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Abstract 

Injectable hydrogels are particularly interesting for applications in minimally invasive tissue 

engineering and regenerative medicine strategies. However, the typical isotropic microstructure of 

these biomaterials limits their potential for the regeneration of ordered tissues. In the present work, 

we decorated rod-shaped cellulose nanocrystals with magnetic nanoparticles and coated these with 

polydopamine and polyethylene glycol polymer brushes to obtain chemical and colloidal stable 

nanoparticles. Then, these nanoparticles (0.1 - 0.5 wt.%.) were incorporated within gelatin 

hydrogels, creating injectable and magnetically responsive materials with potential for various 

biomedical applications. Nanoparticles alignment within the hydrogel matrix was achieved under 

exposure to uniform low magnetic fields (108 mT), resulting in biomaterials with directional 

microstructure and anisotropic mechanical properties. The biological performance of these 

nanocomposite hydrogels was studied using adipose tissue derived human stem cells. Cells 

encapsulated in the nanocomposite hydrogels showed high rates of viability demonstrating that the 

nanocomposite biomaterials are not cytotoxic. Remarkably, the microstructural patterns stemming 

from nanoparticles alignment induced the directional growth of seeded and, to a lower extent, 

encapsulated cells in the hydrogels, suggesting that this injectable system might find application 

in both cellular and acellular strategies targeting the regeneration of anisotropic tissues. 

 

 

 

 

 



 3 

Introduction 

In the human body, many tissues such as cartilage, skeletal muscle, corneas, muscles, blood 

vessels or tendons and ligaments exhibit highly anisotropic mechanical strength and hierarchically 

ordered composite structures. This anisotropic organization, which play key roles on their 

functionality is severely compromised after injury during tissue repair.1 Given the importance of 

extracellular matrix (ECM) and cellular organization in the functionality of these tissues, strategies 

capable of inducing their native organization during the healing phase in order to minimize scar 

tissue formation and to recover their function prior to injury are therefore highly demanded. Tissue 

engineering and regenerative medicine strategies based on injectable hydrogel systems might 

provide potential minimally-invasive alternatives to locally administer combinations of 

biodegradable biomaterials, cells and/or bioactive molecules that can potentially promote a 

functional tissue healing process.2 However, and despite their water-rich three-dimensional (3D) 

structures, which might find similarities with those of biological tissues, most polymeric hydrogels 

are usually composed of randomly oriented 3D networks with generally low mechanical 

performance and lack of control over their microarchitecture.3,4 These characteristics are major 

limitations for the regeneration of anisotropic tissues since randomly organized 3D scaffolding 

biomaterials provide a suboptimal, or even scar-inducing, tissue template that will not restore the 

key biological and biomechanical functionality of the native tissue. Therefore, the development of 

injectable hydrogel systems that can adopt an in situ anisotropically aligned microstructure upon 

administration to provide a biomimetic tissue template for re-establishing the native tissue 

architecture addresses one of the unmet clinical needs in this field. 

The incorporation of nanoparticles into hydrogels produces a class of materials known as 

nanocomposite hydrogels with improved physical properties or incorporating new functionalities 
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that can be advantageously explored in TE applications.5–9 The orientation of 1D or 2D nanofillers 

within hydrogel precursor dispersions followed by their subsequent fixation during the gelation 

process has been explored in recent years to produce hydrogels with anisotropic microstructures 

and mechanical behavior.10,11 The intrinsic properties of magnetic nanoparticles (MNP) are highly 

attractive to produce this type of biomaterials, particularly when considering injectable systems.12–

16 The ability to control the spatial distribution and orientation of MNP through remote magnetic 

fields offers a much wider biomaterial design space, allowing to generate physical anisotropy 

within 3D hydrogels in both in vitro and in vivo settings. Moreover, the incorporation of MNP into 

hydrogel systems results in biomaterials with magnetic responsiveness that can be explored as 

remote actuators for the mechanical stimulation of encapsulated stem cells, potentially promoting 

their differentiation towards targeted lineages.17–19 The collective synergy of these features, 

typically unavailable in other nanocomposite systems, might contribute to promote a regenerative 

outcome using minimally invasive TE strategies directed to anisotropic and mechanosensitive 

tissues such as e.g. muscle or tendons. Recently, a few studies explored the concept of linear 

alignment of MNP within hydrogel matrices to produce biomaterials with anisotropic 

properties.10,20 For example, superparamagnetic iron oxide nanoparticles were used to align 

collagen fibers 21 or rod-shaped microgels19 within collagen or fibrin-based hydrogels, 

respectively, which induced fibroblasts and neurons unidirectional growth. However, although 

these works indicate the potential of the strategy to engineer anisotropic tissues, the intricate 

synthesis route of the proposed microgels or the lack of demonstration of e.g., the anisotropic 

mechanical properties of the bulk hydrogels, suggest that further developments in this field are 

still highly needed and alternative solutions should be evaluated.  
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We have developed a range of nanocomposite hydrogels exploring the intrinsic properties of 1D 

cellulose nanocrystals (CNC).22–24 Among the inherent properties of these naturally derived rod-

shaped nanoparticles are their remarkably high strength and stiffness, convenient surface 

chemistry for easy functionalization and lower toxicity compared to other common nanofillers.25 

This set of characteristics makes CNC particularly interesting as reinforcement elements and active 

crosslinkers of hydrogel networks. Interestingly, it has been previously demonstrated that by 

combining rod or platelets nano/microparticles with MNP it is possible to precisely control their 

orientation in the 3D space applying low magnetic fields to produce anisotropically reinforced 

solid polymeric composite materials with defined textures.11 We hypothesize that similar 

approaches can be applied to orient CNC within injectable hydrogels to produce multifunctional 

biomaterials with bioinspired anisotropic properties. 

Here we present a novel concept where the magnetic manipulation of low concentrations of CNC 

(0.1-0.5 wt.%) decorated with MNP (mCNC) within enzymatically crosslinked gelatin-based 

hydrogels (Fig.1) can be achieved by applying low strength magnetic fields (108 mT). Colloidally 

stabilized mCNC with bioinspired surface coatings were newly synthetized as key requirement to 

enable this concept. The magnetic responsiveness as well as the mechanical and microstructural 

anisotropy of the injectable nanocomposite hydrogels are demonstrated. The biological 

performance of selected nanocomposite hydrogels formulations was studied using human adipose 

tissue derived stem cells (hASCs) and the impact of hydrogels anisotropy on their organization 

was investigated. 
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Fig. 1 Schematic representation of anisotropic hydrogel preparation and crosslinking chemistries 

by i) mTGase and ii) PDA on hybrid magnetic nanoparticles. 

 

EXPERIMENTAL SECTION 

Materials 

Cellulose microcrystalline powder (MCC), sulfuric acid 95-97%, dialysis tubing cellulose 

membrane (MWCO 12-14kDa), ammonium hydroxide solution, iron (ii) chloride tetrahydrate 

99%, iron (III) chloride hexahydrate, dopamine hydrochloride, potassium bromide, 

methoxypolyethylene glycol amine (5000 Da), gelatin from porcine skin (gel strength 300, type 

A), triton X-100 and phalloidin-tetramethylrhodamine B isothiocyanate (TRITC) was purchased 

from Sigma-Aldrich, Portugal. The neodymium permanent magnets N52 were obtained from AMF 

Magnetics, Australia. The microbial transglutaminase was purchased from Ajinomoto, Japan. 

Silicone squared molds (12 Well Chamber Removable) and Slide Angiogenesis coverslips were 
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purchased from Ibidi, Germany. Alpha minimum essential medium (α-MEM), fetal bovine serum 

(FBS), antibiotic/antimicotic solution, calcein AM, propidium iodide, buffered formalin 10% (v/v) 

were purchased from ThermoFisher Scientific, USA. 4’,6-diamidino-2-phenylindole (DAPI) was 

purchased from Biotium, USA. 

 

Synthesis of cellulose nanocrystals  

CNC were extracted from MCC by sulfuric acid hydrolysis adapting the protocol of Bondeson 

et al.26 First, 42 g of MCC was mixed with 217 mL of deionized water in a beaker. The MCC/water 

suspension was placed in an ice bath to prevent overheating and stirred using a mechanical agitator 

at 500 rpm for 10 minutes. Then, while stirring, 203 mL of concentrated sulfuric acid 95-97% was 

added dropwise up to a final acid concentration of 62 wt.%. The reaction was performed under 

continuous stirring at 60°C for 40 minutes. Acid hydrolysis was stopped by adding an excess of 

cold water (5 times the initial volume) and the solution was left to decant at 4°C. The supernatant 

was discarded, and the remaining suspension was centrifuged for 10 minutes at 8603G at 5°C. 

After centrifugation, the supernatant was replaced by ultrapure water, and subjected to additional 

centrifugation cycles until the supernatant became turbid (usually, a total of 3 centrifugation 

cycles). The resulting suspension was collected and dialyzed against deionized water until neutral 

pH. After dialysis, the suspension was transferred into beakers and sonicated (VCX-130PB-220, 

Sonics) for 5 cycles of 5 minutes, using an ultrasound probe at 60% of amplitude output, under ice 

cooling to prevent overheating. Then, the cloudy suspension was centrifuged for 10 minutes at 

8603G and 5°C to remove big particles that could still remain. Finally, the supernatant containing 

CNC was stored at 4°C until further use.  

Synthesis of CNC decorated with magnetic nanoparticles 
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The MNP decorated CNC (mCNC) were synthetized by coprecipitation of Fe2+ and Fe3+ with 

ammonium hydroxide in the presence of CNC according to the procedure described in 27 and 28 

with some modifications. First, 50 mL of a 0.3% (w/v) of CNC aqueous suspension was transferred 

to a triple bottleneck at room temperature (RT), left under a protected nitrogen environment and 

heated up to 70°C. Then, MNP salts precursors FeCl3·6H2O and FeCl2·4H2O were added to the 

CNC solution at 12 mM concentration and a molar ratio of 2/1 (Fe3+/Fe2+), and left to stirring for 

2 hours. 100 mL of ammonium hydroxide solution was added to the CNC/iron salt solution and 

the reaction was carried for 60 minutes under vigorous continuous stirring. After reaction, the 

resulting precipitate was subjected to magnetic decantation using a permanent magnet. Then, 

centrifugation cycles of 10 minutes, 8603G at 5°C were performed and washed with deionized 

water (DI) until reaching a neutral pH. Finally, the resulting mCNC were suspended in ultrapure 

water. 

Synthesis of polydopamine coated mCNC 

Polydopamine coated mCNC (pda-mCNC) were synthesized according to Shi Z. et al.29 A 0.2% 

(w/v) suspension of mCNC was dispersed in tris base buffer 10 mM at pH=8.5 and sonicated using 

ultrasonic processor at 40% of amplitude output. Then, dopamine hydrochloride was added to the 

suspension in a 2:1 weight ratio in respect to the mass of mCNC and left stirring overnight at RT. 

The resulting suspension was centrifuged (10 minutes at 8603G and 5°C) and washed with DI 

water.  

Synthesis of PEG stabilized nanoparticles 

Methoxypolyethylene glycol amine (mPEG-NH2) coated pda-mCNC (peg-mCNC) were 

prepared based on the work by Liu. J. et al.30 and Zhon X. et al.31 pda-mCNC were first suspended 

in tris base buffer (10 mM, pH=8.5) at a final concentration of 0.2% (w/v). Then, mPEG-NH2 was 
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added to the suspension in a 2:1 ratio (mPEG-NH2:mass of nanoparticles), and left stirring for 150 

minutes at RT. Hereafter, the suspension was extensively dialyzed against ultrapure water for two 

days. 

 

Characterization of nanomaterials 

Atomic force microscopy (AFM)  

AFM was used to determine the nanoparticles size and size distribution. Drops of the diluted 

nanoparticle solutions with concentration of 0.0015 % (w/v) were deposited on freshly cleaved 

mica discs and left to adsorb for 15 minutes, after which the excess of liquid was removed. The 

samples were left to dry in an exicator overnight and were imaged in tapping mode (Dimension 

Icon, Bruker) with a range of xy – 1 nm to 90 m. The particles dimensions (length and height) 

and size distribution were determined with Gwyddion software.  

Transmission electron microscopy (TEM) and scanning TEM (STEM) 

 The morphology and distribution of the produced nanoparticles were analyzed by STEM 

(Auriga Compact, Zeiss). For this purpose, drops of the diluted suspensions (0.0015 wt.%) were 

placed in TEM grids (Carbon Type B, 400M Cu, Monocomp), left to dry for 15 minutes and 

washed in ultrapure DI water. The images were collected with an acceleration voltage from 25 to 

30 kV. For TEM (JEOL 2100) analysis, peg-mCNC were dropped on ultrathin carbon on lacey 

carbon on 400 mesh Cu-grids (UC-A lacey 400 mesh Cu, Tedpella) and images acquired at 80kV. 

Magnetic Properties 

The magnetic properties of the nanoparticles and hydrogels where assessed using a 

superconducting quantum interference device magnetometer (SQUID-VSM, Quantum Design). 

The samples were freeze-dried and analyzed at RT under a magnetic field up to 20 kOe.  
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Development and characterization of nanocomposite hydrogels  

A 10 wt.% gelatin solution was prepared in 0.1X phosphate buffered saline (PBS) for 2 hours at 

70C and then cooled to 37C. Microbial transglutaminase (mTGase) solution was prepared in 

PBS at a concentration of 20 wt.%. peg-mCNC were dissolved in ultrapure water at different 

concentrations (0, 0.2, 0.4, 0.6 and 1.0 wt.%) and dispersed with an ultrasonic processor (40% 

amplitude, 60 seconds). To prepare the final isotropic nanocomposite hydrogels, the gelatin 

solution at 37C was mixed in a 1:1 (v/v) ratio with the peg-mCNC suspensions and mTGase (15 

U/g gelatin). The resulting solutions consisting of 5 wt.% gelatin and 0, 0.1, 0.2, 0.3 and 0.5 wt.% 

peg-mCNC were thoroughly mixed by pipetting up and down, injected into silicone squared molds 

(6x6x4 mm) and kept at 37C in humid atmosphere for 90 minutes to ensure total crosslinking of 

the hydrogels. The same procedures were adopted for the preparation of anisotropic hydrogels 

except that the molds containing the hydrogel solutions were kept under the influence of uniform 

magnetic field of 108 mT in a custom-made magnetic system, composed by two neodymium 

permanent magnets N52 (Fig. S1). This system, can provide uniform magnetic fields with different 

strengths depending on the distance between the magnets (see Supporting Information). The 

magnetic field strength was measured by a Gaussmeter (Hirst Magnetic Instruments). 

Scanning Electron Microscopy (SEM) and TEM 

Microstructural morphology and organization of hydrogels were observed by high resolution 

SEM (JSM-6010LV, JEOL, Japan). Before analysis, hydrogels were freeze-dried, fractured after 

cooling in liquid nitrogen and sputter-coated with platinum (Cressington Scientific Instruments). 

The images were collected with an acceleration voltage from 2 to 10 kV. SEM images were 

converted to binary and adjusted with either erode or dialate functions such that all pores could be 
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identified as objects with a perimeter. Binary outlines were used for final data generation via the 

analyze particles function of ImageJ to generate shape description parameters. Prior to processing, 

thresholds for each image were manually set by measuring the dimensions of the smallest pore. 

The mean aspect ratio for twenty pores per formulation was calculated. 

For TEM analysis of nanoparticles alignment in 3D, isotropic and anisotropic hydrogels with 

0.3 wt.% peg-mCNC were prepared as derived above and solvent exchanged to ethanol with 

increasing concentrations of 10%, 30%, 50%, 75%, 85%, 95% and 100% ethanol. Hydrogels were 

then infiltrated successively with different concentrations of Epon (EMbed-812 Kit mit BDMA, 

EMS). The embedding included 3 setps od propylene oxide (10 min) followed by successive 

propylene oxide / resin at 3:1 (2h), 1:1 (overnight at 4ᵒ C) and 1:3 (2h) ratio, and finally 100% 

resin (2h). The resin was allowed to polymerize at 60ᵒ C for 3 days. The Epon blocks were 

sectioned with a RMC PowerTome Ultramicotome. Ultrathin sections were cut with a 35° Diatom 

diamond knife. Sections were silver in colour corresponding to a thickness of 60-90 nm. Section 

were picked up and supported by ultrathin carbon on lacey carbon EM grids. Sections were 

observed with a JEM-2100 electron microscope, operating a  LaB6 electron gun at 80 kV and 

images acquired with a "OneView" 4k x 4k CCD camera at slight underfocus. 

Microstructure analysis by micro-Computed Tomography (μ-CT)  

The 3D microstructure and architecture of the isotropic and anisotropic hydrogels with 0.2 and 

0.3 wt.% of peg-mCNC were assessed by high-resolution μ-CT analysis (Skyscan 1072, Skyscan, 

Belgium). Series of 412 two dimensional projections with a resolution of 10.5 μm were acquired 

over a rotation range of 180° and with a rotation step of 0.45°, by cone-beam acquisition after 

irradiating the specimens with penetrative X-rays. The acquisitions were performed with a source 
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voltage of 33 kV and a current of 197 μA. The data was reconstructed using the software NRecon 

(version: 1.6.6.0, Skyscan), and analyzed on CT Analyzer (version 1.4, Skyscan). 

The microstructural patterns resulting from the CT reconstructed images of the isotropic and 

anisotropic hydrogels was evaluated using the directionality plugin from Image J 

(https://imagej.net/Directionality). For that, μ-CT images were converted to 8-bit grayscale images 

and the contrast was enhanced for 0.4% pixels saturation. Then, directionality histograms were 

obtained. 

Swelling assay 

To analyze the swelling behavior of the hydrogels, test specimens without and with 0.1, 0.2, 0.3 

and 0.5 wt.% of aligned and random peg-mCNC were prepared in silicone molds, as previously 

described. After crosslinking, the samples were removed from the molds, left to stabilize at RT for 

one hour and weighed to determine the initial weight (wi). Then, the samples were immersed in 

PBS and incubated at 37C until constant weight was achieved (6 hours). After whipping the 

excess of water with filter paper, the hydrogels were weighted to determine the final weight (wf) 

and the swelling ratio was calculated using the following equation:  

𝑆𝑤𝑒𝑙𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜 (%) = ((𝑤𝑓 − 𝑤𝑖) 𝑤𝑖⁄ ) × 100%     

Rheological analysis 

The selected precursor solutions of gelatin and nanocomposite hydrogels with different peg-

mCNC content (0.1, 0.2, 0.3 and 0.5 wt.%) were tested using a rheometer (Kinexus Prot 

MAL1097376, Malvern). To analyze gelation kinetics, 250 L of the solutions were directly 

poured onto the bottom Peltier plate preheated at 37C and the gap was adjusted to 1 mm. To 

prevent evaporation of water from the sample, a thin film of paraffin oil was poured around the 

perimeter of the sample and a solvent trap was used during the assay. Time-sweep tests were 
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performed to monitor variations in storage (G’) and loss (G’’) moduli at 37C during 60 min at a 

frequency of 1 Hz and shear strain of 1% (n=3). Gelation time was defined as the time at the onset 

of phase angle drop.  

 The bulk viscoelastic behavior of isotropic nanocomposite hydrogels was analyzed using 

a parallel plate geometry (ø 8 mm) in pre-formed cylindrical hydrogels with 8 mm diameter and 2 

mm thickness. Oscillatory frequency sweep tests were performed at 37C applying a constant 

strain amplitude of 1% (selected within the linear viscoelastic region of the hydrogels) and 

frequencies between 0.01 and 10 Hz, with an initial preadjusted normal force of 0.5 N. All 

experiments were performed at least in triplicate and the data represents the average of these tests.  

Dynamic mechanical analysis (DMA) 

 Viscoelastic measurements were performed using a TRITEC 2000 DMA (Triton Technology, 

UK), equipped with the compressive mode. The measurements were carried out at RT, for 

anisotropic hydrogels of 0.3 and 0.5 wt.%, parallel and perpendicularly aligned to the compression 

force of the DMA equipment. To avoid the possibility that the orientation of the hydrogels in the 

molds could affect the hydrogel mechanical properties, hydrogels and molds were maintained on 

the same position and the magnetic system was positioned vertically or horizontally during their 

production. Moreover, the DMA assay were carried out maintaining the position of both types of 

hydrogels constant relative to the compression axis. Before analysis, samples were immersed in 

PBS to reach equilibrium swelling. All the hydrogels were cubical shaped, with height and length 

of ∼6 mm and a thickness of ∼ 4 mm, measured accurately with a digital caliper. DMA data were 

obtained during a frequency scan between 0.1 and 10 Hz. The experiments were performed under 

constant strain amplitude (40 μm). At least three different hydrogels were tested for each 

composition with the same experimental settings. 



 14 

 

Biological performance of nanocomposite hydrogels 

Expansion of human adipose derived stem cells (hASCs). hASCs were obtained from 

lipoaspirate samples of the abdominal region of patients subjected to plastic surgery, under the 

scope of previously established protocols with Hospital da Prelada (Porto, Portugal). All 

procedures were approved by the University of Minho Ethics Committee. hASCs were routinely 

isolated by enzymatic digestion, and characterized for stemness potential by flow cytometry and 

RT-PCR for CD44, STRO-1, CD105 and CD90 markers, as previously reported in Rada, T. et al.32 

hASCs were maintained in α-MEM supplemented with 10% FBS, and 1% antibiotic/antimicotic 

solution at 37 ºC, 5% CO2. 

Cell seeding and encapsulation in 3D isotropic and anisotropic hydrogels 

 A 10 wt.% gelatin solution was prepared in 0.1X PBS supplemented with 25 mM of sucrose in 

order to control osmotic pressure and improve cell viability in low ionic strength conditions during 

processing, as described by Carvalho A., et al.33 To avoid bacterial growth in biological assays, 

the nanoparticles suspensions were ultraviolet radiation (UV) treated during 30 seconds, and 

dispersed by an ultrasonic processor (40 % amplitude, 60 seconds). Gelatin solution and mTGAse 

were sterilized using 0.22 m filters (Biotecnomica, Switzerland), and then antibiotic/antimicotic 

solution was added to achieve a final concentration of 1% (v/v). 3D isotropic and anisotropic 

nanocomposite hydrogels were prepared as described before. Gelatin hydrogels without 

nanoparticles incorporation were used as additional controls. 

For the preparation of cell seeded hydrogels, 100 L of hydrogel-precursor solution was placed 

into the squared silicone molds. Prior to seeding, all hydrogels were incubated at 37C for 90 

minutes to ensure complete crosslinking. Afterwards, cultured cells were detached by 
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trypsinization, counted, centrifuged at 300G for 5 minutes, and seeded onto the surface of each 

sample at a density of 5x105 cells/mL of final hydrogel solution, using 200 µL of -MEM. The 

culture medium was replaced every day during the 3 days of cell culture. 

For cell encapsulation assays, the gelatin and nanoparticles solution was thoroughly mixed with 

the cells to obtain a final concentration of 106 cells/mL of hydrogel final solution. The isotropic 

and anisotropic hydrogels were prepared as previously described by placing 100 L of solution in 

silicon squared molds for evaluation of cell morphology and cytoskeleton organization, or 30 L 

of solution into -Slide Angiogenesis coverslips for live/dead assay. For live/dead assay, only the 

isotropic hydrogels were prepared. The cell encapsulated hydrogels were incubated at 37C for 90 

minutes. After the incubation, -MEM culture medium was added to each well, replacing it every 

day during the culture duration.  

Live/dead assay 

 Cells viability within nanocomposite hydrogels was assessed using calcein AM (stains live 

cells) and propidium iodide (stains dead cells). After 1 and 3 days of culture, hydrogels with 

encapsulated hASCs were washed with PBS, and then incubated with calcein AM and PI for 30 

minutes at 37˚C. Thereafter, the samples were washed with PBS to reduce background 

fluorescence and visualized using confocal microscopy (TCS SP8, Leica Microsystems, 

Germany). The viability was evaluated by counting live and dead cells from six representative 

images for each condition. 

Evaluation of cell alignment 

 After 3 days, the hydrogels with seeded or encapsulated hASCs were fixed with formalin 10% 

(v/v). Cell cytoskeleton was stained using 0.2% (v/v) Triton X-100 in PBS containing Phalloidin-

TRITC and nuclei were stained using DAPI. Finally, the stained samples were observed under 
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confocal microscopy and at least six representative images for each condition were taken. 

Alignment was evaluated using the directionality plugin from Image J. For that, the channel 

corresponding to the cell cytoskeleton from confocal images was used after automatic contrast 

enhancement to obtain the directionality histograms. Then, Origin software was used to fit the 

results to a Gaussian distribution which was used to calculate the full with half medium (FWHM) 

and the deviation from the nanoparticles alignment direction. 

 

Statistical analysis 

The statistical analysis was managed with GraphPad Prism software version 7.0 (GraphPad 

Sotware Inc, San Diego, CA, USA), using two-way Analysis of Variance (ANOVA) test and 

Bonferroni post-test for multiple comparisons, to study the influence of two categorical 

independent variables. The values were considered different for a level of significance of p<0.05. 

The number of samples is indicated in each quantitative assay performed. 

 

Results and Discussion 

Characterization of the hybrid magnetic nanoparticles 

The functionality and performance of nanoparticle systems has been shown to be significantly 

dependent on their colloidal stability in suspension or their adequate dispersibility within polymer 

matrices in nanocomposites, being in general negatively affected by aggregation phenomena.29,30,34 

Moreover, since the physical and chemical surface characteristics of the nanoparticles can affect 

their dispersion and fate in physiological environments, surface engineering strategies are 

commonly applied in nanoparticle systems development for biomedical applications. In the 

particular case of iron oxide based MNP, different surface modifications have been applied not 
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only to improve their colloidal stability but also their biocompatibility.35 Among them, bioinspired 

polydopamine (PDA) coatings have become a versatile and facile route for surface 

functionalization of organic or inorganic materials.29,36–39 Moreover, PDA coating provides a 

highly convenient synthesis route for bioconjugation of different molecules under mild reactive 

conditions. Therefore, in this study we explored these bioinspired and multifunctional coating to 

tether amino derivatives of polyethyleneglycol (PEG) onto the surface of the nanoparticles. By 

conveying steric repulsions among nanoparticle, it is expected that these PEG brushes improve 

their colloidal dispersion stability in different physiological conditions, as previously 

demonstrated in other nanoparticle systems.30,31,40  

AFM, STEM and TEM were used to characterize the morphology and dimensions of the 

synthesized nanoparticles (Fig. 2). AFM analysis show that CNC exhibit the typical rod-like shape 

morphology with average length (L) of 206 ± 43 nm and height of 12.06±4.17 nm. After the 

coprecipitation of MNP onto CNC templates, the resulting hybrid mCNC show MNP with width 

(w) of 6.6 ± 1.5 nm (measured from TEM images) well attached and spread over the CNC surface 

(Fig. S2), as previously demonstrated in other similar mCNC.41 After PDA coating, it can be seen 

that some of the particles are composed by more than one single mCNC resulting from their slight 

lateral aggregation and coupling during the coating process but, in general, pda-mCNC remain 

well individualized nanoparticles with the PDA coatings well visible in the STEM images, 

morphology which is maintained after grafting the PEG chains on their surface in the TEM image 

of peg-mCNC (width of 18.9 ± 4.4 nm).  
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Fig. 2 Characterization of the developed nanoparticles. A) Schematic representation of the 

nanoparticles synthesis. B) AFM of a) CNC, b) mCNC, c) pda-mCNC and d) peg-mCNC; e) 

STEM of CNC; f) TEM of peg-mCNC. Scale bars = 200 nm.  

The chemical composition of the different nanoparticles was evaluated by FTIR spectroscopy, 

which confirmed the anchoring of MNP on the CNC, the PDA coating and the PEG grafting on 

their surface (Fig. S3). Furthermore, the crystallinity of CNC and the chemical identity of the MNP 

upon coating treatments with PDA and PEG was confirmed using XRD analysis (Fig. S3). The 

zeta potential of the synthesized nanoparticles was determined in order to evaluate the overall 

charge density, a parameter that has a major influence on the colloidal dispersion stability of 

nanoparticle systems (Table S1). As expected, CNC have a negatively charged surface with zeta 

potential of -50 mV due to their surface sulfate groups resulting from the sulfuric acid hydrolysis 

preparation method.42 By coupling MNP onto CNC surface and their further coating with PDA 

and PEG grafting, the surface charge of the final hybrid peg-mCNC decreases to -34.1 mV, results 

that are in agreement with previous reports for PEG grafted PDA nanoparticles.31,36 
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The stability of the different nanoparticles in water and protein rich physiological solutions 

(here, we used human platelet lysate, PL) was evaluated by analysis of the particle size with DLS 

(Fig. S5). It should be noticed that, since the composite nanoparticles are not spherical, the 

measured hydrodynamic radius only provides an indication of the apparent size of the 

nanoparticles. However this method can be used to assess dispersion quality or state of aggregation 

of these non-spherical nanoparticles if the same equipment, sample preparation and protocol are 

employed.43 The results of Fig. S5 show that, at all time points, peg-mCNC have smaller particle 

size in both solutions (water and PL). In theory, PEG grafting should lead to higher hydrodynamic 

nanoparticle sizes, suggesting therefore that the grafted PEG chains improved the colloidal 

dispersion and stability of peg-mCNC when compared to the other groups, as previously suggested 

in other nanoparticle systems,30,31 although it also tends to present some aggregation for longer 

incubation periods (around 60% increase in hydrodynamic diameter after 24 hours in PL). 

Altogether, these results suggest that our new peg-mCNC could significantly improve some of 

the most critical limitations assigned to hybrid CNC/magnetic nanoparticles as potential 

nanodevices or as active elements in biomaterials namely, their irreversible aggregation induced 

by the electrostatic interactions between sulphate ester groups and metal cations that screen the 

surface charges responsible for stabilizing the CNC, thus changing the nanoscale nature of the 

final hybrid particles.44 In fact, in preliminary experiments, the production of the gelatin 

nanocomposite hydrogels proposed here was tested with mCNC or pda-mCNC. In both cases it 

was not possible to produce stable hydrogels due to extensive nanoparticle aggregation during the 

gelation period (see example in Fig. S6), highlighting the importance of the peg-mCNC shell 

composition to enable the development of the proposed nanocomposite hydrogel concept.  
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Morphological characterization of isotropic and anisotropic magnetic hydrogels 

The enzymatic reactions catalyzed by transglutaminases provide alternative methods to create 

injectable and covalently crosslinked gelatin hydrogels for various biomedical applications.45 

Microbial transglutaminase (mTGase) in particular, which catalyzes an acyl transfer reaction that 

leads to the formation of crosslinked -(-glutamyl)-lysine isopeptide bonds between -

carboxyamide groups of glutamyl residue and -amino groups of lysine residue,46 has the 

advantage of having a catalytic activity independent of calcium ions, differing in this way from 

transglutaminases of human or other mammalian animals origin.47 Previous studies have shown 

that mTGase can create stable covalently crosslinked gelatin hydrogels,47–49 and the resulting 

biomaterials are biocompatible, non-immunogenic and show low cytotoxicity while maintaining 

their injectability.50 Considering these properties, mTGase crosslinking was used to produce the 

injectable gelatin nanocomposite hydrogels as shown in Fig. 3.  

 



 21 

 

Fig. 3 Characterization of the nanoparticles alignment in the hydrogels. (A) Image of the 

developed nanocomposite hydrogels (from left to right: 0, 0.1, 0.2, 0.3 and 0.5 wt.%) and optical 

microscopy images of aligned and non-aligned nanoparticles within 0.1 wt.% and 0.3 wt.% 

hydrogels (scale bar = 200 µm). (B) TEM images of 0.3 wt.% isotropic and anisotropic hydrogels 

i) low magnification and ii) high magnification (scale bar = 200 nm). Arrows indicate the 

alignment direction. 

 

In order to determine the magnetic field strength required to induce the hybrid peg-mCNC 

alignment, preliminary tests were performed using hydrogel formulations with different 

nanoparticles content (0.3 and 0.5 wt.%) and magnetic fields varying between 108 - 400 mT. It 

was observed that the extent of nanoparticles alignment achieved at low magnetic fields (108 mT) 
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is comparable with those obtained at higher magnetic fields (Fig. S7), irrespective of peg-mCNC 

concentration, being therefore the selected condition for subsequent studies. The alignment of peg-

mCNC within the 3D anisotropic hydrogels to the direction of the magnetic field was observed at 

microscopic level using optical microscopy (Fig. 3A). Furthermore, to demonstrate the 

nanoparticles alignment with the direction of the magnetic field at the nanoscale, ultrathin sections 

of isotropic and anisotropic hydrogels were imaged using TEM. As observed in Fig. 3B, 

nanoparticles in isotropic hydrogels show a random distribution while anisotropic hydrogels show 

ordered domains of nanoparticle aggregates.  

The influence of peg-mCNC incorporation and exposure to uniform magnetic fields on the 

microstructure of hydrogels was investigated by SEM. Representative images of the analyzed 

cross-sections of isotropic and anisotropic freeze-dried hydrogels are depicted in Fig. 4. Upon to 

a low strength magnetic field (108 mT), the hydrogels present well defined honeycomb-like 

anisotropic porous structures, whereas in the absence of magnetic field during crosslinking, 

hydrogels present random and disorganized microstructures. Moreover, although the increment of 

peg-mCNC concentration leads to some improvement in the definition of the anisotropic 

structures, peg-mCNC concentrations as low as 0.1 wt.%, representing a volume fraction of MNP 

in the nanocomposite of only 0.0005 vol.%, could already induce a considerable level of structural 

lamellae anisotropy. Remarkably, Fig. 4 shows that anisotropic hydrogels present pores with lower 

aspect ratio and data scattering compared with isotropic hydrogels, suggesting a higher shape 

regularity.      

Micro-CT analysis was used to examine the presence of aligned domains along the 3D space of 

hydrated hydrogels (Fig. 4B), in order to confirm the SEM results obtained on freeze dried samples 

(Fig. 4B). Hydrogels with an intermediate peg-mCNC concentration of 0.3 wt.% were selected to 
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perform this analysis. The reconstructed micro-CT images of anisotropic hydrogels confirm the 

presence of preferential 3D aligned domains, while random isotropic hydrogels show a non-

preferential distribution of pixel intensity, as confirmed by the directionality analysis (Fig. 4B), 

suggesting the presence of an ordered hydrogel microstructure. 

 

 

Fig. 4 Morphological characterization of nanocomposite hydrogels. A) SEM images of isotropic 

and anisotropic freeze-dried hydrogels with 0.1, 0.2, 0.3 and 0.5 wt.% nanoparticles (scale bar = 

10 m); B) Distribution of pore aspect ratio in freeze-dried isotropic and anisotropic hydrogels. C) 

Micro-CT images of isotropic and anisotropic hydrogels with 0.3 wt.% nanoparticles (scale bar = 

1 mm); D) Directionality analysis of micro-CT reconstructed images. Arrows indicate the 

alignment direction. 

 

These results support the validation of the proposed concept, where the combination of MNP 

with rod-like CNC synergistically contribute to introduce microstructural anisotropy within the 

3D space of hydrogels at low nanoparticle concentration and applying low magnetic fields. 
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Remarkably, these results can be easily attained with simple permanent magnets without requiring 

dedicated equipment (at 0.1-0.5 wt.% of nanoparticles and magnetic field strength of 108 mT), 

representing an advantage when considering the implementation of this concept in clinical 

scenarios. For example, as comparison, a similar concept has been developed by inducing the 

magnetic alignment of diamagnetic CNC within injectable synthetic nanocomposite hydrogels.12 

However, higher concentrations of CNC (0.2 - 1.65 wt.%) and magnetic fields (0.56 - 1.2 T) were 

used to produce hydrogels with physical anisotropic properties.  

Interestingly, all our nanocomposite formulations show relatively low swelling behavior 

(between 5 and 20%), in the same order as that of the control gelatin hydrogels (18.2%). Although 

some statistically significant differences exist among the different formulations, no obvious trend 

can be inferred from this data (Fig. S8).   

 

Magnetic properties 

The magnetization curves of magnetic nanoparticles and nanocomposite hydrogels were 

measured at room temperature and are shown in Fig. 5. The low remanence on the magnetization 

loops confirm the superparamagnetic character of mCNC and peg-mCNC (Fig. 5A). mCNC show 

a magnetization of saturation (Ms) of 18.2 emu g-1, which is reduced to 6.7 emu g-1 after the PDA 

coating and PEG grafting, as result of their proportionally lower magnetic material content. The 

values obtained are in line with other reports on the synthesis of mCNC (≈20 emu g-1).28,51  

Regarding Ms values of the developed hydrogels, they are proportional to the amount of MNP 

present on the sample (Fig. 5B) and vary between 0.09 emu g-1 (0.1 wt.%, black line) and 0.41 

emu g-1 (0.3 wt.% hydrogels, green line). Although this Ms range might seem apparently low, it is 

in the same order of other magnetic biomaterials that have shown the ability to promote cell 

proliferation and/or differentiation triggered by stimulation with external magnetic fields as low 
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as 2 to 10 mT.52–54 Therefore, although not evaluated under the scope of this study, it is plausible 

to hypothesize that our multifunctional nanocomposite hydrogels might be combined with remote 

magnetic stimulation strategies to promote or induce specific cell behaviors in cellular or acellular 

TERM approaches. 

 

Fig. 5 Magnetic hysteresis curves normalized to the amount of the initial samples: A) mCNC; peg-

mCNC; B) developed hydrogels formulations (0.1 wt.% - black line; 0.2 wt.% - red line; 0.3 wt.% 

- green line). 

 

Mechanical properties of developed nanocomposite hydrogels 

Previous studies have shown that the reinforcement of the hydrogel matrices with the 

incorporation of nanoparticles as CNC or MNP had a significant impact on their mechanical 

properties.17,22,55 The effect of the nanoparticles content on the hydrogels gelation kinetics and 

bulk mechanical properties of (isotropic) hydrogels were assessed by rheology analysis (Fig. 6). 

The impact of peg-mCNC addition in the hydrogels gelation kinetics is depicted in Fig. 6A, 

demonstrating that their influence on the hydrogels gelling point is not significant and is comprised 

between 895 ± 10 s (0.5 wt.% peg-mCNC) and 950 ± 20 s (0 wt.% peg-mCNC), which is in the 

range of other injectable hydrogels based on natural polymers for tissue engineering applications.56 
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Regarding the hydrogels bulk viscoelastic properties (Fig. 6B), results show a positive dependence 

of the shear elastic modulus (G’) on the concentration of nanoparticles. Hydrogels G’ (at the linear 

viscoelastic region) gradually increase from 796±94 Pa without nanoparticles up to 2280±466 Pa 

at the highest nanoparticles content (0.5 wt.%). These results show that the incorporation of peg-

mCNC in the gelatin matrix leads to up to 3-fold stiffer hydrogels, resulting from their good 

dispersion in the polymer matrix and their function not only as physical reinforcement elements 

but also as effective matrix crosslinking elements enabled by the PDA coating (trough Schiff base 

and Michaels addition reactions with amine groups of gelatin, Fig. 1).   

To evaluate hydrogels mechanical properties anisotropy, DMA analysis in compression mode 

and under simulated physiological conditions was used (Fig. 6C). Hydrogels with nanoparticles 

alignment parallel to the applied compressive force showed significantly higher storage modulus 

values (E’) than the hydrogels with perpendicular nanoparticles alignment, further supporting the 

anisotropy of the hydrogels microstructure induced by the nanoparticles alignment.  
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Fig. 6 Mechanical characterization of the developed hydrogels. A) Representative time-sweep 

curves of isotropic hydrogels; B) Elastic modulus (G’) from rheological analysis of isotropic 

hydrogels; C) Storage modulus E’ (kPa) – of 0.3 and 0.5 wt.% anisotropic hydrogels with 

perpendicularly and parallely aligned nanoparticles from DMA analysis. One symbol p<0.05, two 

symbols p<0.01, three symbols p<0.001 by Two – Way Anova followed by Bonferroni post test 

multiple comparisons. 

 

Biological performance 

The ability of hydrogels to support cell viability was evaluated by live/dead assay using 

encapsulated hASCs after 1 and 3 days of culture. Confocal images allowed to conclude that all 

the formulations (0, 0.1, 0.2, 0.3 and 0.5 wt.%) show high rates of cell viability at both time points, 

demonstrating that the nanocomposite biomaterials developed in this work are not cytotoxic (Fig. 

7). Nevertheless, the hydrogels with the highest content of nanoparticles presented the lowest 

number of live cells (~78%), potentially indicating that higher peg-mCNC loadings (> 0.5 wt.%) 

may have a negative influence on cell viability. 
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Fig. 7 Cell viability of hASCs encapsulated in hydrogels containing different amounts of peg-

mCNC nanoparticles (0, 0.1, 0.2, 0.2 and 0.5 wt.%) after 1 and 3 days. A) Graphical representation 

of the number of cells stained live in relation to the total number of cells (n=6); B) Representative 

images of cells in the hydrogels after live/dead staining (green – live and red – dead). One symbol 

p<0.05, two symbols p<0.01, three symbols p<0.001, four symbols p<0.0001 by Two – Way 

Anova followed by Bonferroni post test multiple comparisons. 

 

The effect of hydrogel alignment on cell morphology and cytoskeleton organization was studied 

through both 2D (cell seeding) and 3D (cell encapsulation) experiments. As hydrogels with low 

peg-mCNC loadings (0.1, 0.2 and 0.3 wt.%) exhibit anisotropic microstructures and high cell 

viability, they were selected for these assays. For the 2D experiments, hASCs were seeded on the 

top of isotropic and anisotropic hydrogels and cell orientation on its surface was observed by 

confocal microscopy. After 1 day of cell culture, cells seeded on the nanocomposite hydrogels 

start to show the typical spindle shape although they do not present preferential orientation for the 

direction of the magnetic field, as shown by quantitative directionality analysis (Fig. S9). After 3 

days of culture, cells seeded on 0.1 and 0.2 wt.% anisotropic hydrogels showed a directional 
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growth aligned with the orientation of the nanoparticles, while cells on 0.3 wt.% anisotropic 

hydrogels showed a more random orientation (Fig. 8A). These findings are supported by the 

quantification of the cell cytoskeleton alignment (Fig. 8B). The unimodal narrow distribution of 

directions observed on 0.1 and 0.2 wt.% anisotropic hydrogels (FWHM = 39.8±8.2˚ for 0.1 wt.% 

and 52.8±2.0˚ for 0.2 wt.% hydrogels) was significantly different to the multimodal or flat 

distribution observed on the isotropic hydrogels (FWHM = 104.0±62.4˚ for 0.1 wt.% and 

129.0±62.5˚ for 0.2 wt.% hydrogels). Even though a small increase in the FWHM was observed 

from 0.1 to 0.2 wt.% hydrogels, this difference was not statistically significant (Fig. 8B). 

Moreover, the cytoskeleton alignment deviation from the nanoparticles orientation observed on 

the anisotropic hydrogels (15.8±2.5˚ for 0.1 wt.%) was lower than on our isotropic hydrogels 

(54.1±30.6˚ for 0.1 wt.%) and comparable to that of anisotropic hydrogels containing magnetically 

aligned CNC (1.65 wt.% nanoparticles content aligned with 560 mT).12 On the other hand, cells 

seeded on 0.3 wt.% anisotropic hydrogels do not show a similar narrow distribution of directions 

(FWHM = 89.1±61.5º) and present a higher cytoskeleton alignment deviation and dispersion from 

the nanoparticles orientation (27.8±18.2º). The capacity of the anisotropic hydrogels to induce cell 

alignment in 3D was tested by encapsulation of hASCs. The cells encapsulated in the isotropic and 

anisotropic hydrogels were able to spread within the hydrogel and exhibited spindle-shaped 

morphology after 3 days of culture (Fig. 8C and Fig. S9). Furthermore, image analysis shows 

preferential orientation for cells encapsulated within anisotropic hydrogels whereas in isotropic 

hydrogels cells have a more random distribution, which was particularly visible in 0.2 wt.% 

hydrogels as confirmed by quantitative directionality analysis (Fig. 8D). In order to investigate 

cell alignment at single cell level, high magnification confocal images with bright field overlaying 

were acquired (Fig. 8D and Fig. S10). Cells present highly organized actin filaments aligned to the 
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visible nanoparticles strings orientation in 3D. Although the study of this mechanism was beyond 

the scope of this work, we hypothesize that the nanotopographical cues provided by the stiff 

nanoparticles within the soft gelatin matrix may enhance cell-substrate adhesion and actin 

extension and contraction, promoting cell spreading in one direction, as observed in previous 

works.57,58 However, this effect is lost when 0.3 wt.% nanoparticles are used, suggesting the 

importance of concrete dimensions and/or spacing between magnetically aligned nanoparticles to 

achieve cell alignment. This represents a limitation of the present study and the influence of these 

parameters on cell alignment should be further evaluated in future studies. 
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Fig. 8 Effect of isotropic and anisotropic hydrogels on cell alignment. Representative images of 

hASCs (A) seeded or (C) encapsulated in the hydrogels after 3 days of culture (red – cytoskeleton 

and blue – nucleus). Representative directionality histograms of cytoskeleton organization of cells 

(B) seeded and (D) encapsulated cells onto 0.2 wt.% hydrogels, respectively. A multimodal or flat 

distribution denotes isotropic organization whereas a unimodal distribution indicates alignment. 

The full with half medium (FWHM) of the distribution was calculated for cells seeded on 
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hydrogels. One symbol p<0.05, by Two – Way Anova followed by Bonferroni post test multiple 

comparisons. (D) High magnification image of the peg-mCNC/cell co-alignment: Cell 

cytoskeleton (red color) is aligned with the peg-mCNC orientation (bright field). The yellow arrow 

indicates the orientation of the nanoparticles in the anisotropic hydrogels. In (C) scale bar = 100 

µm.  

 

It is worth noting that some literature suggests that cells can self-align using high strength 

magnetic fields (> 10 T) or under continuous exposure to magnetic fields of lower magnitude but 

over multiple days.59–61 In the present study, such effects of low strength magnetic fields on cells 

orientation might be negligible since they were only seeded after crosslinking of the hydrogels, or 

in the case of encapsulated cells, they were only under the influence of the low magnetic field 

during a short crosslinking time. Actually, after 1 day of culture, cells seeded or encapsulated in 

the nanocomposite hydrogels, do not show preferential orientation for the direction of the magnetic 

field (Fig. S8). Therefore, the increase in cell alignment observed in the anisotropic hydrogels can 

be mainly attributed to the anisotropic microstructure within the gel and not to the interaction of 

the magnetic field with the cells. 

The ability of the anisotropic hydrogels created in this study to readily align cells either on the 

surface or encapsulated within 3D matrices, suggests the potential of these system as a platform to 

develop structured materials for functional tissue engineering applications, including biomimicry 

of highly anisotropic tissues such as tendons. 
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Conclusions 

In this work, we demonstrated that with low concentrations of peg-mCNC (0.1-0.5 wt.%) and 

uniform magnetic fields with strengths as low as 108 mT, it is possible to obtain nanoparticles 

alignment within nanocomposite hydrogels, which result in biomaterials with anisotropic 

microstructure and remarkable mechanical properties. The biological performance of selected 

nanocomposite hydrogels formulations was studied using human adipose tissue derived stem cells. 

Cells encapsulated in nanocomposite hydrogels showed high rates of viability demonstrating that 

the nanocomposite biomaterials are not cytotoxic. Remarkably, the microstructural patterns 

stemming from nanoparticles alignment induced the directional growth of seeded and encapsulated 

cells in the hydrogels. Overall, these results suggest that the proposed concept might find 

interesting applications as minimal invasive tissue engineering and regenerative medicine 

strategies for anisotropic tissues. 
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