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Abstract: In bioreactors, the measurement of variables that play a key role in the quality 
and productivity of fermentations, is of major importance. However, their direct 
measurement is often expensive or even impossible considering the current sensor 
technology. Therefore, on-line estimation of unmeasured variables in bioreactors can be 
an interesting approach. 
The objective of this work is to introduce an alternative solution for the observation of 
biomass concentration in E. coli fed-batch fermentations, in cases where the kinetic model 
is unclear and several variables, like the concentration of the influent substrates and the 
initial values of the state variables are badly known, a situation that is common in many 
practical applications. 
The simple interval observer is designed on the basis of the cooperativity properties of the 
observer error dynamics (Rapaport and Dochain, 2005). 
The performance of the interval observer is illustrated through numerical simulation and it 
was found that the observer deal well with uncertainties up to 50% and with white noise 
in the variables measured on-line. The interval obtained for the biomass estimation is also 
quite narrow, indicating that it is possible to accurately predict biomass concentration 
under the presence of uncertainties. Copyright © 2007 IFAC 
 
Key-words: Biomass Estimation, Interval Observers, Uncertainty, Fed-batch 
Fermentation. 
 
 
 
 

1. INTRODUCTION 
 
It is well known that industries are interested in 
decreasing the production costs and increasing the 
process yield, keeping the quality of the metabolic 
products. Thus, the ability to accurately and 
automatically control bioprocesses at their optimal 
state is of great importance, since it can contribute to 
achieve that goal. However, the lack of on-line 
instruments has limited the application of control 
theory to these processes. Therefore, the 
development of state observers, also called software 
sensors (Dochain, 2003) can be an attractive 

alternative since a large amount of additional 
information can be obtained, using a model together 
with a limited set of state variable measurements 
(Bernard and Gouzé, 2004, Bogaerts and Vande 
Wouwer, 2004). 
In the literature, two classes of state observers are 
usually found. The first class includes the classical 
observers, such as the Luenberger, the Kalman, and 
the non-linear observers, which are based on the 
perfect knowledge of both model structure and 
parameters. However, the uncertainty in the model 
parameters can generate a large bias in the estimation 
of unmeasured state(s). The asymptotic observers 
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(Bastin and Dochain, 1990), which constitute the 
second class of observers, do not require the 
knowledge of the process kinetics. Nevertheless, a 
potential problem concerning these observers is the 
dependence of the estimation convergence rate on the 
operating conditions (Dochain, 2003). Additionally, 
both approaches neglect the fact that there is often 
additional uncertainty associated with other process 
parameters, like the ones associated with influent 
substrate. 
 
This work aims therefore to study an alternative 
solution for the state observation of a high-cell 
density fed-batch fermentation of E. coli, assuming 
that the kinetic model structure is unknown and the 
concentration of the influent substrates and the initial 
values of the state variables are badly known. 
 
The approach used is based on an interval analysis 
(Rapaport and Dochain, 2005; Alcaraz-Gonzalez et 
al., 2002; Hadj-Sadok and Gouzé, 2001; Gouzé et al., 
2000). The objective is to reconstruct intervals for the 
biomass concentration, for which the state is certain 
to lie, based on a given interval of variation of the 
uncertain variable(s). Biomass is an important 
process variable but nevertheless still very difficult to 
measure on-line in this fermentation process. Its 
estimation can be used for model predictive control, 
estimation of specific growth rates, and optimization 
of the production of recombinant proteins (regarding 
both productivity and moment of induction). 
 
In this study, the design of the interval observers is 
based on the assumption that measurements of 
acetate, dissolved oxygen and carbon dioxide 
concentrations are available. This choice is due to the 
fact that, nowadays, the sensors for these state 
variables are more developed and thus, more reliable.  
 
 

2. PROCESS MODELLING 
 
The dynamics of a reaction network in a stirred tank 
bioreactor can be described by the following mass 
balance equations written in matrix form as (Bastin 
and Dochain, 1990): 
 

( ) QFDt,Kr
dt
d

−+−= ξξξ   (1) 
 

in which ξ is a vector representing the n state 
components concentrations (ξ ∈ ℜ

n
), r is the growth 

rate vector corresponding to m reactions (r ∈ ℜ
m
), K 

is the matrix of yield coefficients (K ∈ ℜ
n×m

), F is the 
vector of feed rates, Q is the vector of gaseous 
outflow rates (F, Q ∈ ℜ

n
), and D is the dilution rate 

(being D−1 the residence time). 
 
During the aerobic growth of E. coli with glucose as 
the only added substrate, the microorganism can 

follow three main metabolic pathways: oxidative 
growth on glucose, fermentative growth on glucose, 
and oxidative growth on acetate. The corresponding 
dynamical model for fed-batch fermentation can be 
represented as follows: 
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where X, S, A, O, and C represent biomass, glucose, 
acetate, dissolved oxygen, and dissolved carbon 
dioxide concentrations, respectively; μ1, μ2, and μ3 
are the specific growth rates; ki are the yield 
(stoichiometric) coefficients; Fin and Sin are the 
substrate feed rate and the influent glucose 
concentration, respectively; W is the culture medium 
weight, CTR is the carbon dioxide transfer rate from 
liquid to gas phase, and OTR is the oxygen transfer 
rate from gas to liquid phase that can be 
approximated to the oxygen uptake rate (OUR) as 
follows: 
 

( )XkkkOUROTR 372615 μμμ ++=≈   (3) 
 

The variation of the culture medium weight with the 
time is given by: 
 

totF
dt

dW
=   (4) 

 

where Ftot includes weight variations due to the 
substrate feed rate, the amount of culture removed or 
added during sampling, base and acid additions, 
evaporation and mass taken from the reactor due to 
gas exchanges, that can not be considered negligible 
in small-scale high-cell density reactors. 
 
The observation problem is the estimation of biomass 
concentration from on-line measurements of acetate, 
dissolved oxygen and carbon dioxide concentrations. 
It is assumed that the kinetics are unknown, the 
dilution rate D and the yield coefficients (matrix K) 
are known, and the influent glucose concentration Sin 
is uncertain but bounded between known lower and 
upper bounds: 
 

( ) ( ) ( )tStStS ininin
+− ≤≤   (5) 

 
 

3. DESIGN OF THE INTERVAL OBSERVERS 
 
The motivation of interval observers is to generate 
state estimates with bounds that are related to the 
uncertainty of the model or of the measurements 
(Alcaraz-Gonzalez et al., 2002, Gouzé et al., 2000). 
The design is based on the cooperativity properties of 
the observer error dynamics. Cooperative systems are 
dynamical systems for which the non-diagonal terms 
of the Jacobian matrix are positive (Rapaport and 
Dochain, 2005, Rapaport and Gouzé, 2003, Smith, 
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1996). Considering the following non-linear state 
space model: 
 

( )x,tf
dt
dx

=  (6) 
 

cooperation means that for any (t, x): 
 

( ) ji,x,t
x
f

j

i ≠≥
∂
∂ for        0  (7) 

 

Considering the cooperative system (6) and being 
−f  and +f  two vector fields such that: 

 

( ) ( ) ( ) ( )x,t     ,xfx,tfxf ∀≤≤ +−  (8) 
 

and the initial conditions −
0x , 0x , +

0x  (such that 
+− ≤≤ 000 xxx ) the solution of the dynamical system 

is: 
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which fulfils the following property: 
 

( ) ( ) ( ) 0      ≥≤≤ +− t,txtxtx  (10) 
 

Therefore, two estimates can be computed, an upper 
one and a lower one, that bound the unmeasured 
variables. Since the best final estimate is aimed, the 
interval [x−(t), x+(t)] should become smaller (or 
ideally tends to {x(t)}) when the time t increases 
(Raissi et al., 2005, Gouzé et al., 2000). 
 
The observer (being g1 to g15 the observer gains), 
designed directly from the dynamical model given by 
eq.(2), can be written as: 

( ) ( ) ( ) ( )ĈCgÔOgÂAgX̂DX̂
dt
X̂d

−+−+−+−++= 321321 μμμ  (11a) 

( ) ( ) ( ) ( )ĈCgÔOgÂAgS
W
FŜDX̂kk

dt
Ŝd

in
in −+−+−++−−−= 6542211 μμ  (11b) 
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dt
Âd
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( ) ( ) ( ) ( )ĈCgÔOgÂAgOTRÔDX̂kkk
dt
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−+−+−++−−−−= 121110372615 μμμ
 (11d) 

( ) ( ) ( ) ( )ĈCgÔOgÂAgCTRĈDX̂kkk
dt
Ĉd

−+−+−+−−++= 1514133102918 μμμ
 (11e) 

 

It should be noticed that the interval observer cannot 
be designed directly from the observer given by eq. 
(11). In fact, the off-diagonal term of the Jacobian 
matrix (eq. (12)) of the observer does not fulfil the 
condition of eq. (7), as the off-diagonal term ( )μK−  

is negative and ⎟
⎠
⎞
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∂
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± X
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K μ  can also be negative in 

some cases: 
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Nevertheless, the notion of cooperativity is 
coordinates-dependent, and therefore an approach to 
achieve this property is to consider a partition in the 
state variables vector ξ induced by the measured and 
unmeasured variables, ξ1 and ξ2, respectively. The 
dynamical model given by eq. (2) can then be re-
written as follows: 
 

( ) 1111
1 QFDt,rK

dt
d

−+−= ξξξ  (13a) 

( ) 2222
2 QFDt,rK

dt
d

−+−= ξξξ  (13b) 
 

The following transformation can be defined: 
 

1
1

122 ξξ −−≡ KKZ  (14) 
 

where 1
1
−K  is the pseudo-inverse of the matrix K1, 

considering that K1 has full rank. K1 and K2 are 
obtained from the matrix K applying the induced 
partition. 
 
The dynamics of Z is independent of the reaction rate 
r(ξ,t) and the following equivalent state 
representation for the process dynamics can be 
written: 
 

( ) ( )2211
1

12 QFQFKKDZ
dt
dZ

−+−−−= −  (15) 
 

If the measured variables are A, O and C the matrix 
used in the state transformation of eq. (14) will be: 
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Using this approach, several interval observers can 
be defined from which two examples are presented in 
the next sections. 
 
 
3.1 Simple Interval Observers 
 
The simplest formulation is obtained directly from 
eqs. (14) and (15): 
 

( ) ( )2211
1

12 QFQFKKẐD
dt
Ẑd

−+−−−= −  (17a) 

1
1

122 ξξ −+= KKẐˆ  (17b) 
 

The observer, for the case studied, is given by the 
following equations: 
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Ẑ
Ẑ
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The cooperative properties of this observer can then 
be checked. If the observer errors are defined by: 
 

111
ZẐeZ −=  and 222

ZẐeZ −=  (19) 
 

and from eqs. (14) and (17b): 
 

XZ ee =
1

 and SZ ee =
2

 (20) 
 

its dynamics is given by the following equation: 
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with the following Jacobian matrix: 
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It can easily be seen that the error system is 
cooperative and thus it is possible to build an interval 
observer. 
 
Considering the lower and upper bounds for the 
initial value of the estimate of biomass and substrate 
concentrations: 
 

+−+− ≤≤≤≤ 000000         SSS,XXX  (23) 
 

the following set of interval observer equations can 
be defined: 
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This simple interval observer will then give estimates 
for the upper and lower bounds of both biomass and 
glucose concentrations X an S, respectively: X+, X− 
and S+, S−. 
 
 
3.2 Interval Observers with Gains Obtained from 
OTR Measurements 
 
The observer described in the previous section can be 
improved with the introduction of gains, for example 
based on the errors associated with the measured 
state variables A, O and C. An alternative is to 
correlate the gains with the measurement error of 
other variables, like OTR and CTR, that have 
associated more advantageous sampling frequency. 

The following observer is therefore designed with the 
incorporation of gains that are associated with OTR 
measurements: 
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being, 
 

( )X̂ˆkˆkˆkRT̂O 372615 μμμ ++≈  (26) 
 

The estimation of the state variables is then given by: 
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In this case the error dynamics is given by: 
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with the following Jacobian matrix: 
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The system is cooperative if g2 is negative or equal to 
zero. In the last case, this interval observer becomes 
identical to the one deduced in the previous section 
(eq. 24). When g2 is negative, the following observer 
will be obtained: 
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For obtaining the specific growth rates μ1 to μ3, used 
in eq. (30a), the estimator deduced in Rocha et al. 
(2006), based on the formulation proposed by Bastin 
and Dochain (1990) and reformulated by Pomerleau 
and Perrier (1990), was used. However, for this 
application, this estimator takes into account both the 
upper and lower bounds of the variables calculated as 
expressed below: 
 

( )±±±±
±

−+−+−= 11113211
1 ψψωψμψ ˆCTRaOTRaˆDX̂ˆ

dt
ˆd m  (31a) 

( )±±±±
±

−+−+−= 22126522
2 ψψωψμ

ψ ˆCTRaOTRaˆDX̂ˆ
dt
ˆd m  (31b) 

( )±±±±
±

−+−+−= 33139833
3 ψψωψμψ ˆCTRaOTRaˆDX̂ˆ

dt
ˆd m  (31c) 

( )±±
±

−= 1121
1 ψψωμ ˆ

dt
ˆd  (31d) 

( )±±
±

−= 2222
2 ψψωμ ˆ

dt
ˆd  (31e) 

( )±±
±

−= 3323
3 ψψωμ ˆ

dt
ˆd  (31f) 

 

being ψ obtained from the transformation 1
1

1 ξψ −= K  
which allows a decoupled estimation of each specific 
growth parameter. The calculation of the estimator’s 
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gains ω is made such that a second order dynamics is 
obtained (Oliveira et al., 1996): 
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1

21

1
τ
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22

1
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t, X̂2
3

23

1
τ

ω =±  (33c) 
 

where T is the integration step. 
 
 

4. SIMULATION RESULTS AND DISCUSSION 
 
The performance of the interval observers has been 
tested by numerical simulations. The model 
simulations were performed by integration of the 
differential equations of eq. (2), using the MATLAB 
version 7.1 subroutine ODE23s. The implementation 
of the observer and the estimators was conducted 
using the Euler integration method. Most of the 
mathematical operations behind the design of the 
observer and the estimators were performed using the 
Symbolic Math toolbox running in MATLAB 7.1.  
 
For validating the developed algorithms “real” values 
of the state variables were obtained by integration of 
eq. (2). The “real” values of the variables that can be 
obtained on-line, i.e., A, O, C, OTR, CTR and W were 
then corrupted with white noise, according to the 
standard deviations typically found in this process at 
the authors’ lab, originating “experimental” values. 
Then, the observer and estimator algorithms were 
used to obtain the “estimated” variables from the 
“experimental” data corresponding to the measured 
variables. 
It is assumed that glucose concentration in the feed 
Sin is unknown, but it is assumed that its time varying 
bounds are known ( ( ) ( ) ( ) 0     ≥∀≤≤ +− t,tStStS ininin ). It 
is also assumed that a priori bounds on initial values 
of X0 and S0 are known. 
 
Therefore, the simulation results have been 
performed by considering that the uncertainty is 
concentrated on the influent glucose concentration 
and on the initial state variables X and S with 50% 
variation around their nominal values (Sin = 250 g/kg; 
X0=1.5 g/kg; S0=0 g/kg).  
 
The performance of the simple observer is shown in 
Figure 1, while the performance of the observer with 
gains from OTR is shown in Figure 2. As it can be 

seen, the performance of both observers is 
satisfactory, although for the first case the “real” 
values of biomass are not always included in the 
interval given by the observer. Additionally, the 
observer with gains from OTR originates a slightly 
lower noise in the predictions, being therefore the 
methodology to be chosen for this application. The 
only disadvantage of this observer is the need to tune 
two gains. However, the trial-and-error approach 
used here gives satisfactory results after a few 
iterations. 
 
Another observation that can be drawn from the 
results obtained is that the interval given by both 
observers is rather narrow, indicating that it is 
possible to accurately predict biomass concentration 
for this process in the presence of significant 
uncertainties. In fact, imposing a 50% and a 100% 
variation around the nominal value of X0 both 
observers allowed to predict the final value of X with 
a variation, from its nominal value, of 1.4% and 
3.2%, respectively. 
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Figure 1. Performance of the Simple Interval 
Observer used to estimate biomass concentration in 
presence of 50% uncertainty on the influent glucose 
concentration and on the initial values of the state 
variables biomass and glucose concentration. 
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Figure 2. Performance of the Interval Observer with 
gains obtained from OTR measurements in the 
estimation of the upper and lower bounds of biomass 
concentration. The value of -0.01 was used both for 
g1 and g2. 

 
 

5. CONCLUSIONS 
 
In this work, two types of interval observers are 
presented based on the works of Rapaport and 
Dochain (2005) and Gouzé et al., (2000) in order to 
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handle the uncertainties on the influent glucose 
concentration and on the initial values of relevant 
state variables. A key issue associated with interval 
observer is the cooperativity of the observer error 
dynamics. An appropriate state transformation and 
conditions that guarantee system cooperativity have 
been introduced for that purpose. 
 
The first observer is directly derived from the state 
transformation equation, while the second one 
possesses an additional gain term associated with the 
errors in the measurements of OTR. 
 
Simulation experiments were conducted to validate 
the algorithms deduced and it was found that both 
observers deal well with uncertainties up to 50% and 
with white noise in the variables measured on-line. 
The interval obtained for the biomass estimation is 
also quite narrow, indicating that it is possible to 
accurately predict biomass concentration under the 
presence of uncertainties.  
 
Additionally, the observer with gains from OTR 
exhibits a better performance regarding the noise 
associated with the estimations and the inclusion of 
the real values within the interval of observation. 
 
Nevertheless the good results obtained, experimental 
validation of this work is needed and is under 
investigation. 
 
Finally, and as pointed out by Rapaport and Dochain 
(2005) the interval observer principles used can also 
be applied in order to account for the uncertainties in 
the yield coefficients as well as for bounded noise on 
the outputs. Further studies taking into account the 
above-mentioned approaches are undergoing 
examination. 
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