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Abstract. The optimal design of a single screw extrusion (SSE) is a
very difficult task since it deals with several conflicting performance in-
dices. Past research to find the optimal SSE design has been successfully
conducted by optimization procedures, in particular by multi-objective
optimization. Problems with two or more objectives have been addressed
by multi-objective evolutionary algorithms that search for the whole set
of promising solutions in a single run. Our approach has been guided by
the bi-objective optimization problems, using a methodology based on
the weighted Tchebycheff scalarization function. The numerical results
show that the proposed methodology is able to produce satisfactory re-
sults with physical meaning.

Keywords: Single screw extrusion ·Multi-objective optimization · Tcheby-
cheff scalarization · Simulated annealing

1 Introduction

In the context of the polymer extrusion, the optimal design of a single screw
extrusion (SSE) is a very difficult task since it deals with several performance
indices (the objective functions) that are conflicting [1,2,3,4]. That is, the im-
provement of one performance index leads to another performance index degra-
dation. This SSE design is concerned with the definition of the optimal screw
geometry/configuration for obtaining the best performance indices, while manu-
facturing a certain product. Frequently, the screw geometry is established based
on empirical knowledge, combined with a trial-and-error approach until the de-
sirable performance indices are achieved. However, a more efficient approach is to
handle the SSE design as an optimization problem, where the several conflicting
objective functions are optimized simultaneously.
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Previous studies concerning with this SSE process have addressed the multi-
objective optimization (MOO) problem by adopting a methodology based on
multi-objective evolutionary algorithms (MOEA), namely the reduced Pareto
set genetic algorithm (RPSGA) [2,3,5]. Most MOEA treat the MOO problem
as a whole and find the entire set of promising and desirable solutions in a
single run of the algorithm. They are mainly population-based stochastic us-
ing well-known and established meta-heuristic, e.g., genetic algorithm, particle
swarm optimization, differential evolution, ant colony optimization, to name a
few [6,7,8,9,10,11]. Simulated annealing and tabu search are point-to-point based
stochastic algorithms that have also been used in this context [12,13].

Multi-objective evolutionary algorithms based on decomposition (recognized
in the scientific literature as MOEA/D) decompose a MOO problem into a num-
ber of scalar optimization subproblems (using a weight-dependent scalar aggre-
gation function) and optimize them simultaneously [14,15,16]. The subproblems
are simultaneously solved by handling a population of solutions that comprise
the best solutions found so far for each subproblem.

Methods for constructing a scalar aggregation function, combining the multi-
objective functions into a weighted scalar objective function, that is used in
a single objective optimization (SOO) context, thus producing a single opti-
mal solution, are the easiest to understand and implement. Furthermore, well-
established and known either deterministic or stochastic SOO algorithms can be
used to find one optimal solution [6,7]. However, to obtain a set of promising and
desirable solutions of the MOO problem, the SOO method must be run as many
times as the desired number of points using different sets of weights. The most
popular scalar aggregation functions include the weighted sum and the weighted
Tchebycheff approaches.

The contribution of this paper is to show that a methodology based on the
weighted Tchebycheff scalarization function, when used to optimize bi-objective
optimization problems, and based on an evenly distributed set of weight vectors,
provides acceptable and reasonably good approximations to the solutions of the
SSE optimization problem. This study clearly shows that the used methodol-
ogy is an effective tool to the SSE design optimization. The achieved optimal
solutions are meaningful in physical terms.

This paper is organized as follows. Section 2 describes the single screw extru-
sion problem exhibiting the objective functions to be optimized and the decision
variables of the problem. Section 3 presents some basic concepts concerning
with MOO and the proposed methodology based on the weighted Tchebycheff
approach. Finally, Sect. 4 exposes the carried out numerical experiments and we
conclude the paper in Sect. 5.

2 Single Screw Extrusion Optimization

The most relevant performance indices in the SSE design are the mass output
(Q), the length of the screw required for melting the polymer (Zt), the melt tem-
perature at die entrance (Tmelt), the mechanical power consumption (Power),
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the weighted-average total strain (WATS) and the viscous dissipation (V isco).
These objective functions vary and depend on the values of two sets of param-
eters: the geometric and the operating parameters. Their values are obtained
using numerical modelling routines that describe the plasticizing SSE process
[1]. The geometric (or/and the operating) parameters are the inputs of the com-
puterized simulator and the objective values Q, Zt, Tmelt, Power, WATS, V isco
are the output. Usually, the best design is attained by maximizing the objectives
Q and WATS, and minimizing Zt, Tmelt, Power and V isco.

The geometric parameters are related to the internal screw diameter of the
feed zone (D1) and metering zone (D3), the axial lengths of the feed (L1), com-
pression (L2) and metering (L3) zones, the flight thickness (e) and the screw
pitch (p). See Fig. 1. The operating parameters that correspond to the operat-
ing conditions of the extruder are: the screw speed (N) and the temperature
profile of the heater bands in the barrel (Tb1, Tb2, Tb3). In this paper, it is

Fig. 1. Operating and geometric parameters of the SSE

assumed that the operating parameters are previously fixed. The aim is to find
the optimal values for the geometric parameters - the decision variables of the
MOO problem - while optimizing the objectives. This is a crucial issue since,
for example, if the compression zone is too short, the rate of decreasing channel
depth downstream could become higher than the melting rate, resulting in ma-
terial clogging. Furthermore, since the shallower the screw channel the higher
the melting rate, a very long compression zone will result in an unnecessarily
long melting stage.

For easy of notation, and since the total length of the screw (L) is to be
minimized (corresponds to the objective Zt), the length of the metering zone
can be computed by the equation L3 = L − L1 − L2. Thus, the set of de-
cision variables of the herein analyzed MOO problems is represented by the
vector (L1, L2, D1, D3, p, e). Usually, the ranges of variation of the geometric de-
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cision variables are defined based on empirical knowledge. Thus, taking into ac-
count the extruder illustrated in Fig. 1 and the polymer material (High Density
Poyethylene-HDPE), the lower and upper bound values for the decision vari-
ables vector are (120, 170, 20, 26, 30, 3) and (400, 400, 26, 32, 42, 4), respectively.
The SSE MOO problem can be formulated as follows:

Find a set of values for the vector (L1, L2, D1, D3, p, e) ∈ Ω ⊂ R6

such that the vector (Q,Zt, Tmelt, Power,WATS, V isco) is optimized,
(1)

where the set Ω of feasible solutions is defined as Ω = {(L1, L2, D1, D3, p, e) :
120 ≤ L1 ≤ 400, 170 ≤ L2 ≤ 400, 20 ≤ D1 ≤ 26, 26 ≤ D3 ≤ 32, 30 ≤ p ≤
42, 3 ≤ e ≤ 4}. However, due to the complexity of problem (1) that involves a
vector of six objective functions, the design of the SSE process is optimized con-
sidering the optimization of only two objective functions simultaneously. Since
the mass output Q is the most relevant performance index in the polymer ex-
truder, Q is present in all of the five alternative formulated bi-objective opti-
mization problems, while the geometric parameters are optimized. The analyzed
bi-objective optimization problems are formulated as:

Find values for the vector
1.

(L1, L2, D1, D3, p, e) ∈ Ω ⊂ R6 such that

(Q,Zt) is optimized
2. (Q,Tmelt) is optimized
3. (Q,Power) is optimized
4. (Q,WATS) is optimized
5. (Q,V isco) is optimized.

(2)

Thus, in this study, we deal with bi-objective optimization problems. They
are easier to solve and to check if the solutions produced by the optimization al-
gorithm are suitable for the extrusion process. Moreover, it is simpler to identify
and to visualize the trade-offs between the solutions.

3 Multi-objective Optimization Approach

Nowadays many design problems faced by decision-makers are tackled by a multi-
objective approach. This means that more than one objective may be measured
and are expected to be optimized. Frequently, there is a conflict while optimizing
more than one objective, i.e., does not exist one single solution that optimizes
simultaneously all the objectives. However, a compromise solution can be se-
lected among a set of promising and desirable solutions - further ahead denoted
by Pareto optimal set - according to the preferences of the decision-maker.

3.1 Multi-objective Optimization

In general terms, the MOO problem can be formally defined as:

Find x∗ ∈ Ω ⊆ Rn that optimizes the functions vector (f1(x), . . . , fr(x)) ,
(3)
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where x ∈ Rn is the vector of the decision variables, n is the number of decision
variables, Ω is the feasible search region and f1, . . . , fr denote the r functions to
be optimized. In the minimization context, a vector f = (f1, . . . , fr) is said to
dominate f̄ = (f̄1, . . . , f̄r) if and only if

∀i ∈ {1, . . . , r} fi ≤ f̄i and ∃i ∈ {1, . . . , r} such that fi < f̄i. (4)

Thus, when two solutions f1 = f(x1) and f2 = f(x2), x1, x2 ∈ Ω ⊆ Rn are
compared, one of these three cases holds: i) f1 dominates f2, ii) f1 is dominated
by f2, iii) f1 and f2 are non-dominated.

Two other important definitions in the MOO context are the following.

Definition 1. Let f ∈ Rr be the objective functions vector. A solution x1 ∈ Ω
is said to be Pareto optimal if and only if there is no other solution x2 ∈ Ω for
which f(x2) dominates f(x1).

Assuming that the optimization problem involves the minimization of the func-
tions in f , the Definition 1 says that x1 is Pareto optimal if there is no other
feasible solution x2 which would decrease some objective fi without causing a
simultaneous increase in at least one other objective. That is, does not exist a
single solution, but a set of solutions called Pareto optimal set (in the space
of the decision variables). Their corresponding function vectors are said to be
non-dominated.

Definition 2. Given a MOO problem with objective function vector f ∈ Rr and
the Pareto optimal set X∗, the Pareto optimal front (PF ∗) is defined as:

PF ∗ = {f = (f1(x), . . . , fr(x)) such that x ∈ X∗}.

The algorithms for MOO aim to find a good and balanced approximation to
the Pareto optimal set (and Pareto front PF ∗). That is, the goal is to find a man-
ageable number of Pareto optimal (function) vectors which are evenly distributed
along the Pareto optimal front [14]. The goal is to support the decision-maker to
formulate his/her preferences and identify the best (or compromise) solutions.
The most popular methods to solve a MOO problem are based on:

i) the aggregation of the objectives,
ii) the ε–constraint strategy,

iii) producing an approximation to the PF ∗ directly.

The aggregation of the objectives that requires weighting coefficients is used
as an a priori approach since a total order is defined on the objective space
(by defining a scalar function) and a statement of additional preferences, e.g., a
weights vector for the objectives, should be provided by the decision-maker prior
to the optimization. The aggregation method combines the objective functions
into a scalar objective function that is used in a SOO context, thus producing
one single compromise solution. To obtain an approximation to the PF ∗, the
SOO method must be run as many times as the desired number of points using
different sets of weights vector [16].
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In the ε–constraint method, one objective is selected to be minimized and all
the other objective functions are converted into inequality constraints by setting
upper bound values to each one, ε1, . . . , εr−1 [6]. Again, by varying and properly
choosing the values set to the bounds ε1, . . . , εr−1, one can obtain different points
on the Pareto optimal front [7]. Further, the method is able to find Pareto optimal
solutions in convex and non-convex regions of the Pareto optimal front.

Methods to compute an approximation to the PF ∗ in a single run are in
general stochastic population-based search techniques. They belong to the class
of a posterior approaches. Popular MOEA rely on meta-heuristics and work
reasonably well on difficult problems. In general, they are based on generating
iteratively a population of solutions which are manipulated through operations
like crossover, mutation and selection. Population-based meta-heuristics are nat-
urally prepared to produce many solutions from which the set of Pareto opti-
mal solutions can be emanated. Known examples with industry applications are
NSGA-II [8], SPEA-2 [17], MOEA/D [14] and RPSGA [3]. The reader is referred
to [6,7,18] for more details.

3.2 Weighted Tchebycheff Approach

Our proposal to solve the SSE problem, as formulated in (1), is to use the
weighted Tchebycheff approach, a rather efficient aggregation method [19]. The
aggregation method combines the objective functions into a scalar objective
function that is used in a SOO context, thus producing one single compromise
solution. However, defining the scalar objective function requires specific knowl-
edge about search domain and function ranges that are in general not available.
The most used aggregation method is the weighted sum approach that assigns
to each objective function fi, of the vector f , a non-negative weight wi in a
way that

∑r
i=1 wi = 1, and minimizing the function that is the weighted sum of

the objectives. This approach could not be able to find certain Pareto optimal
solutions in non-convex regions of the Pareto optimal front.

The weighted Tchebycheff approach also assigns a weights vector to the ob-
jectives to form a single objective [15,19]. As opposed to the linear aggregation
of the weighted sum approach, the Tchebycheff approach relies on a nonlinear
weighted aggregation of the functions fi, that is why it can deal with non-convex
Pareto front [7]. In the minimization context, the SOO problem of the Tcheby-
cheff approach has the form

minimize g(x;w) ≡ max {w1 (f1(x)− z∗1) , . . . , wr (fr(x)− z∗r )}
subject to x ∈ Ω (5)

where w = (w1, . . . , wr) is the vector of non-negative weights and z∗ = (z∗1 , . . . , z
∗
r )

is the ideal point in the objective space, i.e., z∗i = min{fi(x) such that x ∈ Ω}
for i = 1, . . . , r. The Tchebycheff approach guarantees finding all Pareto optimal
solution with ideal solution z∗. In practice, this approach requires finding z∗ by
independently optimizing each objective function. We also note that problem (5)
is non-differentiable (function g(x;w) is not smooth at some points), although
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this disadvantage can be easily overcome implementing a derivative-free opti-
mization method. We remark the following:

Remark 1. Under some mild conditions, for each Pareto optimal x∗ ∈ X∗ there
exists a weight vector w such that x∗ is the optimal solution of problem (5), and
each optimal solution of problem (5) (associated with a weights vector w) is a
Pareto optimal solution to problem (3) [6,14,15].

It is advisable to rescale or normalize the objective functions so that their
objective values are approximately of the same magnitude. Based on the ideal
objective vector z∗ and on the nadir objective vector, znad, each objective fi is
replaced by

Fi(x) =
fi(x)− z∗i
znadi − z∗i

(6)

and, consequently, the range of the normalized function is [0, 1]. The nadir point
is constructed with the worst objective function values in the complete Pareto
optimal set X∗, i.e., znadi = max{fi(x) such that x ∈ X∗} for i = 1, . . . , r,
which makes the accurate estimation of the nadir objective values a difficult
task [20]. An estimate of znad, herein denoted by the vector fmax, obtained from
a payoff table may be used instead. The function g(x;w) in this Tchebycheff
approach is then replaced by

g(x;w) ≡ max

{
w1

(
f1(x)− z∗1
fmax
1 − z∗1

)
, . . . , wr

(
fr(x)− z∗r
fmax
r − z∗r

)}
. (7)

Remark 2. For normalized objectives, the maximization of fi(x) can be refor-
mulated as a minimization objective as follows:

arg max fi(x) = arg min

(
1− fi(x)− z∗i

znadi − z∗i

)
.

3.3 Simulated Annealing Method

Nowadays, a large number of complex and difficult to solve real-world optimiza-
tion problems are solved in an approximate way by meta-heuristics. These algo-
rithmic frameworks combine heuristics with local search and population-based
strategies to explore the feasible region and escape from local optimal solutions.
Frequently, they are greedy methods. Meta-heuristics provide a good quality so-
lution to the problem in a reasonable amount of time (instead of guaranteeing
convergence to an optimal solution like the exact methods do). Meta-heuristics
are general-purpose optimizers and mostly problem-independent, making them
better suited to real world optimization problems [21].

The simulated annealing (SA) method is a single solution-based meta-heuristic
with origins in statistical mechanics. The method models the physical process of
heating a material and, to minimize the system energy, it carefully controls the
reduction of the temperature - the cooling process - in order to reduce defects
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[22]. This process is known as annealing. It is adequate to solve unconstrained
and bound constrained global optimization problems.

Since the feasible region Ω of each formulated bi-objective problem (2) is
defined by box constraints alone, our proposal to solve the resulting problem
(5) - with the objective function (7) (with r = 2) - in the Tchebycheff approach
context, is to use a simulated annealing algorithm [23]. This is a well-known
meta-heuristic for global optimization. At each iteration, of the SA algorithm,
a new point is randomly generated. The distance between this new point and
the current point, or the extent of the search, is based on a probability distri-
bution with a scale proportional to the temperature. The algorithm accepts a
new point if it improves the objective function, but also accepts, with a certain
probability, a new point that deteriorates the objective. Using the temperature
parameter, the SA algorithm controls the search for the global solution, e.g., a
higher temperature allows more new points to be accepted which lead to the
exploration of different regions of the search space. On the other hand, a lower
temperature favors the acceptance of improving new points which result in the
local exploitation of a promising region. Along the iterative process, the tem-
perature is systematically decreased through a cooling schedule [24]. The main
steps of the SA algorithm are presented in Algorithm 1. For the sake of brevity,
details of the SA algorithm are not included and the reader is referred to the
literature.

Algorithm 1 SA algorithm

Require: T0, Itmax

1: Set a starting point x and evaluate the objective using (7)
2: Set T = T0 and a cooling rate 0 < κ < 1
3: Set Nt the number of trials per temperature
4: Set It = 0
5: repeat
6: for j = 1 to Nt do
7: Generate a new point x̄ (in the neighborhood of x and according to a gener-

ating probability) and evaluate the objective using (7)
8: if x̄ is accepted according to the probability P (x, x̄;T ) then
9: Set x = x̄

10: end if
11: end for
12: Set T = κT
13: Set It = It+ 1
14: until It ≥ Itmax

3.4 Weighted Tchebycheff Scalarization Methodology

First, the issue related to the computation of approximations to the z∗i and fmax
i

(see previous Subsection 3.2), i = 1, . . . , r in the SSE context has been addressed.



Single Screw Extrusion by Tchebycheff Scalarization 9

The approximation to each z∗i , hereinafter denoted by fmin
i , has been defined

based on the practical experience with this SSE and the polymer material. Simi-
larly, the maximum value fmax

i is defined based on the practical experience with
this particular extruder and the polymer material.

In the sequence of the strategy referred to in Section 2, Table 1 exposes the
objective functions and their fmin and fmax values to be used in each of the five
previously mentioned bi-objective optimization problems.

Table 1. Objective functions and their fmin and fmax values, for the five bi-objective
problems

Objectives

Problem f1 f2 fmin
1 fmax

1 fmin
2 fmax

2

1. Q Zt

1.0 20.0

0.2 0.9
2. Q Tmelt 150.0 220.0
3. Q Power 0.0 9200.0
4. Q WATS 0.0 1300.0
5. Q V isco 0.9 1.2

Let w1, . . . , wP be the set of evenly spread weight vectors, where P represents
the chosen number of tested weight vectors. According to the above referred
Remark 1, for each set of weights, wi (i = 1, . . . , P ), the computed approximation
to the optimal solution of problem (5), x∗(wi), is an approximation to a Pareto
optimal solution (of the set X∗) to the problem (3).

Thus, our methodology to obtain an approximation to the PF ∗ is as follows.
For each weights vector wi, Algorithm 1 is used to compute an approximation
to x∗(wi) and the corresponding functions vector, approximation to f(x∗(wi)).
This process is repeated Ntimes independent times. From the Ntimes sets of func-
tion vectors (approximations to the Pareto optimal front), the non-dominated
function vectors are selected to better represent the trade-off between the ob-
jectives. From there on the decision-maker may identify a set of compromise
solutions. Algorithm 2 describes the main steps of the methodology.

4 Results

The weighted Tchebycheff scalarization algorithm was coded in MATLABr

(MATLAB is a registered trademark of the MathWorks, Inc.). The code in-
vokes the simulated annealing algorithm from the Global Optimization Toolbox
(simulannealbnd function) as the optimization solver to compute the optimal
solution of each MOO problem under study, throughout the minimization of the
objective in (7). The solver simulannealbnd resorts the computerized simulator
of the SSE process that provides the objective function values (output) given
a set of values of the decision variables (input). This simulator is a computer
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Algorithm 2 Weighted Tchebycheff scalarization algorithm

Require: Ntimes, P ;
1: Set step = 1/(P − 1)
2: Randomly generate y ∈ Ω
3: for N = 1 to Ntimes do
4: Set w1

1 = 0
5: for i = 1 to P do
6: Set wi

2 = 1− wi
1

7: Based on y, use Algorithm 1 to provide x(wi), an approximation to x∗(wi)
8: Set PFN,i = f(x(wi))
9: Set wi+1

1 = wi
1 + step

10: end for
11: end for
12: Select the non-dominated function vectors among the vectors PFN,i, i = 1, . . . , P ,

N = 1, . . . , Ntimes.

program that simulates the SSE process. It comprises a dynamic model of the
SSE process in action predicting the interaction of all the components in the
process. The use of a simulator is far and wide recommendable as an alterna-
tive to running a pilot plant or a full scale production equipment since these
are quite costly and time consuming. With the simulator, one is able to provide
changes in the screw geometry (or/and in the operating conditions), search for
the optimum processing conditions and see immediately the results.

The experimental results are obtained with the following parameters setting:
Itmax = 50 (adopted stopping criterion for simulannealbnd), T0 = 100 (default
value), κ = 0.95 (default value), Ntimes = 5 and a value of P = 11 is adopted
with the weight vectors (0, 1), (0.1, 0.9), (0.2, 0.8), . . . , (0.8, 0.2), (0.9, 0.1), (1, 0).
The fixed values assigned to the operating parameters are: N = 50, Tb1 = 200,
Tb2 = 210 and Tb3 = 220.

Problem 1. With the objectives Q and Zt optimized simultaneously, the algo-
rithm converges to a curve, the Pareto front, that defines the trade-offs between
the objectives. See Fig. 2. The (blue) small full circles represent the solutions
obtained for all the sets of weight vectors, over 5 runs, and the (red) large cir-
cles are the non-dominated solutions among the whole set. It is possible to see
that the higher the mass output Q the higher is the length of screw for melting.
Table 2 shows the decision variables and the corresponding objective functions
values for four selected solutions from the Pareto front. The solution D provides
the maximum value of the mass output, while the solution A gives the minimum
value of the length of the screw required for melting. Two different trade-offs
between the objectives are shown in the table that correspond to points B and C
in Fig. 2. We note that from solution A to B a small increase in Q leads to a large
degradation in Zt. While Q improves from solution C to D, a large degradation
is noted in Zt.
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Fig. 2. Pareto front for Problem 1

Table 2. Solutions with the best values of the objectives Q and Zt for Problem 1

geometric parameters objectives other performance indices

L1 L2 D1 D3 p e Q Zt Tmelt Power WATS V isco

A 156 316 25.3 31.2 37.8 3.5 9.07 0.305 219 1507 373 1.02
B 270 325 25.2 31.3 35.1 3.1 9.46 0.435 219 1287 304 1.03
C 327 380 25.4 28.9 40.4 3.4 18.15 0.573 212 1468 150 0.99
D 350 318 24.5 26.1 41.7 3.2 19.96 0.886 203 1218 2 0.92

Problem 2. Among the whole set of Pareto front approximations, only four points
are non-dominated solutions. It is possible to see from Fig. 3 that the higher
the mass output the higher is the melt temperature, as the viscous dissipation
becomes more important. Table 3 reports the values of the decision variables,
Q and Tmelt, and the other objective values obtained from the non-dominated
points A and B. Solutions A and B are the optimal solutions in terms of Tmelt

and Q respectively.

Table 3. Solutions with the best values of the objectives Q and Tmelt for Problem 2

geometric parameters objectives other performance indices

L1 L2 D1 D3 p e Q Tmelt Zt Power WATS V isco

A 284 298 23.9 26.0 35.3 3.9 18.42 200 0.886 1159 3 0.90
B 222 276 26.0 26.2 35.9 4.0 19.99 206 0.886 1218 2 0.93
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Fig. 3. Pareto front for Problem 2

Problem 3. Relative to Problem 3, we show in Fig. 4 the Pareto front computed
by our proposed approach. Table 4 reports four non-dominated solutions. At
solution A, we note that Q has the worst value but Power attains the best value,
and at solution D, Q achieves the best value while Power has its worst value. The
remaining solutions are compromise solutions between the two objectives. When
comparing solutions A and B, B is clearly preferable since the loss in Power
is negligible but the gain in Q is reasonable. When solution C is analyzed, and
compared to D, we observe that a significant reduction in Power leads to a small
degradation in Q.

Table 4. Solutions with the best values of the objectives Q and Power for Problem 3

geometric parameters objectives other performance indices

L1 L2 D1 D3 p e Q Power Zt Tmelt WATS V isco

A 282 305 20.0 26.0 30.0 4.0 11.89 896 0.870 214 9 1.00
B 277 209 21.8 26.6 33.2 3.3 13.52 900 0.886 207 3 0.94
C 302 202 23.7 26.1 41.6 3.0 19.10 1051 0.886 215 2 0.98
D 172 246 25.9 26.0 31.7 3.0 19.93 1217 0.886 211 2 0.96

Problem 4. When both Q and WATS are maximized by the weighted Tcheby-
cheff scalarization algorithm, a set of 17 non-dominated solutions are obtained.
Fig. 5 shows the Pareto front computed by the proposed approach. The maxi-
mum value of WATS is attained at solution A and the best solution in terms
of Q is the solution D. The other solutions show the trade-offs between the ob-
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jectives. See Table 5. An emphasis is placed on solutions B and C. C is clearly
preferred when compared to B since a very small degradation on WATS implies
a large improvement on Q.
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Problem 5. Fig. 6 shows the Pareto front obtained when maximizing Q and
minimizing V isco. From the overall 5 non-dominated solutions, we stress points
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Table 5. Solutions with the best values of the objectives Q and WATS for Problem 4

geometric parameters objectives other performance indices

L1 L2 D1 D3 p e Q WATS Zt Tmelt Power V isco

A 331 223 25.9 32.0 31.5 3.0 7.42 412 0.563 219 1127 1.03
B 400 363 25.6 31.7 41.4 3.1 11.65 200 0.555 220 1200 1.02
C 316 336 26.0 29.0 40.4 3.0 15.87 173 0.562 218 1278 1.03
D 372 368 25.2 26.6 35.3 3.0 19.87 2 0.886 207 1188 0.94

A and B. The best value in terms of V isco is attained at solution A and the
maximum value for Q is reported with the solution B. The reader is referred to
Table 6 for details concerning the values of the other objectives and the optimized
parameter values.
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Table 6. Solutions with the best values of the objectives Q and V isco for Problem 5

geometric parameters objectives other performance indices

L1 L2 D1 D3 p e Q V isco Zt Tmelt Power WATS

A 326 360 25.0 27.5 39.0 3.8 18.11 0.98 0.617 210 1569 122
B 377 399 22.6 29.3 38.1 4.0 19.53 1.00 0.721 214 1250 84
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After these experimental studies, we may conclude that the weighted Tcheby-
cheff scalarization approach to solve the bi-objective problems formulated for the
SSE optimal design has supplied a valuable procedure to identify good trade-offs
between conflicting objectives.

5 Conclusions

The weighted Tchebycheff scalarization is a simple and easy to understand
methodology that provides a viable approach to solve the MOO problems that
emerge from the SSE design optimization. In particular, the direct visualization
of the trade-offs through the solutions of the approximate Pareto front assists the
decision-maker in the selection of crucial SSE performance index and geometric
parameter values. From the experimental studies on the five bi-objective prob-
lems, good trade-offs between conflicting objectives have been identified. We
may also conclude that the proposed methodology provides optimal solutions
that are meaningful in physical terms.
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