
IVY 2 – A model-based analysis tool
Rui Couto

Dept. Informatics/University of Minho and
HASLab/INESC TEC

Braga, Portugal
rui.couto@di.uminho.pt

José Creissac Campos
Dept. Informatics/University of Minho and

HASLab/INESC TEC
Braga, Portugal

jose.campos@di.uminho.pt

ABSTRACT
The IVY workbench is a model-based tool that supports the
formal verification of interactive computing systems. It adopts
a plugin-based architecture to support a flexible development
model. Over the years the chosen architectural solution re-
vealed a number of limitations, resulting both from technolog-
ical deprecation of some of the adopted solutions and a better
understanding of the verification process to support. This pa-
per presents the redesign and implementation of the original
plugin infrastructure, originating a new version of the tool:
IVY 2. It describes the limitations of the original solutions
and the new architecture, which resorts to the Java module
system in order to solve them.

CCS Concepts
•Software and its engineering ! Layered systems;
Publish-subscribe / event-based architectures; Model
checking; •Human-centered computing ! User models; In-
teraction design theory, concepts and paradigms;

Author Keywords
Model-based design and analysis; interactive systems; formal
verification; model checking; tool support.

INTRODUCTION
Critical systems require an additional layer of quality assur-
ance, when compared to traditional ones. A possible ap-
proach to support the verification of these systems is the use
of model-based approaches. Systems are described by models,
over which properties can be specified and verified. Counter-
examples, produced when verification fails, provide insights
into how the system should be redesigned.

IVY [4] is a framework that supports the verification of inter-
active systems, through a model-based verification approach.
Systems are modeled in Model Action Logic (MAL) [15],
which supports describing how available actions change the
state of the system. The MAL model describes the structure
of the systems (attributes), possible actions to be performed
in the system (actions) and rules expressing system behaviour

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EICS ’19, June 18–21, 2019, Valencia, Spain

© 2019 ACM. ISBN 978-1-4503-6745-5/19/06. . . $15.00
DOI: https://doi.org/10.1145/3319499.3328228

(axioms). The tool supports also the specification and verifi-
cation of properties against the model, the analysis of gener-
ated counter-examples and interactive simulation of the model.
Properties to be verified (tests) are expressed using CTL or
LTL. A compiler translates the models into SMV specifica-
tions, which are verified with the NuSMV model checker [6].
When the verification fails, NuSMV produces traces that high-
light sequences of states that invalidate the property. Visual-
ization of these traces and interaction with the models are part
of the IVY approach. It is possible to view verification results
and interact with the models using different graphical state
representations.

The tool adopts a plugin-based architecture, designed so that
different solutions to support verification and validation might
be explored. This has enabled a range of ideas to be explored,
while maintaining a stable set of features in the tool. Never-
theless, over the years a number of issues was identified. First,
development of the adopted, third-party, plugin framework
stopped in 2007, meaning that its maintenance became harder
to perform. Second, and related to the previous issue, when
the architecture was first designed a centralized approach to in-
formation sharing was adopted. On the one hand, the adopted
plugin framework did not provide an inter-plugin communi-
cation mechanism; on the other hand, plugins were seen as
mostly independent tools. As a notion of analysis process ma-
tured, with plugins supporting different stages of the process,
the need for a flexible inter-plugins communication mecha-
nism became apparent. At the same time, it became clear that
some services, such as model compilation or interaction with
verification back-ends were needed across different plugins.

The main contribution of this paper is the description of a
redesigned, plugins and services based, extensible framework,
for the IVY tool, based in standard Java technology. The
design of this framework results from the knowledge acquired
during the several years developing, using and maintaining the
first version of IVY. The paper can also help those interested
in developing the tool.

THE VERIFICATION PROCESS
The verification of an interactive system can be decomposed
into four main steps. In the first step a model of the system
is created, typically describing both the structure and the be-
haviour of the user interface to be analysed. Depending on the
stage of development, this model can be developed as an early
representation of the interactive system’s design, or might be
reverse engineered from an existing implementation.

Post-print of a paper published in the Proceedings of the ACM SIGCHI Symposium on Engineering Interactive Computing Systems (EICS 2019).
Publisher’s version available at: https://doi.org/10.1145/3319499.3328228

In the second step, the model is validated to check that it
represents the intended system design. This might involve
animating the model to observe its behaviour or proving basic
properties that are expected to hold.

The verification of the model occurs in the third step. This step
requires the identification of relevant verification requirements
and their encoding in an appropriate logic. Requirements
might come from, e.g., usability heuristics, regulatory docu-
ments, or a previous process of risk analysis. The analysis is
then carried out, typically using a model checker or theorem
prover.

In the final step, the results of the analysis are interpreted. In
particular when the verification fails, it must be understood
what the cause of the failure was and how it might be remedied.

THE IVY WORKBENCH
IVY is a model-based interactive computing systems analysis
tool, based on the NuSMV model checker. The tool has suc-
cessfully been applied in a number of different contexts, from
aerospace systems [3] to medical devices [12].

IVY was developed in Java, which provides cross platform
capabilities, resorting to the JPF1 plug-in infrastructure li-
brary. Its plugin-based architecture enabled the development
of a number of plugins to support the above verification pro-
cess. A model editor plugin provides a text editor for the
MAL language, supporting the task of creating the models.
A patterns-based properties editor plugin supports the spec-
ification of properties for verification. This plugin uses the
available compiler to generate a valid SMV model, and in-
teracts with the NuSMV model checker to carry out the ver-
ification step. NuSMV is run as an external system process,
as the model checker does not provide a communication API.
A traces analyser plugin supports analyses of the verification
results through the visualization of the counter-examples pro-
duced by NuSMV in a number of different representations. A
models animator plugin supports interaction with the model
and is useful both for the validation of the model and the
analysis of verification results. It implements its own com-
munication mechanism with NuSMV in order to perform the
simulation (unlike for verification, for simulation purposes
NuSMV must be run interactively).

Development of JPF, however, stopped in 2007 (supporting
Java 5), meaning its use has became harder to maintain as the
Java language and related tools evolve. Another related issue
is that, while JPF provides the foundations for a plugin archi-
tecture, it does not enforce any particular structure. When IVY
was first designed the goal was to provide as much flexibility as
possible since, at the time, it was not completely known which
features would be required in the architecture. For instance,
except for a basic core set, we did not want to predetermine
which plugins we would have and what kind of information
they would share. As a consequence, no clear separation of
concerns was enforced when the architecture was designed,
and no inter-plugins communication mechanism was devised.
The adopted solution was the placement of the in-memory rep-
resentation of the model in a centralized information sharing
1http://jpf.sourceforge.net, last visited March 24, 2019.

mechanism, available through a core plugin. This created a
separation between plugins and the data required to support
them. With the adopted solution, all information transmission
went through that core plugin.

The approach above resulted in a rigid solution. One the one
hand, any new data type that might be required by a plugin
must then exist in the centralized representation in order to be
shared with others. On the other hand, the approach lacks a
means of direct communication between plugins. This creates
problems when dependencies between plugins exists. For ex-
ample, it only makes sense to use the properties editor once a
correct model has been edited, and to use the traces visualizer
after the verification step. However, these plugins have no
means to easily communicate with each other. They must rely
on the information available centrally. One consequence of
this is that changes to the shared data by one plugin might
disrupt another plugin still working on the previous version
of the data. In order to mitigate these dependencies, plugins
started having their own representations of the required in-
formation. While solving the problem, this lead to repetition
of code and information. For instance, there are representa-
tions of the model in the CoreSystem, which all plugins have
access to, but also in the editor plugin and in the compiler,
all with minor differences between them. As a consequence,
changes in the MAL language require the three models to be
updated accordingly.

The fact that no clear separation of concerns was defined,
meant that the concept of standalone service was also not
considered. Plugins were not expected to provide reusable
features. Thus, functionalities such as the compiler exist in the
core plugin, but interaction with the NuSMV model checker is
implemented both in the properties editor plugin and the model
animation plugin. While both plugins implement different
interaction strategies, due to their different uses of NuSMV,
a better solution would have been to develop the interaction
feature as a service available to those plugins that needed it.

Overall, it is possible to say that the biggest limitation with
IVY’s original implementation was the lack of an inter-plugin
communication mechanism. As for the developed core plugin,
it presented a rigid solution as new features usually required
changes in the core, which ultimately could affect existing
plugins.

IVY VERSION 2
New plugins, exploring different ideas, are constantly being
developed in IVY. Given the limitations identified in the pre-
ceding section, a new version of the plugin framework was
developed, aimed at solving the identified issues and thus
provide a solid architecture for the tool to evolve upon.

Objectives
Considering the aforementioned issues, a number of objectives
were defined for the framework:

Objective 1 – Implementation of a clear model of inter-
plugin communication.

Figure 1. Base IVY architecture

Objective 2 – A clear separation of concerns between plugins
that implement features to be provided to users of the tool,
and services that might be useful for different plugins.

Objective 3 – Support for plugin enabling/disabling without
the need to recompile code.

Together, these objectives ensure improved development and
maintenance processes of not only new and existing plugins,
but also the framework itself. In particular it will become eas-
ier to develop new plugins, as detailed knowledge of the frame-
works or other plugins or services implementations should not
be needed. Only an understanding of the communication
mechanisms and of the functionalities provided by existing
plugins and services is necessary.

These objectives imply the following challenges:

Challenge 1 – How to provide an architecture separating core
features from plugins, ideally without strong coupling.

Challenge 2 – How to guarantee support for the continued
evolution of the framework.

The development of the new version IVY 2, depicted in Fig-
ure 1, had the objective of solving the identified issues, and
achieve the defined objectives. This section describes both the
decisions taken and the features developed.

Base architecture
Version 1 of IVY has shown that a plugin architecture is de-
sirable. Based in previous experience, an approach similar to
JPF would be adequate, but a more recent solution is required.
We decided for the Java module system [16], and implemented
the new version in Java 9.

IVY is composed of components of different nature. Some,
such as the model editor (depicted in Figure 2) support user
tasks, others as the compiler provide internal features. Thus, a
three layer architecture was designed, as illustrated in Figure 1.
At the bottom level (IVY Framework), the framework core is
specified. It contains the core features, such as the basic user
interface infrastructure, to which the plugins are added, and the
messaging system. At the middle level (Services), we have
the core functionalities of the application itself, containing
services that provide functionalities such as compilation and

Figure 2. Example IVY plugins – the model editor

verification. Finally, at the top layer (Plugins) there are the
application end-user plugins, such as editors and visualizers.

While all components in the different levels correspond to Java
modules, they are conceptually distinct. The core modules
correspond to the framework itself, and while providing the
framework’s core features, they are not expected to suffer sub-
stantial changes, nor be affected by additional modules. Also,
all other modules rely on these ones. Services are modules that
provide core functionalities (such as compilation, simulation
and verification), on which the plugins depend. Services are
not expected to have an user interface. These components pro-
vide functionality reuse, something previously lacking in IVY.
This is achieved by creating self-contained components which
interact with the remaining ones through messages. Finally,
plugins are the top level elements, which provide concrete
functionalities to end users. The plugins are the elements that
can be enabled or disable when launching IVY, thus supporting
Objective 3.

This multi-layer architecture helps achieve Objective 2. By
providing a separation between different features of the frame-
work, when new developers want to integrate a feature, they
can focus in the layers that concern their work. It is expected
that developers will mainly focus in the top layer (Plugins),
and understand some concepts of the middle layer (Services).
From the bottom layer (IVY framework) developers need
only to understand the communication mechanisms.

The IVY 2 plugin and service architecture is presented in
Figure 3. Essentially. it provides the shared memory ser-
vice (through the SharedMemory class), the PluginService
interface that all plugins and services must implement (see
Listing 12), the MessagingService interface that again all
plugins and services must implement in order to be notified of
published messages (see Listing 2) and the Messaging class,
which provides the API to publish messages.

Core communication features
The Java module system does not provide a framework by
itself. While providing better organization of the different

2In the case of services, getGUI() must return null.

Figure 3. IVY 2 framework architecture

1 p u b l i c i n t e r f a c e P l u g i n S e r v i c e {
/ * * . . . * /

3 p u b l i c S t r i n g getName () ;
/ * * . . . * /

5 p u b l i c J P a n e l getGUI () ;
/ * * . . . * /

7 p u b l i c i n t g e t P r i o r i t y () ;
/ * * . . . * /

9 p u b l i c vo id o n C r e a t e () ;
/ * * . . . * /

11 p u b l i c vo id onFocus () ;
/ * * . . . * /

13 p u b l i c b o o l e a n onFocusLos t () ;
/ * * . . . * /

15 p u b l i c vo id onDes t roy () ;
/ * * . . . * /

17 p u b l i c vo id o n P r o j e c t S a v e () ;
/ * * . . . * /

19 p u b l i c vo id o n P r o j e c t O p e n () ;
/ * * . . . * /

21 p u b l i c L i s t <JMenu> getMenuI tems () ;
}

Listing 1. The API of a plugin

parts of the framework (modules), other features are required
to tackle remaining objectives and issues. In particular, in
what relates to inter-plugin communication.

Messaging
A messaging system, implementing the publish-subscribe pat-
tern [2], allows plugins to communicate without establishing
strong dependencies between them. With this, we address
Objective 3. The messaging system is part of the core frame-
work. Plugins can use it to create their own channels, sub-
scribe for notifications on existing channels, publish messages,
and receive notifications when messages are published in the
channels they have previously subscribed to. When a mes-
sage is published in a channel, the framework will notify all
plugins/services subscribing the channel by invoking the ap-
propriate method (see Listing 2). There are three predefined
channels, one to output log messages, another for providing
progress information on activities that might take longer to
carry out, and a third one to broadcast messages across all
plugins. This mechanism has shown to successfully help re-
move previously existing dependencies and code repetition,
allowing us to create independent services and plugins. For
example, the compiler is no longer part of a plugin, but rather
a service. The same is true for the interaction with NuSMV
which was implemented in two different plugins and is now a
service that both can use.

Shared memory
In order not to completely break away from the original model,
a centralised key-value store is available for plugins to share
information among them in a persistent manner. This shared

p u b l i c i n t e r f a c e M e s s a g i n g S e r v i c e {
2 / * * . . . * /

p u b l i c vo id onMessageReceived (O b j e c t message) ;
4 / * * . . . * /

p u b l i c vo id onChanne lMessageRece ived (S t r i n g channe l ,
6 O b j e c t message) ;

/ * * . . . * /
8 p u b l i c vo id onChanne lMessageRece ived (S t r i n g channe l ,

S t r i n g message ,
10 O b j e c t d a t a) ;

}

Listing 2. The messaging API

Figure 4. Example of workflow in IVY 2

memory further prevents coupling between plugins, as no di-
rect references between them are required. A plugin can store
a value in the store, which other plugins can consume. The
mechanism provides the usual features to store information,
verify if a certain key exists, and to retrieve information given
a key.

The two communication mechanisms above can be combined.
A plugin can publish some information (say, a model) in the
store, and then issue a message announcing the information
has been made available. Interested plugins will then be able
to access it. This is illustrated in the next section.

Workflow
In order to help understand how the different modules in IVY
integrate, this section illustrate a typical workflow of the tool.
The section assumes an IVY installation where the editor and
SMV3 plugins, and the compiler service have been loaded and
registered themselves in the model channel, where messages
regarding the status of the models are published.

The workflow is that of compiling the model. The process (see
Figure 4) starts in the model editor plugin, where the MAL
model is described. Once the user selects the Compile action,
the editor-plugin performs two actions: first, it stores the
model in the shared memory, and then it sends a message to
the model channel, informing that a new source code is avail-
able. Once the compiler-service receives the message, it
retrieves the model from the shared memory, and proceeds to
compile it. If the process is successfully performed (the case

3A helper plugin to display the generated SMV code.

depicted herein), the service sends a success message to the
log channel4, places the compiled result in the shared memory
and broadcasts a message in the model channel, informing that
a new compiled model is available. Finally, the smv-plugin
retrieves the compiled model from the shared memory, after
receiving the corresponding message, and displays it in its
interface.

This simple example illustrates how the core components are
integrated into a unified solution, which successfully allows
the plugins and services to cooperate, without the need for
strong coupling. Furthermore, it shows how the framework
is able to support removing/adding plugins without affecting
the existing solution. If the smv-plugin were to be removed,
the only consequence would be the loss of the SMV code
inspection functionality it provides. The compilation process
would still be carried out between the editor and the compiler.
Finally, the example helps illustrate that to develop new plug-
ins and services, what is needed is only an understanding of
the core services (messaging and shared memory) and of the
basic plugin architecture.

DISCUSSION
The development of IVY 2 was based in prior experience:
several years of development of IVY (version 1), feedback
from different users, awareness of different problems due to a
refactoring process, and ultimately the need to reduce mainte-
nance costs. Based in previous experience, we designed a new
architecture to both improve on the first version, and provide
additional features. While the Java module system provides
relevant features to better organize the source code, it does
not constitute by itself a framework. In particular, we had
to develop communication and information sharing mecha-
nisms, that ultimately have shown to support our objectives
and address Challenge 1.

Objective 3 was tackled by the modular design of the archi-
tecture, and specifically resorting the Java’s standard modular
architecture. Dividing the framework into three levels supports
Objective 2, and reduces the knowledge required to start devel-
opment in IVY 2. Objective 1 was met by the implementation
of a publish-subscribe mechanism.

The adopted solution allowed us to progressively migrate the
existing plugins into this new version, as existing plugins
could be reused, if properly adapted to the new architecture.
The migration process mainly consisted in moving the source
code from IVY into IVY 2, and performing minor changes,
in order to adjust to the new messaging system and comply
with the new plugins API. The resulting architecture has also
allowed us to develop new functionalities in existing plugins
or new plugins and services in a much easier manner than was
possible before. In particular, working in parallel is also easier.
Four contributors were creating content in parallel, namely a
visualizer, an editor and a wrapper for NuSMV, alongside with
developments in the framework. Finally, this has shown also
that integrating new developers was easier, as they need to

4The framework will automatically display it in the output window,
which can be seen at the bottom of Figure 2

focus mostly in the plugins they are developing. These results
point towards tackling the second challenge.

RELATED WORK
Several tools exist that, like IVY, aim to support the formal
verification of interactive computing systems. For example,
tools such as PVSio-web [13], CIRCUS [9] or ADEPT [11].
Each tools has its specificities. A comparison of these tools
falls outside of the scope of this paper. See, for example, [10],
for a comparison of PVSio-web and CIRCUS. Here, we will
focus on the technological choices that were made regarding
IVY 2.

There are several existing approaches for developing modular
architectures. We have previously used JPF, which while use-
ful at the time, has seen its development stop, something that
has raised the tool’s maintenance cost. The Java module sys-
tem has been integrated with the language itself, and became
therefore a standard. OSGi is another popular [1] framework,
which shares objectives with the Java module system. We
have constrained the analysis of modular architectures to Java
ones, since, first, we wanted cross-platform compatibility to
exist, and second, we wanted to migrate the code from the
previous version of IVY to the new version. We considered
that using a standard technology is less prone to facing the
problems previously faced with JPF, and thus chose the Java
module system as the core for our implementation.

As previously stated, IVY relies in different tools to perform
different tasks. Regarding the model editing capabilities, sev-
eral approaches have been explored, such as the JEditorPane5.
RSyntaxTextArea6 is a library which has shown to be adequate
due to its maturity and ease of costumizability, providing fea-
tures such as search, history, and syntax highlight. There are
several tools supporting model checking, a feature used by
IVY to validate the models (see [14] for a comparison of ten
popular ones). IVY currently resorts to NuSMV [6], but the
new architecture will make it easier to integrate additional
verification engines. At the moment the integration of support
for nuXmv [5] is being considered, due to its improvements
over NuSMV.

There are several possibilities to develop user interfaces in
Java, the most popular being Swing [8] and JavaFX [7]. Each
technology has its advantages and drawbacks. Swing is an
easy to use standard library integrated into the Java framework.
However, being its first version released in 1998, it lacks some
features of modern frameworks, such as an integrated Model-
View-Controller pattern. JavaFX was the proposal to solve
Swing’s problems and support modern interfaces. However, it
was removed from the Java framework starting in version 11,
and made into an open source framework. Looking forward
for a more stable solution, Java Swing seems to be the best
compromise. As a side note, we have explored the possibility
of making IVY a web based application. However, we have
decided that it was not the most adequate approach (given

5https://docs.oracle.com/javase/7/docs/api/javax/swing/
JEditorPane.html, last visited March 25, 2019.
6http://bobbylight.github.io/RSyntaxTextArea/, last visited
March 24, 2019.

the computational requirements imposed by the verification
engines). This solution was thus disregarded for IVY 2.

CONCLUSIONS
The IVY workbench is a model-based tool that supports the
verification of interactive computing systems. It supports
an iterative process of modelling and analysis and provides
the features to create and validate models, perform analysis
through model checking and analyse verification results. The
tool has been under active development for a number of years,
with new features being experimented with, and existing ones
being improved upon, as a better understanding of the pro-
cess of interactive computing systems analysis through formal
verification was obtained.

The tool adopted from the start a plugin-based architecture
to better support this incremental and exploratory process of
development. With time, however, the core plugin framework
used was becoming hard to maintain and limited in its func-
tionalities. As new developers took part in the process, it
became harder for them to understand existing facilities, and
correctly integrate new features. This drove the need to create
a new version of the plugin infrastructure and of the tool as a
whole: IVY 2.

This paper has reported on our experience in developing this
new version, and documented the new framework, based on the
Java module system. While the module system supported the
organization of the code into pluggable units, the framework
required additional features to standardise communication
and the sharing of information between modules (plugins and
services).

The current version of IVY 2 already mimics the function-
alities available in the original tool. At the moment work is
ongoing on both refining the framework and the integration of
existing plugins, and on a set of additional plugins that include
support for new functionalities such as prototyping or a tabular
models editor to ease the learning curve of the tool.

ACKNOWLEDGMENTS
This work is financed by National Funds through the Por-
tuguese funding agency, FCT - Fundação para a Ciência e a
Tecnologia (Portuguese Foundation for Science and Technol-
ogy) within project: UID/EEA/50014/2019.

REFERENCES
1. OSGi Alliance. 2003. Osgi service platform, release 3.

IOS press.
2. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad,

and M. Stal. 1996. Pattern-Oriented Software
Architecture - Volume 1: A System of Patterns. Wiley.

3. J.C. Campos, M. Sousa, M. Alves, and M.D. Harrison.
2016. Formal Verification of a Space System’s User
Interface with the IVY workbench. IEEE Transactions on
Human-Machine Systems 46, 2 (2016), 303–316.

4. J. C. Campos and M. D. Harrison. 2008. Systematic
analysis of control panel interfaces using formal tools. In
International Workshop on Design, Specification, and
Verification of Interactive Systems. Springer, 72–85.

5. R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A.
Mariotti, A. Micheli, S. Mover, M. Roveri, and S. Tonetta.
2014. The nuXmv symbolic model checker. In
International Conference on Computer Aided Verification.
Springer, 334–342.

6. A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M.
Pistore, M. Roveri, R. Sebastiani, and A. Tacchella. 2002.
NuSMV 2: An opensource tool for symbolic model
checking. In International Conference on Computer
Aided Verification. Springer, 359–364.

7. J. Clarke, J. Connors, and E. J. Bruno. 2009. JavaFX:
Developing Rich Internet Applications. Pearson
Education.

8. R. Eckstein, M. Loy, and D. Wood. 1998. Java Swing.
O’Reilly & Associates, Inc.

9. C. Fayollas, C. Martinie, P. Palanque, Y. Deleris, J.-C.
Fabre, and D. Navarre. 2014. An approach for assessing
the impact of dependability on usability: application to
interactive cockpits. In Tenth European Dependable
Computing Conference. IEEE, 198–209.

10. C. Fayollas, C. Martinie, P. Palanque, P. Masci, M.D.
Harrison, J.C. Campos, and S. R. Silva. 2017. Evaluation
of formal IDEs for human-machine interface design and
analysis: the case of CIRCUS and PVSio-web. In Third
Workshop on Formal Integrated Development
Environment (Electronic Proceedings in Theoretical
Computer Science), Vol. 240. 1–19.

11. M. Feary. 2010. A Toolset for Supporting Iterative
Human Automation: Interaction in Design. In Selected
Papers Presented at MODSIM World 2009 Conference
and Expo. NASA, 169–174.

12. M.D. Harrison, L. Freitas, M. Drinnan, J.C. Campos, P.
Masci, C. di Maria, and M. Whitaker. 2019. Formal
Techniques in the Safety Analysis of Software
Components of a new Dialysis Machine. Science of
Computer Programming 175 (April 2019), 17–34.

13. P. Masci, P. Oladimeji, Y. Zhang, P. Jones, P. Curzon, and
H. Thimbleby. 2015. PVSio-web 2.0: Joining PVS to
HCI. In Computer Aided Verification: 27th International
Conference, CAV 2015, Part I. Springer, 470–478.

14. F. Mazzanti and A. Ferrari. 2018. Ten Diverse Formal
Models for a CBTC Automatic Train Supervision System.
In Third Workshop on Models for Formal Analysis of Real
Systems and Sixth International Workshop on Verification
and Program Transformation (Electronic Proceedings in
Theoretical Computer Science), Vol. 268. 104–149.

15. M. Ryan, J. Fiadeiro, and T. Maibaum. 1991. Sharing
Actions and Attributes in Modal Action Logic. In
Theoretical Aspects of Computer Software. Lecture Notes
in Computer Science, Vol. 526. Springer, 569–593.

16. R. Strniša, P. Sewell, and Ma. Parkinson. 2007. The Java
module system: core design and semantic definition.
ACM SIGPLAN Notices 42, 10 (2007), 499–514.

