
Formal Techniques in the Safety Analysis of Software
Components of a new Dialysis Machine

Michael D. Harrisona, Leo Freitasa, Michael Drinnanb, José C. Camposc,
Paolo Mascic, Costanzo di Mariab, Michael Whitakerb

a
School of Computing, Newcastle University, Newcastle upon Tyne, NE1 7RU

b
Regional Medical Physics Department, Royal Victoria Infirmary, Newcastle upon Tyne,

NE1 4LP
c
Departamento de Informática, Universidade do Minho & HASLab/INESC TEC,

Campus de Gualtar, 4710-057 Braga, Portugal

Abstract

The paper is concerned with the practical use of formal techniques to con-
tribute to the risk analysis of a new neonatal dialysis machine. The de-
scribed formal analysis focuses on the controller component of the software
implementation. The controller drives the dialysis cycle and deals with er-
ror management. The logic was analysed using model checking techniques
and the source code was analysed formally, checking type correctness condi-
tions, use of pointers and shared memory. The analysis provided evidence of
the verification of risk control measures relating to the software component.
The productive dialogue between the developers of the device, who had no
experience or knowledge of formal methods, and the analyst using the for-
mal analysis tools, provided a basis for the development of rationale for the
e↵ectiveness of the evidence.

Keywords: Risk analysis, formal methods, model checking, medical
devices, haemodialysis

1. Introduction

The formal analysis of part of a new paediatric dialysis machine, used
to contribute to its risk analysis, is illustrated in this paper. The risk anal-
ysis was designed to satisfy regulatory requirements (for example [1, 2]).
Guidelines typically require an assessment of the hazards associated with a

Preprint submitted to Science of Computer Programming February 7, 2019

This is a post-peer-review, pre-copyedit version of an article published in Science of Computer Programming. The final
authenticated version is available online at: https://doi.org/10.1016/j.scico.2019.02.003

medical device. These hazards include possible hardware and software fail-
ures. Examples of hardware failure include, for example, faulty connections
or pump failure. Software failures include both errors due to incorrect design
requirements and programming errors.

Conventionally, when a risk analysis is submitted to the regulator it uses
test data as evidence that requirements have been satisfied [2]. This is typi-
cally an onerous task requiring substantial amounts of test data. Any testing
model is likely to be crude because the device is interacting with a physio-
logical system and the cases where the device is used are rare making in-vivo
testing very di�cult. However it is clear that developing a risk analysis is
essential when dealing with life-critical medical systems.

Medical device standards require that measures have been taken to ensure
that risks associated with use of the device are as low as reasonably prac-
ticable. The required measures include careful identification of hazards and
demonstration that risks associated with these hazards have been mitigated.
Another part of demonstrating mitigation is to establish requirements of the
system that produce barriers between a hazard and its consequence. Pro-
cesses that are recommended to achieve such confidence include team based
scrutiny of the use of documented processes, and software code analysis, such
as checking that requirements have been satisfied.

The context of the analysis presented in this paper has important charac-
teristics. It involved a product whose development was close to completion.
Its goal was to support risk assessment, adding assurance that the product
was safe. Two complementary analysis approaches are described. The first
approach involves using formal methods technologies to analyse the design
of the software controller of the device. The safety requirements, established
in a risk log, were converted into properties that were used in the formal
analysis. The analysis provided an adjunct, additional evidence to the test-
ing regime that had been used. As a second approach, techniques were used
to analyse the software code, in e↵ect a formal inspection of the code, to
identify any vulnerabilities in the way that the software was written. This
analysis identified type correctness conditions, and potential vulnerabilities
related to shared memory and the use of pointers. These were then assessed
using automated proof techniques, in this case through the testing regime or
through simulation.

The paper focuses on the role that formal techniques can play in the
context of a completed implementation. In this particular case a small team
was involved in building and testing the device. If formal techniques are to

2

be of value within small organisations it is important to understand the stage
of the process at which they can be used. An important challenge discussed
is whether it is feasible to include a specialist during some or all stages of
the development process.

Contribution

We present a pragmatic application of formal methods technologies to the
analysis of a new neonatal dialysis machine. The dialysis machine had already
been developed pre-product, and the formal analysis provided additional en-
gineering evidence that the product complied with important safety require-
ments. This included software design level analysis and software source code
analysis. The former involved checking that the design specifications were
compliant with safety requirements identified by the developers. The latter
focused on implementation aspects of the software, such as shared memory,
pointers to member-functions and so on. A key aspect of this analysis was
also the nature of the interaction between the software developers and the
formal analyst.

Organisation

The NIDUS device and its software controller, that forms the basis for
the analysis, are described in Section 2. The analysis process is outlined
in Section 3. Section 4 describes the tools that were used to assist the for-
mal analysis process. The formal analysis of the NIDUS device is presented
in Sections 5 – 9. Related work is in Section 10. Finally discussion and
conclusions are presented in Sections 11 and 12.

2. The NIDUS device

Dialysis and ultrafiltration (removal of excess water) are extremely di�-
cult procedures in small children with failing kidneys because the total vol-
ume of blood in the child’s circulation is very small. The Newcastle Infant
Dialysis and Ultrafiltration System (NIDUS) had been used at Newcastle-
upon-Tyne’s Royal Victoria Infirmary (RVI) experimentally for five years
before this analysis was completed [3]. Children had been dialysed previ-
ously at the hospital using the same method on an older machine, and before
that using a manual technique with syringes based on the same principle.
The device does not use a traditional dialysis circuit, and the circuit volume
of about 10 mL is suitable for treating infants with a total blood volume less

3

than 100 mL. Before the device could be used more widely, it was necessary
to identify and assess the risks of its use so that the device could achieve
regulatory approval.

Dialysing small (< 8 kg) babies is challenging for many reasons. Vascular
access for haemodialysis is problematic. The size of the central venous line,
required for adequate blood flow, is disproportionately large for the size of
the baby. Moreover, current dialysis machines are not accurate enough when
managing critical parameters, such as the volume for ultrafiltration and blood
volume to be viable for a premature baby. At the time no dialysis machine
was approved for use with small children. The lowest limit of viability for
the NIDUS device is about 800 grams.

2.1. Architecture of the device

The infant dialyser consists of a number of components including three
syringe drives, valves, a bubble detector, and filters. It is depicted in Fig-
ure 1. The dialysis process has four stages: start, reset, wash, dialyse. The
start stage di↵erentiates which operational mode the machine will start in
either “cold-start” with a new dialysis kit, or “warm-start”, where the ma-
chine proceeds to the dialysis stage bypassing the wash stage. The reset
stage makes sure that every component of the mechanical apparatus is in its
expected positions and are powered up. The wash stage runs saline solution
through the device to clean the dialysis kit. Finally, the main dialysis stage
performs a three step control flow that withdraws blood from the baby, filters
it according to given parameters, and returns it back to the baby.

The dialyser is formed of various hardware devices controlled by embed-
ded software. This software drives the machine, and communicates with the
graphical user interface, which displays current parameters, informs the con-
troller of user key-presses, and animates the physical processes taking place
with the involved devices, and with the hardware.

2.2. Software controller: role, design and implementation

The controller software (depicted as a component in Figure 1) detects
and warns about error conditions that need attention, as well as issuing
hardware interrupts that prevent the machine from behaving in a dangerous
manner according to its risk profile. All critical errors (bubbles, clots) are also
protected by hardware safety systems. The controller can stop the system,
however the core safety of the device is in the hardware. The controller’s
code is about 4,500 lines of sequential C and C++ code.

4

Figure 1: The software architecture

The logic of operation of the controller is organised as a control table, and
is specified using a spreadsheet (see Figure 2). The control table describes
two aspects of the controller. It describes the attributes of the state of the
device that control the dialysis process, and it describes how the state of the
device changes in response to events. The spreadsheet has been produced by
the developers and was used to create the controller’s data structure for the
software source code. Overall, the table includes 93 states and 30 events.

Each state attribute describes an aspect of the behaviour of the hardware
system managed by the controller, for example: Motor1 , Motor2 and Hep
describe the proximal, distal and heparin syringes respectively (values of the
attributes include whether the syringe pump is driving forward or backward,
and whether “fast” or “slow”); Valve and Bubble describe the valve assembly
and the bubble detectors (the valve may, for example, be safe or open to the
baby); Flash and Alarm describe features of the user interface, for example

5

Figure 2: A fragment of the control table

Flash shows, amongst other displays, that a clip is open or closed, and the
Alarm can warn or notify or be quiet. Hence in Figure 2, RST InitS1 (iden-
tified in the left hand column) is a state that has attributes Power , Motor1 ,
Motor2 etc. (top row) with values ALLOW12V , M1FWDMAX , M2SAFE
etc. (as described in the row labelled RST InitS1).

The right hand side of the table describes transitions. For example, con-
sider the transition involving M1Stall in state RST InitS1 . The e↵ect of the
transition is highlighted in Figure 2. The event M1Stall appears at the top
of the last displayed column. The destination state is named in the event
column for the RST InitS1 row.

In the following sections, the design and source code level analysis of
specific aspects of the software controller are presented.

3. The analysis process

Safety aspects of the dialyser were analysed both at the software design
level and at the software source code level. The former involves checking that
the design specifications are compliant with safety requirements identified by
the developers. The latter focuses on implementation aspects of the software,
such as shared memory, pointers to member-functions and so on. The pro-
cesses are summarised here with reference to the more detailed application
to the NIDUS device.

3.1. Design-level analysis process

The design-level analysis includes the following steps (Sections 6 – 8 de-
scribe the application of the method to the NIDUS device).

1. The spreadsheet describing the control table of the device was trans-
lated into a behavioural model that could be analysed using a model
checker.

6

2. Requirements, derived from the risk log, that were relevant to the con-
troller software component, were then considered and expressed in a
formal logic.

3. These risk related properties were checked against the model that had
been derived from the transition table. Where they failed, discussion
with the developers indicated either a flaw in the controller, or a situa-
tion which was considered either not to be hazardous, or to be a failure
in the formulation of the property.

4. Checking the properties, based on the requirements, often resulted in
refinement of the properties or modifications to the control table or the
controller mechanism. The results of this process were documented in
the risk log.

The behavioural model was specified in Modal Action Logic (MAL) [4], and
analysis of the MAL description that was translated into NuSMV [5] and
checked with requirements expressed in CTL [6]. The CTL properties were
checked of the model using the NuSMV model checker. These facilities are
combined together as part of the IVY toolset. A detailed description of the
method for generating the MAL model of the control table of the device and
for translating the informal requirements into CTL properties are presented
in sub-section 4.1.

3.2. Source code analysis process

The process adopted for the design-level analysis includes the following
steps (the process is applied to the NIDUS device in Section 9).

1. The main classes used in the code were identified. Functionality for
the libraries required by the verifier were developed. While the verifier
provides implementations of some of the libraries, it was necessary to
develop functionality for other libraries used. This process may lead to
minor changes to the code to provide more control over the variables
used.

2. The code was checked to be compliant with MISRA guidelines [7].
3. Type and class invariants, as well as pre- and post-conditions for func-

tions and methods were added to ensure that there was no illegal ac-
tivity; for example, that variables might have unexpected values, or
functions computed expected outcomes under the right conditions.

4. Issues detected by the analysis process were checked through simulation
to verify that they were not a problem in practice.

7

Figure 3: Snippet of the risk log of the NIDUS device

The software code for the dialysis machine was written in a combination
of C and C++. The choice of programming language limited the available
verification tools that would allow code verification. A proprietary tool,
eCv++ (Escher C Verifier [8]), was chosen because it allows the verification
of both C and C++ code, and because it provides functional correctness by
resolution proofs.

3.3. Dialogue between software developers and the formal analyst

An important element that underpinned all the steps described in the two
processes was how the formal analysis was carried out through interaction be-
tween developers and analyst. The analysis processes were being performed
on the device prior to handing over to a company who would complete the
product for example badging and designing the shell and marketing it. The
risk log (see Figure 3) had already been constructed and was already being
used as a basis for risk analysis.

A testing process had already been carried out and documented to provide
evidence to support the assertion that the design satisfied the requirements
of the “Standard for Medical Device Software – software life cycle processes”
(BS EN 62304:2006 [1]). The risk log provided a source of dialogue between
developers and the formal analyst, enabling discussion about the meaning of
the requirements and the results of analysis. Risk control measures should be
demonstrated to be true, with evidence that is clearly documented, typically,
in practice, the results of systematic testing. The BS EN 62304 standard
requires a risk analysis path “from hazardous situation to the software item;
from the software item to the software cause; from the software cause to the

8

risk control measure; to the verification of the risk control measure”. The
analysis described in this paper addresses those elements of the risk analysis
that relate specifically to the controller component of the dialyser.

4. The verification technologies

4.1. IVY Workbench

IVY is a tool for model-based analysis of interactive systems designs. It
is free for academic use, and can be downloaded from http://ivy.di.

uminho.pt. The tool consists of a set of plug-ins that provide a front end to
the NuSMV model checker [5]. The toolkit supports a notation, Modal Ac-
tion Logic (MAL), that enables the specification of finite state models while
at the same time supporting a set of property templates designed to aid the
development of appropriate properties for the analysis of the model. The
results, which include traces provided by the model checking analysis when
a property fails to be true, are visualised. The tool o↵ers a selection of visu-
alisation formats. The IVY tool is designed to provide representations and
analysis tools that were more easily usable by developers, and in which the
results could be communicated e↵ectively within an interdisciplinary team of
software engineers and formal methods experts. The IVY toolkit is organised
into an extensible set of interoperable components. These consist of:

• MAL editor. This component provides a standard text editor with some
support for visualising the structure of MAL models. The modelling
language is based on Structured MAL [9]. MAL (Modal Action Logic)
is a (deontic) modal logic that incorporates a notion of action. MAL
describes a logic of actions and is used to write production rules that
describe the e↵ect of actions on the state of the device. This style of
specification was used because there is some evidence that it is found
easy to use by software engineers [10] and was therefore preferred to
the notation used by NuSMV. The language also enables the expression
of when an action is allowed, using permissions. Non-determinism is
possible when more than one action is allowed in the same state of the
described model and/or when an action does not fully determine the
next state of the system. MAL provides a textual structure similar to
the diagrammatic structure of tools such as SCR [11].

• Property editor. This component is a front end to the NuSMV model
checker [5]. It supports the formulation of properties of the model.
Properties are expressed in the CTL notation [6] (which is the notation

9

used in NuSMV). Assistance is provided in formulating the properties
using templates or patterns. The analyst is able to instantiate a prop-
erty template with the attribute or action names defined in the MAL
model.

• Trace visualizer. If a property fails to be true of the model a counter-
example is produced. This provides a witness indicating one case where
the property has failed. The IVY tool enables a variety of formats
for these including a matrix notation showing the values of all the
attributes of the state at each step of the execution of actions, and a
variant of a UML message sequence diagram.

A reason for using this particular toolset was that we were interested in
the possibility of producing formal analysis results that would be more easily
understandable to an interdisciplinary team. This style of specification had
already been found easy to use by software engineers [10]. The goal of IVY
is that it should be used eventually without formal methods expertise, and
therefore be a key element in communication within the team while at the
same time providing the evidence that a requirement under analysis was
satisfied.

4.1.1. MAL notation and model generation method
MAL enables the description of attributes to capture the information

present in the state of the device and production rules representing actions
over these states. The language also enables the expression of deontic oper-
ations, in particular permissions were used in our models. Non-determinism
is possible when more than one action is allowed in the same state of the
described model. Specifically, MAL includes:

• a modal operator [] : [ac]expr is the value of expr after the occurrence
of action ac — the modal operator is used to define the e↵ect of actions;

• a special reference event []: []expr is the value of expr in the initial
state(s) — the reference event is used to define the initial state(s);

• a deontic operator per : per(ac) meaning action ac is permitted to
happen next — to control when actions might happen.

MAL syntax includes options for defining enumerations, complex state tran-
sitions and complex disjunctions and conjunctions of actions. For example:

• trstate := Power 0 = ALLOW12V & Motor1 0 = M1STOP defines trstate
as a state transition. Hence it may be used after the occurrence of an
action to describe the modification of the attributes Power andMotor1 .

10

• modeset := {DIALYSE ,DIALYSING} defines an enumerationmodeset .
• errorevent := action1 | action2 specifies an action that is either action1
or action2 .

• DIALYSE in modeset is true if DIALYSE is a member of the set
modeset .

Because of these characteristics, MAL constructs allowed a direct transla-
tion of the elements of the state transition table of the dialyser. Specifically,
the events described in the controller table could be modelled without loss
of precision as MAL actions. As an illustration of MAL, the following ex-
ample declares two boolean attributes that describe whether the device is
on (poweredon) and whether it is dialysing (dialysingstate), and two actions
(start and pause):

interactor dialyser

attributes
poweredon, dialysingstate : boolean

actions
start pause

axioms
[pause] !dialysingstate 0 & keep(poweredon)
per(pause) ! dialysingstate & poweredon

This simple example model describes the e↵ect of the action pause as set-
ting the attribute dialysingstate to false and leaving the attribute poweredon
unchanged. Priming is used to identify the value of the attribute after the
action takes place. A permission predicate restricts the pause action to only
happen when the system is dialysing and powered on. The keep operator
preserves the value of the attribute poweredon in the next state. If an at-
tribute is not modified explicitly or is not in the keep list, then its value in
the next state is left unconstrained.

4.1.2. CTL notation and requirements translation method
Properties are presented for analysis via the IVY property editor. The

notation used was CTL as supported by the NuSMV model checking tool. A
full description of CTL can be found in, for example, [6]. CTL provides two
kinds of temporal operator, operators over paths and operators over states.
Paths represent the possible future behaviours of the system. When p and s
are properties A(p) means that p holds for all paths and E(p) that p holds for

11

at least one path. Operators are also provided over states: G(p) means that
p holds for all the states of the examined path; F(p) that p holds for some
states over the examined path; X(p) means that p holds for the next state
of the examined path while [pUs] means that p holds until s holds in the
path. CTL allows a subset of the possible formulae that might arise from the
combination of these operators. AG(p) means that p holds for all the states
of all the paths; AF(p) means that p holds for some states in all the paths;
EF(p) means that p holds for some states in some paths; EG(p) means that
for all states in some paths; AX(p) means that p holds in the next state of
all paths; EX(p) means that p might hold in the next state; A[pUq] means
that p holds until some other property q holds in all paths; E[pUq] means
there exists a path in which p holds until some property q.

The approach adopted for translating natural language requirements into
CTL follows the guidelines described in [12]. Key notions and logic relations
are first identified in the natural language requirements. The identified no-
tions are mapped to state attributes of the MAL model. Relations are trans-
lated using CTL operators. Property templates [13] are used as guidance
to facilitate a correct translation. These steps can be partially automated,
e.g., using heuristics [14] thereby guaranteeing correctness. In this analysis
however, the translation process was performed manually. Future work will
produce automated support for the instantiation process.

4.2. Tools used for the source code analysis

The Escher C++ verifier (eCv++) [15] was used. It combines formal
verification (i.e., total functional correctness with resolution proof) with par-
tial MISRA compliance checking. eCv++ is based on C and C++ seman-
tics extended by abstract types and constructs from the Perfect Developer
tool [16]. It accommodates C++ features including classes, templates and
varied casting operators. Functional correctness can be verified using the
software design-by-contract approach, where pre/post conditions as well as
type invariants, are given to classes, types, and functions. These contracts
are written in an extended C++ language, and the tool ensures, through
verification conditions (VCs), that the code for the chosen compiler and
target architecture delivers the given contracts. VCs are proved using a
combination of term rewriting and a resolution/para-modulation automated
theorem prover, with a detailed and structured audit proof trace. This is
also useful for the purposes of certification. Other useful eCv++ features in-
clude detailed contract suggestions upon verification condition failure (that

12

is, counter-examples are already described in terms of possible contracts).
Some simple (yet common) contracts are also automatically identified by the
tool. Verification conditions generated by eCv++ were analysed using the
eCv++ theorem prover and the Isabelle/HOL Word theory.

5. Translating the NIDUS state transition table into a formal model

The controller spreadsheet was translated systematically into MAL using
the method described in sub-section 4.1.1. After the initial development of
a translator, subsequent models were generated automatically from a CSV
file (provided by the developers) representing the controller. The translation
strategy is described in [17]. The aim was to ensure that the MAL model
represents the finite state model, as described by the spreadsheet, accurately.
Overall, the translation of the control table of the device into MAL, including
meta-attributes, involved 682 lines, including 119 lines of state definitions and
152 lines of type and constant definitions.

The controller software assumes that a pipeline of events exists, each tick
of the system process causes the next event to be taken from the pipeline. The
default transition appears in the last column of the spreadsheet (not shown).
If the pipeline is empty then a specified default transition is taken. The model
does not capture the pipeline of events explicitly. It simply models the “next
event” as an action, and assuming that the pipeline may become empty, in-
cludes an explicit default action. This simplification is su�cient to capture
most of the properties of the events but assumes nothing about loss or cor-
ruption of information in the pipeline. These conditions must be considered
separately. When several actions are possible, because the guard for each of
them is satisfied, then one of the actions is taken non-deterministically. In
this way, all possible behaviours of the device are considered. There are some
circumstances where it is necessary to prove properties that assume that the
pipeline is never empty. To analyse these situations an additional attribute
was added to the model that becomes false if a default action occurs in a
path.

A concrete translation example is now demonstrated. Consider the e↵ect
of the transition related to event M1Stall highlighted in Figure 2. The event
M1Stall appears at the top of the last displayed column. The state M1Stall ,
from which the event transitions to RST InitS2 , is described in the eleven
columns that follow the name M1Stall . The destination state is named in
the event column for the RST InitS1 row. The events described in the

13

development of the controller could be modelled without loss of precision as
MAL actions. The MAL description of the e↵ect of M1Stall , when the event
occurs in state RST InitS1 , is as follows:

statedist = sdRSTInitS1 ! [acM1Stall] trRSTInitS2

The expression above indicates that, when the state is RSTInitS1 the action
acM1Stall leads to the state RSTInitS2 . The attribute statedist has a type
that enumerates a set of “labels” indicating each state of the control table. If
RSTInitS1 is the current state then statedist takes the value sdRSTInitS1 .
Hence the model defines a set of transformations that change current state
to specified new states. In the MAL model, a predicate trRSTInitS2 is used
to abbreviate the set of state attribute transitions associated with changing
the state to RSTInitS2 as described in the following MAL definition.

trRSTInitS2 := Power 0 = ALLOW12V & Motor1 0 = M1STOP &
Motor2 0 = M2FWDMAX & Hep 0 = HEPSAFE &
Peri 0 = PERISAFE & Valve 0 = FLUSH&
Alarm 0 = ACTIVE & WashTimer 0 = ZERO &
DialysisTimer 0 = HOLD & Flash 0 = ENABLE &
Mode 0 = RESET & statedist 0 = sdRSTInitS2

This transformation specifies new values for each of the attributes, for exam-
ple the value of the attribute Power becomes ALLOW12V etc.

The model was further extended by adding more state attributes that
deal with features of the controller that are only listed as comments in the
spreadsheet. They enable the analysis of further features of the user interface
that were transformed by the specified events. These features include the
attributes associated with the soft function keys for the function keys key1 ,
key2 , key3 , stop as well as the audible alert. Hence trRSTInitS2 has further
characteristics in the model:

seclr 0 = GREEN & !audiblealert 0 & fkey1 0 = F1BLANK &
fkey2 0 = F2BLANK & fstop 0 = F3STOP

6. Deriving requirements from the NIDUS risk log

This section summarises the negotiation involving the developers and the
analyst, using the risk log described in Figure 3. It also considers the range
of types of requirement that are contained in the risk log. This discussion is
expanded in the next section.

14

6.1. Refining a sketch requirement as a CTL property

The risk log contains a list of requirements developed to mitigate known
hazards. An example of a requirement in the risk log, described in Figure 3,
is requirement MAL.GEN2S1:

“During DIALYSIS, when the distal syringe is moving forwards
then the proximal syringe is necessarily moving backwards.”

The developer produced a partial translation of this in discussion with the
analyst into a pseudo formal expression. This formulation provides an indi-
cation of the developer’s understanding of the requirement without noting
the temporal dimension of the property or the precise nature of the sets
{M2Fwd} and {M1Bck}.

If M2 in {M2Fwd} ! M1 in {M1Bck}

The two sets {M2Fwd} and {M1Bck} were then articulated by the formal
analyst as MAL definitions:

M2FWD := { M2FWDMAX, M2FWDUNUF }
M1BCK := { M1BCKMAX, M1BCKUF, M1WITHDRAW }

It was confirmed by the developers that these attribute states comprised
all those relating to forward and backward motion in the two motors. Having
defined the relevant state attributes as specified in the spreadsheet model,
the next step was to formulate a precise version of the property as a basis
for the analysis. Some risk log requirements were di�cult to express in CTL,
and produced complicated CTL expressions that were di�cult to explain to
the developers. For example, there were several requirements in the risk log
that required that given some past event a certain property will not hold.
These properties were simplified by adding further attributes to the model
that had been automatically generated. The modifications will be discussed
in the next section in the specific case of requirement category P4.

6.2. Categories of requirements

Several categories of requirement were identified as the risk log was con-
sidered. These are now listed before considering examples in more detail.

15

P1: States are required to be inaccessible in dangerous circumstances. Ex-
amples include the property outlined above in Section 6.1. A further
example found in the risk log is that: “it should not be possible to
dialyse an infant with heparin in the blood circuit”.

P2: Normal behaviour as represented by “normal events” should always lead
to the same sequence of events. An example from the risk log is that
“when the dialysis machine is error free it always generates a correct
dialysis sequence including appropriate wash and dialysis stages”.

P3: An error state should always lead to an appropriately safe action. The
risk log contained requirements of the form: “when an error event
occurs then the device is taken to an appropriate error state”.

P4: States can only be reached if combinations of states have happened in
the past. An example of such a property is that relevant reminders are
always displayed to “close a clamp before the next phase of the cycle
can commence”.

7. Checking NIDUS’ risk related properties

Specific requirements will be considered in detail in this section. A set
of 252 requirements was identified in the risk log of which 47 mitigations
used the MAL analysis at least in part. The analysis involved 23 properties.
These supported mitigations relating both to aspects of protection and de-
sign. Verifying all the properties together on a MacBook Pro with Intel Core
i5 clocked at 2.9GHz, with 8GB RAM and SSD memory, took 1.7 seconds.

P1: Unsafe combinations of states cannot occur. The requirement discussed
in Section 6.1 falls into this category:

“During DIALYSIS, when the distal syringe is moving forwards
then the proximal syringe is necessarily moving backwards.”

The requirement was formulated in CTL as:

AG(Motor2 in M2FWD ! Motor1 in M1BCK) (1)

The property checks that for all states, when Motor2 is in a forward state,
then Motor1 is in a backward state.

16

Figure 4: Counter-example to property P1

Attempts to prove the property of the model failed. The counter-example
(shown in Figure 4) indicates one path in which it fails. The figure shows a
sequence starting from an initial state (column 1), ending at a state where
the property fails (column 6). Columns indicate values held by attributes.
These are named in the left hand column (i.e., column 0). For example, the
attribute Power has value ALLOW12V in column 4. The colour yellow is
used to indicate that a state attribute has changed value between successive
states. The path indicates (as shown in the row marked main.action) that
from the initial state the device defaults (that is it takes the action acDefault)
because there are no events in the queue. This action is followed by Key2 ,
followed by 12vo↵ , 12von and M1stall which leads to the state where the
property fails.

Discussion during the risk meeting explored the implications of the se-
quence and came to the conclusion that this exception was acceptably safe
and could therefore be excluded. The considered property was therefore re-
fined by excluding this case, and the analysis continued. Several other cases
were found where the property failed. The risk analysis team considered each
of these exceptions and noted that the common property of these counter-
examples was that they occurred when the device was not in dialysis mode,
hence the following property was constructed:

AG((Motor2 in M2FWD & Mode in {DIALYSE ,DIALYSING})
! Motor1 in M1BCK)

The property formulated as a result of this observation is true for the model.
It should be noted that this observation about the exceptions was a problem
of formulation, the property could be expressed more simply. It could be

17

Figure 5: Proving the ‘dialysis cycle’

argued that visual inspection of the spreadsheet would have been su�cient
to indicate the problem in this particular case. However this systematic ap-
proach to finding paths to potentially hazardous states provides an exhaustive
approach. At the same time it makes it clear to the team the circumstances
in which the property fails.

P2: Staying in the dialysis cycle. The second class of requirements relates
to ensuring that the behaviour of the device follows the required cycle in
normal circumstances. The requirement is expressed as follows:

“MAL.DIALCYCLE: Unless there are errors or user actions, the
system stays in the dialysis cycle”

The requirement aims to ensure that, barring error events or user interven-
tions, the transition table will always cause the device to complete the same
haemodialysis process. To check the requirement it is first assumed that no
such cycle exists. This property should fail and give, as an example of failure,
one cycle that is of the appropriate form. Once the cycle is discovered, and
is judged to be the correct ‘dialysis cycle’, the next stage is to show that it
is the only possible cycle that can be generated using the relevant actions.

Team discussion clarified that the state was intended to start at state
DIA Wdraw with starting event M1out . The normal cycle involves specific
events (M1in, M2in and Wait1second) recognised as drivers of the dialysis
cycle. An attribute is introduced motorsandwaits that is set to true for the
first event of the cycle and whose truth is preserved only by events: M1in,
M2in and Wait1second . This limits attention to the relevant events, any

18

other event sets the attribute to false. The following property was used to
find a sequence that satisfies these constraints.

AG(statedist = sdDIAWdraw !
AX(AG(!(motorsandwaits &

statedist = sdDIAWdraw))))

(2)

This property should generate the cycle as a counter-example. This is illus-
trated in the trace fragment in Figure 5.

The sequence fragment starts with the state DIAWdraw (bottom row, col-
umn 23) when motorsandwaits is false and ends with the state DIAWdrawRlx
(column 29). The sequence of actions that make up the cycle are shown in a
row at the top of the table (acM1out etc.). This sequence is indeed the ‘dial-
ysis cycle’ as acknowledged during a meeting. The value of motorsandwaits
is shown in the penultimate row and remains true throughout. This counter-
example identifies one cycle only. It does not exclude the possibility of others
and therefore it is necessary to check that the sequence is unique. This is eas-
ily done by proving that the only next step, using these events for each state
in the sequence, is the one identified in the counter-example. For example,
properties of the following type must be true:

AG(statedist = sdDIAWdraw !
AX (motorsandwaits ! statedist = sdDIAWdrawRlx))

This process was completed and the cycle, using the specified events, was
found to be unique.

P3: Errors lead to error states. An important issue in the risk log was
to ensure that error events would always lead to error states, expressed for
example as:

“MAL-GENERROR: For all error conditions and all system states,
the next state will be an error state.”

Furthermore it was required that the device should remain in an error state if
further error events occur. The error events were defined using the following
MAL definition:

ErrorEventSet := acHardFault | acOverpressure | acBubble | acPeriStall

19

The elements of ErrorStateSet were then identified and the following property
agreed to capture the requirement:

AG(AX (ErrorEventSet ! statedist in ErrorStateSet))

The property was found to be false because the Alarm can be inhibited
and, when this happens, the property fails. This possibility was therefore
excluded:

AG(Alarm ! = INHIBIT !
AX (ErrorEventSet ! statedist in ErrorStateSet))

This property was also false and therefore further refined. An error state had
wrongly been included in ErrorStateSet and it was also recognised that in a
particular Mode, namely RESET the property would fail.

AG(Alarm ! = INHIBIT & Mode ! = RESET ! (3)

AX(ErrorEventSet ! statedist in ErrorStateSet))

All these exclusions were judged acceptable. None of them were consid-
ered to compromise the safety of the device. The property however continued
to be false. The state STWarmStart also required exclusion. This exception
was not an error state but it was not considered to be problematic because
its occurrence is clear and does not cause confusion to the clinical operator.
This iterative process led to successive weakening of the original property.
Each step involved discussion and clearly documented rationale as to why
the exception could be reasonably excluded. The rationale became part of
the safety case documentation.

P4: States can only be reached if combinations of states have happened in the
past. An important set of requirements deals with reachability properties
in the context of some previous combination of states. For example, that
specific information should be presented to the user to remind them of the
requirement for a specific action. A concrete example is:

“MAL.HEPCLIP: The user is instructed to close clip before chang-
ing syringe, and re-open afterwards.”

20

This particular instruction is represented by the controller using the Flash
attribute. The Flash attribute identifies dialyser warning displays. For ex-
ample, Flash = HEPCLOSE indicates that “close the heparin clip” has been
transmitted. There are a variety of ways in which this property can be ex-
pressed using CTL.

We chose to adopt a simple approach that could be explained easily.
A meta-attribute hepclipopen is true when Flash = HEPOPEN is the last
display relevant to the clip. The attribute becomes false when Flash has
values HEPCLOSE or HEPSYRINGE . For example, the following fragment
involving the Hepin action specifies a transition to the state HEPClip. This
state includes a change to the Flash attribute Flash 0 = HEPCLOSE and
therefore hepclipopen is set to false. It is assumed therefore that the clinician
will recall the last display relating to the opening or closing of the clip.

statedist in {sdDIAReady} ! [acHepin]
trHEPClip & !motorsandwaits 0 & keep(. . .) & !hepclipopen 0

We then check the property:

AG(Mode = DIALYSING ! hepclipopen)

The property proved to be false because a particular state HEPPrime pro-
vides a clear alternative indication to open the clip that does not involve
the flash display. This rationale was included in the risk assessment and
the model was changed so that the meta-attribute was also set to true when
visiting HEPPrime. The property then becomes true.

8. Documenting the risk log

The original risk log, see Figure 6 for a fragment, indicates a range of
potential risks across the hardware and software of the device.

The risk log is organised as columns. For example the sixth column indi-
cates the type of control proposed to mitigate the hazard. This is indicated
in the first column as: “blood loss”. The fifth column indicates “the method
of control” which specifies a barrier that mitigates the hazard. Three of
the methods of control relate to the controller and indicate requirements on
the controller designed to mitigate the hazard (Figure 3 indicates how some
of these methods of control were elaborated). MAL.GENBABY refines the

21

Figure 6: Extract from the original risk log

Figure 7: The MAL.GENBABY seen in the IVY property editor

bottom case (M10.9) on Figure 6. The barrier is refined as the controller re-
quirement “the baby valve can only be open while the system is in DIALYSIS
mode”. This actually strengthens the original requirement because WASH
mode is one of several modes that are supported by the controller. The
right hand column of the revised risk log (Figure 3) indicates a semi-logical
expression of the requirement. The reference to MAL.GENBABY refers to
evidence produced by the IVY tool (see Figure 7).

In this way there is a trail from the original method of control, contained
in the risk log, to the requirement expressed as a property proved of the
model. The MAL model, and list of properties along with the IVY tool are
therefore part of evidence that along with test data is designed to provide
confidence that the requirement is satisfied.

22

9. Performing the source code analysis of NIDUS

9.1. Identification of the main classes of the code

Modules were first identified and organised, focusing on the dependencies
between them. This process was mainly performed manually, with help from
Microsoft’s Visual Studio call graph tools. Alternatively, commercial tools
like GammaTech CodeSonar1 can be used for more complex program infras-
tructures. The modules were organised as an ordered acyclic graph: cycles
were identified and dependencies were minimised by reorganising given code
across modules. The second step was to identify library (and OS-dependent)
boundaries, in other words to find dependencies on C or Windows libraries.
Some OS features would require shadowing to enable the analysis process,
and some re-definition was necessary, for example to change C++ strings to
C null terminated arrays. Shadowing involved developing alternative .h files
to redefine necessary library types and APIs with code contracts that enable
verification of their use. It was important that these assumed specifications
did not compromise results. For this reason, implementations were also pro-
vided to some of the key library APIs, where assertions and exceptions were
used, to ensure that at least, if specifications are violated, the program could
be taken to a safe albeit exceptional state. The third step was to find top-
level control loops and to mark modules that interact with them. It was
necessary to follow these dependencies to the least dependent parts, finding
the leaves of the graph. In some cases the call graph tool of Microsoft Visual
Studio was used to discover these links. The fourth step was to find the most
used and least dependent leaves and identify which ones are most important
to the target problem of interest, which were the calculations used to deter-
mine the outcome of the control table events, which in turn determined what
next state the machine should go to.

9.2. Checking compliance of the code with the MISRA guidelines

Focus was given to key aspects of the code, such as the control state ma-
chine, environment sensed data, and device controller modules. The dialyser
contains side-e↵ect free functions. These functions are responsible for var-
ious calculations using sensed data, for example representing the exchange

1https://www.grammatech.com/products/codesonar

23

of sensed pressure from the blood circuit for motor speeds driving the sy-
ringes. These are crucial and ultimately responsible for the conditions guard-
ing events and state changes from the dialyser state machine. Given their
central role and relative isolation from other parts of the code, it was the
most e↵ective target of functional correctness verification beyond MISRA
compliance and memory safety checks. Dependencies relating to standard
libraries, such as stdio and std::string, were identified. Whenever
possible, arrays of characters were preferred rather than std::string in
order to avoid issues with dynamic memory allocation. E↵orts were made
also to shield against architecture-specific code, such as OS-specific libraries
and OS or architecture dependent bit-vector operations.

Changes were made to the code to make it MISRA compliant. MISRA
guidelines are divided into three categories: mandatory, where deviation is
not permitted; required, where any deviation must be recorded and authorised
according to provided deviation procedures per MISRA rule; and advisory,
which are recommendations that often cannot be ignored, but ultimately
do not constitute a breach of compliance. Checking di↵erences between code
subsets helped highlight where MISRA compliance identified potential issues.
Moreover, running the MISRA compliance tool within eCv++ for the original
code also highlighted various issues of interest. In practice, approaching
compliance makes it easier to discharge the eCv++ verification conditions
and the simpler the code contracts become.

With a clearer understanding of what MISRA rules would be involved for
the key parts of the dialyser’s code, we started looking at what (least invasive)
changes to the original code would be possible. Often compliance changes
were easy to achieve. This process led to a dialogue with the development
team, raising awareness of the kinds of issues such compliance would avoid,
and creating two positive outcomes: the recognition that the code was close
to MISRA (mandatory rules) compliance and some (but not substantial)
work was needed for further MISRA (required rules) compliance. Moreover,
compliance also entailed simplified VCs as the space of potential breach was
considerably reduced as the example below demonstrates.

9.3. Pre- and Post-conditions

All constants involved in bitwise operators were made explicitly unsigned
(e.g., 0x07 becomes 0x07u) as required by MISRA Rule 7.2. This is impor-
tant to ensure congruent results across C compilers and target linked-program

24

execution-architectures. This entails a considerable simplification in gener-
ated VCs because value range checking for multiple operations is no longer
necessary. Moreover, all MISRA Essential Type Model rules (10.1-10.8) are
also required and impose, among other options, no type widening (required
Rule 10.6). Through this process the following (original) code:

1 inline int foo(int MSB, int LSB) {

2 int Moverlap = MSB & 0x07 ;

3 int Loverlap = (LSB >> 5) & 0x07 ;

4 int DeltaOverlap = (Loverlap - Moverlap) & 0x07 ;

5 ...

6 }

Listing 1: The original code

is transformed through MISRA compliance with some of the required rules
to the code fragment described in Listing 2.

1 inline unsigned int foo(unsigned int MSB, unsigned int LSB) {

2 unsigned int Moverlap = MSB & 0x07u ;

3 unsigned int Loverlap = (LSB >> 5u) & 0x07u ;

4 unsigned int DeltaOverlap = (Loverlap - Moverlap) & 0x07u ;

5 ...

6 }

Listing 2: After MISRA compliance modifications

Types are tightened to avoid unsigned values, and mask constants are made
explicitly unsigned (i.e., 0x07u instead of 0x07). This simplifies C type
cast widening and narrowing rules involving bitwise operators (e.g., shift left
widens the result to the closest memory size needed for the resulting expres-
sions). Further transformation is required to conform to MISRA’s Essential
Type model rules. For example, the subtraction result may be negative.
Casting is required to keep within the same unsigned type domain. This cre-
ates a further problem because such casting would betray other rules about
bitwise operations over negative numbers. These kinds of change require
more thought and potentially substantial change to the code. The follow-
ing verified version (Listing 3) includes full functional correctness contracts
(pre/post/invariants). Preconditions, together with input type invariants,
ensure that inputs are within 0 . . . 255 and that their deltas under the corre-
sponding three key bits (i.e., highest three bits for the LSB, and lowest three
bits for the MSB) are within a certain boundary (i.e., maximum three bits
apart or equal, hence the �4 . . . 3 range).

25

1 typedef unsigned int invariant(value in 0..255) Byte;

2 inline unsigned int foo(Byte MSB, Byte LSB) const

3 pre ((LSB >> 5u) & 0x07u) - (MSB & 0x07u) in -4..3

4 post result in 0..(12<<2)-1

5 {

6 Byte Moverlap = MSB & 0x07u ;

7 Byte Loverlap = (LSB / 32u) & 0x07u;

8 Byte DeltaOverlap = 0u;

9 if (Loverlap >= Moverlap) {

10 DeltaOverlap = (Loverlap - Moverlap) & 0x07u;

11 ...

12 } else {

13 DeltaOverlap = (Moverlap - Loverlap) & 0x07u;

14 ...

15 }

16 ...

17 }

Listing 3: Verified version

An example VC, where the unsigned type restriction has been avoided would
include checks like minof(int) <= X. With the unsigned modification,
the number of VCs would be halved. A concrete example is given in Listing
4.

1 (minof(int) <= (63u & msb)) &&

2 (minof(int) <= (63u & (lsb / 4u))) &&

3 (((63u & (lsb / 4u)) < (256u + (63u & msb))) &&

4 ((63u & msb) <= (63u & (lsb/4u)))) &&

5 (minof(int) <= (63u & ((63u & (lsb/4u)) - (63u & msb)))) &&

6 (minof(int) <= ((63u & ((63u & (lsb/4u)) - (63u & msb))) + msb))

7 && (((63U & ((63U & (LSB / 4U)) - (63U & MSB))) + (63U & MSB))

in minof(int)..(maxof(int)-1))

Listing 4: Verification condition

This is the eCv++ suggested precondition for the original code (Listing 1),
which is complex and di�cult to understand. The adherence to MISRA led
to an initial simplification of this VC. Isabelle/HOL [18] was used to nor-
malise and simplify it. This e↵ort was enough to bring the problem back
to the developers in a way that led to the documentation of the actual con-
tract (Listing 3) that made sense to developers and was su�cient to discharge
all the involved VCs.

The issue was raised with the developers as it related to the implemented
code. The code transformations performed by the tool provided a reference

26

point that was used to discuss the issue, and exhaustive testing was used to
ensure code modification kept faith with the original. At the same time the
modifications prevented the bad outcomes from inputs, possible in the orig-
inal code, that betrayed the precondition. In this case “exhaustive testing”
meant that all 65353 inputs were used in the testing process. A program was
constructed that ran the original and the modified code on all inputs and
collected their di↵erences as a spreadsheet. The di↵erences showed which
input values led to erroneous outputs. In this particular case, an exhaustive
analysis was feasible, because of the small size of the state space. In general,
for algorithms with infinite or very large input states, code coverage criteria
enable the minimisation of the number of meaningful test cases with respect
to the underlying specification, at the cost of losing exhaustiveness in the
analysis.

9.4. Simulations and tests

As a result of the verification carried out with eCV++, various coding
issues were found. In particular, bitwise operators, when compiled to di↵er-
ent targets, could create serious problems depending on the interpretation
of signed values. Di↵erences could allow for dangerous behaviours, or inac-
curate handling of error situations. Key findings included 8 potential bugs,
two of which could lead to serious outcomes if compiled to di↵erent targets
in the future. The risk assessment team judged these situations, supported
by test and simulation, to be safe for the present product. They flagged it
as an issue for any future implementation. The contracts for these dialysis-
related functions had the e↵ect of highlighting the potential issue of signed
integer overflow under certain bitwise and arithmetic operators. The conver-
sation within the risk assessment team flagged future improvements in the
robustness of the code.

As a result of this analysis process 50 coding issues were revealed. These
included, for example, stricter use of type signage, as well as about 20 minor
issues, such as improved naming conventions. The annotated and slightly
modified code totalled 7,500 lines. The eCv++ tool generated 782 VCs, of
which 721 were discharged automatically and relatively quickly (e.g., in a
couple of minutes). 38 of the remaining VCs, could not be discharged by
the eCv++ theorem prover, although information was provided in terms of
a proof trace. These VCs were mostly related to bitwise expression patterns
and floating point numbers. Some of these led to improvements in eCv++
prover itself. These improvements reduced the list of “unprovable” VCs. The

27

remaining unproved VCs used Isabelle/HOL Word theory when the designers
felt they were crucial.

The original code contained C/C++ idioms that eCv did not handle. Dis-
cussion with the tool implementors helped elicit either alternatives (e.g. when
the original had coding patterns compromising mandatory MISRA checks) or
in most cases extensions. Extensions were both syntactic (e.g. for C: #define
for bit constants, enum types with explicit values, etc; C++: object mem-
ber function pointers, links with Windows.h APIs, etc.), and semantic (e.g.
extended rules about floating point arithmetic precision for the operations
involved; improved hints of expected preconditions, etc.).

Given the nature of the problem, VCs were mostly similar in nature (e.g.
various bit masks over unsigned char), if di↵erent in actual structure. When
underlying expressions were complex, the failed VCs would contain about a
quarter of a page of the whole expanded/rewritten expression. The Word
library was used to handle bit vectors and simplify their expression (e.g.
Isabelle was used to go from VCs looking like Listing 4 towards the pre in
Listing 3). Once a manageable size was reached, the actual specification
within the complicated expression became clear and enabled the discharge
of the VCs.

As a result of the analysis the development team provided additional test
data and simulations to ensure that the potential problems could not occur
in practice. Overall, the experience was positive and produced results in
identifying potentially serious issues, that were easily mitigating with more
targeted testing (i.e., tests based on formal specifications). Finally, it was
also possible to establish that the code being submitted for certification was
close to MISRA compliance (that is all mandatory and most recommended
and advisory rule violations).

10. Related work

The formal analysis methods described in this work are not novel. Sim-
ilar techniques were being described and applied in the 1990s. For exam-
ple, a mature set of tools have been developed by Heitmeyer’s team using
SCR [11]. Their approach uses a tabular notation to describe requirements
which makes the technique relatively acceptable to developers. Atlee and
Gannon described a similar approach in [19]. In some domains, other than
medical domains, formal mathematically based methods have been e↵ective
in analysing and assessing risks systematically (see for example, [20, 21]).

28

Despite the success of these techniques there is a continuing perception that
formal methods are not easy to use and that they cannot be scaled to substan-
tial systems. These barriers to their use have limited their uptake in medical
domains. Recent research with the cooperation of the US Food and Drug
Administration (FDA) have led to increased possibilities for their potential
use [22, 12].

Other work considers the analysis of requirements that are initially for-
malised in terms of an architectural model. It is clear that this kind of
analysis is not limited to systems that can be reduced to a control table such
as the one that the analysts were provide with in this case. The work of
Mavaido and others for example [23] develops a set of properties that are
guided by the architectural style of the system under analysis thus achieving
correctness by construction.

There are of course several ways in which it can be demonstrated that
a device satisfies safety requirements using formal techniques when formal
methods are used as part of the design process at the early stages of devel-
opment. Tools such as Event B [24, 25] enable the development of an initial
model that specifies the device characteristics and incorporates the safety
requirements. This initial model is gradually refined using details about how
specific functionalities are implemented. This was not a realistic approach
in the present case because, when the analysis was to be done, the device
had already been developed. Indeed such techniques are currently not feasi-
ble given the typical resources available to medical device developers. There
were also many unknowns at the early stages of NIDUS so that an agile
approach to software development was essential.

Alternatively a model could be generated from the program code of an
existing device, using a set of transformation rules that guarantee correctness,
as discussed in [26]. This approach could have been used for other software
aspects of the device, however it is unclear how well such techniques scale.
Proving the equivalence of model with the software component in relation
to the device was not a problem for the particular example because the
software was driven by a table and the table was translated directly into the
model. Some source analysis has been performed but this does not prove
that the software drivers themselves were implemented correctly. However,
the hardware drivers are mostly very simple, at the level of ‘open valve’,
‘close valve’, ‘stop’, ‘go slow’ and ‘go fast’. Software here is easy to verify
either formally or using traditional test methods.

Finally, a key contribution of this paper is that it illustrates the potential

29

for collaboration between a small team of developers and a formal analysis
to aid the process of producing a risk analysis for a system. In this case
the risk log was initially developed based on previous experience and the
designer’s understanding of the novel implications of the new design. Other
work describes collaborations between domain experts and software develop-
ers in other contexts [27] and the role of various formal techniques to develop
a system [28, 29]. These approaches typically assume a development team
that harnesses these techniques concurrently from the outset.

11. Discussion

The practical use of formal techniques, as part of the risk analysis of a
medical device within a small organisation, remains a prospect rather than
a reality. The contribution of this paper is a practical demonstration of the
use of formal techniques to analyse a component of a safety critical system.
The novelty in this paper has been to apply this technique within a team
where typically small teams with limited resources are involved.

The size of the translation of the control table is already discussed in
Section 5. The development of the first model, by hand, took about seven
hours. It was possible to make most changes to the model and show the
results interactively during meetings with the development team without
disturbing the flow of the meeting. Hence the refinement of requirements
and the careful analysis of the hazards were facilitated by the process. As
discussed in Section 7, a set of 252 requirements were identified in the risk log
of which 47 mitigations used the MAL analysis at least in part. The analysis
involved 23 properties. These supported mitigations relating both to aspects
of protection and design. On the rare occasions when it was not possible
to refine a property during the meeting, for example when meta-attributes
were required, this could be achieved within an hour outside the meeting.
Verifying all the properties together on a MacBook Pro with Intel Core i5
clocked at 2.9GHz, with 8GB RAM and SSD memory, took 1.7 seconds. The
exercise shows that, with appropriate expertise and using available artefacts
(the table, safety requirements), the use of formal methods required little
additional e↵ort and supported e↵ective discussion of the risks between the
developers. Applying the formal tools is not simply a matter of proving the
system right or wrong, but of focusing the discussion and the overall analysis
e↵ort on those aspects of the system that are most critical.

30

Overall, we found the process of identifying, adapting and applying for-
mal techniques to the medical device domain promising. On the one hand,
various hardware design principles applied to the “in-house” software devel-
opment process were already quite strict and of high-quality. On the other
hand, certain aspects of the design and code could benefit from key (and sim-
ple) formal methods principles, such as model checking the state transition
design, and performing design-by-contract with MISRA-C++ compliance.
Testimony to this is that we did not encounter any major/serious flaws in
our investigations, but rather potential sources of future problems, as well as
guarantees that the design satisfied the safety properties of interest. The ex-
ercise of discovering and applying suitable formal techniques to the dialyser
was positive as it served to identify the needs of the engineers and the limita-
tions of their processes. For example, writing certain contracts, in particular
refinement ones, is not something developers would like to do themselves; on
the other hand, there are other contracts developers would be willing to write
themselves. It also found a couple of potentially serious bugs that could be
a problem if the code is to be ported to a di↵erent target.

A key di�culty faced with the source code analysis was to find a tool
that would handle a mixture of C and C++. Since only limited changes to
the code were possible, Microsoft VCC 2, Frama-C 3, or Verifast 4 were all
considered. These tools focus on either concurrent C and/or memory safety
with respect to pointer usage. Given that the software code was a mix of
C and C++, embedded code makes little use of dynamic memory, and that
the dialyser was sequential, these tools were not suitable. Moreover, these
other tools do not check for MISRA compliance, a strengthening argument
that can be used in the certification process.

The risk analysis process described in the paper succeeded because the
software controller of the device was driven by a table and it was relatively
easy to generate a model from the table. It also succeeded because a mixed
disciplinary team was involved. This team included one person who was able
to use the formal tools and provide an explanation of the requirements and
model formulations. It is standard practice to use a table to drive software
that controls a multi-step process as in this case. However there are cases

2See http://research.microsoft.com/en-us/projects/vcc/.
3See http://frama-c.com/.
4See www.cs.kuleuven.be/˜bartj/verifast/.

31

where this does not happen and moreover, as in this case, the software covered
by the controller is only part of the software. As noted in the previous section
other architectural models facilitate the development of similar analyses [23].

The dialysis machine also includes user interface features, for example
capacity to enter new values for thresholds relevant to the dialysis process.
These are involved in the initial set-up of the machine. Other analyses, in-
volving several of the authors, have focussed on existing intravenous infusion
pumps [30]. In these cases, there were few sequences such as the dialysis
cycle and a table driven process was less relevant. The analysis described in
this paper therefore raises questions about the potential for extending this
approach to a broader class of medical systems. The challenges raised by this
analysis in the context of small-scale developments, such as this one, are:

• Systematic modelling: While formal approaches to the development of
software that refine safety requirements exist (see [31]), these are not
yet feasible to use given the available tools and skills of existing small
development teams. In this case the formal methods expertise was
recruited short-term for the purpose.

• Mixed disciplinary teams: There was substantial benefit in recognising
and using expertise from sources outside the development team. A
mixed discipline approach is already in practice in the case of small
companies or innovative pre-commercial developments. It would make
sense therefore to add support for these analytical skills to the toolkit
to enable device developers to use them.

• Mixed styles of analysis: As in this case, a well defined and yet im-
portant software component may be analysed formally. The formal
analysis of the controller table can also improve the testing coverage
of the device drivers themselves although this was not done in this
case. It is also good practice to have multiple independent arguments
to demonstrate the safety of the system. Hence it makes sound sense
to use formal techniques to improve confidence in the risk analysis.

12. Conclusion

This paper illustrated how formal techniques may be used successfully as
part of the risk analysis process associated with the development of a medical
device. The analysis described in this work is part of the documentation
created for a device submission that has gone forward for regulation. The
safety requirements that were formulated and proved, and improvements

32

when a property that was formulated to reflect a requirement failed to be
true, illustrate how the analysis led to improvement in the safety of the design
while providing a concise basis for evidence that part of the system is safe.
The technique is readily repeatable. Tools that have been developed allow
the automated development of models from control tables. The analysis
approach complements testing techniques and provides a systematic solution
to the safety assessment of critical devices.

Acknowledgements. This work has been funded by: EPSRC research grant EP/G059063/1:

CHI+MED (Computer–Human Interaction for Medical Devices); and NanoSTIMA (ref.

NORTE-01-0145-FEDER-000016) financed by the North Portugal Regional Operational

Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and

through the European Regional Development Fund (ERDF). Leo Freitas would like to

acknowledge EPSRC Trams2 project for financial support, Andrew Sims for providing ac-

cess to the dialyser, which was used as our case study and Aleksands Baklanovs for doing

some of the source analysis as part of an undergraduate project

13. References

[1] BSI, Medical device software - software life cycle processes, Tech. Rep.
BS EN 62304:2006, British Standards Institution, CENELEC, Avenue
Marnix 17, B-1000 Brussels (2008).

[2] US Food and Drug Administration, General principles of software vali-
dation: Final guidance for industry and FDA sta↵, Tech. rep., Center for
Devices and Radiological Health, available at http://http://www.
fda.gov/medicaldevices/deviceregulationandguidance

(January 2002).

[3] M. G. Coulthard, J. Crosier, C. Gri�ths, J. Smith, M. Drinnan,
M. Whitaker, R. Beckwith, J. N. S. Matthews, P. Flecknell, H. J. Lam-
bert, Haemodialysing babies weighing < 8kg with the newcastle infant
dialysis and ultrafiltration system (NIDUS): comparison with peritoneal
and conventional haemodialysis, Pediatric Nephrology 29 (10) (2014)
1873–1881. doi:10.1007/s00467-014-2923-3.
URL https://doi.org/10.1007/s00467-014-2923-3

[4] J. C. Campos, M. D. Harrison, Systematic analysis of control panel
interfaces using formal tools, in: N. Graham, P. Palanque (Eds.), Inter-
active systems: Design, Specification and Verification, DSVIS ’08, no.

33

5136 in Lecture Notes in Computer Science, Springer-Verlag, 2008, pp.
72–85.

[5] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, A. Tacchella, NuSMV 2: An Open Source
Tool for Symbolic Model Checking, in: K. G. Larsen, E. Brinksma
(Eds.), Computer-Aided Verification (CAV ’02), Vol. 2404 of Lecture
Notes in Computer Science, Springer-Verlag, 2002, pp. 359–364.

[6] E. M. Clarke, O. Grumberg, D. A. Peled, Model Checking, MIT Press,
1999.

[7] C. Tapp, An introduction to MISRA C++, SAE Int. J. Passeng. Cars -
Electron. Electr. Syst. 1 (1) (2009) 265–268.

[8] J. Carlton, D. Crocker, Escher Verification Studio Perfect Developer and
Escher C Verifier, J. Wiley and Sons, 2012, Ch. 5, pp. 155–193.

[9] M. Ryan, J. Fiadeiro, T. Maibaum, Sharing actions and attributes in
modal action logic, in: Theoretical Aspects of Computer Software, Vol.
526 of Lecture Notes in Computer Science, Springer-Verlag, 1991, pp.
569–593.

[10] A. Monk, M. Curry, P. Wright, Why industry doesn’t use the wonderful
notations we researchers have given them to reason about their designs,
in: D. Gilmore, R. Winder, F. Detienne (Eds.), User-centred require-
ments for software engineering, Springer, 1991, pp. 185–189.

[11] C. Heitmeyer, J. Kirby, B. Labaw, R. Bharadwaj, SCR: A toolset for
specifying and analyzing software requirements, in: Computer Aided
Verification, Springer-Verlag, 1998, pp. 526–531.

[12] P. Masci, A. Ayoub, P. Curzon, M. Harrison, I. Lee, O. Sokolsky,
H. Thimbleby, Verification of interactive software for medical devices:
PCA infusion pumps and FDA regulation as an example, in: Proceed-
ings ACM Symposium Engineering Interactive Systems (EICS 2013),
ACM Press, 2013, pp. 81–90.

[13] M. Dwyer, G. Avrunin, J. Corbett, Property Specification Patterns for
Finite-State Verification, in: M. Ardis (Ed.), 2nd Workshop on Formal
Methods in Software Practice, 1998, pp. 7–15.

34

[14] S. Vadera, F. Meziane, From english to formal specifications, The Com-
puter Journal 37 (9) (1994) 753–763.

[15] D. Crocker, Can C++ be made as safe as SPARK?, in: ACM Proceed-
ings High Integrity Language Technology, 2014.

[16] D. Crocker, Perfect developer reference manual v6.10, Tech. rep., Escher
Technologies Ltd. (December 2013).

[17] L. Freitas, A. Stabler, Translation strategies for medical device control
software, Tech. rep., Newcastle University (August 2015).

[18] T. Nipkow, L. Paulson, M. Wenzel, Isabelle/HOL: a proof assistant for
Higher-Order Logic, no. 2283 in Lecture Notes in Computer Science,
Springer-Verlag, 2002.

[19] J. M. Atlee, J. Gannon, State-based model checking of event-driven
system requirements, IEEE Transactions on Software Engineering 19 (1)
(1993) 24–40.

[20] G. Klein, J. Andronick, K. Elphinstone, T. C. Murray, T. Sewell,
R. Kolanski, G. Heiser, Comprehensive formal verification of an OS
microkernel, ACM Trans. Comput. Syst. 32 (1) (2014) 2.
URL http://doi.acm.org/10.1145/2560537

[21] J. Barnes, R. Chapman, R. Johnson, B. Everett, D. Cooper, Engineer-
ing the tokeneer enclave protection software, in: IEEE International
Symposium on Secure Software Engineering, IEEE, 2006.

[22] B. Kim, A. Ayoub, O. Sokolsky, I. Lee, P. Jones, Y. Zhang, R. Jetley,
Safety-assured development of the GPCA infusion pump software, in:
Proceedings of the ninth ACM international conference on Embedded
software, EMSOFT ’11, ACM, New York, NY, USA, 2011, pp. 155–164.
URL http://doi.acm.org/10.1145/2038642.2038667

[23] A. Mavridou, E. Stachtiari, S. Bliudze, A. Ivanov, P. Katsaros, J. Sifakis,
Architecture-based design: A satellite on-board software case study, in:
O. Kouchnarenko, R. Khosravi (Eds.), Formal Aspects of Component
Software, Springer International Publishing, Cham, 2017, pp. 260–279.

35

[24] J.-R. Abrial, Modeling in Event-B: System and Software Engineering,
Cambridge University Press, 2010.

[25] R. Banach, Hemodialysis machine in hybrid Event-B, in: M. Butler,
K.-D. Schewe, A. Mashkoor, M. Biro (Eds.), Abstract State Machines,
Alloy, B, TLA, VDM, and Z, Springer International Publishing, Cham,
2016, pp. 376–393.

[26] G. J. Holzmann, Trends in software verification, in: K. Araki, S. Gnesi,
D. Mandrioli (Eds.), FME 2003: Formal Methods, Vol. 2805 of Lecture
Notes in Computer Science, Springer-Verlag, 2003, pp. 40–50.

[27] D. Coppit, K. Sullivan, Formal specification in collaborative design of
critical software tools, in: Proc. 3rd. IEEE International High Assurance
Systems Engineering Symposium, IEEE Computer Society Press, 1998,
pp. 13–30.

[28] G. Garcia, X. Roser, Enhancing integrated design modelbased process
and engineering tool environment: Towards an integration of func-
tional analysis, operational analysis and knowledge capitalisation into
co-engineering practices, Concurrent Engineering 26 (1) (2018) 43–54.
doi:10.1177/1063293X17737357.

[29] J. S. Fitzgerald, P. G. Larsen, K. G. Pierce, M. H. G. Verhoef, A formal
approach to collaborative modelling and co-simulation for embedded
systems, Mathematical Structures in Computer Science 23 (4) (2013)
726750. doi:10.1017/S0960129512000242.

[30] M. D. Harrison, P. Masci, J. C. Campos, P. Curzon, Verification of user
interface software: the example of use-related safety requirements and
programmable medical devices, IEEE Transactions on Human Machine
Systems 47 (6) (2017) 834–846. doi:10.1109/THMS.2017.2717910.

[31] S. Yeganefard, M. Butler, Structuring functional requirements of control
systems to facilitate refinement-based formalisation, in: Proceedings of
the 11th International Workshop on Automated Verification of Criti-
cal Systems (AVoCS 2011), Vol. 46, Electronic Communications of the
EASST, 2011.

36

