
Static-time Extraction and Analysis of the ROS
Computation Graph
André Santos, Alcino Cunha and Nuno Macedo
High-Assurance Software Laboratory (HASLab)

INESC TEC & University of Minho
Braga, Portugal

Email: {andre.f.santos, alcino.cunha, nuno.m.macedo}@inesctec.pt

Abstract—The Robot Operating System (ROS) is one of the most
popular open source robotic frameworks, and has contributed
significantly to the fast development of robotics. Even though
ROS provides many ready-made components, a robotic system is
inherently complex, in particular regarding the architecture and
orchestration of such components. Availability and analysis of a
system’s architecture at compile time is fundamental to ease com-
prehension and development of higher-quality software. However,
ROS developers have to overcome this complexity relying mostly
on testing and runtime visualisers. This work aims to enhance
static-time support by proposing, firstly, a metamodel to describe
the software architecture of ROS systems (the ROS Computation
Graph) and, secondly, model extraction and visualisation tools
for such architectural models. The provided tools allow users
to specify custom-made queries over these models, enabling the
static verification of relevant properties that had to be (manually)
checked at runtime before.

Keywords-static analysis; software architecture; software qual-
ity; robotics

I. INTRODUCTION

Robotics is going through a phase of growth and rapid
development, with modern robots being applied in industry
and research, but also at the consumer level. Human-Robot
interaction and free motion in unstructured environments are
now a reality that renders traditional, hardware-based safety
mechanisms (such as enclosing cages) infeasible, and increases
the chances for catastrophic failure. Much of the control over a
robotic system is handled by increasingly complex networks of
software components. Thus, ensuring the correctness of both
the software components and their orchestration, as well as
ensuring the availability of analysis tools during development
are issues of increasing importance.

The Robot Operating System (ROS) [1] is an open source
development framework that has thrived and brought together
a vast community, mostly due to its ease of access and
usage. Many modern robotic applications use ROS either
in production or during prototyping stages. ROS provides
ready-made implementations for many common features and
algorithms, and is highly based on independent processes
communicating by message-passing. These factors make the
work of a ROS roboticist more akin to that of a system architect
or designer, by determining which components to reuse, which
to implement, and how they interact.

In ROS, orchestration includes (among other tasks) guaran-
teeing that all communication channels are correctly assigned
on both ends, and that the published messages match the
message types expected by subscribers. Since components
present themselves at varied stages of maturity and often
lacking adequate documentation, without proper tool support
this process is cumbersome and error-prone. The goal of
this work is to enable ROS developers to reason about the
architecture and context-specific properties of a robotic system,
assembled with third-party packages, at a level of abstraction
that is more intuitive than raw source code.

Tools like rqt_graph1, a popular ROS tool for runtime
visualisation of the ROS Computation Graph – the network
of processes and communication channels – are essential to
make the configuration aspects of ROS less error-prone and
to improve the comprehension of a system’s architecture. But
what runtime analysis gains in accuracy, it loses in being more
time-consuming, requiring configuration and execution of the
system, covering a limited range of execution paths and being
harder to trace back to the source code.

Recovering the ROS Computation Graph at compile time
would be ideal, as it would allow the architecture to be
immediately available to the developer, without interrupting
the flow of development. Moreover, we believe that the ability
to perform advanced analyses over architectural models is
key to promote comprehension and to detect potential issues.
Despite the existence of general patterns and properties, what
constitutes a good system design is largely context-dependent,
thus such analyses must necessarily be customisable by the
user. To our knowledge, there are no tools providing this kind
of development support as of yet.

This work proposes a solution for the analysis and validation
of the architectural design of ROS applications. Our first
contribution is a metamodel to describe the software side
of ROS systems, including the ROS Computation Graph.
This metamodel is close to the level of abstraction adopted
in the ROS documentation while still being traceable back
to the source code artefacts. This has some immediate ad-
vantages: i) familiarity with the concepts; ii) being more
tractable to reason about than raw source code; iii) being
amenable to reverse engineering from the source code. A

1http://wiki.ros.org/rqt_graph

second contribution consists of components for the static-time
extraction, visualisation and analysis of models conforming
to this metamodel, fully integrated in the core capabilities
of HAROS2, a ROS static analysis framework. HAROS was
extended to support architectural analysis plug-ins, and its
analysis routine allows the execution of user-defined queries
on extracted models. These analyses are natively supported by
the visualiser, providing graphical feedback for query matches.
Since extracting a fully-resolved model at static time may be
impossible, the metamodel and the components natively handle
incomplete or ambiguous information. It is important to note
that, although ROS version 2 has been officially released, our
work targets the more widely adopted original version of ROS.

This paper presents our proposal starting with an overview
of the most relevant features of ROS and how they fit into our
metamodel in Section II. Right after, Section III presents the
tools and methodology employed to extract, visualise and query
ROS architecture models. Section IV reports our experience
with a real case study, and illustrates some of the properties
that can be checked with our query system. In Section V we
compare our approach to existing work in ROS modelling and
static analysis. At last, Section VI wraps the paper and points
to future work directions.

II. A METAMODEL FOR ROS APPLICATIONS

ROS systems are complex to describe, much due to their
flexible and informal nature. Nonetheless, some key concepts
and features are present in most situations. Our metamodel
and analyses try to capture these. For most of the entities in
the metamodel a Location (in the source code, with varying
granularity) and Source Conditions are provided. Conditions
can refer to anything that might interfere with the manifestation
of the entity, and whose value is unknown after the extraction
takes place, for instance the conditions within an if statement.
Conditions allow us to consider conditional entities and
variability points as first-class items.

Our catalogue of concepts can be roughly divided in two
groups, one for Source Code Entities – entities that are static
and whose purpose is to build the ROS system – and another
group for Runtime Entities – entities that exist and make sense
only during the runtime of a specific ROS system. In Fig. 1
we provide the source code for a minimal ROS application
that will be used as a running example in this paper.

Source Code Entities are the most familiar to any developer,
and the most prominent of them is the Package, which is the
core build and distribution unit in ROS. A Package, uniquely
named within a system, consists of a set of configuration and
source code files, plus any additional required resources, such
as data files. In particular, a Package may contain Launch Files,
XML configuration files that are used to define and deploy
Runtime Entities (Fig. 1 line 27 onward). We abstract most
of these contents as simply Source Files. Packages are often
grouped and published in Repositories, with GitHub being the
most popular hosting platform.

2https://github.com/git-afsantos/haros

1 / / F i l e " a c t i v e . cpp " , c o m p i l e s t o Node " a c t i v e "
2 i n t main (i n t a rgc , c h a r ∗∗ a rgv) {
3 r o s : : i n i t (a rgc , argv , " t a l k e r ") ;
4 r o s : : NodeHandle nh ; s t d : : s t r i n g param ; d ou b l e hz = 1 0 ;
5 s t d : : g e t l i n e (s t d : : c in , param) ; / / <−− u s e r i n p u t
6 nh . ge tParam (param , hz) ; / / <−− i m p o s s i b l e t o e x t r a c t
7 r o s : : P u b l i s h e r pub =
8 nh . a d v e r t i s e < s td_msgs : : S t r i n g >(" monologue " , 10) ;
9 r o s : : S e r v i c e C l i e n t c l i e n t =

10 nh . s e r v i c e C l i e n t <example : : GetCounter >(" c o u n t e r ") ;
11 w h i l e (r o s : : ok ())
12 { /∗ pub . p u b l i s h (. . .) ; c l i e n t . c a l l (. . .) ; ∗ / }
13 r e t u r n 0 ;
14 }

15 / / F i l e " r e a c t i v e . cpp " , c o m p i l e s t o Node " r e a c t i v e "
16 vo id c a l l b a c k (c o n s t s td_msgs : : S t r i n g : : C o n s t P t r& msg) ;
17 boo l g e t C o u n t e r (example : : Ge tCoun te r : : Reques t &req ,
18 example : : Ge tCoun te r : : Response &r e s) ;
19 i n t main (i n t a rgc , c h a r ∗∗ a rgv) {
20 r o s : : i n i t (a rgc , argv , " l i s t e n e r ") ;
21 r o s : : NodeHandle nh ;
22 nh . s u b s c r i b e (" c h a t t e r " , 10 , c a l l b a c k) ;
23 nh . a d v e r t i s e S e r v i c e (" c o u n t e r " , g e t C o u n t e r) ;
24 r o s : : s p i n () ;
25 r e t u r n 0 ;
26 }

27 < l a u n c h > < !−−−−−−− F i l e " minimal . l a u n c h " −−−−−−−>
28 <param name=" f r e q u e n c y " t y p e =" do ub l e " v a l u e =" 1 " / >
29 <node name=" l i s t e n e r " pkg=" example " t y p e =" r e a c t i v e " / >
30 <node name=" t a l k e r " pkg=" example " t y p e =" a c t i v e ">
31 <remap from=" monologue " t o =" c h a t t e r " / >
32 < / node>
33 < / l a u n c h >

Fig. 1. A minimal ROS application, featuring two C++ nodes and an XML
launch file to configure the application deployment.

Packages are extended with the set of Nodes they contain.
The term Node is often used in ROS both to describe a
runtime process and the executable from which processes are
instantiated (also called the type of the runtime node). To avoid
ambiguity, we refer to a Node as a compiled program, script
or some other build target, while Node Instances denote the
runtime counterparts. As an example, compiling active.cpp and
reactive.cpp from Fig. 1 would result in two Nodes. Note that
a single Node can be instantiated multiple times within the
same application, with different arguments.

Each Node contains the set of Source Files that builds it and
a set of ROS Primitive Calls, function calls to ROS primitives
in the source code, such as advertise (line 8) or subscribe (line
22). Each Primitive Call stores all relevant function arguments.

Runtime Entities consist of a series of concepts to which
any ROS developer is exposed early on. Most of these were
directly identified from the official ROS documentation34. At
top-level there is the ROS Computation Graph, the network of
named entities processing and sharing data in a ROS system.
These entities, also known as Resources, can be divided into
four main categories, namely Node Instances, Topics, Services
and Parameters. Even though there are extensions to these
Resources added by libraries, such as Actions, these are not
yet included in our metamodel.

Node Instances are the main participants in a ROS system,
since they are responsible for all data processing. The remaining

3http://wiki.ros.org/ROS/Concepts
4http://wiki.ros.org/Names

three types of Resources represent the main available ROS
primitives through which Node Instances communicate. In
essence, Topics route messages in a publisher-subscriber
paradigm, Services are the client-server (or remote procedure
call) alternative, and Parameters are shared key-value pairs of
data, stored in a central Parameter Server.

All Resources are uniquely identified by a ROS Name,
a pseudo-identifier following some naming and resolution
conventions (cf. the documentation). The Node Instances in
our example are given the names listener and talker (see lines
29 and 30). Node Instances gain access to other Resources by
supplying the respective ROS Names to the different primitives
(e.g., chatter in line 22). Also, as a way to promote component
reuse, it is possible to provide Node Instances with Name
Remappings (line 31). Remappings transparently re-route the
names supplied to primitives. This is useful to connect or
disconnect nodes without altering the source code.

It is possible for the model not to have enough information
to fully resolve ROS Names. In this case, as many parts as
possible of the ROS Name are resolved (a prefix or suffix)
and then wildcards are used to capture the rest. The frequency
parameter in our example (defined at line 28) is accessed by
providing the Parameter name via user input (lines 5 and 6).
As such, it is unknown at static time, and the Parameter name
will be referenced in the extracted model with a wildcard ?.

Our metamodel also considers ROS Primitive Links, which
are the connections between Resources, or, in essence, the
edges of the Computation Graph. They include an additional
reference to the resolved ROS Name that was initially requested
in the corresponding Primitive Call, before applying any name
remappings of the specific Node Instance. Consider the call to
advertise in the talker Node Instance from our example (line
8). This call is affected by the remapping from monologue to
chatter in the launch file (line 31). As such, a Publish Link
between talker and the Topic chatter is derived, but it also
retains the initial reference to monologue.

Connecting both Source Code and Runtime Entities, we
introduce the concept of Configuration. Configurations are
user-defined ROS applications, composed of the corresponding
Computation Graph, sequence of Launch Files, and required
environment variables. Including a copy of the environment is
a necessary step, since environment variables can be accessed
from all sorts of source files, and even be part of Conditions.

Lastly, we introduce the entry point to the whole metamodel,
the Project, which is a user-defined set of Packages and Con-
figurations, and may also contain a set of relevant Repositories.
Fig. 2 summarises the presented concepts.

III. ARCHITECTURAL ANALYSIS IN HAROS

Components for the extraction and analysis of a ROS
system’s model after-the-fact from source code have been
developed and integrated as core parts of the HAROS frame-
work. An extractor populates a Computation Graph database,
which is consumed by a graphic visualiser and a general query
analyser, as detailed in the succeeding sub-sections.

Fig. 2. ROS metamodel. Location and Source Condition are omitted. Edges
use the Entity-Relationship Diagram notation for cardinality.

1 p r o j e c t : r un n ing_example
2 p a c k a g e s : [example_package]
3 c o n f i g u r a t i o n s :
4 minimal :
5 l a u n c h : [example_package / l a u n c h / minimal . l a u n c h]

Fig. 3. A HAROS project file declaring a minimal Configuration.

To move towards application-centred (rather than package-
centred) feedback, HAROS project files were extended to
support the definition of Configurations (an identifier and a
list of launch files, see Fig. 3). Since the extraction process
can be incomplete, users are also able to provide extraction
hints. These hints consist of listing Node Instances annotated
with the Topic or Service names and message types that they
should advertise or subscribe. Extraction hints may be partial,
and they are used to find potential matches when Resource
names are unresolved in the normal extraction procedure.

Technically, these components required new additions to
HAROS’ core, including a CMake parser, a Launch file parser,
a Node extractor and a Configuration extractor. Working directly
with a compiler’s Abstract Syntax Tree (AST) is still rather
complex and hardly extensible (e.g. the variants of a for loop
have distinct trees), so an intermediate step is performed to
convert the C++ compiler’s tree into a simplified data structure.
Given that this is not a ROS-specific process, this component
has been refactored and distributed as a standalone library5.
Despite its current focus on C++, the library has been designed
for extensibility, so that Python, C and other relevant languages
in the ROS ecosystem might be integrated at a later point.

A. Model Extraction

Model extraction relies on the HAROS infrastructure to
retrieve ROS source code and generate the corresponding
Computation Graph, according to our metamodel.

The first step of this reverse engineering process is to
identify the application under analysis, but ROS has no clear
definition for application. In fact, ROS is dynamic, allowing
participants (nodes) to join or leave the system at any time.
Our first approach [2] attempted to define a ROS application
as being a top-level launch file within a package – a launch
file that is not reused by any other. This approach enables the

5https://github.com/git-afsantos/bonsai

automatic detection of applications and is accurate to some
extent. However, it is too restrictive, since several top-level
launch files may be launched in conjunction, forming a single
application. Thus, in this work, defining which launch files and
nodes go into a Configuration is a task delegated to the user.

The next step is to parse the launch files in order. The
parsing process is very akin to a live interpretation of the file,
similar to what the roslaunch tool does, resolving values
as it progresses. In this case, however, we are only interested
in registering launch artefacts, rather than actually launching
them. From the launch file in Fig. 1, this step would register the
creation of a Parameter and two Node Instances, one of which
contains a remapping. Our parser also differentiates itself from
roslaunch by not throwing errors or resorting to default
values when it cannot resolve variables. Instead, it marks the
affected entities as conditional, registering the Conditions that it
is unable to resolve. This information can be used to determine
how coupled a system is to external variables. The outcome
of this parsing step is a fully resolved set of Node Instances,
Parameters, remappings and other artefacts that are (definitely
or conditionally) part of the Configuration.

The main challenge with node declarations in launch files
is that nodes are instantiated by providing package and
executable names (pkg and type attributes in Fig. 1, lines
29 and 30). Packages and Source Files can be extracted using
the infrastructure of HAROS. To build the mapping between
Source Files and Nodes, we have to parse the various CMake
files used by the build system.

The final step to the extraction process is the parsing of
the source code itself into ASTs. By traversing the AST of a
Node, it is possible to detect occurrences of ROS Primitive
Calls and whether they are under control flow structures. In
the event that the Primitive Calls contain non-literal arguments,
the extractor attempts to walk backwards in the program to
resolve the unknown values. An example of this could be the
param variable in line 6 of Fig. 1. In this case, however, the
expression would be impossible to resolve.

Parsing and traversing an AST can take some time, especially
when parsing C++ code. To improve the overall performance
of the extraction process, we started working on a built-in
database of well-known, pre-parsed Nodes. This database is
a work in progress, but it should only contain Nodes that
belong to documented packages, released in the official ROS
distributions. One of the major principles in ROS is the reuse
of components. Considering that third-party packages are often
installed from binaries, and source code may not be available
for parsing, embedding this domain knowledge in the tools
contributes to the completeness of the extracted models.

After traversing and extracting primitives from all Nodes, it
is possible to match Nodes with launch files (e.g. matching line
30 from the example with active.cpp), derive the respective
Node Instances and ROS Primitive Links, and apply the given
extraction hints. It is through the instantiated Links that we
determine which Topics, Services and Parameters need to be
created and added to the Configuration (e.g. the Topic chatter).

Fig. 4. Rendering of the toy example from Fig. 1. Resource types are
distinguished by colour. The highlight on talker denotes a query match.

1 f o r n i n < c o n f i g s / nodes > where l e n (n . remaps) > 0 r e t u r n n

Fig. 5. Basic query to identify Node Instances with remappings.

B. Model Visualisation

The Computation Graph visualisation component, integrated
in the HAROS visualiser, renders a graph of the extracted
model, where each graph node is a Resource and the edges rep-
resent the ROS Primitive Links between them. This component
features individual Resource inspection (e.g. message type and
traceability to the source) and visibility settings for different
Resources. Fig. 4 shows the rendering of our toy example.

The visualiser has also been built to natively support the
incomplete nature of extraction processes, both by displaying
the conditions associated to a conditional Resource and by
rendering conditional entities differently, using dashed lines.
Moreover, when a Resource name is unresolved, the visualiser
computes and highlights every potential match of the same type
to help the user identify possible alternative configurations. For
instance, selecting the ? Parameter from Fig. 4 would highlight
frequency, which is most likely the correct match.

C. Model Analysis

The analysis procedure of HAROS has been altered in
two ways, so as to enable both fine-grained and coarse-
grained analysis of Computation Graphs. The former can be
achieved by developing custom analysis plug-ins, as is the
norm with HAROS. In addition to the original entry points
for source files and packages, a new plug-in entry point is
available for Configurations produced by the extractor. This
gives programmatic freedom to the plug-in developer over the
Configuration data structure. Coarse-grained analysis, on the
other hand, trades flexibility for ease of use. We have extended
HAROS with an analysis component that runs user-defined
queries over the extracted models. In many cases, using a query
language is simpler, and more desirable, than implementing
an analysis plug-in, but the range of expressible properties is
more limited. As an example, Fig. 5 shows a simple query to
identify Node Instances affected by name remapping.

Such a query engine could be implemented as a HAROS
plug-in itself. Query matches are reported back to the user
through the same issue reporting mechanisms that are available
to traditional plug-ins, but, due to embedding the engine as a
core feature of HAROS, the Computation Graph visualiser can
also provide graphical feedback for applicable queries. Fig. 4
shows the highlight on talker, which is the match found for the
query in Fig. 5. Another immediate advantage of embedding

the engine is that queries can be specified in the project files
that HAROS already requires.

The query language uses a Python-like syntax and the
implementation of the query engine is based on PyFlwor6,
a query system for in-memory Python objects. PyFlwor allows
for two styles of queries, one based on XPath (called path
expressions) and another based on XQuery (called FLWR
expressions). Both styles of expressions operate on collections,
and return sets of objects. Path expressions have a declarative
flavour, whereas FLWR expressions are more programmatic.
The FLWR acronym stands for For-Let-Where-Return, the four
basic statements of that style, in order. The example given in
Fig. 5 follows the FLWR style, without a let statement.

A path expression can be refined with a filter (called where
condition) and combined with various set operators (e.g. union,
intersection, difference). The query in Fig. 5 can be rewritten
as the following path expression: configs /nodes[len (self . remaps) > 0].
The where condition is the expression within square brackets.

A FLWR expression starts with a for statement, iterating
over a set of elements given by a path expression. An optional
let statement follows, where additional variables can be defined.
The value of a variable can be the result of a nested FLWR
query. The third statement, an optional where statement, is used
to define arbitrary conditions. When a condition is satisfied,
the return statement is executed, to calculate the desired result
for that iteration and add it to the set of values that is to
be returned at the end. Section IV-B contains more complex
examples following this style.

To recapitulate, our contribution is not the query language or
the engine themselves, but integrating this engine in HAROS
and providing the context on which the engine operates, i.e.
making certain functions and collections of objects available
to users of the query language (e.g. the collection of all parsed
Nodes). Namely, queries have access to four top-level collec-
tions: files, the collection of all Source Files; packages, the
collection of all Packages; nodes, the collection of all extracted
Nodes (not Node Instances); and configs, the collection of
all extracted Configurations. Each of these provides all the
attributes and relations defined in our metamodel.

IV. PRELIMINARY EXPERIMENTS

In order to validate our approach, we have tested our
extraction tools on real case studies, such as the TurtleBot27,
and the AgRob V168. The former is a robot that is commonly
used in the ROS community for learning and research. The
latter is a modular robotic platform for hillside agriculture,
adapted to sloping and uneven terrains (see Fig. 6). It is
designed for monitoring, precision spraying, pruning and
selective harvesting, particularly in steep slope vineyards. In
this section we present the extracted models for both case
studies and our motivations for selecting them, as well as some
queries performed over the models.

6https://github.com/timtadh/pyflwor
7http://www.turtlebot.com/turtlebot2/
8http://agrob.inesctec.pt/

Fig. 6. The AgRob V16 agriculture robot monitoring a slope vineyard.

Fig. 7. Rendering of a TurtleBot2 Configuration, including Node Instances
(white), Topics (coloured) and conditional Topics (dashed). Names and
Parameters are omitted for readability.

A. Model Extraction for TurtleBot2 and AgRob V16

TurtleBot2 provides for an interesting case study, since its
source code includes uncommon features, such as conditional
topic subscriptions, that our tools should be able to handle.
Besides, it has been implemented with extensibility and
customisation in mind, featuring tens of different launch files
and configurations out-of-the-box. In fact, this example was
enough to demonstrate the limitations of the C++ parser. Some
of the required arguments for ROS primitives are provided by
member variables of a C++ class – internal state that may be
modified at any other point of the program – and values that
are constructed within loops (e.g. subscribing topics from a
Parameter list). Fig. 7 shows an extracted model that required
seven topic hints to resolve all wildcards. This figure also
shows a large number of disconnected topics, which confirms
the design for extensibility.

The main issue with TurtleBot2 is that it is an academic
example. AgRob V16, on the other hand, is closer to the average
industrial robot. First of all, it is a more complex system, as
is evident from the extracted model in Fig. 8a. Secondly, most
of its software comes from integrated third-party packages that
provide mapping and localisation, among other features, while
TurtleBot2 was mostly implemented from the ground up in
earlier versions of ROS. The main custom software components
we analysed for AgRob V16 consist in high-level controllers
and path planners for slope terrain. Lastly, the coding styles of
both robots are vastly different, despite both being programmed

in C++. TurtleBot2 was made with open source in mind, and it
has received contributions and reviews from the community
over the years, while AgRob V16 has not. In order to fully
resolve the extracted model for AgRob V16 (see Fig. 8b), we
had to provide a total of 13 hints (21 lines of YAML), where
4 are tied to a Python GUI node, which HAROS cannot parse.

For both case studies, we have checked – through manual
code inspection and runtime inspection with ROS tools –
whether the extracted models match and include all Resources
and Links they are supposed to. We have observed that, in
general, the developed tools are capable of finding most occur-
rences of ROS Primitive Links and the visualiser is capable
of identifying candidates for unresolved topics. The major
limitations, for the current version, are extended versions of
the primitives provided by packages such as message_filters and
tf2. The former provides utilities, for instance, to synchronise
subscriptions, i.e. triggering a callback function when multiple
messages are available. The latter builds an entire new graph
of relations between coordinate frames, i.e. it can keep track
of the robot’s pose in the world, but also of a gripper’s pose
relative to the robot’s base. Multiple nodes read and alter these
frames, which makes the tf2 tree an indirect communication
channel. Even though the basic publisher-subscriber primitives
are at the bottom of these extensions, they provide a different
library interface that requires adjustments to the extractors.
This is the main reason why, even in the resolved version,
AgRob V16’s model has some disconnected subgraphs – they
interact mostly with the tf2 structure.

B. Example Queries

In order to test our query engine, we have implemented the
following catalogue of queries, based on common practices in
ROS development.

1) Are global ROS names used?
2) Are there any conditional publishers or subscribers?
3) Do message types match on both ends?
4) Are there any unbounded message queues?
5) Are there any message queues of size 1?
6) Are there any disconnected topics of the same type, with

similar names?
7) Are all nodes (transitively) publishing to the robot base?

Global ROS names (names beginning with a slash) are unaf-
fected by most name resolution rules of ROS, which requires
additional attention to name remappings to create multiple
instances of the same Node within a single Configuration.
For instance, if two TurtleBot2 robots existed within the same
network and they used global names to publish sensor readings,
it is likely that each robot would receive sensor data from both.
This leads to additional maintenance effort, which justifies the
query. The use of global names was actually an issue with the
source code of AgRob V16, which our tool helped solve.

Conditional publishers and subscribers can be easily spotted
in the diagrams, and there is no special justification for the
query, besides these constructs leading to an additional effort
in understanding the architecture. In many cases, these are

loops subscribing topics from a list parameter, and there is no
significantly better alternative.

There is a type checking system for messages in ROS, but it
is only active during runtime. When a message type mismatch
occurs, a warning is given and messages of the wrong type are
discarded. This lack of communication often has noticeable
effects that make it evident, but bringing this feedback to
compile time is simple with our query system, and is an
additional step to reduce development time. Fig. 9 illustrates
how to implement type checking for Topics (i.e., publisher-
subscriber only). The query code can be roughly read as: for
all Configurations, find all pairs of publishers and subscribers
where the Topic names match, but the message types do not.
Implementing the same type check for Services would be
equally simple. We have found no matches for this query,
which is to be expected from working systems.

Message queue sizes should be carefully chosen in ROS.
Avoiding unbounded message queues is a given, as they could
use up all the available memory. Queues of size 1 are a very
particular case. They are relatively common [2], but they can
lead to message loss. Whether it is an intended effect should be
analysed on a case by case basis. They are not very common in
TurtleBot2, but there are quite a few occurrences in AgRob V16,
mostly in third-party packages.

Query 6 is slightly more complex in terms of implementation,
as seen in Fig. 10, but it shows that the query language allows
for some programmatic freedom. For this query, we used some
heuristics based on string comparison of the Topic names of
publishers and subscribers, to try and detect those where the
message types match, but the names are only slightly different
(e.g. the proper names match, but the namespace prefix does
not). Many times, this could be an indicator that the developer
applied a name remapping on one of the nodes, but forgot to
match it in another node, or that they forgot to apply remappings
altogether. Wrong name remappings are another issue in ROS
that can be manually detected during runtime, but for which
there are no built-in compile-time checks of any kind. There are
matches for this query in TurtleBot2, but they are intentional.

The final query, asking whether all nodes publish transitively
to the robot base, had to be adapted for TurtleBot2 and
AgRob V16, since the names of the base nodes are different. For
convenience, the query language features a reflexive transitive
closure operation over nodes. This, more than the previous
queries, shows how a one-size-fits-all query catalogue is hard
to achieve, and possibly not very useful. A query catalogue
is more useful when customised to the system under analysis,
taking into account the system’s goals and the employed
coding standards. This query found a few expected matches
in AgRob V16, such as the diagnostics GUI, which does not
publish messages at all.

V. RELATED WORK

Metamodels for robotic systems, and ROS in particular,
have been proposed before, with various goals, modelling
languages and levels of detail. Many proposals tend towards
graphical modelling languages and editors [3], [4], although

Fig. 8. Rendering of an AgRob V16 Configuration without extraction hints (a) and with user-provided hints (b).

1 f o r c i n < c o n f i g s > ,
2 l e t mismatches = {
3 f o r p i n <c / nodes / p u b l i s h e r s | c / nodes / s u b s c r i b e r s > ,
4 s i n <c / nodes / p u b l i s h e r s | c / nodes / s u b s c r i b e r s >
5 where p . top i c_name == s . top ic_name
6 and p . t y p e != s . t y p e
7 r e t u r n p , s }
8 r e t u r n mismatches

Fig. 9. Query for publisher/subscriber message type mismatches.

1 f o r c i n < c o n f i g s >
2 l e t p a i r s = { f o r
3 p i n <c / nodes / p u b l i s h e r s [s e l f . t o p i c . i s _ d i s c o n n e c t e d] > ,
4 s i n <c / nodes / s u b s c r i b e r s [s e l f . t o p i c . i s _ d i s c o n n e c t e d] >
5 where p . t y p e == s . t y p e and
6 (p . t o p i c . i d . e n d s w i t h (s . t o p i c . name)
7 or s . t o p i c . i d . e n d s w i t h (p . t o p i c . name)
8 or p . rosname . f u l l == s . rosname . f u l l
9 or p . rosname . f u l l . e n d s w i t h (s . rosname . own)

10 or s . rosname . f u l l . e n d s w i t h (p . rosname . own)
11 or p . rosname . g i v e n == s . rosname . g i v e n)
12 r e t u r n p , s }
13 where l e n (p a i r s) > 0
14 r e t u r n p a i r s

Fig. 10. Query for disconnected topics with matching message types but
slightly different names (possibly a name remapping mistake).

some focus on standard architecture modelling languages, such
as AADL [5], or on the analysis of safety requirements [6].
These are model-driven approaches, intended for use in model-
first environments, where parts of source code are automatically
generated. Our proposal lacks the formal specification of
properties, supported by model checking, that can be found
in approaches using GenoM [7] or RoboChart [8], [9], for
instance. On the other hand, our metamodel is much closer to
the implementation level, in terms of abstraction, and entirely
compatible with a code-first development process (currently,
the norm in ROS development) through static analysis.

Software Model Checking [10] is a technique that focuses
on the extraction and analysis of models of the source code.
Our proposal is similar in concept, but instead of building a
general abstraction of the program under analysis (e.g. using
finite automata) we build a domain-specific model of the ROS
architecture that the source code represents (e.g. packages,
nodes, topics). Having an abstraction of the program is not our
goal, but a step to build the final model. Structures like Code
Property Graphs [11] backed by query support are especially
useful in this context. Unfortunately, we found their particular
implementation to be too code-oriented. It is better suited for

security automation, or coding standard compliance, while we
aim for more expressive power over familiar ROS concepts.

Performing static analysis over distributed, dynamic systems
with asynchronous message passing (as is the case with ROS) is
particularly challenging. The publisher-subscriber architecture
provides immense flexibility, at the cost of making it more
difficult to prove correctness and predict the behaviour of a
system. Despite its challenges, static analysis was shown to be
useful in such systems [12], [13], by itself and as a complement
to dynamic analyses. We support this view, given that some
properties (timed ones, in particular) are more naturally verified
at runtime. The approach presented in [13] is very similar to
our own, in the sense that it aims to strike a balance between
soundness and completeness, and uses a communication model
of the underlying system built from control flow and data
flow information. Another interesting detail, which we are
also starting to explore, is the embedding of domain-specific
knowledge in the tool to improve its performance. The main
difference is their focus on Erlang systems and embedding of
built-in functions, while we focus on ROS systems and embed
entire ROS nodes and communication interfaces.

The application of static analysis tools to ROS source code
is a topic of increasing research interest, but with limited
examples that we are aware of. A literature review on safety
certification practices [14] shows that the verification of robots
implemented in formal specification languages is quite more
common. In [15] the authors present an implementation for a
collision avoidance safety function in C, annotated with formal
contracts and following the MISRA C coding standard. The
algorithm’s correctness is verified using a theorem prover. We
see this as an ideal development process for the expert software
engineer, not for the average roboticist. Besides, we aim to
provide support mostly for architecture-related properties, with
minimal (if any) specification requirements.

PhrikyUnits is a static analysis tool to detect inconsistencies
with physical units in ROS source code (e.g. adding meters
to meters squared), which has been used to study a large
sample of repositories [16]. While this is a common issue with
exchanged ROS messages, for instance, we focus on properties
more closely tied to the integration aspects of the system, such
as guaranteeing that nodes are correctly configured.

Witte and Tichy [17] share our objective of analysing ROS
software architectures and configurations, to issue warnings and
detect possible errors. Their approach also includes a tool to

extract information from launch files, although conditionals and
name remappings are not implemented. The main difference to
our approach is that they propose dynamic analysis, running
one node at a time within a sandbox, to intercept calls to the
ROS primitives. This may be more accurate, but it makes it
hard to deal with multiple execution paths. Static analysis, on
the other hand, is able to detect variability points.

Our previous work proposed HAROS, a framework for
static analysis of ROS software [18]. In its first iteration,
HAROS focused on basic quality metrics and compliance
with coding style guides. It was already able to extract ROS
packages and explore their internal structure, despite no proper
metamodel being available at the time. Using feature diagrams,
we presented a characterisation of the main features and
primitives of ROS [2]. Our current metamodel is a refinement of
this characterisation. The same work had already implemented
prototype analysis tools that extracted usage statistics for the
various ROS primitives, leveraging the plug-in infrastructure
of HAROS. Such plug-ins laid out the basis for our current
C++ and launch file parsers.

VI. CONCLUSION

This work aims to promote the comprehension of ROS
systems at static time by proposing a metamodel to describe
the architecture of ROS software systems, along with tools
that scan ROS source code to build, visualise and query the
corresponding models. These help users validate and reason
about the design of ROS systems at static time, in a way that
would be infeasible to replicate through source code inspection.
The automatic and timely feedback, graphical and otherwise,
is valuable during development, and helps ensure that certain
design safety rules hold. Since complete model extraction
from source is impossible in general, the metamodel supports
variability points, which are natively processed by the tools.
Alternatively, users may provide extraction hints, which also
instils specification habits – a core step towards the application
of more sophisticated analyses to check the correctness of a
ROS application, such as Software Model Checking techniques
to ensure code safety.

We are currently applying the framework to industrial-level
ROS systems and extending it to support additional ROS
features (e.g. Actions) and context-specific analyses (e.g. the tf2
package). In the near future we intend to extend our technique
to handle ROS systems with many different configurations,
by incorporating analysis techniques previously developed for
Software Product Lines, enabling the user to visualise and
analyse the multiple variants of its robotic system at once.
Lastly, we are also looking into replicating our extraction
process for Python ROS code, as in high-level planners or
non-critical code it tends to dominate over C++.

ACKNOWLEDGMENT

The authors would like to thank the anonymous referees for
their valuable comments and helpful suggestions. This work
is financed by the ERDF – European Regional Development
Fund through the Operational Programme for Competitiveness

and Internationalisation – COMPETE 2020 Programme and
by National Funds through the Portuguese funding agency,
FCT – Fundação para a Ciência e a Tecnologia within project
PTDC/CCI-INF/29583/2017 (POCI-01-0145-FEDER-029583).

REFERENCES

[1] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: An open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, 2009.
[Online]. Available: https://www.willowgarage.com/sites/default/files/
icraoss09-ROS.pdf

[2] A. Santos, A. Cunha, N. Macedo, R. Arrais, and F. N. dos Santos, “Mining
the usage patterns of ROS primitives,” in 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2017, pp.
3855–3860.

[3] P. S. Kumar, W. Emfinger, A. Kulkarni, G. Karsai, D. Watkins, B. Gasser,
C. Ridgewell, and A. Anilkumar, “ROSMOD: A toolsuite for modeling,
generating, deploying, and managing distributed real-time component-
based software using ROS,” in 2015 International Symposium on Rapid
System Prototyping (RSP), Oct 2015, pp. 39–45.

[4] S. G. Brunner, F. Steinmetz, R. Belder, and A. Dömel, “RAFCON: A
graphical tool for engineering complex, robotic tasks,” in 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2016, pp. 3283–3290.

[5] G. Bardaro and M. Matteucci, “Using AADL to model and develop ROS-
based robotic application,” in 2017 First IEEE International Conference
on Robotic Computing (IRC), April 2017, pp. 204–207.

[6] V. Gribov and H. Voos, “Safety oriented software engineering process
for autonomous robots,” in 2013 IEEE 18th Conference on Emerging
Technologies Factory Automation (ETFA), Sept 2013, pp. 1–8.

[7] M. Foughali, B. Berthomieu, S. Dal Zilio, F. Ingrand, and A. Mal-
let, “Model checking real-time properties on the functional layer of
autonomous robots,” in Formal Methods and Software Engineering.
Springer International Publishing, 2016, pp. 383–399.

[8] A. Miyazawa, P. Ribeiro, W. Li, A. Cavalcanti, and J. Timmis, “Automatic
property checking of robotic applications,” in 2017 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE,
2017, pp. 3869–3876.

[9] P. Ribeiro, A. Miyazawa, W. Li, A. Cavalcanti, and J. Timmis, “Modelling
and verification of timed robotic controllers,” in Integrated Formal
Methods. Springer, 2017, pp. 18–33.

[10] G. J. Holzmann and M. H. Smith, “Software model checking: Extracting
verification models from source code,” Software Testing, Verification and
Reliability, vol. 11, no. 2, pp. 65–79, 2001.

[11] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and
discovering vulnerabilities with code property graphs,” in 2014 IEEE
Symposium on Security and Privacy (SP). IEEE, 2014, pp. 590–604.

[12] D. Ganesan, M. Lindvall, L. Ruley, R. Wiegand, V. Ly, and T. Tsui,
“Architectural analysis of systems based on the publisher-subscriber style,”
in 17th Working Conference on Reverse Engineering, WCRE 2010, 2010.

[13] M. Christakis and K. Sagonas, “Detection of asynchronous message
passing errors using static analysis,” in Practical Aspects of Declarative
Languages. Springer Berlin Heidelberg, 2011, pp. 5–18.

[14] J. Ingibergsson, U. Schultz, and M. Kuhrmann, “On the use of safety
certification practices in autonomous field robot software development: A
systematic mapping study,” in PROFES, ser. LNCS, vol. 9459. Springer,
2015, pp. 335–352.

[15] H. Täubig, U. Frese, C. Hertzberg, C. Lüth, S. Mohr, E. Vorobev, and
D. Walter, “Guaranteeing functional safety: design for provability and
computer-aided verification,” Autonomous Robots, vol. 32, no. 3, pp.
303–331, April 2012.

[16] J. P. Ore, S. Elbaum, and C. Detweiler, “Dimensional inconsistencies
in code and ROS messages: A study of 5.9M lines of code,” in 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Sept 2017, pp. 712–718.

[17] T. Witte and M. Tichy, “Checking consistency of robot software
architectures in ROS,” in 2018 IEEE/ACM 1st International Workshop
on Robotics Software Engineering (RoSE), 2018, pp. 1–8.

[18] A. Santos, A. Cunha, N. Macedo, and C. Lourenço, “A framework for
quality assessment of ROS repositories,” in 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2016, pp.
4491–4496.

