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HIGHLIGHTS 

 

 New NIR fluorescent dyes of quinolizino[1,9-hi]phenoxazines were synthesised. 

 The new dyes show absorbance and emission maxima up to 675 and 712 nm, respectively. 

 A bathochromic shift of 33 nm occurs in em for dye possessing the anthracene ring system. 

 The fluorochromophores displayed interesting antifungal activity. 

  The best candidate for further developments presents a MIC value of 0.78 µM.  
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Abstract: A series of new quinolizino[1,9-hi]phenoxazinium dyes built on julolidine and naphthalen-1-

amine derivatives or anthracen-1-amine were prepared. The N-terminal of these quinolizino[1,9-

hi]phenoxazinium chlorides contains aromatic or aliphatic substituents, along with the functionalities 

such as chloro, hydroxyl and carboxyl. The photophysical behaviour of these compounds was studied 

in anhydrous ethanol and aqueous medium under acidic and basic conditions. These fluorophores 

display absorption and emission maxima up to 675 and 712 nm, respectively, can serve as alternative 

sensing tools in biological assays. 

All the quinolizino[1,9-hi]phenoxazinium chlorides were evaluated against the yeast Saccharomyces 

cerevisiae in a broth microdilution assay. It was found that their antifungal activity depended on the 

substituent at 14-amino position in benzo[a]quinolizino[1,9-hi]phenoxazin-14(5H)-iminium chlorides, 

and also on the addition of a fused benzene ring, which occurs in naphtho[2,3-a]quinolizino[1,9-

hi]phenoxazin-14(5H)-iminium chloride. The highest activity, with a MIC of 0.78 µM, was obtained 

for benzo[a]quinolizino[1,9-hi]phenoxazin-14(5H)-iminium chloride with a 3-chloropropyl substituent 

at the 14-amino position of the heterocycle core. 
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1. Introduction 

Small fluorescent molecules serve as central tools in the field of biosciences [1]. The emerging need of 

fluorescent probes requires design and strategic synthesis of new fluorescent dyes. Nile Blue (NB) and 

their derivatives are studied and used as markers due to their fluorescent and solvatochromic 

characteristics [2-9]. In this context, benzophenoxazinium dyes are structurally compact with high 

molar extinction coefficients and exhibit strong fluorescence in the near-infrared (NIR) region with 

high photochemical stability, which indicates the efficacy of these dyes as fluorophores for biological 

applications [10]. Benzophenoxazinium chlorides function as potential photosensitizers for 

photodynamic therapy [11,12], pH sensors for simultaneous far-red and near-infrared live bioimaging 

[13], promising drugs for malaria [14] and reversing vinca alkaloid resistance in multidrug-resistant 

cancer cells [15], among other promising biological applications [16-18].  

Julolidine based dyes serve as important tools in photochemical, biological systems due to low toxicity, 

displaying good chemical and thermal stability [19,20]. These compounds are used as sensitizers in dye 

sensitized solar cells due to their large π-conjugated system and high electron donating property [21]. 

In addition, they are also used as photoconductive materials [22], chemiluminescence substances [23], 

chromogenic substrates in analytical redox reactions [24,25], nonlinear optical materials [26], 

phototriggers in the release of neurotransmitters [27], potential anti-depressants and tranquilizers [28]. 

Julolidine derivatives function as chemosensors for the selective detection of metals such as Cu
2+

 [29], 

Fe
3+

 [30], Al
3+

 [31], Zn
2+

 [32], and also act as fluorescent molecular rotors [33]. Moreover, 8-

hydroxyjulolidine was used for the synthesis of bridged phenoxazinium salts and some of these 
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compounds function as acid-base indicators as reported by Kanitz et al. [34]. However, Kanitz 

publication is the only one so far using julolidine system in the preparation of phenoxazinium dyes.  

Keeping in mind the importance and in continuation of our research interest towards the synthesis and 

applications of benzophenoxazinium salts [2-8,12,17,18,35-37], we herein report a new series of  

benzo[a]quinolizino[1,9-hi]phenoxazin-14(5H)-iminium and naphtho[2,3-a]quinolizino[1,9-

hi]phenoxazin-14(5H)-iminium chlorides obtained by condensation of nitroso derivative of 8-

hydroxyjulolidine with naphthalen-1-amine derivatives and anthracen-1-amine, respectively. The 

introduction of the julolidine nucleous into the polycyclic system is expected to result in maxima 

absorption and emission wavelengths of fluorophores higher than those obtained from similar 

unbridged anilines [34].  

The new compounds synthesised possesses aromatic or aliphatic substituents, along with the 

functionalities such as chloro, hydroxyl and carboxyl at 14-amino position of the heterocyclic system. 

The choice of these substituents, namely the propyl and chloropropyl groups, was based on the fact that 

benzo[a]phenoxazines previously reported by our research group possessing these groups on the 5-

amino positions displayed the best biological activities against the yeast Saccharomyces cerevisiae 

[17,18]. On the other hand, the presence of chloro as well as hydroxyl and carboxyl as side chain 

termini will increase the versatility of these compounds, particularly in terms of fluorescent labeling, 

allowing their use as covalent markers of biomolecules, in addition to their intrinsic ability as non-

covalent markers due to the ionic character of their structures. 

Fundamental photophysical studies of these cationic fluorophores were carried out in anhydrous 

ethanol and aqueous medium under acidic and basic conditions. 

The antifungal activity of these phenoxazinium chlorides was assesd by using the yeast Saccharomyces 

cerevisiae as a model organism. Comparison of MIC values of all the compounds revealed that 
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benzo[a]quinolizino[1,9-hi]phenoxazin-14(5H)-iminium chloride with a 3-chloropropyl substituent at 

the 14-amino position of the heterocycle core exhibits the best activity. 

 

2. Experimental section 

 

2.1. Synthesis general  

All melting points were measured on a Stuart SMP3 melting point apparatus. TLC analysis was carried 

out on 0.25 mm thick precoated silica plates (Merck Fertigplatten Kieselgel 60F254), and spots were 

visualised under UV light. Chromatography on silica gel was carried out on Merck Kieselgel (230-240 

mesh). IR spectra were determined on a BOMEM MB 104 spectrophotometer. NMR spectra were 

obtained on a Bruker Avance III 400 at an operating frequency of 400 MHz for 
1
H and 100.6 MHz for 

13
C using the solvent peak as internal reference at 25 ºC. All chemical shifts are given in ppm using δH 

Me4Si = 0 ppm as reference and J values are given in Hz. Assignments were made by comparison of 

chemical shifts, peak multiplicities and J values, and were supported by spin decoupling-double 

resonance and bidimensional heteronuclear correlation techniques. Mass spectrometry analysis were 

performed at the “CACTI - Unidad de Espectrometria de Masas”, at University of Vigo, Spain. All 

commercial reagents were used as received.  

 

2.2. Synthetic method for the preparation of 9-nitroso-1,2,3,5,6,7-hexahydropyrido[3,2,1-

ij]quinolin-8-ol hydrochloride 1 

1,2,3,5,6,7-Hexahydropyrido[3,2,1-ij]quinolin-8-ol (8-hydroxyjulolidine) (0.300 g, 1.58 mmol) was 

weighed in a round bottom flask and dissolved in ethanol (5 mL) which was placed in an ice bath with 

continuous stirring. After a period of 15 min, concentrated hydrochloric acid (0.419 mL) was added. A 

solution of sodium nitrite (0.123 g, 1.73 mmol) in water (1 mL) was prepared and added to the ice cold 



 7 

 

 

acidic solution over a period of 30 min. The reaction mixture turns brown and stirring was continued 

for more 5 h and then filtered with the sintered glass funnel. To avoid excess of acid it was washed 

with small amounts of water and ethanol. The precipitate was dried to get a fine brownish red powder 

(0.345 g), whose 
1
H NMR spectrum suggested the presence of compound 1 in a mixture with the 

corresponding isomer, 10-nitroso-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinolin-8-ol hydrochloride, in 

the 7:3 ratio. 
1
H NMR (DMSO, 400 MHz): δH 1.79-1.87 (m, 4 H, 2-H and 6-H, isomer), 1.88-2.0 (m, 4 

H, 2-H and 6-H), 2.45 (t, J = 5.6 Hz, 2 H, 1-H or 7-H, isomer), 2.58 (t, J = 5.6 Hz, 2 H, 1-H or 7-H), 

2.65 (t, J = 5.6 Hz, 2 H, 1-H or 7-H, isomer), 2.71 (t, J = 5.6 Hz, 2 H, 1-H or 7-H), 3.40-3.50 (m, 4 H, 

3-H and 5-H, isomer), 3.73-3.80 (m, 4 H, 3-H and 5-H), 6.79 (s, 1 H, 9-H, isomer), 7.30 (s, 1 H, 10-H) 

ppm. 

 

2.3. Synthetic method for the preparation of N-phenylnaphthalen-1-amine 2b  

To a solution of naphthalen-1-amine (1.0 g, 6.98 mmol) in ethanol (3 mL), chlorobenzene (0.783 g, 

6.98 mmol) was added, and the resulting mixture was refluxed for 6 h. The reaction progress was 

monitored by TLC (dichloromethane/methanol, 9.5:0.5 vol). After completion of the reaction, solvent 

was evaporated and the mixture was purified by column chromatography on silica using 

dichloromethane and dichloromethane/methanol (99:1), as the eluent. N-phenylnaphthalen-1-amine 2b 

was obtained as pink solid (1.357 g, yield 88 %). Mp 59-61 
o
C. Rf = 0.40 (dichloromethane/methanol, 

9.0:1.0 vol): 
1
H NMR (CDCl3, 400 MHz): δH 6.81 (dd, J = 6.8 and 1.6 Hz, 2 H, 2-H, 4-H Ph), 7.32-

7.41 (m, 4 H, 3-H Ph, 5-H Ph, 2-H Ph and 6-H Ph), 7.48-7.54 (m, 3 H, 4-H, 6-H, 3-H), 7.82-7.89 (m, 3 

H, 7-H, 5-H and 8-H) ppm. 
13

C NMR (CDCl3, 100.6 MHz): δC 109.61 (C-2 and 1×Ar-C), 118.89 

(2×Ar-C), 120.74 (2×Ar-C), 123.59 (C-8a), 124.78 (1×Ar-C), 125.78 (1×Ar-C), 126.28 (3×ArC), 

128.48 (1×Ar-C), 134.33 (C-4a and C-1 Ph), 142.02 (C-1) ppm.  
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2.4. General procedure for the synthesis of quinolizino[1,9-hi]phenoxazin-6-iminium chlorides 

4a-f and 5 

To a cold solution (ice bath) of 9-nitroso-1,2,3,5,6,7-hexahydropyrido [3,2,1-ij]quinolin-8-ol (9-

nitroso-8-hydroxyjulolidine hydrochloride) 1 (2 equiv) in ethanol (2-3 mL), precursors 2a-f or 3 (1 

equiv) and concentrated hydrochloride acid (0.25 equiv) were added. The reaction mixture was 

refluxed during the time mentioned below, and monitored by TLC. Upon completion, the solvent was 

evaporated under reduced pressure and column chromatography purification was performed on silica 

gel with dichloromethane and dichloromethane/methanol, mixtures of different polarity, as the eluents 

and dyes 4a-f or 5 were obtained as green blue solids. 

 

2.4.1 2,3,6,7-Tetrahydro-1H-benzo[a]quinolizino[1,9-hi]phenoxazin-14(5H)-iminium chloride 4a. 

The product of the reaction of 1 (0.115 g, 0.525 mmol) in ethanol (1 mL) and concentrated 

hydrochloric acid (0.014 mL) with naphthalen-1-amine 2a (0.037 g, 0.262 mmol) (reflux time 19 h), 

was chromatographed with dichloromethane and dichloromethane/methanol 9.0:1.0, to give compound 

4a as a green blue solid (0.037 g, yield 19 %). Mp 218-221 °C. Rf = 0.34 (dichloromethane/methanol, 

9:1 vol). FTIR (KBr 1 %): νmax 3417, 3122, 2920, 2927, 2856, 1641, 1586, 1532, 1473, 1437, 1385, 

1354, 1317, 1286, 1215, 1175, 1140, 1098, 1033, 778 cm
-1

. 
1
H NMR δH (CD3OD, 400 MHz), 1.98-2.08 

(m, 4H, 2-H and 6-H), 2.75 (t, J = 6.4 Hz, 2H, 1-H), 2.83 (t, J = 6.0 Hz, 2H, 7-H), 3.50-3.60 (m, 4H, 5-

H and 3-H), 6.62 (s, 1H, 15-H), 7.16 (s, 1H, 8-H), 7.70-7.74 (m, 1H, 12-H), 7.80 (t, J = 7.2 Hz, 1H, 11-

H), 8.17 (d, J = 8,4 Hz, 1H, 13-H), 8.62 (d, J = 8.0 Hz, 1H, 10-H) ppm. 
13

C NMR δC (CD3OD, 100.6 

MHz), 20.07 (C-1), 20.38 (C-6), 21.47 (C-2), 28.38 (C-7), 51.88 (C-3), 52.41 (C-5), 96.55 (C-15), 

106.54 (Ar-C), 124.20 (C-13), 124.97 (C-10), 128.48 (Ar-C), 129.78 (C-12), 130.03 (C-8), 131.39 (Ar-

C), 132.08 (C-11), 132.75 (Ar-C), 132.92 (C-Ar), 133.41 (Ar-C), 144.43 (Ar-C), 151.43 (Ar-C), 152.47 
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(Ar-C), 159.94 (C-14) ppm. HRMS: m/z (ESI): Found [M+1]
+
: 378.1375; C22H20ClN3O requires 

[M+1]
+
: 378.1375.  

 

2.4.2. N-(2,3,6,7-Tetrahydro-1H-benzo[a]quinolizino[1,9-hi]phenoxazin-14(5H)-ylidene) 

benzenaminium chloride 4b. The product of the reaction of 1 (0.115 g, 0.525 mmol) in ethanol (1 

mL) and concentrated hydrochloric acid (0.014 mL) with N-phenylnaphthalen-1-amine 2b (0.057 g, 

0.262 mmol) (reflux time 17 h), was chromatographed with dichloromethane and 

dichloromethane/methanol 9.5:0.5, to give compound 4b as green blue solid (0.047 g, yield 20 %). Mp 

118.7-120 °C. Rf = 0.44 (dichloromethane/methanol, 9:1 vol). FTIR (KBr 1 %): νmax 3439, 3000, 1643, 

1469, 1284, 1205, 1141, 1098, 1033, 770 cm
-1

. 
1
H NMR δH (CD3OD, 400 MHz), 2.04-2.18 (m, 4H, 2-

H and 6-H), 2.51 (t, J = 6.4 Hz, 2H, 7-H), 2.92-3.0 (m, 2H, 1-H), 3.60-3.70 (m, 2H, 3-H), 3.82 (t, J = 

6.4 Hz, 2H, 5-H), 6.83 (s, 1H, 15-H), 7.48 (s, 1H, 8-H), 7.73-7.84 (m, 4H, 4×Ar-H), 7.87-7.95 (m, 2H, 

12-H and 1×Ar-H), 8.10 (t, J = 7.6 Hz, 1H, 11-H), 8.27 (d, J = 8.4 Hz, 1H, 13-H), 8.89 (d, J = 7.2 Hz, 

1H, 10-H) ppm. 
13

C NMR δC (CD3OD, 100.6 MHz), 20.26 (C-1), 20.60 (C-6), 21.66 (C-2), 28.53 (C-

7), 51.92 (C-3), 52.41 (C-5), 96.70 (C-15), 106.54 (Ar-C), 119.29 (Ar-C), 123.76 (Ar-C), 124.30 (C-

13), 125.24 (C-10), 128.62 (Ar-C), 129.10 (Ar-C), 129.92 (2xAr-C), 130.27 (C-8), 132.14 (C-11), 

132.64 (Ar-C, C-12), 133.27 (2×Ar-C), 144.97 (2xAr-C), 152.16 (Ar-C), 152.65 (Ar-C), 159.18 (C-

14), 160.62 (Ar-C) ppm. HRMS: m/z (ESI): Found [M+1]
+
: 454.1691; C28H24ClN3O requires [M+1]

+
: 

454.1688.  

 

2.4.3. N-(2,3,6,7-Tetrahydro-1H-benzo[a]quinolizino[1,9-hi]phenoxazin-14(5H)-ylidene)propan-

1-aminium chloride 4c. The product of the reaction of 1 (0.115 g, 0.525 mmol) in ethanol (1 mL) and 

concentrated hydrochloric acid (0.014 mL) with N-propylnaphthalen-1-amine 2c (0.048 g, 0.262 mmol) 

(reflux time 17 h), was chromatographed with dichloromethane and dichloromethane/methanol 9.5:0.5, 
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to give compound 4c as blue green solid (0.047 g, yield 20 %). Mp 223-225 °C. Rf 0.35 

(dichloromethane/methanol, 9.5:0.5 vol). FTIR (KBr 1 %): νmax  3438, 3000, 1642, 1468, 1285, 1207, 

1150, 1090, 1030, 774 cm
-1

. 
1
H NMR δH (CD3OD, 400 MHz): 1.14 (t, J = 7.6 Hz, 3H 

NHCH2CH2CH3), 1.90 (sext, J = 7.2 Hz, 2H, NHCH2CH2CH3), 2.04-2.16 (m, 2H, 6-H and 2-H), 2.90-

2.99 (m, 2H, 7-H and 1-H), 3.58-3.66 (m, 4H, 3-H, 5-H and NHCH2CH2CH3), 6.82 (s, 1H, 15-H), 7.40 

(s, 1H, 8-H), 7.77 (td, J = 7.2 and 1.6 Hz, 1H, 12-H), 7.86 (td, J = 7.6 and 1.2 Hz, 1H, 11-H), 8.28 (d, J 

= 8.0 Hz, 1H, 13-H), 8.79 (d, J = 7.6 Hz, 1H, 10-H) ppm. 
13

C NMR δC (CD3OD, 100.6 MHz), 11.80 

(NHCH2CH2CH3), 20.31 (C-1), 20.57 (C-6), 21.64 (C-2), 22.99 (NHCH2CH2CH3), 28.56 (C-7), 47.09 

(NHCH2CH2CH3), 51.94 (C-3), 52.43 (C-5), 93.48 (C-15), 106.72 (Ar-C), 123.42 (C-13), 124.29 (Ar-

C), 125.18 (C-10), 128.68 (Ar-C), 130.04 (C-12), 130.13 (C-8), 131.88 (Ar-C), 132.14 (C-11), 132.54 

(Ar-C), 133.31 (Ar-C), 144.89 (Ar-C), 152.20 (Ar-C), 152.53 (Ar-C), 157.40 (C-14) ppm. HRMS: m/z 

(ESI): Found [M+1]
+
: 420.1855; C25H26ClN3O requires [M+1]

+
: 420.1845.  

 

2.4.4. 3-Chloro-N-(2,3,6,7-tetrahydro-1H-benzo[a]quinolizino[1,9-hi]phenoxazin-14(5H)-

ylidene)propan-1-aminium chloride 4d. The product of the reaction of 1 (0.335 g, 0.153 mmol) in 

ethanol (1 mL) and concentrated hydrochloric acid (0.040 mL) with N-(3-chloropropyl)naphthalen-1-

amine  2d (0.167 g, 0.076 mmol) (reflux time 24 h), was chromatographed with dichloromethane and 

dichloromethane/methanol 9.5:0.5,  to give compound 4d as blue green solid (0.017 g, yield 5 %). Mp 

209.3-210.8 °C. Rf = 0.60 (dichloromethane/methanol, 9:1 vol).  IR (KBr 1 %): νmax = 3428, 3223, 

3027, 2961, 2929, 1707, 1640, 1588, 1543, 1472, 1438, 1385, 1358, 1314, 1282, 1217, 1176, 1136, 

1099, 1047, 893, 780 cm
-1

. 
1
H NMR δH (CD3OD, 400 MHz), 2.05-2.14 (m, 4H, H-2 and H-6), 2.33 

(quint, J = 6.4 Hz, 2H, NHCH2CH2CH2Cl), 2.83-2.92 (m, 2H, H-1), 2.95 (t, J = 6.0 Hz, 2H, H-7), 3.60-

3.69 (m, 4H, H-3 and H-5), 3.78 (t, J = 6.8 Hz, 2H, NHCH2CH2CH2Cl), 3.83 (t, J = 6.4 Hz, 2H, 

NHCH2CH2CH2Cl), 6.73 (s, 1H, H-15), 7.33 (s, 1H, H-8), 7.71 (t, J = 7.2 Hz, 1H, H-12), 7.82 (t, J = 
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7.6 Hz, 1H, H-11), 8.21 (d, J = 8.0 Hz, 1H, H-13), 8.68 (d, J = 7.6 Hz, 1H, H-10) ppm. 
13

C NMR δC 

(CD3OD, 100.6 MHz), 20.21 (C-1), 20.46 (C-6), 21.56 (C-2), 28.53 (C-7), 32.47 (NH2CH2CH2CH2Cl), 

42.71 (NHCH2CH2CH2Cl), 43.30 (NHCH2CH2CH2Cl), 52.06 (C-3), 52.56 (C-5), 93.28 (C-15), 106.75 

(Ar-C), 123.44 (C-13), 124.01 (Ar-C), 124.97 (C-10), 129.22 (Ar-C), 129.89 (C-12), 130.14 (C-8), 

131.24 (Ar-C), 132.02 (C-11), 132.26 (Ar-C), 133.76 (Ar-C), 144.78 (Ar-C), 151.73 (Ar-C), 152.82 

(Ar-C), 156.92 (C-14) ppm. HRMS: m/z (EI): Found [M+1]
+
: 454.3900; C25H25Cl2N3O requires 

[M+1]
+
: 454.3905.  

 

2.4.5. 3-Hydroxy-N-(2,3,6,7-tetrahydro-1H-benzo[a]quinolizino[1,9-hi]phenoxazin-14(5H)-

ylidene)propan-1-aminium chloride 4e. The product of the reaction of 1 (0.115 g, 0.525 mmol) in 

ethanol (1 mL) and concentrated hydrochloric acid (0.014 mL) with 3-(naphthalen-1-ylamino)propan-

1-ol 2e (0.053 g, 0.262 mmol) (reflux time 18 h), was chromatographed with dichloromethane and 

dichloromethane/methanol 9.5:0.5,  to give compound 4e as green blue solid (0.051 g, yield 22 %). Mp 

= >300 ºC. Rf = 0.48 (dichloromethane/methanol, 9:1 vol). IR (KBr 1%): νmax = 3450, 2932, 1640, 

1588, 1553, 1531, 1471, 1440, 1386, 1355, 1317, 1284, 1217, 1177, 1139, 1101, 781 cm
-1

. 
1
H NMR δH 

(CD3OD, 400 MHz), 2.04-2.14 (m, 6H, 2-H, 6-H and NHCH2CH2CH2OH),  2.88 (t, J = 6.4 Hz, 2H, 1-

H), 2.95 (t, J = 6.0 Hz, 2H, 7-H), 3.60-3.67 (m, 4H, 3-H and 5-H), 3.75 (t, J = 7.2 Hz, 2H, 

NHCH2CH2CH2OH), 3.82 (t, J = 6.0 Hz, 2H, NHCH2CH2CH2OH), 6.77 (s, 1H, 15-H), 7.34 (s, 1H, 8-

H), 7.72 (t, J = 7.2 Hz, 1H, 12-H), 7.83 (t, J = 7,2 Hz, 1H, 11-H), 8.21 (d, J = 8.4Hz, 1H, 13-H), 8.71 

(d, J = 7.6 Hz, 1H, 10-H) ppm. 
13

C NMR δC (CD3OD, 100.6 MHz), 20.27 (C-1), 20.53 (C-6), 21.62 (C-

2), 28.56 (C-7), 32.17 (NH2CH2CH2CH2OH), 42.94 (NHCH2CH2CH2OH), 51.97 (C-3), 52.47 (C-5), 

60.54 (NHCH2CH2CH2OH), 93.35 (C-15), 106.69 (Ar-C), 123.40 (C-13), 124.13 (Ar-C), 125.10 (C-

10), 128.77 (Ar-C), 129.96 (C-12), 130.11 (C-8), 131.65 (Ar-C), 132.08 (C-11), 132.36 (Ar-C), 133.33 
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(Ar-C), 144.77 (Ar-C), 152.0 (Ar-C), 152.56 (Ar-C), 157.15 (C-14) ppm. HRMS: m/z (ESI): Found 

[M+1]
+
: 436.1785; C25H26ClN3O2 requires [M+1]

+
: 436.1794.  

 

2.4.6. 3-Carboxy-N-(2,3,6,7-tetrahydro-1H-benzo[a]quinolizino[1,9-hi]phenoxazin-14(5H)-

ylidene)propan-1-aminium chloride 4f. The product of the reaction of 1 (0.254 g, 1.0 mmol) in 

ethanol (2 mL) and concentrated hydrochloric acid (0.027 mL) with 4-(naphthalen-1-ylamino)butanoic 

acid 2f (0.115 g, 0.50 mmol) (reflux time 17 h), was chromatographed with dichloromethane and 

dichloromethane/methanol 9.5:0.5,  to give compound 4f as green blue solid (0.88 g, yield 19 %). Mp 

154.6-156.8 °C. Rf = 0.42 (dichloromethane/methanol, 9:1 vol). IR (KBr 1 %): νmax = 2923, 2853, 1731, 

1721, 1637, 1589, 1545, 1499, 1435, 1375, 1334, 1322, 1290, 1230, 1182, 1162, 1146, 1127, 1100, 

1054, 1001, 918, 807, 753 cm
-1

.  
1
H NMR δH (CD3OD, 400 MHz), 2.0-2.16 (m, 6H, 2-H, 6-H and 

NHCH2CH2CH2CO2H), 2.59 (t, J = 7.2 Hz, 2H, NHCH2CH2CH2CO2H), 2.75 (t, J = 5.6 Hz, 2H, 1-H), 

2.88 (t, J = 6.0 Hz, 2H, 7-H), 3.55-3.64 (m, 6H, 3-H, 5-H, and NHCH2CH2CH2CO2H), 6.63 (s, 1H, 15-

H), 6.94 (s, 1H, 8-H), 7.65 (t, J = 7.2 Hz, 1H, 12-H), 7.77 (t, J = 7.6 Hz, 1-H, 11-H), 8.06-8.16 (m, 1H, 

13-H), 8.57 (d, J = 8.0 Hz, 1H, 10-H) ppm. 
13

C NMR δC (CD3OD, 100.6 MHz), 20.17 (C-1), 20.57 (C-

2), 21.54 (C-6), 24.70 (NHCH2CH2CH2CO2H), 28.49 (C-7), 31.84 (NHCH2CH2CH2CO2H), 44.58 

(NHCH2CH2CH2CO2H), 51.97 (C-3), 52.35 (C-5), 93.44 (C-15), 106.70 (Ar-C), 123.32 (C-13), 124.94 

(Ar-C), 125.43 (C-10), 128.90 (Ar-C), 130.06 (C-12), 131.17 (C-8), 131.97 (Ar-C), 132.10 (C-11), 

133.12 (Ar-C), 133.38 (Ar-C), 144.54 (Ar-C), 151.60 (Ar-C), 152.59 (Ar-C), 157.10 (C-14), 175.91 

(C=O) ppm. HRMS: m/z (ESI): Found [M+1]
+
: 464.1745; C26H26ClN3O3requires [M+1]

+
: 464.1743. 

 

2.4.7. 9,10,11,13,14,15-Hexahydro-6H-naphtho[2,3-a]quinolizino[1,9-hi]phenoxazin-6-iminium 

chloride  5. The product of the reaction of 1 (0.115 g, 0.525 mmol) in ethanol (1 mL) and concentrated 

hydrochloric acid (0.014 mL) with anthracen-1-amine 3 (0.051 g, 0.262 mmol) (reflux time 18 h), was 
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chromatographed with dichloromethane and dichloromethane/methanol 9.0:1.0, to obtain the 

compound 5 as green blue solid (0.047 g, yield 21 %). Mp 225-227 °C. Rf = 0.53 

(dichloromethane/methanol, 9:1 vol). FTIR (KBr 1 %): νmax 3432, 3350, 3096, 2950, 1656, 1634, 1573, 

1551, 1517, 1472, 1435, 1410, 1385, 1351, 1333, 1286, 1214, 1166, 1142, 1095, 1052, 1015, 902, 838, 

752 cm
-1

. 
1
H NMR (CD3OD, 400 MHz): δH 1.92-2.05 (m, 4 H, 10-H and 14-H), 2.58 (t, J = 6.8 Hz, 2 

H, 9-H), 2.80 (t, J = 6.4 Hz, 2 H, 15-H), 3.42 (t, J = 6.0 Hz, 2 H, 11-H), 3.48-3.54 (m, 2 H, 13-H), 6.49 

(s, 1 H, 7-H), 7.08 (s, 1 H, 16-H), 7.60-7.70 (m, 2 H, 2-H and 3-H), 8.0 (d, J = 8.0 Hz, 1 H, 1-H), 8.04 

(d, J = 7.2 Hz, 1 H, 4-H), 8.69 (s, 1 H, 5-H), 8.91 (s, 1 H, 18-H) ppm. 
13

C NMR (CD3OD, 100.6 MHz): 

δC 20.09 (C-14), 20.48 (C-10), 21.61 (C-9), 28.49 (C-15), 51.43 (C-11), 52.03 (C-13), 96.77 (C-7), 

106.27 (Ar-C), 121.56 (Ar-C), 124.86 (C-16), 125.63 (Ar-C), 127.13 (C-2, 1×Ar-C), 128.0 (1×Ar-C), 

128.70 (C-3), 128.88 (C-1), 129.82 (C-4), 130.10 (2×Ar-C), 130.33 (Ar-C), 131.22 (2×Ar-C), 133.47 

(Ar-C), 135.23 (Ar-C), 151.00 (Ar-C), 156.00 (C-6) ppm. HRMS: m/z (ESI): Found [M+1]
+
: 428.1521; 

C26H22ClN3O requires [M+1]
+
: 428.1531.  

 

2.4. Photophyscial measurements 

Electronic absorption and fluorescence spectra of solutions of fluorophores 4a-f and 5 in absolute 

ethanol and water were measured. Ethanol was dried by the use of molecular sieves. Ethanol was either 

acidified or basified by the addition of small quantities of trifluoroacetic acid (TFA) or 

tetraethylammonium hydroxide (TEAH) solution 25 % in methanol, respectively. 

Absorption spectra (200-800 nm) were recorded on a Shimadzu UV-3101PC UV/Vis/NIR 

spectrophotometer. Fluorescence measurements were performed using a Spex Fluorolog 2 

spectrofluorometer, equipped with double monochromators in both excitation and emission. Spectra 

were corrected for the instrumental response of the system.  
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Fluorescence quantum yields (Φ) were determined using the standard method (Equation (1), taking into 

account the effect of sample or reference absorption slightly above 0.1 [38,39], with Oxazine 1 in 

ethanol as reference, Φr = 0.11 [40]: 

                                             
r

2
rr
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2
ss
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s
nF101

nF101

s

r




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
 


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


                                                                         (1) 

where A is the absorbance at the excitation wavelength, F the integrated emission area and n the 

refraction index of the solvents used. Subscripts (r) and (s) denotes the reference and sample 

compounds. 

 

2.6. Biological activity assays 

Minimum Inhibitory Concentrations of growth (MIC) were assessed using a broth microdilution 

method for antifungal susceptibility testing of yeasts (NCCLS M27-A). The yeast Saccharomyces 

cerevisiae PYCC 4072 was used as a model organism. Briefly, cells were cultivated in 96-microwell 

plates in RPMI 1640 medium, buffered to pH 7.0 with 0.165 M morpholenepropanesulfonic acid 

(MOPS) buffer (Sigma). Initial cell concentration was 0.5×10
3
 cells/mL. Growth was assessed by 

measuring the absorbance at 640 nm in a microplate photometer (Molecular Devices SpectraMax Plus) 

after 48 h of incubation at 30 °C. MIC values were considered as the lowest concentration of drug that 

resulted in an inhibition of growth > 80 %. Stock solutions of the compounds were prepared in DMSO 

and a final dilution was carried out in an RPMI 1640 medium (Sigma, St. Louis, Mo.). Each drug 

concentration (from 400 µM to bellow the MIC value, using a two-fold dilution scheme) was tested in 

triplicate and in at least two independent experiments. 

 

3. Results and discussion 

3.1. Synthesis of quinolizino[1,9-hi]phenoxazin-6-iminium chlorides 4a-f and 5 
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The synthesis of phenoxazinium chlorides 4a-f and 5 was started with the preparation of required 

precursors such as nitroso derivative 1 and N-alkylated napthalen-1-amines 2b-f (2a and 3 are 

commercial reagents). 9-Nitroso-1,2,3,5,6,7-hexahydropyrido [3,2,1-ij]quinolin-8-ol 1 was obtained by 

nitrosation of  1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinolin-8-ol (common name 8-hydroxyjulolidine) 

with sodium nitrite in acid solution under ice cold conditions [41]. N-phenylnaphthalen-1-amine 2b 

was obtained as a solid in good yield by the alkylation of naphthalen-1-amine with chlorobenzene in 

ethanol under reflux conditions. The other precursors namely N-propylnaphthalen-1-amine 2c, N-(3-

chloropropyl)naphthalen-1-amine 2d, 3-(naphthalen-1-ylamino)propan-1-ol 2e and 4-(naphthalen-1-

ylamino)butanoic acid 2f were obtained in accordance with the earlier reported procedure [26,28]. 

The reaction of 9-nitroso-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinolin-8-ol 1 with naphthalen-1-

amine 2a and its derivatives 2b-f or anthracen-1-amine 3,  in an acidic medium afforded the 

corresponding phenoxazinium chlorides 4a-f and 5, respectively. Thus, reaction between nitroso 

derivative of 8-hydroxyjulolidine 1 with precursors 2a-f and 3 in ethanol, in the presence of 

concentrated hydrochloric acid, and after silica gel column chromatography purification gave the 

phenoxazinium chlorides 4a-f and 5, possessing at the free lateral amine the hydrogen atom, phenyl, 

alkyl along with the functionalities such as chloro, hydroxyl and carboxyl. All these compounds were 

obtained as green blue solids and were fully characterized by high resolution mass spectrometry, IR 

and NMR (
1
H and 

13
C) spectroscopy (Scheme 1). 
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Scheme 1. Synthesis of quinolizino[1,9-hi]phenoxazin-6-iminium chlorides 4a-f and 5. 

 

The 
1
H NMR spectra (4a-f and 5) showed the signals of aliphatic protons from the methylenic groups 

of 1-H and 7-H (for 4a-f) or 9-H and 15-H (for 5) as triplets or multiples (4b, 4c) (δ 2.58 to 3.0 ppm), 

2-H and 6-H (for 4a-f) or 10-H and 14-H (for 5) as multiplets (δ 1.92 to 2.18 ppm), and methylene 

protons close to the nitrogen atom 3-H and 5-H (for 4a-f) or 11-H and 13-H (for 5) appeared as 

multiplets (δ 3.42 to 3.69 ppm). Similarly, for compounds 4a-f the methylenic groups of substituents at 

14-position, directly linked to the nitrogen atom NHCH2 appeared as a multiplet or a triplet (4d, 5e) (δ 

3.55 to 3.78 ppm), as well as groups close to the same atom, NHCH2CH2, showed as multiplets, sextet 

(4c) or quintet (4d) (δ 1.90 to 2.14 ppm). The terminal methyl group exhibited a triplet (δ 1.14 ppm) 

and methylene protons adjacent to chloro, hydroxyl and carboxylic functionalities (4d-f) showed 

triplets (δ 2.59-3.83 ppm). In addition, spectra showed the aromatic protons of the polycyclic system, in 
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particular, 8-H (δ 6.94 to 7.47 ppm) and 15-H (for 4a-f), as well as H-7 (δ 6.49 ppm) and H-16 (δ 7.08 

ppm) (for 5) (δ 6.49 to 6.85 ppm), which appeared in the form of singlets.  

The 
13

C NMR spectra showed the signals of methylenic groups of C-1 and C-7 (for 4a-f) or C-9 and C-

15 (for 5) (δ 20.07 to 21.61 ppm), C-2 and C-6 (for 4a-f) or C-10 and C-14 (for 5)  (δ 20.09 to 21.66) 

and close to the nitrogen atom C-3 and C-5 (for 4a-f) or C-11 and C-13 (for 5) (δ 51.43 to 52.56 ppm). 

The groups of substituents at the 14-position, directly linked to the nitrogen atom NHCH2 (4c-e) (δ 

42.71 to 47.09 ppm), as well as the groups close to the same atom, NHCH2CH2, (δ 22.99 to 44.58 

ppm). In addition, there was the presence of carbons of the methyl group (4c, δ 11.80 ppm) and the 

carbon proximity to chloro, hydroxyl and carboxylic functionalities (4d-f, δ 31.84 to 60.54 ppm). 

Spectra showed the aromatic carbons, in particular C-8 (for 4a-f) or C-16 (for 5) (δ 124.86 to 131.17 

ppm), and C-15 (for 4a-f) or C-7 (for 5) (δ 93.28 to 96.77 ppm). The IR spectrum of benzophenoxazine 

4e showed the bands of the hydroxyl group (3450 cm
-1

) and also, as in the remaining phenoxazines, 

strong bands are showed of the C=N bond (1641-1573 cm
-1

) due to the fused oxazine ring. 

 

3.2. Photophysical studies of quinolizino[1,9-hi]phenoxazin-6-iminium chlorides 4a-f and 5 

Fundamental photophysical studies of quinolizino[1,9-hi]phenoxazin-6-iminium chlorides 4a-f and 5 

were carried out in dry ethanol, and water.  

Previous work showed that in proton-accepting solvents the photophysical behaviour of 

benzo[a]phenoxazinim chlorides is determined by acid-base equilibria, mainly at the 5-amino position 

[5,42]. The main features of absorption spectra corresponded to an acidic form (AH
+
) around 650 nm 

and a ~100 nm blue shifted neutral form (A) [43]. Basic form fluorescence was broad and centered at 

around 600 nm while the acid form (AH
+
) showed a band centered near 660 nm with a higher 

fluorescence quantum yield that reached 0.4 when the 9-amino position was mono-alkylated and varied 

between 0.1 and 0.2 when it was di-alkylated [5,42,43]. At 470 nm the basic form was mostly excited 
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while at higher excitation wavelengths the acid form was the main molecular form. Figures 1 and 2 

show the absorption and fluorescence of compounds 4a-f and 5 either in ethanolic or aqueous based 

media.  

 

 

Figure 1. Absorption and emission spectra of compounds 4a-f and 5 at 4µM concentration in either 

basified (panel A) or acidified (panel B) dried ethanol. Emission of basic form at 470 nm excitation and 

emission of acid form at 640 nm excitation. 

 

Fluorescence and absorption spectra in ethanol either basified with TEAH (Figure 1A) or acidified with 

TFA (Figure 1B) are consistent with the above general characteristics. However, the acid-base behavior 
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is different from what was reported for similar compounds but without the julolidine moiety [44,45], 

given that the same amount of TEA  not completely displaced the equilibrium  to the basic form and 

consequently emission corresponding to acid form is still observable (Figure 1). Using the same 

amount of TFA as above the equilibrium is nearly completely shifted towards the acid form as very 

little emission from the basic form is observed when exciting at 470 nm (Figure S1). Yet, the 

absorption spectra of the acid form are broader (Figure 1B). 

 

 

Figure 2. Absorption and emission spectra of compounds 4a-f and 5 at 4µM concentration in either 

basified (panel A) or acidified (panel B) water. Emission of basic form at 470 nm excitation and 

emission of acid form at 640 or 575 nm excitation. 
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In water, the absorption spectra of these type of compounds usually evidences the presence of 

non-fluorescent H-aggregates of the acid form through a ~40 nm blue shifted shoulder [43]. Through 

the dimerization equilibria, the relative amount of that shoulder depends on dye concentration [43]. For 

the studied julolidine fused compounds 4a-f and 5 the spectra at 4×10
-6 

M (Figure 2B) are similar to the 

ones obtained for compounds without the julolidine moiety at 5×10
-5

M [43]. This clearly indicates the 

much higher tendency for aggregation of the synthesised quinolizino[1,9-hi]phenoxazin-6-iminium 

chlorides. 

Table 1 shows absorption (abs) and emission (em) maxima, Stokes shifts (Δ) and fluorescence 

quantum yields () for the acid/basic form in dried ethanol and for the acid form in water. 
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Table 1. Yield and photophysical studies of quinolizino[1,9-hi]phenoxazin-6-iminium chlorides 4a-f 

and 5 in dry ethanol, water and after the addition of either TFA or TEAH. 

 

Cpd 

 

 

Yield 

(%) 

Dry ethanol + TFA|TEAH                                                  Water + TFA 

abs (nm) 

 (10
4
M

-1
cm

-1
) 

em(nm)
 a
 Δ (nm)  

a
 abs (nm)  

 (10
4
M

-1
cm

-1
) 

em (nm) Δ (nm)  

4a 19 

658|532 

7.66|3.55 

679|645 21|113 0.18|0.27 

662 

2.54 

687 25 0.024 

4b 20 

658|532 

6.08|2.90 

677|645 19|113 0.19|0.31 

661 

2.29 

685 24 0.026 

4c 21 

667|531 

10.4|4.34 

687|645 20|114 0.22|0.10 

667 

3.82 

694 27 0.027 

4d 5 

667|530 

- 

685|640 18|110 0.19|0.10 

670 

- 

694 24 0.040 

4e 22 

666|531 

8.73|3.49 

684|645 18|114 0.24|0.16 

668 

3.60 

694 26 0.032 

4f 19 

667|532 

- 

688|640 21|108 

0.15|0.06

9 

668 

- 

693 25 0.017 

5 21 

675|536 

12.4|6.54 

712|650 37|114 0.17|0.28 

663 

- 

- - - 

a
Emission spectra and quantum yield determination were obtained at 575 nm or 470 nm excitation 

when, TFA or TEAH, respectively, were used. 

Through stiffening of the 9-amino position, it was expected that fluorescence quantum yields in 

acidified ethanol will be higher than the values previously obtained for benzophenoxazinium chlorides 
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without a fused julolidine moiety and di-alkylated compounds (between 0.1 and 0.2) [5,42,43]. In fact, 

improvement in fluorescence quantum yields was not observed which can be explained by the possible 

presence of aggregates in ethanolic media that was evidenced in the broader spectrum of the studied 

compounds in acidified ethanol. Nevertheless, it is possible to conclude that the 5-amino position (6- or 

14-positions in 5 and 4a-f, respectively) is the main pathway of excited state nonradiative deactivation. 

Regarding the basic form, the usual fluorescence quantum yields are in the range 0.01-0.03 [7,43]. It is 

seen that the expected improvement from juolidine stiffening of 9-amino position is clearly observed as 

the quantum yield is above 0.1 for almost all compounds reaching 0.31 for 4b. The slightly lower 

quantum yield of basic form of compound 4f is probably related with an interaction of the COOH 

group with the secondary amine in 14-position. 

Comparing compounds 5 and 4a significant red shifts were observed both in absorption (17 nm) and 

emission (22 nm). The origin of this shift is certainly the higher π-conjugation system that results from 

the fusion of anthracene with the phenoxazine moiety instead of naphthalene. 

Also worth mentioning is the much lower fluorescence quantum yield in acidified aqueous media. This 

is easily understandable by the fact that H-aggregates are non-fluorescent and they are very prominent 

for the studied compounds (Figure 2B). In basified aqueous media (Figure 2A) there is a significant 

dispersive background in the absorption spectra. This indicates the low solubility of the neutral 

molecular forms in aqueous media resulting in the formation of crystallites that act as light scattering 

centers. This leads to huge decrease in fluorescence efficiency so that Raman peaks are now 

observable. It is interesting to note that although in basic pH, the emission is dominated by the small 

fraction of protonated molecular form that still remains.  

 

3.3. Biologial activity of of quinolizino[1,9-hi]phenoxazin-6-iminium chlorides 4a-f and 5 
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The potential antifungal activity of the synthesised dyes 4a-f and 5 was investigated using the yeast 

Saccharomyces cerevisiae PYCC 4072 as a model organism and a broth microdilution method for 

antifungal activity testing [17,18]. The minimum inhibitory concentration of growth (MIC) and log P 

values, which are theoretically predicted
 
[46] are showed in Table 2.  

 

Table 2. Activity against Saccharomyces cerevisiae PYCC 4072 and log P values of quinolizino[1,9-

hi]phenoxazin-6-iminium chlorides 4a-f and 5. 

Compound MIC
a
 log P 

4a 25 2.85 

4b >400 4.05 

4c 6.25 5.60 

4d 0.78 5.47 

4e 400 4.42 

4f 12.5 2.14 

5 12.5 4.02 

a
Experiments were performed in triplicate and at least two independent experiments were conducted. 

 

The results showed that all tested dyes exhibited considerable antiproliferative activity against the yeast 

S. cerevisiae, with MIC values between 0.78 and 25 µM (with exception of 4b, that has no activity and 

and 4e, MIC 400 µM). This is especially relevant if the MIC values for fluconazole and miconazole, 

two reference antifungal compounds, that were 50 and 100 µM, respectively, were considered [47]. 

The calculated log P of the dyes, ranged from 2.85 to 5.60, but the differences in this values did not 

correlate with the MIC values for the compounds.   
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Our reference compound, 4a, exhibits a MIC value of 25 μM, and a notable increment (four-times) in 

its biological activity was observed by the introduction of a propyl group at 14-position of the 

polycyclic aromatic system (4c). Substitution of the methyl group (4c) by a chlorine atom, using a 

chloropropyl group (4d) results in the largest increase of activity, 0.78 µM being the lowest MIC value 

observed. In contrast, the presence of a terminal hydroxyl group, namely the hydroxylpropyl group 

drastically decreases the MIC value, making the activity of compound 4e residual (MIC value 400 

μM). On the other hand, the carboxylic acid derivative 4f showed a significant activity, doubling the 

eficacy of compound 4a (MIC value 12.5 μM). These achievements suggest the presence of terminal 

chloride group at 14-position is favourable for the antiproliferative activity, and thus supporting the 

results previously published by our group [17]. 

Furthermore, the addition of a third fused benzene ring in the polycyclic system, compound 5, also 

increases the activity to the double in relation to compound 4a. 

 

4. Conclusion 

New quinolizino[1,9-hi]phenoxazin-6-iminium chlorides, namely six benzo[a]quinolizino[1,9-

hi]phenoxazin-14(5H)-iminium chlorides 4a-f with the 14-amine position unsubstituted, and bearing 

phenyl, propyl, 3-chloropropyl, 3-hydroxypropyl, and 3-carboxypropyl, as well as a naphtho[2,3-

a]quinolizino[1,9-hi]phenoxazin-6-iminium chloride  5, were synthesised. The photophysics of the acid 

and basic forms were studied in dried ethanolic media, by adding either an acid or a base. The acid 

form was also followed in water. The reported compounds were found to have higher tendency to 

aggregate than similar compounds without the fused julolidine. This tendency can possibly account for 

a lower than expected fluorescence quantum yield for the studied compounds. 

The results from the antifungal assays showed that the fusion of julolidine to the phenoxazine moiety 

led to an increase in the activity of the dyes, which still depended on the substitution at the 14 position 
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of the polycyclic system, being negatively influenced by a hydroxy terminal and positively influenced 

by the presence of a middle size apolar group (propyl). Furthermore, the extension of the aromatic 

system, in compound 5, also had a positive influence in the compounds activity. The best activity found 

with compound 4d suggests this compound as a potential interesting molecule for further development. 
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Supplementary material 

 

Emission spectra of compounds 4a-f at 4µM concentration in acidified dried ethanol at 470 nm 

excitation. 

 

 

Figure S1. Emission spectra of compounds 4a-f at 4µM concentration in acidified dried ethanol at 470 

nm excitation. 


