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Abstract 

Probabilistic-based type of analysis seems to constitute a state-of-art approach for earthquake 

engineers. Such strategy is, in the analysis of potential retrofitting measures for a building (or 

typology), needed for the development of vulnerability or fragility curves. This information is 

recognized to be extremely valuable within the decision process, since it allows the evaluation 

of the collapse probability (or other defined limit state) of a given structure under a given in-

tensity measure. 

The computational development integrated with the advent of proper working methodologies 

led to the increasing of research in the field. Nevertheless, the current numerical FE-based 

modelling approaches are still cumbersome for the dynamic analysis of the masonry behavior. 

In this scope, a novel stochastic methodology, based on the Latin Hypercube Sampling, using 

homogenization concepts for the masonry characterization and employing a discrete-FE based 

model is herein presented. Both running- and English-bond masonry textures are suitable to be 

studied, being the system uncertainty considered on parameters affecting the material, mechan-

ical, geometrical and loading conditions. 

The approach has been implemented on an English-bond masonry mockup tested on a shaking 

table in LNEC. An incremental dynamic analysis has been performed and fragility curves de-

rived. It has been shown that the strategy is effective, accurate and very attractive from a com-

putation point of view.  
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1 INTRODUCTION 

Performance-based earthquake engineering (PBEE) is a methodology in which a structure is 

designed to reach a desired performance state given a seismic excitation level [1, 2]. The first 

adoption of this philosophy dates from the Uniform Building Code ((PCBO) 1927) and current 

design guidelines still incorporate it as, for instance, the ASCE (2000) provides the maximum 

probability of a structure collapse according to the level of ground motion intensity. In the same 

line, Eurocode 8 (2004) sets the returning period of the seismic event to be considered condi-

tioned by the type of class of the building, for both the non-collapse and damage limitation 

cases. 

The 1994 M6.7 Northridge and 1995 M7.2 Hanshin-Awaji (Kobe) earthquakes showed that 

code-compliant design allows structures to behave well from a non-collapse requirement, but 

the damage control is hard to be assured leading to unacceptably high downtime and repair 

costs. Nonetheless, design codes feature a semi-probabilistic character, i.e. although the defini-

tion of the system variables is based on a simplified probabilistic estimation through safety 

factors, the final verification is purely deterministic because it relies on a ratio between the 

capacity and demand for each structural element. Such cut and dry approach does not guarantee 

the liability of engineers owing the uncertain nature of earthquakes.  

Aiming a better control of the structural performance, reliability methods have been imple-

mented within the PBEE frameworks; leading to the so-called second generation methods, as 

the PEER-PBEE developed by the Pacific Earthquake Engineering Research center (for further 

details see [6]). The PEER methodology introduced uncertainty in all the four stages of the 

seismic loss assessment: (1) hazard analysis (seismic action); (2) structural analysis; (3) damage 

analysis; and (4) decision analysis (consequences or loss). In this scope, the PEER-PBEE is the 

state-of-art framework for seismic loss assessment (already set in a technical standard desig-

nated as FEMA P-58 [7] and, therefore, it may serve as basis for application. 

In this paper it is presented an alike framework applied for the seismic assessment of an URM 

structure. It is integrated with variables parametrization to account with probability-based con-

cepts. Since it is computationally attractive, incremental dynamic analyses (IDA) are performed 

proving its applicability. 

2 PROBABILISTIC NUMERICAL STRATEGY 

Although the PBEE methodology is being disseminated through basic explanation [2], its 

multi-disciplinarily character, complexity and computational burden still precludes its use in 

common engineering practice. Bearing that the structural analysis stage represents a consider-

able amount of time, a novel probabilistic-based assessment structural analysis, which can be 

combined in such framework, is presented. 

A two-step numerical procedure is introduced aiming to perform seismic vulnerability assess-

ment studies for masonry structures. The strategy makes use of a classical first-order homoge-

nization scheme and is so formed by: (i) the solution of the meso-scale problem; (ii) the meso-

to-macro transition; and (iii) the solution of the macro-scale problem. The numerical framework 

relies on a direct homogenization approach, which involves solving a meso-mechanical prob-

lem at a meso-scale and deriving average field variables. This information is then carried out to 

the macro-scale to constitutively describe the behavior of the structure.  
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Figure 1: The methodology of the proposed two-step numerical procedure. 

2.1 Meso-scale 

Retrieving models at a meso-scale, which are both accurate and implementable on simplified 

two-step procedures is of most importance. Here, a three-dimensional meso-scale homogenized 

model is used to characterize the behavior of masonry at a cell level. The definition of a proper 

RVE is essential, once it may be statistically representative of the body under study. Here, the 

RVE definition follows the recommendations by Anthoine [8]. The use of such sophisticated 

approach, instead of a plate formulation, aims to guarantee that (i) the role of three-dimensional 

shear effects is accounted irrespective from the thickness value of the walls (as it has a major 

role as seen in [9]); and (ii) the presence of discontinuities in the thickness direction is accounted. 

 
(a) (b) 

Figure 2: Meso-scale: (a) three-dimensional representative volume element (RVE) adopted; (b) multi-surface 

plasticity model adopted for mortar joints. 

To decrease the computational demand, the material nonlinearity is assumed to be lumped on 

joints. This assumption seems to be adequate for strong block masonry structures. A multi-

surface plasticity model, firstly developed by Lourenço et. al. [10] (the so-called composite 

interface model) and latter extended for three-dimensional interface elements by Van Zijl [11] 

is adopted. The plasticity models can reproduce well fracture, frictional slip and crushing along 
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the interface elements. The used strategy at a meso-scale has been already validated, see [9] for 

further details. 

2.2 Macro-scale 

The macro-structural behavior is represented through a discrete element model, designated 

as Rigid Body Spring Mass (RBSM), implemented in ABAQUS [12]. The discrete FE-method 

based procedure stems from the model presented by the authors in [13, 14] and represents both 

in- and out-of-plane deformation modes. The RBSM model, whose theoretical background is 

inspired in the works of Kawai (1978), is composed by the assemblage of discrete quadrilateral 

rigid plate elements interconnected, at its interfaces, through a set of rigid and deformable FE 

truss-beams, see Figure 3. The truss-beam elements govern both the deformation and damage 

of the structure, by being able to mimic the presence of the in- and out-of-plane failure modes 

considered in Figure 3 and within a decoupled characterization. These can append the material 

information of the meso-scale homogenized step and thus represent the masonry texture via an 

equivalent continuum media, by accounting with its orthotropy and full softening behavior de-

scription. 

 

Figure 3: The Rigid-Body-Spring-Mass model adopted at a macro-scale. 

Regarding the representation of the inertial forces, which highly affect the dynamic behaviour 

of a structure, the mass of the system shall be introduced. The mass of the system is embodied 

by the quadrilateral rigid plates using an equivalent material density which, following a linear 

displacement interpolation assumption, allows to achieve a consisted mass matrix. In this scope, 

the discrete element approach has been implemented into the commercial finite element soft-

ware ABAQUS [12]. A Concrete damage plasticity (CDP) model was assumed for the repre-

sentation of plasticity and damage. The damage is based on a scalar parameter d and the 

hysteretic behaviour given as depicted in Figure 4. 
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Figure 4: The hysteretic response of the macro-model for a generic input curve (valid for both in- and out-of-

plane behaviors) using the CDP model. 

2.3 Meso-to-macro 

The CDP constitutive model demands the use of stress-strain relationships as input for the 

elements which govern the behaviour of the macro-model interfaces, i.e. the FE truss-beams. 

Bearing this, ad-hoc meso-to-macro transition steps are carried with the target of correcting the 

material input to be used by these interfaces in ABAQUS. Such transition is, however, only 

conducted after the structural modelling because it is dependent on the size of the used discrete 

mesh, particularly, from the values of H, e, L, t (Figure 3). Furthermore, for the sake of sim-

plicity, rectangular-square elements are assumed and so only two different angles are consid-

ered for the interfaces: 0 and 90 degrees. The material orthotropy is reproduced at a structural 

level because the approach offers the possibility to reproduce different input stress-strain rela-

tionships according to the trusses plane.  

To what concerns with the in-plane behaviour, the stress quantities are directly derived from 

the macroscopic homogenized values. For the out-of-plane system, the macroscopic homoge-

nized moment values are adapted to represent stress values for the bending and torsional truss 

beams through Eq. (1): 

 �������� 	
��� = �
(�.�������)    �	�
��� 	
��� = �

(�.�������)    (1) 

Here, M is the bending moment per unit of interface length, H the length of each quadrilateral 

panel, t is the thickness of the wall, ���
��� is the bending truss area given by �(� + 0.5#) and 

���
��� is the torque truss area given by (#�) 2⁄ , where # (value of 20 mm) is the gap between 

the rigid plates, which ideally should be zero but in practice is assumed small enough to be able 

to place trusses between elements, and L is the influence length of each truss (equal to half of 

the mesh size, i.e. H/2). 

After the previous stage, the stress-strain curves are regularized by affecting the elastic stiffness 

and fracture energy terms. The regularization step is necessary to correctly identify the elastic 

stiffness of each truss beam and to guarantee the input independence of the macro-mesh and 

thus its objectivity in the nonlinear range. Through assuring the elastic energy equivalence, 

between the discrete model and a continuum homogeneous plate, it is possible to derive the 
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elastic stiffness of each truss-beam of the system. For the sake of conciseness, the demonstra-

tions are disregarded. 

The Elastic Young modulus of the in-plane axial trusses of a macro-unit cell for each plane 

direction (if orthotropy is considered) are derived and reads as: 

&''
��()*+�� +'�+* 	
��� = ,-..�

/012� ; &33
��()*+�� +'�+* 	
��� = ,-44�

2(�1�)    (2) 

For the in-plane shear trusses, the elastic Young modulus is given by: 

&'3
��()*+�� +'�+* 	
��� = 5̅.4�7

/�(201�)   (3) 

Regarding the out-of-plane behavior, the correct elastic Young Modulus of the out-of-plane 

flexural trusses is calculated according Eq. 4: 

&��
������� 	
��� = ,-88	9�

2/�(:(;7)(�1�)��<
   (4) 

For the torsional movement, the correct elastic Young modulus of the torque trusses is defined 

through Eq. 5. 

&	�
����+* 	
��� = 25̅	9

=�7�(201�)    (5) 

Where G is the shear modulus and calculated as >̅ = ?@88
7(ABC). By correcting the strain axis to 

calibrate the elastic stiffness value, the post-peak curve strains are also affected and so, in an 

implicit way, the fracture energy itself (the so-called regularization). 

The methodology is briefly described in Figure 1 whereas the homogenized curves are trans-

ferred to a macro-scale. Two steps are developed to turn the macro-input independent from the 

macro-mesh i.e. the scaling and regularization of the homogenized quantities. The meso-scale 

model was developed in DIANA and a fully automatic procedure was achieved by exploiting 

the software programming capabilities [28]. This information is then carried out to the macro-

scale to constitutively describe the behaviour of the structure.  

3 APPLICATION 

3.1 Overview 

The selected case study outcomes from the experimental works performed at LNEC by Can-

deias et al. [15]. Candeias et al. tested an unreinforced brick masonry structure composed by 

three walls in a U-shaped plan arrangement. The main façade (East plan) presents a gable wall 

and is linked with two transversal walls which act as abutments (North and South plans). These 

are constructed with a clay brickwork in an English-bond arrangement of 235 mm of thickness. 

The clay brick units have nominal dimensions of 235x115x70 mm3 and are laid and bound 

together by mortar joints with a thickness ranging 15 to 18 mm. These geometrical features are 

represented in Figure 5. 

The brick mock-up was tested up to collapse in a shaking table under a unidirectional seismic 

loading. The seismic input is applied in a perpendicular direction (E-W) to the main façade and 

derives from the strong ground motion component registered after the February 21 of 2011 

earthquake occurred in Christchurch, New Zealand. Although only quasi-static analyses are 

developed, the numerical damage is compared with the observed experimental failure mecha-

nisms.  
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Figure 5: The geometry of the studied brick house mock-up (dimensions in meters) [27]. 

3.2 Random variables and correlation matrix 

Uncertainties are commonly interpreted in engineering decision fields according to its origin 

and, therefore, differentiated as physical (in the sense of nature), statistical or modelling uncer-

tainties [16]. The consideration of the latter is possible, within a structural-oriented problem, 

by defining the system variables as non-deterministic ones or, as typically designated in the 

literature, as random variables (RV’s) [17, 18]. 

The set of random parameters which carry the uncertainty of the system can aggregate param-

eters from the loading input to the material and geometry of the structure. Complex methods 

allow to represent these RV’s as, for instance, non-stationary stochastic processes [19, 20] alt-

hough the definition of simple cumulative distribution functions and distribution parameters is 

sufficient in the majority of the structural problems. This fact is well addressed in the JCSS 

probabilistic model code [21], which puts together several valuable guidelines, rules, sugges-

tions and/or explanations for a probabilistic-based structural design. Recommendations on the 

distribution functions and parameters values are presented for several construction materials as 

concrete, timber, and masonry thus serving to support the considerations gathered in Table 1. 

 

Variables Distribution Mean COV (%) 

 (kN/m3) Deterministic 1,890 3% [11] 

 (-) Deterministic 0.25 - 

EBrick (MPa) Lognormal 11,000 30 % [11] 

EMortar (MPa) Lognormal 3,000 25 % [18] 

fc,mortar (MPa) Lognormal 2.48 17 % [18] 

ft,mortar (MPa) Lognormal 0.105 *24 % 

>D,F (N/mm) Lognormal 3.97 *17 % 

>D
G (N/mm) Lognormal 0.012 *24 % 

>D
GG (N/mm) Lognormal 0.05 *24 % 

c (N/mm) Lognormal 0.2 40 % [18] 

(degrees) Lognormal 30 19 % [18] 

t (mm) Normal 235 5 % [11] 

tjoint (mm) Normal 15 20 % [11] 

H (%) Deterministic 3 - 

 

Table 1: Set of system variables considered. 



Luís C. Silva, Gabriele Milani. and Paulo B. Lourenço 

Selecting the proper n-dimensional array of random system variables I = JI:, I2, I=, … , I�L 

is, in a probabilistic-based numerical analysis, of most importance once it has a direct impact 

both in the necessary computational processing time and in the confidence level of the results. 

In a non-computational and time illimitation scenario, all the system variables should gather a 

level of uncertainty and, therefore, follow a probabilistic distribution. Mechanical, material and 

geometrical properties of the masonry are eligible to be random but, owing the reduction of the 

number of random variables, it has been decided that: (1) according to the low experimental 

variability registered in the selected case study, both the masonry density and Poisson coeffi-

cient are deterministic variables (see Table 1); (2) a tornado analysis should be conducted to 

support a rational decision of precluding any less relevant variable. 

The results of the tornado diagrams from Figure 6 show that some parameters, as cohesion (c), 

tensile strength (ft) and thickness (t) unequivocally govern both the local (peaks) and global 

(energy) response of the homogenized  and  curves. 

 

 
 

 

Figure 6: The tornado diagrams developed for the present case study. 

On the other hand, it can be also addressed that the parameters concerning the compressive 

regime seem to have a lower effect. These results support the expert judgement and experi-

mental evidences which states that, in the case of weak mortar masonry, the tensile and shear 

regimes tend to govern its overall behavior and, therefore, both the compressive strength and 

fracture energy can be deterministic with a marginal effect in the obtained results. So, a total of 

nine variables Xi are defined to be random and carry the aleatoric type of uncertainty: 

I = M&�
�FN, &O�
	+
 , P	 , >D
G , Q, >D

GG , R, ST���	 , SU 

3.3 Latin Hypercube Sampling 

For simple problems, and when uncertainty is being considered, the failure probability can 

be evaluated solving the integral of the given limit state function [23]. For complex problems 

in a multi-dimensional space the determination of the latter solution is only achievable using 

probabilistic based methods, as the Monte Carlo (MC) or the Latin Hypercube (LH) [24]. 
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These methods are widely spread in several engineering fields being the Monte Carlo (MC) 

approach developed first [25]. Both methods follow similar methodologies, i.e. the formulation 

of four main steps: (i) define a probability distribution type, and associated statistical parame-

ters, for each random variable; (ii) generate a sample set of random variables, according to its 

distribution, potential correlation, and the number n of desired simulations; (ii) find the prob-

lems’ solution by using each set of deterministic variables values; thus repeating the process n 

times; (iii) reach the failure probability through the ratio between the number of solutions which 

respect the limit function (or functions) and the total number n of simulations 

The key difference between the MC and LH is the way that the sampling process is performed. 

Both suffer from a dimensionality curse, i.e. the more ns simulations are performed, the more 

correct is the solution. The former uses a simple random sampling method to define the set of 

random variables. The latter uses a stratified sampling technique, meaning that the existence of 

overlapped simulations is avoided [26]. In this context, LHS methods allow a lower computa-

tional effort [24] due to the rational selection of the random variables set. 

For the problem at hand, the LHS method within an inverse transform method is chosen to 

assess the seismic vulnerability of the masonry case study. The sampling process intends to 

derive a set of grouped values, accounting with every admitted random variable, to possibly the 

estimation of the response variability under investigation. To enhance the representativity of 

the sample analysed, correlation has been considered, since the random parameters are gener-

ated according a Cholesky factorization of the covariance matrix of the random vector by LHS 

method according to the correlation coefficients. 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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⎡     &�
�FN &O�
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  (6) 

In general, the following steps adopted: (1) define the set of random variables I =
JI:, I2, I=, … , I�L; (2) define the correlation matrix between the random variables; (3) develop 

the inverse transform method for each random variable; (4) Associate the random values to 

obtain a sample with ns = 2000 samples. 

Figure 7 shows the obtained homogenized moment-curvature curves for Mxx, Mxy and Myy and 

the five representative curves derived (percentile 5% and 95%, quartile 25% and 75% and me-

dian). Notice that, since it has been seen that correlation exists between the latter curves for 

Mxx, Mxy and Myy, it is possible to attribute each one as a macro-model. In other words, five 

macro-models are obtained whose input is defined by the latter curves (also in terms of  

curves). 
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Figure 7: Homogenized moment-curvature curves obtained accounting with the derived LH sampling. 

Figure 8 shows that the number of simulations adopted (ns=2000) seem to be adequate, once no 

significant variation is found in respect to the average of each peak Mxx, Mxy and Myy after 

ns=1500. 

 

Figure 8: The mean value change of each random variable during the n simulations performed. 

3.4 Incremental dynamic analysis (IDA) 

Incremental dynamic analysis (IDA) is an intensive method which allows to give a better 

evaluation of the seismic response of a given structure. A series of scaled accelerograms are 

used to perform multiple nonlinear dynamic analyses [27, 28].The construction of IDA curves 

demand the definition of (i) a proper set of ground motions and respective intensity measure 

(IM); and (ii) a proper engineering demand parameter (EDP).  

Regarding the former, the current code guidelines (as [5]) acknowledge the use of real and 

artificial accelerograms. It is the earthquake engineer who should choice in conformity accord-

ing to two key issues, the nature of application and the information at disposal. In regions where 

a significant set of ground motion records of damaging earthquakes is not available, the use of 

real earthquakes is difficult. Also, once each record has its own features in terms of wave char-

acteristics contents (as frequency, duration, amplitude etc.) it is not expected that a similar seis-

mic event occurs again. Bearing this, artificial accelerograms compatible with the elastic 
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response spectrum defined through design codes is used here. In fact, these are convenient once 

a significant number of random artificial motion records, compatible with the code design re-

sponse spectrum, can be easily generated through existing tools. A total of 7 stationary signals 

have been here generated through the software SIMQKE_GR [29], which is the minimum num-

ber according to the EC8 to be possible to consider the mean response. 

 

Figure 9: Pseudo-acceleration response spectrum: elastic spectrum according to EC8; response spectrum of the 

artificially generated earthquakes and mean spectrum of the 7 artificial earthquakes. 

The non-stationary (in both amplitude and frequency content) signals are produced considering 

a trapezoidal shape for the envelope function [30] and have a duration with an intense phase of 

30 seconds. The signals have been high-pass in the range of frequencies of 0.2 Hz to 40 Hz and 

filtered using a cosine function to attenuate potential accelerations drift. The resulting artificial 

accelerograms are compatible with the elastic response spectrum for an earthquake type 1 (far-

fault earthquake) defined by EC8 [5] with a returning period of 475 years and for a 3% viscous 

damping (ξ = 3%) coefficient. The suggested parameters by the Portuguese National Annex for 

the region of Lisbon are followed for this study, as an importance factor I equal to 1.0 (Class 

B buildings); a value of agr = 1.5 m/s2; a soil type A (rock, S=1). Note that the filtered signals 

presented in Fig.10 are scaled for the reference PGA = 1 g (m/s2) and serve as reference. The 

intensity measure defined is the peak ground acceleration (PGA). 

 

Figure 10: Artificial accelerograms generated to perform the IDA. 
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To what concerns the engineering demand parameter (EDP), it has been considered that the 

demand is given by the maximum out-of-plane displacement obtained at the top of the gable 

wall, see Figure 11. A displacement-based parameter is typically adopted for the masonry struc-

tures, as [28]. The IDA curves obtained for each of the defined five macro-models, which rep-

resent 2000 samples with a total of nine random parameters, (including both material and 

geometrical) are depicted in Figure 11. It is possible to conclude that, for the percentile 5%, 

quartile 25% and median models, the structure shows a steep increase of the displacements after 

a PGA of 0.4m/s2. On the other hand, the two models which have higher strength values (quar-

tile 75% and percentile 95%) do not present any significant difference on the displacements 

found. 

 

Figure 11: IDA curves obtained for the five macro-models (7 earthquakes). 

4 CONCLUSIONS 

A two-step framework aiming the study of the dynamic response of a masonry structure has 

been presented. It is able to account with the system uncertainties. The strategy was previously 

validated in the quasi-static and dynamic ranges, being the enclosed novelty the parametrization 

of the input variables in order to feature a probabilistic nature. This uses a homogenization 

approach to characterize the random behaviour of the material at a meso-scale. At a macro-

scale, the masonry structures are represented through a discrete FE model which includes the 

data obtained from the foregoing scale, namely the homogenized and curves. The 

strategy allows the processing of dynamic analyses within an attractive computational time. 

In this scope, a Latin Hypercube method was used to derive 2000 samples. Each sample corre-

sponds to a set of seven mechanical and two geometrical parameters (thickness of the wall and 

thickness of the masonry joints). At a macro-scale and considering the statistical variability of 

the homogenized data, five representative models were defined. Incremental dynamic analyses 

(IDA) were performed, where the out-of-plane displacement is the demand parameter and the 

PGA the intensity measure (seven earthquakes from 0.1-0.7m/s2). The 245 IDA curves showed 

a high response variability of the case study. It seems clear that PGA values higher than 0.4m/s2 

lead to a steep increase of the observed displacements. 
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At last, it may be noted that the probabilistic-based framework was successfully implemented. 

It can be integrated within a seismic vulnerability assessment of masonry structures if proper 

damage limits are accounted; or within a seismic loss estimation study if, additionally, conse-

quence costs are included. 
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