these models, we study the dimensionless material properties in steady shear flow
of the three versions of the PTT model and compare them with the new gPTT model, considering
different values of α and β.
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The material functions can be obtained considering a steady-state Couette flow in the x-direction,
u = (γ̇y, 0, 0), where γ̇ is the shear rate. For this flow, considering the parameter ξ = 0, the constitutive
Equation (1) reduces to: 

K(τkk)τxx = 2λγ̇τxy

K(τkk)τxy = ηpγ̇.

τyy = τzz = τxz = τyz = 0

(8)

From the system of Equation (8), τkk = τxx and applying some algebra in the first two equations,
a relationship between the shear stress and the normal stress is found,

τxx = 2
λ

ηp
τ2

xy. (9)

We can also obtain the viscometric material functions: the steady shear viscosity, µ (γ̇), the first
normal stress difference coefficient, Ψ1 (γ̇), and the second normal stress difference coefficient, Ψ2 (γ̇),
which are given by:

µ (γ̇) =
τxy

γ̇
, (10)

Ψ1 (γ̇) =
τxx − τxy

γ̇2 , (11)

Ψ2 (γ̇) =
τyy − τzz

γ̇2 . (12)

As for other versions of the simplified PTT models for which ξ = 0, the second normal stress coefficient
is null, Ψ2 (γ̇) = 0, so, we only need to find µ (γ̇) and Ψ1 (γ̇). Therefore, manipulating the second
equation of the system of Equations (8) we get,

τxy =
ηpγ̇

K(τxx)
. (13)

The dimensionless expression for the steady shear viscosity becomes,

µ (γ̇)

ηp
=

τxy

ηpγ̇
=

1
K(τxx)

(14)

and the dimensionless first normal stress coefficient is given by,

Ψ1 (γ̇)

2ηpλ
=

τxx

2ηpλγ̇2 =
1

[K(τxx)]
2 . (15)

In [6], it was shown that, for the linear PTT, the quadratic PTT and the exponential PTT, the
dimensionless material functions depend on the generalised Deborah number,

√
ε (λγ̇). We show that

the same happens for the gPTT model. To obtain the material function for the gPTT model, we need to
solve the non-linear system of equations (Equation (8)), which can be written in terms of τxx in the
non-linear form:

1
2

K (τxx)
2 ελ

ηp
τxx = ε (λγ̇)2 . (16)

Giving values to ελ
ηp

τxx, we can find
√

ε (λγ̇) using Equation (16). Then, the function K(τxx) is
directly calculated, allowing us to obtain the material functions given by Equations (14) and (15).

Figure 1 presents the dimensionless material properties for the steady-state Couette flow using
three versions of the PTT (linear, quadratic, and exponential) and also the gPTT model. In Figure 1a,
we set β = 1 and use different values of α, and, in Figure 1b, we set α = 1 and use different values to β.
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(a) (b)

Figure 1. Dimensionless material properties in steady-state Couette flow using the three versions of
the sPTT and for the gPTT model: (a) β = 1; and (b) α = 1.

We observe that the new generalised function allows a broader description of the thinning
properties of the fluid. Both the thinning rate and the onset of the thinning behavior can be controlled
by the new model parameters. Therefore, this new model must be further explored for weak flows,
such as Couette flows.

This model was extensively studied for strong flows in [2], where an explanation on the influence
of the new model parameters was provided.

Note that the exponential version of the model was developed to take into account the strong
destruction of network junctions, which occurs, for example, in strong flows (e.g., extensional flows).
Although the exponential model was derived for such strong flows, it was shown in [2] that the gPTT
model could slightly improve the fitting for shear (weak) flows, considering polymer solutions. Here,
we consider polymer melts.

Figure 2 shows that the gPTT model provides a much better fitting to weak flows of polymer
melts (low density polyethylene melt [7]), even when using only one extra parameter (α).

To quantify the error incurred during the fitting process, we used a mean square error given by

error =
Nµ

∑
i

[
log µ(γ̇)i − log µ(γ̇) f iti

]2
+

NΨ1

∑
j

[
log Ψ1(γ̇)j − log Ψ1(γ̇) f itj

]2
, (17)

errorµ =
Nµ

∑
i

[
log µ(γ̇)i − log µ(γ̇) f iti

]2
, (18)

errorΨ1 =

NΨ1

∑
j

[
log Ψ1(γ̇)j − log Ψ1(γ̇) f itj

]2
, (19)

with Nµ and NΨ1 the number of experimental points obtained for µ(γ̇) and Ψ1(γ̇), respectively.
A better fit was obtained for the new generalised model when compared to the original exponential

PTT model. The total mean square error obtained for the exponential PTT model was 29.7, being five
times the error obtained for its generalised version (for which a value of 6.0 was obtained). The new
model allows a better fit for low and high shear rates for the first normal stress difference (where
the errorΨ1 obtained for the exponential PTT model is 20 times higher than the error obtained for the
gPTT). For the shear viscosity, the gPTT model predicts a lower value (when compared to experimental
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data) for high shear rates (although it should be remarked that the errorµ is four times smaller when
compared to the exponential model).
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Figure 2. Fitting of the shear viscosity and the first normal stress difference coefficient to rheological
data from Laun [7]. The generalised PTT model only considers the one-parameter Mittag–Leffler
function, Eα. By adding only one parameter, we obtain a fitting error (Equation (17)) of 29.7 and 6 for
the exponential and gPTT models, respectively. The symbols represent the experimental data from
Laun [7] for a low density polyethylene melt.

Based on what is described above, this work presents analytical and semi-analytical solutions
for pure Couette and Poiseuille–Couette flows, described by the generalised Phan-Thien–Tanner
constitutive equation. It is well known that the rate of destruction of junctions increases for strong
flows (e.g., extensional flows), but, in this case, we consider weak flows, and study the capability of
this new model to describe them. This is done by performing a parametric study for the influence of
the gPTT parameters.

2. Analytical Solution for the gPTT Model in Couette flow

In this section, we derive the analytical solution for the fully developed flow of the gPTT model
considering both Couette and Poiseuille–Couette flows (cf. Figure 3). To obtain closed form analytical
solutions, the slip parameter in the Gordon–Schowalter derivative is set to ξ = 0.

The equations governing the flow of an isothermal incompressible fluid are the continuity,

∇ · u = 0 (20)

and the momentum equation,

ρ
Du
Dt

= −∇p +∇ · τ (21)

together with the constitutive equation,

Γ (β) Eα,β

(
ελ

ηp
τkk

)
τ + λτ̊ = 2ηpD, (22)

where D
Dt is the material derivative, p is the pressure, t is the time and ρ is the fluid density.
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(a) (b)

Figure 3. Geometry of: (a) the pure Couette flow; and (b) the Couette flow with an imposed pressure
gradient (Poiseuille–Couette flow).

We consider a Cartesian coordinate system with x, y, and z being the streamwise, transverse
and spanwise directions, respectively. The flow is assumed to be fully-developed and therefore the
governing equations can be further simplified since

∂

∂x
= 0(except for pressure),

∂v
∂y

= 0,
∂p
∂y

= 0. (23)

Therefore, Equation (21) can be integrated, leading to the following general equation for the
shear stress:

τxy = Pxy + c1, (24)

where Px is the pressure gradient in the x direction, τxy is the shear stress and c1 is a stress constant.
This equation is valid regardless of the rheological constitutive equation. The constitutive equations
for the generalised PTT model describing this flow can be further simplified leading to:

K(τkk)τxx = (2− ξ)(λγ̇)τxy, (25)

K(τkk)τyy = −ξ(λγ̇)τxy, (26)

K(τkk)τxy = ηpγ̇ + (1− ξ

2
)(λγ̇)τyy −

ξ

2
(λγ̇)τxx, (27)

where the shear rate γ̇ is a function of y (γ̇(y) ≡ du
dy ) and τkk = τxx + τyy is the trace of the stress

tensor. Assuming ξ = 0, Equation (26) implies that τyy = 0, and the trace of the stress tensor becomes
τkk = τxx. Dividing Equation (25) by Equation (27), K(τxx) cancels out, and we get the explicit
relationship between the streamwise normal stress and the shear stress given by Equation (9).

Now, combining Equations (9), (24) and (27), the following shear rate profile is obtained,

γ̇(y) = Γ(β)Eα,β

(
2ελ2

η2
p

(Pxy + c1)
2

)
(Pxy + c1)

ηp
. (28)

The velocity profile can be obtained integrating the shear rate subject to the Couette boundary
conditions (null velocity at the immobile wall),

u (0) = 0 (29)

and an imposed constant velocity, U, at the moving wall,

u (h) = U. (30)
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This leads to the following velocity profile:

u(y) = U− Γ(β)

ηpPx

∞

∑
k=0

(2ελ2

η2
p

)k
(Pxh + c1)

2k+2 − (Pxy + c1)
2k+2

Γ(αk + β) (2k + 2)

 , (31)

where c1 can be obtained by solving numerically the following equation,

U =
Γ(β)

ηpPx

∞

∑
k=0

(2ελ2

η2
p

)k
1

Γ(αk + β)

(Pxh + c1)
2k+2 − c1

2k+2

2k + 2

 . (32)

Combining Equations (31) and (32) leads to the following dimensionless velocity profile:

ū(ȳ) =
Γ(β)

P̄x

∞

∑
k=0

((
2εWi2

)k 1
Γ(αk + β)

(P̄x ȳ + c̄1)
2k+2 − c̄1

2k+2

2k + 2

)
(33)

with ȳ = y
h , ū (y) = u(ȳ)

U , c̄1 = c1h
ηpU , P̄x = Pxh2

ηpU and Wi = λU
h the Weissenberg number.

Remark 1. Note that, if c1 = −Px
h
2 , Equation (31) becomes,

u(y) = U− Γ(β)

ηpPx

∞

∑
k=0

(2ελ2

η2
p

)k
1

Γ(αk + β)

(
Px

h
2

)2k+2
−
(

Px

(
y− h

2

))2k+2

2k + 2

 , (34)

and Equation (32) leads to u(h) = 0, corresponding to Poiseuille flow with no slip boundary conditions.
The velocity profile can be written in dimensionless form as:

ū(ȳ) =
Γ(β)

P̄x

∞

∑
k=0

(2εWi2
)k 1

Γ(αk + β)

(
P̄x

(
ȳ− 1

2

))2k+2
−
(

P̄x
2

)2k+2

2k + 2

 . (35)

When we consider α = β = 1, this equation reduces to the one presented by Oliveira and Pinho [8] for the
planar channel flow of an exponential PTT fluid:

ū(ȳ) =
1

4εWi2P̄x

(
exp

(
2εWi2P̄x

2
(

ȳ− 1
2

)2
)
− exp

(
2εWi2P̄x

2

4

))
. (36)

Figure 4 shows a comparison between the gPTT model and exponential PTT (Equations (35) and (36)) for
different values of εWi2. As expected, the results are identical, confirming the solution limit for α = β = 1 on
the Mittag–Leffler function.
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Figure 4. Comparison between the gPTT model and exponential PTT considering a Poiseuille flow
with different values of εWi2 and different values of imposed P̄x.

3. Analytical Solution for the gPTT Model in Pure Couette flow.

For the pure Couette flow, Px = 0, therefore Equation (24) becomes,

τxy = c1. (37)

The shear rate is then given by Equation (38),

γ̇(y) = Γ(β)Eα,β

(
2ελ2

η2
p

c1
2

)
c1

ηp
. (38)

Integrating Equation (38) and taking into account Equation (29), the velocity field for the pure
Couette flow is obtained,

u(y) =
Γ(β)

ηp

∞

∑
k=0

(2ελ2

η2
p

)k
c2k+1

1
Γ(αk + β)

y

 . (39)

Making use of the boundary condition given in Equation (30), we obtain the following nonlinear
equation on c1, which must be solved numerically,

U
h

=
Γ(β)

ηp

∞

∑
k=0

(2ελ2

η2
p

)k
c2k+1

1
Γ(αk + β)

 . (40)

Equations (39) and (40) can be written in dimensionless form as:

ū(ȳ) = Γ(β)c̄1ȳ
∞

∑
k=0

((
2εWi2 c̄1

2
)k 1

Γ(αk + β)

)
(41)
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and

1 = Γ(β)c̄1

∞

∑
k=0

((
2εWi2 c̄1

2
)k 1

Γ(αk + β)

)
, (42)

respectively.

4. Discussion of Results

In the previous section, semi-analytical equations were derived for the gPTT model in
Poiseuille–Couette flow. In this section, we investigate the influence of the Mittag–Leffler function
parameters α and β on the velocity profile of the Poiseuille–Couette flow. We consider different εWi2

values, and also different values of α and β, and we compare the results with the ones obtained for the
exponential PTT model. Figure 5 shows the velocity profiles obtained for the Poiseuille–Couette flow
considering two different εWi2 values and different values of α (β = 1).

:

:

:

:

:

:

(a)

:

:

:

(b)

Figure 5. Velocity profiles obtained for the Poiseuille–Couette flow considering different values of εWi2

and different values of α (β = 1): (a) P̄x = −1; and (b) P̄x = −2.

Figure 6 shows the velocity profiles obtained for the Poiseuille–Couette flow considering two
different εWi2 and different values of β (α = 1).

We observe in Figure 5a that for α > 1 the flow rate decreases while for α < 1 it increases.
As expected, for a constant pressure drop, the flow rate increases with εWi2. In Figure 5b, we can
observe that with the increase of the absolute value of the pressure drop, the velocity profile becomes
more sensitive to small changes in α.

For the case of constant α = 1 and varying β (Figure 6), the trends are similar to the ones obtained
in Figure 5 (varying α), but now the velocity profile is less sensitive to large vales of β (with β > 1).
In Figure 6b, we observe that the combined effects of pressure drop and large values of εWi2 lead to a
substantial increase of the flow rate for β < 1.
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:

:

:

:

:

:

(a)

:

:

:

:

:

:

(b)

Figure 6. Velocity profiles obtained for the Poiseuille–Couette flow considering different values of εWi2

and different values of β (α = 1): (a) P̄x = −1; and (b) P̄x = −2.

5. Conclusions

In this work, we develop new analytical solutions for the Poiseuille–Couette flow of a viscoelastic
fluid modelled by the generalised PTT model. We study the influence of the model’s new parameters
on the velocity profile and we discuss the role of the new function of the stress tensor on weak flows.
The new model allows a broader description of flow behavior, and therefore it should be considered
in the modelling of complex viscoelastic flows. The analytical solutions developed in this work are
helpful for validating CFD codes, and also allow a further understanding of the model behavior in
weak flows.
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