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Abstract: Energy harvesting systems for low-power devices are increasingly being a requirement
within the context of the Internet of Things and, in particular, for self-powered sensors in remote
or inaccessible locations. Triboelectric nanogenerators are a suitable approach for harvesting
environmental mechanical energy otherwise wasted in nature. This work reports on the evaluation
of the output power of different polymer and polymer composites, by using the triboelectric
contact-separation systems (10 N of force followed by 5 cm of separation per cycle). Different materials
were used as positive (Mica, polyamide (PA66) and styrene/ethylene-butadiene/styrene (SEBS)) and
negative (polyvinylidene fluoride (PVDF), polyurethane (PU), polypropylene (PP) and Kapton)
charge materials. The obtained output power ranges from 0.2 to 5.9 mW, depending on the pair of
materials, for an active area of 46.4 cm2. The highest response was obtained for Mica with PVDF
composites with 30 wt.% of barium titanate (BT) and PA66 with PU pairs. A simple application has
been developed based on vertical contact-separation mode, able to power up light emission diodes
(LEDs) with around 30 cycles to charge a capacitor. Further, the capacitor can be charged in one
triboelectric cycle if an area of 0.14 m2 is used.

Keywords: triboelectric effect; polymer and composites; energy harvesting; low-power devices

1. Introduction

The world is experiencing a rapid revolution in the mode in which energy is being produced
and consumed in daily life and industry [1,2]. Conventional ways to produce energy need to adapt
to the environmental needs and concerns related to sustainability and, on the other hand, the energy
consumption paradigm has also been strongly changing in the last decade based on increased
mobility [2]. Thus, cell phones, tablets or related gadgets are common and ubiquitous nowadays.
Hydroelectric energy generation remains the pillar of renewable energies [3,4], wind and solar energy
generation are becoming increasingly important in the energy generation share [3].

In the last decade, with the fast development of the Internet of Things (IoT) [5] and portable
electronics [5], the demand for a sustainable and environmentally friendly portable power supply is
becoming very significant. In this context, energy generation systems are an interesting option for
portable technologies, though still show low power output and, therefore, a low range of applications [3].
Piezoelectric, pyroelectric or thermoelectric energy generation are among the most studied technologies,
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though efficiency and power output [6] is limited compared to electrostatic or triboelectric energy
harvesting devices [6].

Piezoelectric [3,7], electrostatic [8], electromagnetic [9] and triboelectric [10–12] energy harvesting
technologies rely on the use of wasted mechanical energy (wind, wave, vibrations and even body
movements) to produce electricity. These mechanical harvesters can be based on polymer and polymer
composite materials, offering unique properties, such as lightweight and flexibility, combined with
easy integration and environmentally friendly processability [3].

The power density per area of triboelectric devices is the largest among the aforementioned
systems, reaching powers as high as 500 W·m−2 and an energy conversion efficiency of 70% has been
demonstrated [9,13], further they are lightweight and cost-effective [13]. Compared with piezoelectric
devices, triboelectricity can be more suited for environmentally friendly energy production for portable
devices [3], low-power devices in remote or inaccessible places [14] or for needed IoT network of
sensors [14].

Another advantage of the triboelectric phenomenon is the wide range of materials that can be
used in the distinct triboelectric mechanical modes: contact-separation, lateral sliding, single electrode
and free-standing triboelectric layer mode [5,14]. Being a process that can be carried out entirely with
polymers and the corresponding composites, the overall properties of the materials can be tailored for
each specific application, including dimensions, geometry and optical transparency. The triboelectric
power output can also be strongly improved by tailoring the intrinsic properties of the polymers by
synthesis and functionalization [15] or by reinforcing with high-dielectric or other functional fillers [9].
Further, geometrical dimensions (mainly the thickness) and roughness of the materials can also be
designed to maximize the generated energy.

Literature reports different materials and order within the triboelectric series [9,16,17] in terms
of relative triboelectric charge providing/receiving characteristics. The most interesting triboelectric
materials are those with easy lose and gain electrons when in contact, leading to higher charge density
between two different materials [18]. The most common materials in the literature are several polymers,
but also some metals and crystalline materials [17–20]. Positive (losing electrons) materials include Mica
(silicate) and glass, polyamide 6-6 (PA66) and polyamide 11 (PA11), polyethylene (PE) silk, aluminum,
paper and polyvinylidene fluoride (PVDF) [9,12,16,17,20]. Negative materials (gaining electrons)
include polytetrafluoroethylene (PTFE or Teflon), polyvinyl chloride (PVC), polyimide (Kapton),
polystyrene, rubber-like or polyurethane (PU), among others [12,17–20]. The surface charge density
of the triboelectric mode depends on the pair of the selected materials and range change from some
nC.m−2 to mC.m−2 [18], being higher for polymeric pairs compared to metallic ones.

Triboelectric energy generation optimization includes, in addition to materials selection,
tailoring the functional properties of the material reinforcing with dielectric fillers, selection of the
triboelectric mode among contact-separation, sliding, single electrode or freestanding modes and,
finally, the electronic circuit to harvest the electrical energy [14,18–21]. Ceramic or low amounts of
conductive nanofillers [19,20] can be used to improve the dielectric properties and, correspondingly,
the triboelectric performance of the materials. Triboelectric modes and electronic circuits allow the
combination of two distinct modes or even, combine the piezoelectric and thermoelectric effects [21,22].

In this work, the triboelectric properties of the different materials, mostly polymers and polymer
composites are evaluated. Pairs of materials in different places in the triboelectric series are evaluated,
together with materials prepared by different technologies (solvent based, hot pressing and commercial
materials). Finally, high-dielectric ceramic nanomaterial (barium titanate- BT) have been used to
improve the dielectric and, consequently, the triboelectric power output of one of the materials. In this
way, a complete set of materials and processing conditions are considered, allowing triboelectric output
understanding, material selection and tailoring for specific applications.
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2. Experimental

2.1. Materials

Thermoplastic elastomer styrene-ethylene/butylene-styrene (SEBS) copolymer (Calprene CH-6120,
Madrid, Spain) with an ethylene-butylene/styrene ratio of 68/32 was supplied by Dynasol Gestión, S.I.
(Madrid, Spain). Commercial polyvinylidene fluoride (PVDF) (Solef 6010), with density of 1.75 g/cm3

was supplied by Solvay (Paris, France). The solvent used to process SEBS was cyclopentyl methyl
ether (CPME) supplied by Carlo Erba Reagents (Val de Reuil, France) (density of 0.86 g/cm3 at 20 ◦C;
boiling point of 106 ◦C) and for PVDF, it was N,N-dimethylformamide (DMF, 99.5%) from Merck
(Darmstadt, Germany).

A commercial sheet of PVDF (PVDF-c) with 1 mm of thickness was obtained from Swami
Plast Industries (Gujarat, India) and Mica, Kapton and polyurethane (PU) were obtained from
Agar Scientific (Essex, UK), Dupont (Faro, Portugal) and SWM-Engineered (Genk, Belgium),
respectively. Polyamide 66 and polypropylene (PP) pellets were purchased from Merck (Sigma-Aldrich,
St. Louis, MO, USA).

For the preparation of the polymer composite, barium titanate (BT), particles with an average size of
100 nm and a dielectric constant of 150 were obtained from Merck (Sigma-Aldrich, St. Louis, MO, USA).

2.2. Sample Preparation

Three types of different processed materials were investigated: solvent cast films for pristine
polymers and polymer composite with BT, hot pressing and commercial polymers in sheet form.

The solvent casting method was similar for SEBS, PVDF and composites with solvent/polymer
ratio of 80/20 v/v using about 1 g of polymer for 5 mL of solvent. For the SEBS dissolution, CMPE was
used as the solvent, while DMF was used for the PVDF. Once the corresponding amount of polymer
and solvent were added, the mixture was magnetically stirred for 3 h at 30 ◦C until complete polymer
dissolution. For the PVDF composite, the corresponding amount of BT nanoparticles (30 weight
percentage (wt.%) to maximize dielectric response were maintaining mechanically flexible films [23])
were homogeneously dispersed in DMF in an ultrasonic bath at 25–35 ◦C for 2 h, then the PVDF was
added and the mixture was magnetically stirred for 3 h at 30 ◦C.

Thin films were obtained by spreading the mixtures on a clean glass substrate using the doctor blade
technique with a 200 µm blade thickness. SEBS samples were dried at 30 ◦C for 12 h, whereas PVDF
samples were melted in an oven at 210 ◦C for 20 min and recrystallized by cooling down to room
temperature, promoting the crystallization of the PVDF in the α-phase and achieving complete solvent
evaporation [24–26]. The different processed samples are represented in Table 1. The thicknesses of the
films after complete evaporation of the solvent ranged from 40 to 60 µm.

The use of solvents was avoided in PA66 and PP, positive and negative triboelectric materials,
respectively (Table 1). Both polymers were produced by the hot pressing method where 20 g of polymer
pellets were placed in a hot-pressing machine (from Metalgrado LDA, Porto, Portugal) for 15 min at a
temperature of 220 ◦C between two 40 × 40 cm sheets of Teflon. After removing, the film thickness was
about 1 ± 0.1 mm.

Commercial films of different materials, including Mica, PVDF-c, PU and Kapton, with a
thickness of about 1 mm, were also used. Samples produced by solvent casting and hot pressing and
commercially available materials were also evaluated and compared. In this way, some of the most
interesting triboelectric polymers have been comparatively evaluated to understand and optimize
triboelectric output.

In order to collect the charge provided by the triboelectric effect, conductive silver ink (Electronic
131 paste DT1201, hunan LEED electronics Ink, Zhuzhou, China) was deposited on the outer surface of
each material within a home-made screen-printing set-up using a squeegee over the screen placed at
1 mm distance from the substrate. After the printing step, the material and silver ink were dried at
60 ◦C for 60 min in an oven (Binder E, model 28, Binder, Tuttlingen, Germany). The printed electrode
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area was 8.0 × 5.8 cm, as shown in Figure 1. The final step of sample preparation was to place the active
materials with electrodes on substrate support fabricated by 3D printing (Sigma R19 BCN3D with 20%
PLA filling, BCN3D, Barcelona, Spain) with dimensions 10 × 6 × 1 cm (slightly larger than the active
materials) to perform the triboelectric measures. To assure good adhesion of the active material to the
substrate, double-sided adhesive tape (Tesa 4970, Tesa, Lisboa, Portugal) was used.

Table 1. (A) Materials within the triboelectric series used in the present work [27,28] and (B) pair of
materials used in the contact-separation mode triboelectric experiments.

(A)

Positive Negative
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Figure 1. Illustration of the geometry of the samples with the active material, screen-printed silver ink
electrodes and their connection to the Picoscope 2205A using load resistances of 0.5, 1, 3.3, 5, 8.3, 10,
33.3, 50 and 100 MΩ, above. Experimental method used for the triboelectric evaluation of the different
pair of materials in a contact-separation mode, below. The force applied in each step is about 10 N.

Table 1 summarizes the materials used in this work considering the triboelectric series,
including the composite with 30 wt.% BT/PVDF composite (30BT/PVDF).
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2.3. Triboelectric Measurements

The triboelectric mode used to determine the output voltage, current and corresponding output
power of the different pairs of materials (Table 1) was the contact-separation mode (Figure 1): a force
of 10 N was applied in the contact mode, followed by a separation of 5 cm between the samples in
each cycle.

The electrical response was obtained though load resistances of 0.5, 1, 3.3, 5, 8.3, 10, 33.3, 50 and
100 MΩ using a Picoscope 2205A (Picotech, Tyler, TX, USA) with resolution of 8 bit at 200 MS/s.

3. Results and Discussion

3.1. Triboelectric Output

The triboelectric voltage and current output of the different pairs of materials represented
in Table 1 are shown in Figure 2 for a load resistance of 5 MΩ. The voltage is determined in
open-circuit (Figure 2A,C,E) and the current in short-circuit (Figure 2B,D,F) for representative pair
of materials, measured with a load resistance (RL) of 5 MΩ under a constant force (10 N) in the
contact-separation mode.
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Figure 2. Open-circuit voltage (left) and the short-circuit current (right) measurements for different pairs
of polymers. The pairs PA66:PP (A,B), PA66:SEBS (C,D) and Mica:30BT/PVDF (E,F), measured under
with a RL = 5 MΩ under constant force (10 N) in contact-separation mode.

Among the different pairs of materials measured (Table 1B), Figure 2 illustrates, as representative
examples, the triboelectric performance of PA66:PP, PA66:SEBS and Mica:30BT/PVDF. The output
voltages per cycle of these pair of materials are between approximately 60 and 150 V (in average for
40 cycles) and the current generated per cycle ranges between 12 to 30 µA, for the same experimental
conditions. Further, it is to notice that the 30BT/PVDF sample shows piezoelectric properties (due to
the piezoelectric ceramic material) that contribute to a piezoelectric voltage generation in each cycle
(mechano-electrical conversion), together with the triboelectric energy generation, as can be observed
in Figure 3E,F. It is to notice that the piezoelectric voltage generation is small in comparison to the
triboelectric contribution.

Literature reports a wide amplitude of the voltages and currents generated in triboelectric systems,
from some volts to thousands of volts [29–33], and current typically ranging up to hundreds of
µA [31–34]. The voltage and current output values obtained in the present work are competitive with
the literature, considering the use of pristine materials without any kind of surface treatment.

Thus, the above materials allow us to generate up to 150 V per cycle through the triboelectric
effect in contact-separation mode, suitable for low-power devices [22], as it will be demonstrated later.

Based on the representative experimental results shown in Figure 2, the output voltage and
current triboelectric output of all materials pairs are shown in Figure 3 and Table 2 as a function
of the external load resistance (RL) in the range from 0.5 to 100 MΩ. All systems show a similar
electrical output response with a maximum output power for RL = 3 to 10 MΩ. Increasing RL leads
to an output voltage increase and a decrease of the current, leading to maximum output power
(Power (P) = voltage × current) at the interception of these [16].
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Figure 3. Triboelectric output voltage, current and power as a function of the load resistance for
different material pairs: (A) PA66:SEBS; (B) PA66:PP; (C) Mica:SEBS; (D) Mica:PVDF-c; (E) Mica:PVDF;
(F) Mica:30BT/PVDF; (G) Mica:Kapton and (H) Mica:PU.

Table 2. Summary of the output power, voltage and current for the different systems under evaluation,
the larger output powers being for the PA66:PP and the Mica:30BT/PVDF pairs.

Materials RL (MΩ) Voltage (V) Current (µA) Power (mW)

PA66:PP 5 172.5 34.4 5.9
PA66:SEBS 5 68.1 13.2 0.9
Mica:SEBS 10 78.6 8.1 0.6

Mica:PVDF-c 3.3 36.7 11.1 0.4
Mica:PVDF 3.3 22.5 6.6 0.2

Mica:30BT/PVDF 5 141.8 27.4 3.9
Mica:Kapton 5 50.1 10.2 0.5

Mica:PU >100 252.4 2.6 0.7

The power output performance depends on several factors, such as triboelectric charge
providing/receiving [11,34] and physical properties of the materials [35,36]. It is shown in the literature
that materials further apart in providing/receiving electrons lead to a larger triboelectric output than
materials close to each other, which may exchange small amounts of charge [34]. Roughness is also a
key factor for triboelectric energy generation. It has been experimentally demonstrated for different
polymer-based materials that increasing roughness leads to an increase in the output power of the
triboelectric materials [35–37].

The triboelectric performance of the PA66:SEBS pair is represented in Figure 3A, showing a
P = 0.90 mW at a RL = 5 MΩ. It is to notice that these materials are close in the triboelectric series,
but one prevalent factor, surface roughness, also plays a relevant role, as mentioned before. Solvent cast
samples present higher roughness than commercial ones, leading to a higher surface area, resulting in
improved triboelectric performance. Also, the samples prepared by hot-pressing, such as PA66, show a
larger surface roughness and, as a consequence, the PA66:PP pair shows a P = 5.94 mW for RL = 5 MΩ,
as is shown in Table 2.

Thus, polyamide was used combined with SEBS and PP with a maximum power of 0.9 and 5.8 mW,
respectively. Mica was also used to compare the triboelectric performance of the samples PVDF or
PVDF-c, considering the processing method. Both have a maximum power around RL = 3.3 MΩ
with the commercial and solvent cast samples reaching the same order of magnitude for the output
power, about 0.4 mW instead of 0.2 mW for PVDF-c and PVDF (Figure 3D,E), respectively. A similar
performance indicates that the intrinsic properties of the PVDF materials, in particular the large
dielectric constant (ε ≈ 6) [38], overcomes the effects related to the manufacturing process and surface
roughness variations.
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The important role of the dielectric properties in the triboelectric output of the samples is
demonstrated by the PVDF composites reinforced with barium titanate. The high dielectric constant
of the ceramic nanoparticles (150) embedded into the PVDF matrix (dielectric constant around 6)
leads to an increase of dielectric constant with an increase of filler content [39,40] up to ε ≈ 15
for the composite PVDF, increasing the performance of the triboelectric system, as predicted by
theoretical models [9,41,42] and experimental measurements [38]. Thus, a maximum power output
of 0.2 and 3.9 mW was obtained for neat PVDF and 30BT/PVDF, respectively, as shown in Figure 3F,
demonstrating that increasing the dielectric constant of a specific material leads to an increase of its
triboelectric output. In conclusion, the roughness and dielectric permittivity of polymers influence the
triboelectric performance, being that the dielectric properties are more preponderant in the charges
transferred between opposite surfaces.

Commercial pair of materials Mica:Kapton presents a P = 0.5 mW for RL = 5 MΩ, despite being
one of the most opposite pairs within the triboelectric series. Contrary to PVDF, surface treatments in
the surface (smooth surfaces) of the commercial materials decreases their triboelectric performance.
A similar effect can be observed in Mica:PU with P = 0.7 mW. In this case, the output power continues
to increase with increasing RL, leading to an output voltage that increases up to 250 V. Mica:SEBS,
on the other hand, reaches P = 0.6 mW at RL = 10 MΩ (Figure 3C). SEBS with Mica, being similar to
Mica:PA66, despite the proximity of these materials in the triboelectric series.

3.2. Energy Harvesting Application

A simple application was developed by harvesting the triboelectric energy into a capacitor and
later powering a LED (Figure 4A). The two material pairs with the largest output powers, PA66:PP and
Mica:30BT/PVDF, were used. The triboelectric pairs were connected to an electrical circuit containing
4 diodes in order to transform the AC to DC voltage and charge a capacitor of 15 µF, as illustrated in
Figure 4B.
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Figure 4. Illustration of the complete setup (A) with the pair of materials, detailed electronic
circuit scheme (B) and Picoscope connected to a laptop. (C) Electric circuit for powering the LED
and (D) charge-discharge cycles using triboelectric materials (PA66:PP or Mica:30BT/PVDF pairs)
as nanogenerators.
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The circuit follows a traditional DO-35 Schottky (D1 to D4) rectifier bridge topology with an
output electrolytic capacitor for energy storage, powering a load composed by a manual switch button,
the LED and the resistor (Figure 4C). This setup enables the energy to be stored and manually discharge
over the load when the voltage level is suitable.

When the capacitor is charged, using a light switch, the LED was lighted on and the respective
voltage drop at the capacitor ends was observed (Figure 4C).

By using Mica:30BT/PVDF or PA66:PP pairs it is possible to charge the 15 µF (capacitor with 25 to
30 cycles, the capacitor being able to turn on the LED for a few seconds) (Figure 4D). It is to notice
that this is achieved with a small active area of 46.4 × 10−4 m2 in each material. Thus, by increasing
the active area of the materials to 0.14 m2, the capacitor could be charged in just one cycle. Thus,
implemented in an example, a human walking can generate in a few steps enough energy to power the
LEDs, taking into account the weight and area of the shoe.

4. Conclusions

The triboelectric effect using a polymers as active materials can be used to harvest energy for
low-power devices. This work compares pairs of materials in different places within the triboelectric
series, showing that not just the place within the triboelectric series, but also the surface roughness and
the dielectric constant play a critical role in determining, to some extent, triboelectric power output.
Thus, PVDF composite with higher dielectric constant (2.5 × higher) than pristine polymer generates
10 × and 15 × times larger power (3.89 mW) when compared to commercial or solvent-based PVDF.

Pairs of polymers PA66:PP (P = 5.94 mW) and Mica:30BT/PVDF (P = 3.89 mW) show the larger
triboelectric output power among the evaluated materials. Rubber-like material, such as SEBS,
present good triboelectric performance with both negative and positive materials (PA66 and Mica).

Finally, it was shown that the generated triboelectric energy can be stored in a 15 µF capacitor
and, after 30 cycles, allows the powering of a LED or other low-power application.
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