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ABSTRACT Four phages infecting Shiga toxin-producing Escherichia coli (STEC) strains
of different serotypes were isolated from wastewater samples. Their virion DNAs range
from 51 to 170 kbp, are circularly permuted or have defined terminal repeats, and can
encode 82 to 279 proteins. Despite their high similarity to other phages, only about 30%
of their genes have a predicted function.

Shiga toxin-producing Escherichia coli (STEC) causes significant foodborne diseases
in humans. Being generally nonpathogenic in ruminants, they use their gut as

a natural reservoir. Transmission to humans occurs through the consumption of
contaminated foods, such as raw or undercooked meat products, raw milk, and
contaminated raw vegetables. Because fecal shedding is the major contamination
source of carcasses, causing subsequent food recalls and human outbreaks, the role
of the live animal in the production of a safe food product is critical. Here, we report
the isolation of four broad STEC-infecting phages (vB_EcoM_Lutter [Lutter], vB_
EcoM_Ozark [Ozark], vB_EcoM_Gotham [Gotham], and vB_EcoS_Chapo [Chapo])
isolated in Braga, Portugal.

Phages were isolated and produced as described previously (1). Briefly, sewage
samples enriched with double-strength tryptic soy broth medium and STEC strains
were grown overnight at 37°C with agitation. Filtered supernatants were spotted onto
bacterial lawns, and collected phages were used for further purification.

Phage genomic DNA was extracted using phenol-chloroform-isoamyl alcohol ex-
traction (2). Next, whole-genome libraries were constructed using a TruSeq Nano DNA
library prep kit. The generated DNA fragments were multiplexed and sequenced in the
same Illumina MiSeq run using 300-bp paired-end sequencing reads. The sequence
reads were assembled in the Geneious Prime 2020 (Biomatters Ltd., New Zealand) de
novo assembler (with medium-low sensitivity), yielding average coverages of 97�

(61,819 reads), 20� (9,253 reads), 79� (31,782 reads), and 130� (19,306 reads) for
Lutter, Ozark, Gotham, and Chapo, respectively. Quality control of the sequence reads
was performed with FastQC v0.11.5 (3), while the assembly quality was verified with
Geneious Prime (4). The assembled reads of Lutter, Ozark, and Chapo formed single
contigs of overlapping ends with no regions of 2� increased coverage, as expected in
the case of terminally redundant and circularly permuted sequences. Their starts were
selected to align with the starts of the genomes of similar reference phages. The
genomes were annotated using MyRAST (5), BLAST (6), tRNAscan-SE v2.0 (7), ARAGORN
(8), PhagePromoter (9), and HHpred (10) (with default program parameters) and
manually inspected. A summary of their basic characteristics is presented in Table 1.

Lutter was isolated using a STEC O104 strain. It is a myovirus with a 170,054-bp
genome that can encode 279 putative proteins (only 120 with predicted function) and
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shares 90% overall nucleotide identity with the Escherichia phage teqhad (GenBank
accession number MN895434). Ozark, isolated using a different STEC O29:H12 strain,
is closely related to Lutter (97% overall nucleotide identity). They are both related
to prototypical phage T4 and share the preferred 24-bp region of T4 DNA packag-
ing. Gotham is a smaller myovirus with a 137,025-bp DNA molecule and 459-bp
terminal repeats, sharing 90% overall nucleotide identity with several other Esch-
erichia phages (e.g., vB_EcoM-ECP26, GenBank accession number MK883717). Chapo
is a siphovirus isolated using the STEC O29:H12 strain and is related to phage T1. It has
a 51,099-bp genome divided into oppositely transcribed halves and can encode 82
potential proteins (only 22 with predicted functions). The pac cut site of Chapo was
localized between positions 68 and 69 of the genomic sequence pointed out by the
identical ends in �20% of these region reads. All the genomes have defined modules
coding different functions. In particular, the lysis cassettes of the myoviruses contain
putative holin and endolysin genes that are separated, with the exception of Gotham,
where the holin gene was not identified. Siphovirus Chapo is predicted to encode a
holin, an endolysin, and u-spanin canonical genes.

Data availability. The GenBank accession numbers are MT682713, MT682714,
MT682715, and MT682716 for vB_EcoM_Ozark, vB_EcoM_Lutter, vB_EcoS_Chapo, and
vB_EcoM_Gotham, respectively. The corresponding SRA data have been deposited in
NCBI under BioProject accession number PRJNA646048.
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TABLE 1 Morphology and overall features of isolated Escherichia phages
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(family)

Subfamily,
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size (bp) Virion DNA Packaging strategy

G�C
content (%)

No. of
CDSa

No. of
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vB_EcoM_Lutter Myoviridae
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Tevenvirinae,
Tequatrovirus

170,054 Terminally redundant,
circularly permuted

Headful packaging, preferred
pac cuts between pos.b

97225 and 97248 of
genomic sequence
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at pos.b 68/69 of genomic
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45.5 82 0

a CDS, coding DNA sequences.
b pos., position(s).
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