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ABSTRACT

This paper presents the Electrum Analyzer, a free-software tool
to validate and perform model checking of Electrum specifica-
tions. Electrum is an extension of Alloy that enriches its relational
logic with LTL operators, thus simplifying the specification of dy-
namic systems. The Analyzer supports both automatic bounded
model checking, with an encoding into SAT, and unbounded model
checking, with an encoding into SMV. Instance, or counter-example,
traces are presented back to the user in a unified visualizer. Features
to speed up model checking are offered, including a decomposed
parallel solving strategy and the extraction of symbolic bounds.
Source code: https://github.com/haslab/Electrum

Video: https://youtu.be/FbjlpvjgMDA
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1 INTRODUCTION

Software design validation and verification is a crucial task at early
software development stages. For realistic software, different views
of the design must be analyzed at different abstraction levels, and
taking into consideration a variety of features and configurations.
This calls for expressive formal specification languages, ideally
supported by automatic reasoning tools that can quickly analyze
models and specifications, and provide useful feedback to the user.
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Figure 1: Architecture of the Electrum tool-chain.
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When exploring the current panorama of formal methods for
software design [7], namely surveying languages and tools that sup-
port both rich structural properties — expressed in some first-order
logic flavor — and behavioral properties — expressed in temporal
logic — we have found that adequate solutions were scarce. This led
to the proposal of Electrum [7], an extension of the (purely static)
Alloy specification language [5] with dynamic features loosely in-
spired by the temporal logic of actions of TLA* [6]. Electrum — a
gold and silver alloy — combines the expressiveness of these two
popular formal methods, and was conservatively designed with a
focus on preserving the flexibility of Alloy while easing the specifi-
cation (and subsequent analysis) of behavioral properties. Key to
the success of these methods is the proper support for both model
validation and verification. To this purpose, Electrum is backed by
two automatic analysis engines: one for bounded model checking
based on the original Alloy encoding into SAT — well-suited to
quickly generate and explore alternative scenarios that conform to
the model — and another for unbounded model checking through a
translation into the SMV language [10] — which provides additional
guarantees when checking correctness properties in later stages.

This paper reports recent developments in the Electrum language
and presents the new Electrum Analyzer,! which fully integrates the
bounded and unbounded engines (separate procedures in the first
Electrum release), in a unified IDE that extends the Alloy Analyzer.
The Alloy Analyzer analyzes and provides visual feedback about
an Alloy specification, and is implemented on top of Kodkod [11],
a relational model finder built over off-the-shelf SAT solvers. This
architecture enables a clear separation of concerns: the Analyzer im-
plements the syntax and semantics of Alloy, providing a text editor
and an instance visualizer, while Kodkod focuses on the implemen-
tation of the automatic analysis procedures. Electrum preserves this
architecture, depicted in Fig. 1, relying on the new stand-alone tem-
poral relational model finder Pardinus? — kodkod’s sturdier cousin
— to support the analysis of problems provided by the Analyzer. This
architecture also eases the independent exploration of language [1]
and analysis [4, 8, 9] features, like target-oriented model finding,
dynamic specifications and temporal formulas, unbounded model

! Available under the MIT license at https://github.com/haslab/electrum.
2 Available under the MIT license at https://github.com/haslab/pardinus.


https://github.com/haslab/Electrum
https://youtu.be/FbjlpvjgMDA
https://doi.org/10.1145/3238147.3240475
https://doi.org/10.1145/3238147.3240475
https://github.com/haslab/electrum
https://github.com/haslab/pardinus

ASE ’18, September 3-7, 2018, Montpellier, France

open util/ordering[Id] // establish total order on ids
sig Id {}
sig Process {
id: Id,
succ: Process,
var toSend: set Id }
var sig Elected in Process {}

fact ring {
id in Process lone — Id
all p: Process | Process in p.”succ }

// force the ring topology

fact defElected { // define the value of Elected at each step
no Elected and always Elected' =
{ p: Process | after p.id in p.toSend and p.id not in p.toSend } }

pred init { all p: Process | p.toSend = p.id } // define initial state

pred nop[p: Process] { p.toSend' = p.toSend } // nop action

pred comm[p: Process] { // communication action
some i: p.toSend {
p.toSend' = p.toSend - i
p.succ.toSend' = p.succ.toSend + (i -

// prevs[x] = all elements < x
prevs[p.succ.id]) } }

fact trace { // traces derived from an initial state through actions
init and always all p: Process | comm[p] or comm[p.~succ] or nop[p] }

pred Consistent { eventually some Elected }
run Consistent for 2 but 10 Time // find a trace with an election

assert Safety { always lone Elected }
check Safety for 3 but 10 Time

pred progress { always (some toSend => some p: Process | comm[p]) }

assert Liveness { (some Process and progress) => eventually some Elected }
check Liveness for 3 but 10 Time // check whether at least one elected

Figure 2: Ring leader election in the Electrum language.

finding, symbolic bounds, and a decomposed solving strategy. The
unbounded engine relies on Electrod,? a stand-alone tool that com-
piles problems into SMV to be solved by symbolic model checkers
(which can also perform bounded analysis). The plug-in architec-
ture, inherited from Kodkod, allows the straightforward integration
of future developments in SAT and SMV solving. Every procedure
reports back to the Analyzer through the Pardinus API, resulting
in a uniform representation of instances and counter-examples.
In summary, the main features of Electrum and its Analyzer,
reported in this paper, are: i) a lightweight formal specification
language with rich structural and behavioral constructs (Section 2);
ii) integrated scenario exploration functionalities for visualizing
and navigating alternative solution traces (Section 3); and iii) sup-
port for automatic bounded and unbounded model checking of
specifications in first-order LTL with past (Section 4).

2 ELECTRUM SPECIFICATIONS

Electrum supports both structural and dynamic constructs, re-
stricted by additional logical constraints, over which arbitrary tem-
poral properties can be checked. The complete syntax can be con-
sulted online,* while its formal semantics can be consulted in [7].

Structure is introduced through the declaration of signatures,
that represent sets of uninterpreted elements, and fields of arbitrary

3 Available under the MPL 2.0 license at https://github.com/grayswandyr/electrod.
“https://github.com/haslab/Electrum/wiki/Language
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arity that relate elements belonging to different signatures. Each
signature and field can be declared as static (by default) or variable
(keyword var): the former have the same valuation throughout the
trace, while the latter may change over time. Hierarchy between
signatures can be introduced through extension or inclusion, and
signatures can additionally be declared as abstract. Finally, signa-
tures and fields may be restricted by simple multiplicity constraints.
For variable elements, these are applied locally at each state, e.g.,
two variable signatures extending another one are disjoint in each
state, but may swap elements from one state to another.
Additional restrictions can be imposed through facts, logical con-
straints that must hold in every instance of the specification, which
may rely on reusable predicates and functions. Relational expres-
sions are built by composing signatures and fields (and some built-in
constants) with common set-theoretic and relational operators like
join . or transitive closure ~. Expressions can be primed, referring to
its valuation in the succeeding state. Atomic formulas are defined
as inclusion (or equality) tests of relational expressions, which can
be combined through the common Boolean operators, first-order
quantifications and future and past LTL operators. Although past
operators were not initially supported, and despite not actually
improving the logical expressiveness, our experiments have shown
that they often allow simpler and more succinct specifications.
Writing Electrum specifications tends to follow a pattern that
builds on the dichotomy between static and variable elements, as
exemplified by the model in Fig. 2 of a leader election algorithm
for ring topologies.” The first step usually consists of the definition
of the static structure (the network topology, established by field
succ, that arranges the different Process elements identified by
totally ordered Id elements), as well as facts that restrict what is
considered a valid valuation for these elements (like ring, forcing
the ring topology and unique identifiers). We usually refer to these
as representing the configurations of the system, all of which will be
explored by the analysis procedures but that remain frozen through
a particular trace. Then, the variable elements are introduced (here,
which processes are effectively considered Elected, represented
by a variable sub-set of Process, and the tokens that are to be sent
between processes, represented by variable field toSend). These
can also be bound by temporal facts (like defElected, that forces
Elected to be initially empty and defines it in each succeeding
instant). To restrict the evolution of the system, state formulas
(formulas without temporal operators or primed expressions, like
init) and actions that restrict the system evolution (predicates that
relate values from the current state with those from the succeeding
one through primed variables, like comm and nop) can be defined.
More complex actions may use arbitrary LTL operators. A fact (like
trace) can then enforce that, globally, every state is reached by the
application of actions starting at some initial predicate.

3 MODEL VALIDATION

Lightweight formal specifications are often used to validate design
decisions prior to the employment of more advanced methods. In
Electrum, analyses can be performed by run and check commands:
the former instruct the Analyzer to search for instances that satisfy

SA tutorial with the step-by-step development of this example is available at
https://github.com/haslab/Electrum/wiki/Tutorial.
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Figure 3: Example trace in the Electrum visualizer.

certain properties, the latter for counter-examples that break desir-
able properties. Run commands are typically defined as a first step
towards the validation of the model by generating instances with
interesting properties, such as Consistent in Fig. 2, that asks for
a trace where a process is eventually elected leader using an LTL
formula. Commands are always restricted by scopes that determine
the maximum (or exactly the) number of elements of each signature
that will be considered by the analyses. Bounded model checking
is particularly useful at this stage due to its performance, providing
quick feedback to the user; it is employed if a SAT solver or an SMV
model checker with the bounded option is selected through the GUL
A protected scope Time restricts the size of the traces to be analyzed
in this case. The Consistent command will search for instances
with at most 2 elements per signature, but 10 Time steps. Due to
the nature of the Electrum translation into LTL, all instances found
by the commands encode infinite traces through looping states.
Computer-aided support for scenario exploration is critical to fa-
cilitate the detection of problematic instances or illustrative counter-
examples of the desired properties. To ease this process, the bounded
engine of Electrum allows the user to control the range of trace
lengths that will be considered. By default, the Time scope deter-
mines the maximum length n that will be analyzed, resulting in a
(seamless) iterative process that starts from length 1 up to n. The
search can however be restricted to consider exactly a length n or
even a range n. .m, reducing the effort to find a relevant instance.
The Analyzer provides a visualizer that graphically presents in-
stances found by run and check commands. This allows for the
logic-agnostic, uniform visualization of traces generated by the
bounded and unbounded engines, making them understandable for
stakeholders without expertise in formal specification. It is essen-
tially an adaptation of Alloy’s visualizer (resembling the visualiza-
tion of projected instances), with additional support for navigating
infinite traces through looping states. The support for visualization
themes is also preserved. Figure 3 depicts an instance found for the
Consistent run command with 3 states looping back into the 2nd,
as highlighted in the GUI. The evaluator, which performs queries
over instances, has also been adapted to consider the selected state.
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Once an instance is found, it is often useful to navigate through
alternative instances that satisfy (or break) the specified property.
The Alloy Analyzer, through Kodkod, supports basic navigation by
relying on incremental SAT solvers and a powerful symmetry break-
ing algorithm, quickly generating unique instances in an arbitrary
order. In Electrum, the SAT engine generates instances ensuring
that the current target trace length will not be increased until that
length is exhausted, providing a certain degree of predictability. At
that point, seamlessly to the user, the length is increased (if it is still
within the Time scope). The SMV engine also allows iteration, but
limited to at most one instance per configuration. More advanced
scenario exploration techniques are currently being studied.

4 MODEL VERIFICATION

After validation, the next natural step is to verify the correctness of
the specification by model checking safety or liveness properties.
Electrum supports assertions specified as arbitrary LTL properties,
that can be verified, within a certain scope, by check commands.
Such is the case of Safety in Fig. 2, that checks whether at most
one process is elected leader at any given time, and Liveness, that
checks whether a process will eventually be elected, for a universe
with up to 3 processes. The latter will actually produce a counter-
example unless an additional fact forces progress, again specified
as arbitrary LTL formulas. Once properties are shown to hold by
bounded analysis, the (less scalable) unbounded procedures can
provide more confidence regarding the correctness of the model.
This is done by selecting either unbounded NuSMV or nuXmv
through the GUIL Scopes on Time will then be ignored as these
check for traces with arbitrary length, although finite state spaces
are still considered (i.e., still at most 3 processes are considered).
These procedures rely on Electrod, which converts the relational
layer into plain first-order logic, which is then expanded into (propo-
sitional) LTL, depending on the possible valuations of sets and
relations inferred from the Electrum model and the bounds on
first-order domains. As in Kodkod, lower bounds and symmetries
(computed by Pardinus) are leveraged to simplify the end result. The
resulting SMV model features a representation of inferred system
transitions as TRANS sections, and other inferred invariants and ini-
tial conditions. The default checking procedure in nuXmv [2] relies
on the k-liveness algorithm (experience has shown that it is usually
more efficient than NuSMYV by at least an order of magnitude).
Several techniques have been studied to improve the scalability
of the analyses. Pardinus implements a decomposed model find-
ing strategy with symbolic bounds, that concurrently tries to find
instances in tighter search spaces [9]. This strategy is particularly
relevant for complex problems whose result is expected to be satisfi-
able, since often the concurrent smaller problems will find a solution
faster. Symmetry breaking is properly preserved. This strategy can
be selected from the GUI, either purely parallel or in a hybrid mode
where the original analysis runs concurrently. Symbolic bounds are
automatically inferred from the signature hierarchy and bounding
expressions in field declarations. Currently, the problem is auto-
matically partitioned between the structural and dynamic elements
of the specification, although criteria based on the dependencies
entailed by the symbolic bounds have shown to be more efficient in
some scenarios [9], which we intend to implement on the Analyzer.
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Table 1: Summary of the performed tests (time in seconds).

Spec/Command S n MA MH BA BH XA XH
spantree(1) S 5 0.15 0.32 2.54 0.49 4.96 0.58
spantree(2) U 5 1.76 4.66 4.30 4.53  30.05 31.07
spantree(3) U 5 7.82 13.37 13.49 14.37 25.15 28.23
spantree(1) S 6 0.18 0.32 11.28 0.59 15.77 0.71
spantree(2) U 6 5.19 6.75 41.03 42.22 344.40 363.20
spantree(3) U 6 45.30 47.72 130.09 133.53 512.55 502.01
ring(1) S 4 0.14 0.26 0.48 0.37 3.38 0.43
ring(2) U 4 1.02 1.70 0.82 0.92 5.80 5.82
ring(3) U 4 236 2.95 3.10 3.06 210.63 204.87
ring(1) S 5 0.15 0.34 1.01 0.40 3.82 0.49
ring(2) U 5 2.38 4.17 6.53 6.81 40.07  39.96
ring(3) U 5 8.75 10.04 26.90 26.46 t/o t/o
javatypes(l) S 3 0.18 0.38 0.76 0.72 3.75 0.86
javatypes(2) U 3 3.21  6.23  tlo t/o  157.60 121.85
javatypes(l) S 4 0.19 0.48 3.26 0.78 7.67 0.82
javatypes(2) U 4 109.69 109.85 t/o t/o t/o t/o
hotel(1) S 4 0.21 0.73 1.76 0.57 5.23 0.71
hotel(2) S 4 0.42 1.41 1.55 1.70 8.61 8.79
hotel(3) U 4 3.01 5.66 22.68 23.07 t/o t/o
hotel(1) S 5 0.27 1.25 11.45 0.61 22.18 0.75
hotel(2) S 5 0.98 1.69 8.89 8.88 90.11 73.47
hotel(3) U 5 13.09 17.48 t/o t/o t/o t/o
firewire(1) S 4 0.25 0.57 0.86 0.99 3.89 3.92
firewire(2) U 4 5.91 8.64 4.60 4.49 t/o t/o
firewire(3) U 4 4.49 6.99 64.03 34.60 136.43 136.70
firewire(1) S 5 0.29 0.44 2.11 2.15 6.56 6.21
firewire(2) U 5 9.02 13.35 11.59 11.73 t/o t/o
firewire(3) U 5 9.15 10.83  28.79 340.57 423.59 179.86
dijkstra(l) S 4 0.11 0.17 0.30 0.30 0.44 0.36
dijkstra(2) U 4 0.62 0.97 0.45 0.45 1.00 0.95
dijkstra(3) U 4 214.29 140.92 33.86 32.73 2.39 2.24
dijkstra(l) S 5 0.12 0.15 0.30 0.32 0.48 0.36
dijkstra(2) U 5 0.81 1.25 0.57 0.57 2.23 2.20
dijkstra(3) U 5 t/o t/o t/o t/o 7.59 7.44
ertms(1) S 2 0.44 0.54 3.43 0.94 5.46 1.49
ertms(2) S 2 85.65 53.39 t/o 243.60 t/o 217.89
ertms(3) S 2 91.17 56.60 t/o 251.60 t/o 222.30
ertms(4) U 2 34.94 35.16 79.30 79.01 72.93 71.28
ertms(1) S 3 1.00 0.82 80.73 1.44 77.75 2.90
ertms(4) U 3 291.63 307.22 t/o t/o t/o t/o

5 EVALUATION

Electrum and associated tools are in active development and pub-
licly available in open-source. Its plug-in architecture allows us to
quickly support future improvements on SAT and SMV solvers. A
repository of examples is available,’ which includes the conversion
of most dynamic Alloy models from the official distribution. Our
successful answer [3] to the ABZ18 call for case study contributions
pushed Electrum to its limits and is a fine testimony to the power
of the language and tools. Electrum is also being used in an indus-
trial collaboration to formally analyze some safety requirements
of a platform screen door system for subways. The approach has
allowed us to consider various implementation solutions, actually
used in different countries, encompassed by a single model.
Specification languages as expressive as Electrum are scarce.
Languages with support for first-order logic and dynamic behavior
include TLA*, the B method, and other dynamic extensions to Alloy
(at varied stages of robustness). These formal methods are in general
less flexible than Electrum, either failing to support rich structural
constraints, declarative actions, or expressive temporal properties
with future and past operators, resulting in a more cumbersome
and verbose modeling process (see [7] for a detailed analysis).

®https://github.com/haslab/Electrum/wiki/Examples
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Table 1 depicts the performance of the Analyzer for a set of
models with both satisfiable (S) and unsatisfiable (U) commands
(i.e., with and without solutions) and varying scope (n). They are
available at the example repository, and the 1st column identifies
the commands within each model. A scope 10 on Time was set in
all bounded tests. All tests were run on a dual Intel Xeon E5-2699
with 36 threads and 512GB RAM, SAT-based ones using MiniSAT
2.2 (M) and SMV-based ones using nuXmv 1.1 in bounded (B) and
unbounded (X) modes. Tests were run without (A) and with (H)
the hybrid decomposed strategy with automatic decomposition on
variable elements and symbolic bound extraction. Timeout was set
at 10m. In non-decomposed SAT-based runs (MA), models are even-
tually converted into plain Kodkod with explicit state, as would
pure Alloy specifications. Thus, they allow us to compare the per-
formance of the Electrum Analyzer with that of the Alloy Analyzer.

As expected, unbounded procedures, in general, scale worse than
bounded ones (despite some exceptions, like in dijkstra(3)),
but also provide additional correctness guarantees. Bounded SMV
procedures perform worse than SAT-based ones (again, despite
the exception in dijkstra(3)). Regarding the employment of
the decomposed strategy, most gains occur at SAT problems, as
expected [9]. It is particularly relevant in unbounded procedures,
many of which would timeout otherwise (like ertms). Also note
that, even when the hybrid approach is outperformed, it is never by
a factor higher than 1.5 for problems not solved in a few seconds.

Currently we are exploring advanced scenario exploration pro-
cedures tailored for temporal traces, and how to improve the per-
formance of the analysis procedures, namely by extracting tighter
symbolic bounds and implementing alternative partition criteria.
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