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Abstract:  6 

Earth constructions constitute an important part of the built heritage and are spread worldwide. Rammed earth is 7 

among the most used earth construction techniques, though it exhibits a high seismic vulnerability. Nevertheless, 8 

the structural behaviour of rammed earth structures is still insufficiently comprehended. Thus, the preservation 9 

of this built heritage requires exhaustive characterisation of its mechanical and structural behaviours, as well as 10 

the development and validation of adequate intervention solutions. In this context, this paper presents an 11 

experimental program aimed at evaluating the effectiveness of grout injection to repair cracks and at further 12 

characterising the in-plane shear behaviour of rammed earth walls. The experimental program included the 13 

testing of rammed earth wallets under diagonal compression, which were subsequently repaired with injection of 14 

a clay-based or a hydraulic lime-based grout, and retested. Furthermore, sonic tests were conducted on the 15 

wallets before the destructive tests. The obtained results allowed to highlight that both grouts led to similar 16 

repairing performances, though the interlocking contribution promoted by the coarse particles of the rammed 17 

earth to the shear behaviour was found to be irrecoverable. 18 
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Highlights:  23 

- The behaviour of rammed earth was investigated under compression and shear loading; 24 

- The repair effectiveness of clay- and lime-based grouts was compared; 25 

- The clay- and lime-based grouts present similar repair performance; 26 

- The injection repair was unable to recover the interlocking of the coarse particles; 27 

- Sonic tests were not sufficiently sensitive to evaluate the repair effectiveness of injection. 28 

 29 

30 
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1. INTRODUCTION 31 

Raw earth has been widely used around the World as a building material [1]. In developing countries, it is still 32 

used intensively to build shelter, though in developed countries its current use is marginal [2]. An important 33 

earth built stock is spread worldwide and is estimated to house one-fifth to one-third of the World’s population 34 

[1][3][4]. The concept of building with raw earth is strongly related to the concept of vernacular architecture 35 

[2][5], meaning that several building techniques were developed through time according to local factors [3]. 36 

Nevertheless, adobe masonry and rammed earth are frequently depicted as the most popular earth construction 37 

techniques [1], which constitute a large majority of the earthen built stock. Adobes are sundried units made of 38 

wet earth moulded inside a timber mould, which are layered with earth mortar to build walls, arches, vaults and 39 

domes [6]. Building with rammed earth consists in compacting moist earth by layers inside a removable 40 

formwork to build monolithic walls. The traditional building process consists in the compaction of large 41 

dimension blocks, where the formwork is supported directly on the wall. After the conclusion of a block, the 42 

formwork is dismounted and moved horizontally. With the conclusion of a lift, the formwork is moved upwards 43 

and mounted with mismatched vertical joints, and then the process is repeated until the desired height of the wall 44 

is achieved [7]. 45 

Similarly to adobe, rammed earth constructions are also acknowledged to present high seismic vulnerability, 46 

which is mainly attributed to poor connections between structural elements, high self-weight and low mechanical 47 

properties [8]. The fact is that the recent earthquakes of Bam 2003, Pisco 2007 and Maule 2010 demonstrated the 48 

high seismic vulnerability of this type of constructions, where life and economic losses were catastrophic. This 49 

limitation of rammed earth construction is of particular concern in the case of southern Portugal [9], namely in 50 

Alentejo and Algarve regions. The built heritage in these regions is comprised of a high percentage of rammed 51 

earth buildings [10][11], though their integrity and the life of their inhabitants are continuously menaced by a 52 

moderate seismic hazard [12]. 53 

During an earthquake, rammed earth walls can be subjected to in-plane shear and out-of-plane bending loadings, 54 

meaning that the seismic performance of the building is mainly governed by the response of the walls to these 55 

actions. Precisely, the few research on the seismic behaviour of rammed earth constructions has been mainly 56 

conducted with respect to the experimental characterisation of the in-plane and out-of-plane behaviours. The in-57 

plane shear behaviour has been mainly characterised by means of triaxial shear tests, triplet tests [13], diagonal 58 

compression tests on wallets [5][14] and cyclic shear-compression tests on walls [15][16][17]. These tests have 59 

shown that the shear behaviour of unstabilised rammed earth walls is governed by binding forces due to capillary 60 
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suction originated at the porous structure of the material (to which greatly contributes the presence of clay) [18], 61 

as well as by the friction and interlocking capacity of the coarse particles. In the case of stabilised rammed earth, 62 

the role of the suction forces with respect to the binding mechanisms of the cementitious gels decreases with 63 

increasing percentage of the stabiliser. The layered structure of rammed earth was also evidenced to have 64 

participation in the shear behaviour, as local sliding failure along the interfaces was observed in some cases 65 

[15][17]. The out-of-plane bending of rammed earth has been also investigated at different scales, namely by 66 

means of four-point bending tests on beams [19], airbag bending tests on panels [20] and overturning tests on 67 

walls [8]. Here, the interfaces were also shown to constitute weak points, as failure tended to occur at these 68 

surfaces due to lower tensile strength values in comparison with those of the material within the layer. 69 

Rammed earth constructions from southern Portugal are often found in poor conservation condition [11][21], 70 

which contributes to increasing their seismic vulnerability [22]. The integrity of rammed earth constructions is 71 

disturbed by several weathering agents, namely the action of water (e.g. in the form of rainfall, rising damp and 72 

freeze-and-thaw cycles), wind, solar radiation and environmental chemicals (e.g. salts and acid rain) [23][24]. 73 

The integrity of rammed earth materials is also affected by excessive loads transmitted by the roof and 74 

pavements, as well as by those originated by settlement of foundations and seismic activity [25]. For instance, 75 

local crushing of rammed earth walls may occur due to elements of the roof supported directly by the rammed 76 

earth, while cracking may occur due to horizontal thrusts applied by the roof or vaulted ceilings/pavements. 77 

Cracks constitute preferential paths for rainfall infiltration, which facilitate the increase of the moisture content 78 

in the material [23], leading to a substantial reduction of the mechanical properties of rammed earth [26]. The 79 

structural capacity and stiffness of rammed earth constructions is also reduced by the presence of important 80 

cracks, since they disrupt the monolithic behaviour of the walls and of the overall structure. As a consequence, 81 

weathering and excessive loading may compromise seriously the durability of rammed earth constructions and 82 

lead to a decrease of their structural performance. 83 

The aforementioned context justifies the need for adopting adequate intervention techniques [23][27] able to 84 

reinstate the bond disrupted by cracks and to mitigate the exposure to moisture ingress. In general, cracks can be 85 

repaired using different techniques, such as filling the gap with mortar and stitching, although their effectiveness 86 

and intrusiveness are questionable [25][28]. In turn, the repairing of cracks in earthen materials with grout 87 

injection was shown to be an efficient solution [29][30], where the fulfilling of compatible requirements was 88 

deemed as a key feature [31]. This requirement led to the development of clay-based grouts, instead of the use of 89 

lime- and cement-based binary/ternary grouts used in the consolidation of stone and brick masonry 90 
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[32][33][34][35][36][37]. Implementation of crack repair with injection of clay-based grouts is mainly reported 91 

in the literature regarding adobe masonry structures, being the grouts stabilised with cement or lime [38][39]. 92 

Unstabilised clay-based grouts were also comprehensively investigated with respect to their rheology, strength 93 

and adhesion [40], and were adopted for repairing laboratory adobe models tested on shaking table [41] or under 94 

lateral loading [42]. The results showed that injection repair with clay-based grouts achieves only partial 95 

recovery of the initial structural stiffness and load-bearing capacity of the models. Nevertheless, a significant 96 

strength recovery (higher than 90%) was observed in Illampas et al. [42], where an additional improvement of 97 

the connection between the walls and the roof was also reported. The repair of cracks in rammed earth with 98 

injection of unstabilised clay-based grouts was also addressed in Silva et al. [14], where repaired wallets tested 99 

under diagonal compression reached a satisfactory recovery of the shear strength, but the recovery to the initial 100 

shear stiffness was not possible. A drawback of clay-based grouts was reported with respect to its laborious 101 

preparation process, which required sieving fine particles of the soil used originally in the construction. In this 102 

regard, lime-based grouts, initially deemed as less compatible materials, seem to offer a more practical solution, 103 

as they are readily accessible in the market at affordable costs. Nevertheless, the lime-based grout proposed in 104 

Müller et al. [43] has shown low performance when used to repair cracks in cob walls. Thus, the injection 105 

technique seems to present low performance when used to repair monolithic earthen materials, such as rammed 106 

earth, though the doubt remains whether this is an intrinsic aspect of the technique or if it depends on the type of 107 

grout used. 108 

An experimental program was carried out with the main objective of comparing the effectiveness of the use of 109 

clay- and lime-based grouts to repair cracks in rammed earth. The comparison was performed by means of 110 

destructive diagonal compression tests and non-destructive sonic tests on rammed earth wallets. Furthermore, the 111 

diagonal compression tests were also aimed at better describing the initial and repaired shear behaviour of the 112 

specimens, using the digital image correlation (DIC) technique to document the cracking evolution at the surface 113 

during the loading sequences. 114 

 115 

2. EXPERIMENTAL PROGRAM 116 

The experimental program involved the execution of diagonal compression tests on wallets representative of 117 

unstabilised rammed earth walls from Alentejo region. Each wallet was subjected to a first diagonal compression 118 

testing sequence, being subsequently repaired and tested again under diagonal compression. Sonic tests were 119 
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conducted additionally to evaluate the effectiveness of the injection repair. The manufacturing of the specimens, 120 

testing procedures and grout injection repair are detailed in the subsequent sections. 121 

 122 

2.1 Manufacturing of the specimens 123 

Six rammed earth wallets were manufactured using soil collected from Alentejo (Southern Portugal). This soil 124 

was previously studied in Silva et al. [14] and deemed as presenting excessive clay content, meaning that its 125 

particle size distribution required correction by addition of coarse aggregates. The final mixture consisted of 126 

50% of soil, 28% of river sand and 22% of gravel. The particle size distribution curves [44] of the soil mixture 127 

and respective components are presented in Fig. 1. Furthermore, the soil mixture presented a liquid limit (LL) of 128 

23%, plastic limit (PL) of 16%, plasticity index (PI) of 7% [45], and standard Proctor maximum dry density 129 

( dmax) of 2100 kg/m3 at optimum water content (OWC) of 10.1% [46]. The wallets were built with dimensions 130 

of 550x550x200 mm3 and using a procedure similar to that described in Silva et al. [14], where the water content 131 

was defined according to the drop ball test [47] instead of the OWC, since the former was assumed for practical 132 

reasons. The compaction of the wallets was performed in 9 layers by controlling the mixture weight and 133 

thickness (about 61 mm) in order to theoretically achieve a dry density of the wallets identical to that of the 134 

wallets tested in Silva et al. [14], namely 2025 kg/m3. The actual dry density of the wallets was computed 135 

considering their dimensions after compaction, total mass of compacted soil mixture and the water content [48]. 136 

The average dry density was found to be slightly higher (2043 kg/m3) than that reported in Silva et al. [14], while 137 

the average compaction water content was slightly lower (9.1%) than that in Silva et al. [14] (10.4%).  138 

 139 

Fig. 1 – Particle size distribution curves of the raw materials used to build the rammed earth specimens. 140 

 141 
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Additionally, six cylindrical specimens (100 mm diameter and 200 mm height) were manufactured to assess the 142 

compressive behaviour of the rammed earth. These specimens were compacted in three layers 67 mm thick, with 143 

a dry density comparable to that of the wallets (average value of 2065 kg/m3). 144 

 145 

2.2 Testing procedures 146 

The cylindrical specimens were tested under axial compression, while the wallets were subjected to diagonal 147 

compression and sonic tests. The procedures used to perform the destructive and non-destructive tests are 148 

described below. 149 

2.2.1 Destructive tests 150 

The axial compression tests were carried out on the cylindrical specimens after a drying period of about 151 

9 months in controlled ambient conditions, with temperature of 20±1ºC and relative humidity of 57.5±2.5%. The 152 

compression load was applied by means of a servo-controlled actuator under displacement control at a constant 153 

displacement rate of 0.003 mm/s and the axial deformations at the middle third were measured by means of three 154 

LVDTs disposed radially (see Fig. 2a). This testing procedure aimed at obtaining the compressive stress-strain 155 

responses, as well as the compressive strength and the Young’s modulus of the rammed earth. 156 

The wallets were tested under diagonal compression according to the ASTM E 519 procedure [49], using a 157 

servo-controlled actuator to apply a displacement controlled load at a constant displacement rate of 0.002 mm/s 158 

(see Fig. 2b). The deformations at one of the faces of the wallets were monitored by means of LVDTs attached 159 

to the middle third of each diagonal. The LVDTs were attached using the metallic apparatus illustrated in Fig. 160 

2b, fixed by the extremities to the rammed earth with hot glue. The deformations at the opposite face were 161 

monitored using digital images taken sequentially from the surface, which were subsequently processed adopting 162 

a DIC procedure. This procedure involved the previous creation of a stochastic black paint speckle pattern at the 163 

specimen’s surface, applied in a very thin layer of low water content white paint in order to minimize the 164 

disturbance of the moisture conditions at the specimen’s surface. The camera sensor consisted of a full frame 165 

CMOS with 36 Mpix and an objective lens with a focal length of 35 mm and an aperture of f11, which 166 

photographed the surface of the wallets every 30 s. It should be noted that this technique constitutes an accurate 167 

procedure to acquire the full-field surface displacements by comparing digital images of the object during the 168 

loading process. Furthermore, the post-processing of these images assuming the material as a continuum allows 169 

to obtain surface deformation maps [50]. The diagonal compression tests were aimed at characterising the 170 
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stiffness, strength, stress-strain response and the failure mode of the rammed earth under shear loading, 171 

considering both the undamaged and repaired conditions. Thus, the wallets were tested twice. In the first time, 172 

wallets were tested after the above mentioned period of about 9 months, while in the second time they were 173 

tested about 28 days after being repaired with grout injection. During both periods the wallets were stored in the 174 

laboratory, where the temperature and the relative humidity were not actively controlled. 175 

   
(a) (b) 

Fig. 2 – Setups of the destructive tests: (a) axial compression tests; (b) diagonal compression tests seen from the 176 

LVDTs measurement surface (left) and DIC measurement surface (right). 177 

 178 

2.2.2 Sonic tests 179 

The test equipment used for performing the sonic tests is illustrated in Fig. 3a and consists of an instrumented 180 

hammer for inducing an initial sonic pulse (20 Hz to 20 kHz), a piezoelectric accelerometer to measure the 181 

arrival of the pulse, an acquisition unit from National Instruments with acquisition rate of 100 kHz and a 182 

computer with a software developed at University of Minho for acquisition and analysis of the results. Direct and 183 

indirect sonic tests were performed for all wallets, as illustrated in Fig. 3b. Direct tests were performed for three 184 

horizontal alignments (A, B and C) with a length of about 550 mm, where the pulse was generated in one of the 185 

edges and the arrival was measured at the opposite edge. Indirect tests were performed on one selected face of 186 

the wallets using a grid composed of three horizontal alignments (a, b and c) and three vertical alignments (1, 2 187 

and 3). The length of each alignment was of about 350 mm. The velocity of the P-waves (VP) depends on the 188 

distance between the point of impact of the hammer and the point of measurement of the arrival of the pulse (s), 189 

and is computed according to eq. (1). It should be noted that six valid tests were considered to compute the 190 

average arrival time of the P-waves (t) in each alignment. 191 
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The main objective of the sonic tests was to evaluate the quality of the injection repair (capacity of re-193 

establishing material continuity and bond) by measuring VP before the first diagonal compression test and after 194 

the repair. Furthermore, the sonic tests allowed to evaluate the dynamic Young’s modulus in two main directions 195 

of the rammed earth (i.e. parallel and perpendicular to the compaction layers). The dynamic Young’s modulus 196 

(E d) was computed using Equation (2) [51]: 197 

 198 
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 199 

where  is the bulk density and  is the dynamic Poisson’s ratio of the rammed earth. 200 

  
(a) (b) 

Fig. 3 – Sonic tests: (a) overview of the testing equipment; (b) tested alignments. 201 

 202 

2.3 Repair procedure 203 

After the first series of diagonal compression tests, the wallets presented main cracks that divided them into 3-6 204 

parts, which were removed from the testing apparatus and remounted together. Then, the cracks were sealed with 205 

an earth-based mortar prepared with the soil used to build the wallets, previously sieved to remove the particles 206 

larger than 4.75 mm. Injection tubes made of flexible transparent plastic with 6 mm diameter were installed in 207 

one of the sides of the specimens. The tubes were embedded as deep as 4 cm from the surface and their spacing 208 

was inferior to 10 cm. Before conducting the injection, the sealing mortar was left to dry for more than one day. 209 

A syringe with 100 ml capacity was used to perform the grout injection, but before that, it was used to inject 210 
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100 ml of water in each injection tube in order to mitigate water sorption from the grouts to the rammed earth 211 

material. The injection of the grouts was performed one hour after the injection of the water, starting from the 212 

bottom tube up to the top one. Grout leakage from an adjacent injection tube dictated the sealing of the tube 213 

being injected and the continuation of the process through the leaking tube. It should be noted that the width of 214 

the injected cracks was observed visually to vary between 1 mm and 10 mm. Furthermore, the repaired wallets 215 

presented similar dimensions to those in undamaged condition. The repair procedure is illustrated in Fig. 4. 216 

        
(a) (b) (c) 

Fig. 4 – Repair procedure: (a) installation of the injection tubes and sealing of the cracks; (b) mixing of the clay-217 

based grout; (c) grout injection. 218 

 219 

Three wallets were repaired using grout UCG, and other three wallets were repaired using grout FB790. UCG 220 

consists of an unstabilised clay-based grout previously studied in Silva et al. [14] (mud grout B) and is composed 221 

of the same soil used to build the rammed earth wallets, which was previously wet sieved to remove the particles 222 

larger than 0.180 mm (S#80). This grout incorporated limestone powder (200-OU) as a filler material to reduce 223 

the clay content of the sieved soil to a value of about 21% (see Fig. 5 for particle size distribution), while sodium 224 

hexametaphosphate (HMP) was used to obtain adequate fluidity and low water/solids ratio (W/S). FB790 is a 225 

commercial grout provided by Fassa Bortolo and is composed of hydraulic lime (NHL 3.5) and graded fillers, 226 

including pozzolanic materials. The manufacturer specifies the use of this grout in the consolidation of historical 227 

masonry due to its enhanced durability and compatibility. Tap water was used in the mixing of both grouts, 228 

which was performed by adding the solid fraction to the water and then by mixing with a hand mixer for about 229 

5 min. The compositions of both grouts and their main properties are summarised in Table 1, in terms of flow 230 

time of 1 dm3 (ASTM C 939 [52]), average flexural strength (f b) and average compressive strength (f c) 231 

(EN 1015-11 [53]). The specimens used to evaluate the mechanical properties of the grouts were casted during 232 

the repair process and were stored next to the wallets. The tests were conducted during the second series of 233 
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diagonal compression tests, meaning that the grout specimens were tested at about 28 days after casting. 234 

Regarding the composition, it is worth to highlight that both grouts present similar low values of W/S, which 235 

resulted in similar flow time values. In terms of flexural strength, grout UCG was found to be about 2.6 times 236 

weaker than grout FB790 and 2.9 times weaker regarding the compressive strength. This difference can possibly 237 

increase with time, as a relevant hardening of grout FB790 is expected to occur after the testing age, since it is 238 

composed of hydraulic lime. Few works report the mechanical properties of clay-based grouts used to repair 239 

earthen materials [14][42], nevertheless the flexural strength is found to vary in the range 0.9-1.3 N/mm2 and the 240 

compressive strength in the range 2.2-2.5 N/mm2, which are values relatively similar to those of UCG. On the 241 

other hand, grout FB790 is found to be relatively stronger than that studied in Müller et al. [43] (flexural strength 242 

of 0.5 N/mm2 and compressive strength of 4.7 N/mm2). 243 

 244 

Fig. 5 – Particle size distribution curves of the materials used in grout UCG. 245 

 246 

Table 1 – Composition of the grouts and main properties (CoV is given inside parenthesis). 247 

  Composition Properties  

Grout S#80 200-OU HMP FB790 W/S Flow time f b f c 

  (wt.%) (wt.%) (wt.%) (wt.%)   (s) (N/mm2) (N/mm2) 

UCG 40 60 0.46 - 0.3 42 1.4 (12%) 3.0 (16%) 

FB790 - - - 100 0.33 44 3.5 (6%) 8.5 (8%) 

 248 

3. RESULTS AND DISCUSSION 249 

The results of the experimental program are presented and discussed in the following sections with respect to the 250 

typology of performed tests, namely destructive and non-destructive tests. 251 

 252 
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3.1 Destructive tests 253 

The results of the axial compression tests are presented in Fig. 6a in terms of stress-strain curves, evidencing an 254 

expressive non-linear behaviour and scattering of the deformation behaviour of the rammed earth, as reported in 255 

Silva et al. [7]. An average compressive strength value of 1.5 N/mm2 (CoV= 9%) was obtained and the Young’s 256 

modulus, computed by linear fitting of the stress-strain curves in the range 5%–30% of the compressive strength, 257 

was of 572 N/mm2 (CoV= 18%). It should be noted that the average bulk density of the specimens was of about 258 

2090 kg/m3 (CoV< 1%) and the equilibrium water content, evaluated after the compression tests [48], was of 259 

about 0.8% (CoV= 6%). In comparison with Silva et al. [14], the strength values are just slightly higher. The 260 

minimum value obtained was of about 1.24 N/mm2, meaning that the results deem with the minimum required 261 

compressive strength prescribed in NZS 4298 [47] for standard grade rammed earth constructions, namely 262 

1.14 N/mm2 (after applying the height/ thickness correction). On the other hand, the Young’s modulus was found 263 

to be half of that obtained previously, probably as a result of the variability associated to this parameter. It should 264 

be highlighted that this parameter was computed in both works using the same procedure, and that the average 265 

bulk density and equilibrium moisture content of the respective specimens were very similar (respectively, 266 

2070 kg/m3 and 1% in the case of Silva et al. [14]). The Young’s modulus of earthen materials is a parameter of 267 

uncertain definition due to their intrinsic non-linear behaviour. For instance, Fig. 6b presents the secant Young’s 268 

modulus of the specimens as function of the axial strain, whose relationship apparently follows a power law. 269 

This behaviour is later discussed with respect to results of the sonic tests. 270 

The results of the diagonal compression tests are presented in Table 2 for each wallet in terms of dry density 271 

( d), equilibrium water content after the first (W eq1) and second test (W eq2) [48], volume of injected grout (V g), 272 

shear strength (f s1) and shear modulus (G 01) in the first test, shear strength (f s2) and shear modulus (G 02) in the 273 

second test, as well as in terms of shear strength recovery ratio (f s2 / f s1) and shear modulus recovery ratio 274 

(G 02 / G 01). The shear modulus values were computed by linear fitting of the shear stress-strain curve of each 275 

specimen (see Fig. 7) at 5% to 30% of their shear strength. It should be noted that due to technical issues, it was 276 

not possible to obtain the shear stress-strain curve of specimen WURE_6 in the first series of tests. The wallets 277 

were labelled as WURE_#, where WURE means “wallet - unstabilised rammed earth” and # is the number of the 278 

specimen. 279 



13 / 27 

  
(a) (b) 

Fig. 6 – Results of the axial compression tests: (a) stress-strain curves; (b) variation of the secant Young’s 280 

modulus with the deformation level. 281 

 282 

Table 2 – Results of the first and second series of diagonal compression tests. 283 

Specimen Grout  d 
(kg/m3) 

W eq1 
(%) 

W eq2 
(%) 

Vg 
(dm3) 

f s1 
(N/mm2) 

f s2 
(N/mm2) 

f s2 / f s1 
(%) 

G 01 
(N/mm2) 

G 02 
(N/mm2) 

G 02 / G 01 
(%) 

WURE_1 UCG 2053 0.93 0.98 2.2 0.12 0.05 42 1056 148 14 
WURE_2 UCG 2036 0.93 0.88 3.1 0.17 0.08 47 632 130 21 
WURE_3 UCG 2036 0.94 0.86 1.2 0.13 0.07 54 1068 94 9 

Average - 2042 0.93 0.91 2.2 0.14 0.06 48 919 124 15 
CoV (%) - 1 0.5 7 44 14 18 13 22 22 41 

WURE_4 FB790 2037 1.07 1.01 1.6 0.16 0.07 44 1356 99 7.3 
WURE_5 FB790 2047 1.01 0.95 1.3 0.13 0.07 54 460 22 4.8 
WURE_6 FB790 2048 0.91 0.90 1.4 0.12 0.07 58 - 34 - 

Average - 2044 1.00 0.95 1.4 0.14 0.07 52 908 52 6 
CoV (%) - 0 8 5 11 14 2 14 - 81 - 

 284 

Before discussing the shear behaviour of specimens, it is important to highlight that their equilibrium water 285 

contents correspond to very low values (about 1%), being very similar in both test series. Furthermore, and 286 

considering the volume of injected grout (1.2-3.1 dm3) and length of the injected cracks (1.1-1.6 m), the average 287 

width of the injected cracks can be estimated as 6 mm. 288 

The shear behaviour of the rammed earth wallets within the first series of tests are characterised by an early peak 289 

shear stress followed by a pronounced stiffness loss, see stress-strain curves in Fig. 7. In the pre-peak phase, the 290 

wallets exhibit an apparent linear behaviour that is disrupted by the initiation of the first cracks, which were 291 

observed to have correspondence in both faces of the wallets, indicating that they developed in full thickness. It 292 

should be noted that the binding promoted by the porous structure is lost with cracking, meaning that the 293 

observed early peak corresponds to the loss of the suction contribution for the shear behaviour of the wallets. 294 

From this point onwards, the shear behaviour relies only on the friction and interlocking promoted by the coarse 295 

particles at the cracks, which are responsible for the large shear deformation capacity presented by the wallets. In 296 
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the majority of the cases, the post-peak phase behaviour is characterised by a slight hardening, while two of the 297 

wallets exhibited a slight softening. The large shear deformation capacity observed in the wallets is expected to 298 

promote a large energy dissipation capacity during a seismic event. In terms of average shear strength, the 299 

wallets present a value of 0.14 N/mm2, which is basically the same reported in Silva et al. [14] (0.15 N/mm2). 300 

Furthermore, this value was found to be higher than the value reported for unstabilised rammed earth in Yamín 301 

Lacouture et al. [8], but substantially lower than the value reported in Miccoli et al. [5]. The fact is that the shear 302 

strength values obtained from diagonal compression tests available in the literature present a large dispersion, 303 

which is a direct consequence of the diversity of soils and mixtures used for rammed earth construction. 304 

However, a linear relationship can be found with respect to the reported compressive strength values, as 305 

illustrated in Fig. 8a. The average shear stiffness computed from the first series of tests is of 914 N/mm2, a value 306 

higher than that reported in Silva et al. [14] (646 N/mm2), although it should be noted that this parameter is 307 

typically affected by high variability. The range of shear modulus values reported in the literature is also found 308 

to be wide, though Fig. 8b seems to show a consistent relationship of this parameter with the compressive 309 

strength. It is noteworthy to mention that the relationships presented could benefit from further testing and 310 

additional results, since the available data is limited. 311 

  
(a) (b) 

Fig. 7 – Shear stress-strain curves of the first and second series of diagonal compression tests: (a) wallets 312 

repaired with UCG; (b) wallets repaired with FB790. 313 

 314 

The development of the cracking process and failure mechanism was documented using DIC and can be 315 

observed in Fig. 9 for wallets WURE_3 and WURE_4, before and after repairing. The development of the crack 316 

pattern was represented by the evolution of the maximum (tensile) principal strains computed from the analysis 317 

of the surface displacements obtained from the DIC procedure. Stage [A] identifies, in the shear stress-strain 318 

responses, approximately the point at which the main diagonal crack initiates at the centre of the specimen, while 319 
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stage [B] is associated to the point at which the maximum shear stress is reached, and stage [C] identifies the 320 

point at which failure is reached. The initiation of the main diagonal crack in the first series of tests occurred just 321 

before the early peak shear stress at the middle of the wallets was attained. After this stage, the main diagonal 322 

crack developed very rapidly towards the supports, though the shear stress levels remained high or even 323 

increased due to the contribution of friction and interlocking mechanisms. The layered structure of the rammed 324 

earth is also shown to affect the shear behaviour of wallet WURE_3, as several cracks originated at the interfaces 325 

between layers. This situation seems to indicate that the bond between layers is particularly weak in this wallet. 326 

In the case of wallet WURE_4, a few cracks were formed also at the interfaces between layers, but these 327 

occurred at a later stage of the loading sequence. 328 

  
(a) (b) 

Fig. 8 – Relationship between compressive strength and parameters obtained from diagonal compression tests: 329 

(a) shear strength; (b) shear modulus. (unstabilised rammed earth: empty points / stabilised rammed earth: filled 330 

points) 331 

 332 

In regard to the second series of diagonal compression tests, the wallets injected with the grout UCG presented 333 

an average shear strength of about 0.06 N/mm2, which corresponds to a recovery ratio of about 48%. The wallets 334 

repaired with grout FB790 achieved an average shear strength of 0.07 N/mm2, and thus a strength recovery ratio 335 

of about 52%. These results show that a similar repair effectiveness was observed in both cases, indicating that 336 

the commercial hydraulic lime-based and the unstabilised clay-based grouts are essentially similar in terms of 337 

strength recovery. On the other hand, the repair effectiveness of grout UCG was found to be inferior to that 338 

reported in Silva e al. [14] when using the same grout composition (grout B), where a recovery ratio of about 339 

66% was obtained. This difference can be probably associated to a larger variability of results obtained in this 340 

past study. Nonetheless, in both studies, the grout injection was unable to lead to the full recovery of the initial 341 

shear modulus. The shear modulus of the repaired wallets decreased about one order of magnitude in comparison 342 
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to the undamaged condition. Nevertheless, the use of grout UCG was found to lead to a shear modulus recovery 343 

ratio of approximately 2.5 times higher than the one obtained with the use of grout FB790. 344 

 
(a) 

 

 
(b) 

Fig. 9 – Evolution of the maximum principal strains of wallets: (a) WURE_3; (b) WURE_4. 345 

 346 

The ability of the injection repair with any of the used grouts guarantee full recovery of the initial shear 347 

performance, namely in terms of recovering the initial stiffness, was limited. This limitation results mainly from 348 

the lack of reinstatement of the interlocking effect of the coarse particles at the injected crack, which originates 349 

the absence of a clear early shear stress peak in the shear stress-strain curves of the second series of tests (see 350 

Fig. 7), as well as a lower shear stress peak value. The failure of the wallets tested in the second series tended to 351 

occur by the formation of a main diagonal crack following the path of the previously injected diagonal crack, as 352 

shown in Fig. 9 by comparing the crack patterns obtained in the first and second test. Thus, the failure in the 353 

second series of tests occurred by the same failure surfaces of the first series, whose roughness promoted by the 354 



17 / 27 

coarse particles was extensively smoothed by the shearing imposed in the first test. Furthermore, the onset of the 355 

main diagonal crack in the repaired wallets occurred at the middle of the wallets and for shear strain levels 356 

similar to that of the first test, but for lower shear stresses. The observation of the repaired wallets after testing 357 

allowed to detect that both grouts presented good adhesion to the rammed earth, as the grouts injected in the 358 

cracks, in general, presented an adhered thin layer of rammed earth. 359 

It is worthwhile to highlight that the interlocking promoted by the coarse aggregates has an important 360 

contribution to the shear performance of rammed earth constructions, which are considered as monolithic 361 

structures. Cracking development and crack surface smoothing decreases this contribution, which was found to 362 

be unrecoverable just by injecting the cracks with grouts. On the other hand, the better repair performance of 363 

grout injection used in cracked earthen masonry [42] indicates that the adhesion promoted assumes a more 364 

prominent role in the shear performance. In adobe masonry, cracks are mainly formed at the joints, meaning that 365 

the bond lost between the mortar and the units is the main mechanism contributing for the shear performance, 366 

and is reinstated by the grout adhesion capacity. 367 

In general, the injection repair alone was demonstrated to be unable to reinstate the undamaged shear 368 

performance of rammed earth walls, independently of the grouts used. Thus, the incomplete repair performance 369 

of the injection technique seems to reflect an intrinsic behaviour when used for rammed earth. Nevertheless, its 370 

partial repair capacity may constitute a complement to other seismic strengthening intervention measures, such 371 

as the strengthening with textile reinforced mortar (TRM) [55], and contribute to the overall seismic 372 

strengthening of damaged structures. 373 

 374 

3.2 Sonic tests 375 

The average velocities of the P-waves obtained from the sonic tests are summarised in Table 3 according to the 376 

type of grout used and test series. In general, the direct and indirect tests show good agreement with respect to 377 

the estimation of the velocity in the horizontal direction (parallel to the rammed earth layers), whereby just the 378 

latter are considered for further discussion. 379 

In the case of the first series of tests, the velocities in the horizontal direction are significantly higher than those 380 

in the vertical direction (perpendicular to the rammed earth layers), on average 1.6 times higher for all wallets. 381 

The average dynamic Young’s modulus was computed using Eq. (2), while assuming a bulk density equal to the 382 

dry density and a dynamic Poisson’s ratio () of 0.27. It should be noted that the bulk density was not 383 

determined for the wallets because the appropriate equipment to measure their weight was unavailable. 384 
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Regarding the Poisson’s ratio, the value adopted was obtained from the experimental work presented in Miccoli 385 

et al. [56] and was also used in the numerical modelling [57] of the diagonal compression tests presented in Silva 386 

et al. [14]. Furthermore, the assumed value is within the range of Poisson’s ratio values expected for dry rammed 387 

earth, namely in the range 0.1-0.3 [26][58]. The average dynamic Young’s modulus value computed in the 388 

horizontal direction was of 11228 N/mm2 (CoV= 25%), while that in the vertical direction was of about 389 

4491 N/mm2 (CoV= 31%), which is 2.5 times lower than the former. A similar difference is also reported in 390 

Silva et al. [7] after a dynamic identification test on a rammed earth wall, where the dynamic Young’s modulus 391 

in the horizontal direction (998 N/mm2) was found to be 1.9 times higher than the one in the vertical direction 392 

(515 N/mm2). 393 

The dynamic Young’s modulus in the vertical direction was also found to be about one order of magnitude 394 

higher than the Young’s modulus obtained from the testing of cylindrical specimens (67 N/mm2). This difference 395 

can be explained by the dependence of the Young’s modulus on the deformation level, which can assume very 396 

high values for very low deformation values (see Fig. 6b). According to Lee et al. [59], the strain level of wave 397 

velocity methods for estimation of the elastic modulus of soils is in general inferior to 10-3~10-2 mm/m. These 398 

small levels are hardly captured with accuracy in destructive axial compression tests of soft earthen materials. It 399 

is worthwhile to mention that for a deformation value of 10-3 mm/m, the power law of Fig. 6b results in a 400 

Young’s modulus of 4384 N/mm2, which is a value relatively similar to that obtained from the sonic tests in the 401 

vertical direction. Nevertheless, it should be mentioned that the definition of this power law did not take into 402 

consideration experimental data in this range of values. 403 

Table 3 – Average velocities of the P-waves obtained from the sonic tests (CoV is given inside parenthesis). 404 

Grout set 
VPdh,1 
(m/s) 

VPih,1 
(m/s) 

VPiv,1 
(m/s) 

VPdh,2 
(m/s) 

VPih,2 
(m/s) 

VPiv,2 
(m/s) 

UCG 2381 (9%) 2208 (13%) 1496 (18%) 2027 (3%) 2159 (6%) 1243 (10%) 
FB790 2826 (9%) 2726 (8%) 1646 (15%) 1635 (37%) 1551 (39%) 1056 (34%) 

d: direct test / i: indirect test / h: horizontal direction / v: vertical direction / 1: first series / 2: second series 
 405 

Regarding the second series of tests, it can be observed that in general a reduction of the velocity of the P-waves 406 

occurs, which is particularly high in the case of the set of wallets repaired with grout FB790. In fact, the 407 

reduction of the P-waves velocities in the wallets repaired with grout UCG is found to be significantly smaller, 408 

indicating that the repair procedure granted a good infill of the cracks in the wallets, which was positively 409 

observed after the second series of diagonal compression tests. On the other hand, the results of the wallets 410 

repaired with grout FB790 seem to indicate the contrary. Nevertheless, the visual inspection of the wallets after 411 

the second series of diagonal compression tests showed a good infill of the cracks. Thus, this reduction is 412 
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thought to be a consequence of differences in properties between the rammed earth and the grout. Finally, the 413 

ratio between the velocity of the P-waves obtained from the indirect tests (average of the horizontal and vertical 414 

directions) for the second and first test phase (VPi,2 / VPi,1), is related to the shear strength recovery ratio in Fig. 415 

10a, as well as to the shear modulus recovery ratio in Fig. 10b. Apparently no relationship seems to exist, though 416 

it should be noted that the available data is somewhat limited. Thus, sonic tests do not seem to be sufficiently 417 

sensitive to evaluate the effectiveness of the use of grout injection in the repair of cracks in rammed earth. 418 

  
(a) (b) 

Fig. 10 – Relationship between the average velocity of the P-waves ratio and the: (a) shear strength recovery 419 

ratio; (b) shear modulus recovery ratio. 420 

 421 

4. CONCLUSIONS 422 

This paper presents an experimental program carried out to characterise the shear behaviour of rammed earth and 423 

assess the effectiveness of clay-based and commercial hydraulic lime-based grouts for repairing cracks in 424 

rammed earth. In this context, the results allowed to draw the conclusions summarised below: 425 

- The clay-based grout exhibited fluidity and injectability properties similar to those of the commercial 426 

hydraulic lime-based grout, however its mechanical properties were significantly lower. 427 

- The behaviour of rammed earth under compression is confirmed to be highly nonlinear, resulting in 428 

undefined values of the Young’s modulus, as they depend deeply on the deformation level, for which a 429 

power law relationship was portrayed. 430 

- The shear behaviour of rammed earth walls was confirmed to result from the contribution of the 431 

capillary suction promoted by the porous structure and from the friction and interlocking promoted by 432 

the coarse particles. 433 
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- The DIC technique allowed to confirm that the early shear peak stress observed in the rammed earth 434 

wallets is preceded by the onset of the main diagonal crack, after which a fast loss of the contribution of 435 

suction for the shear behaviour is observed. 436 

- The formation of cracks at the interfaces between layers was also evidenced by the DIC technique, 437 

highlighting that these may constitute weak surfaces influencing the shear behaviour of rammed earth 438 

walls. 439 

- The repair effectiveness of the clay-based grout and that of the commercial hydraulic lime-based grout 440 

was shown to be similar, meaning that for compatibility reasons the former could be preferred for repair 441 

interventions. Nevertheless, it should be noted that commercial grouts seem to constitute a readily 442 

available solution with equivalent performance. 443 

- The repair of cracks in rammed earth with grout injection was shown to be able to recover partially the 444 

shear loading capacity of the wallets, but was ineffective to re-establish the initial shear stiffness. 445 

- The comparison of the DIC images from both series of tests showed that the cracking originated during 446 

the first series of tests and prior to repairing constituted the preferential path for the formation of the 447 

cracks during the second series of tests. 448 

- The sonic tests revealed a relevant orthotropic behaviour of the rammed earth wallets, as the P-waves 449 

propagate faster in the direction parallel to the layers than in the perpendicular direction. 450 

- The dynamic Young´s modulus was found to be about one order of magnitude higher than the static 451 

Young’s modulus of rammed earth, due to the different reference strain levels, meaning that the 452 

estimation of this parameter should be based on strain/stress levels expected in the material and should 453 

be a topic addressed in future investigations. 454 

- The sonic tests have revealed to be insensitive to the effectiveness of the repairing technique when the 455 

load capacity and stiffness recovery are considered. 456 

Finally, it should be highlighted that the incomplete repair performance of the injection technique seems to be an 457 

intrinsic behaviour when it is used to repair cracks in rammed earth, meaning that the seismic strengthening of 458 

these structures should mainly rely on solutions specifically developed for this purpose. 459 
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