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a b s t r a c t

Solving many-objective problems (MaOPs) is still a significant challenge in the multi-objective opti-
mization (MOO) field. One way to measure algorithm performance is through the use of benchmark
functions (also called test functions or test suites), which are artificial problems with a well-defined
mathematical formulation, known solutions and a variety of features and difficulties. In this paper we
propose a parameterized generator of scalable and customizable benchmark problems for MaOPs. It
is able to generate problems that reproduce features present in other benchmarks and also problems
with some new features. We propose here the concept of generative benchmarking, in which one can
generate an infinite number of MOO problems, by varying parameters that control specific features that
the problem should have: scalability in the number of variables and objectives, bias, deceptiveness,
multimodality, robust and non-robust solutions, shape of the Pareto front, and constraints. The
proposed Generalized Position-Distance (GPD) tunable benchmark generator uses the position-distance
paradigm, a basic approach to building test functions, used in other benchmarks such as Deb, Thiele,
Laumanns and Zitzler (DTLZ), Walking Fish Group (WFG) and others. It includes scalable problems in
any number of variables and objectives and it presents Pareto fronts with different characteristics. The
resulting functions are easy to understand and visualize, easy to implement, fast to compute and their
Pareto optimal solutions are known.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

One significant challenge in the multi-objective optimiza-
tion (MOO) field is related to solving many-objective problems
(MaOPs), which are usually defined when the number of ob-
jective functions is greater than three [1–4]. The increase in
the number of objectives poses a number of challenges to the
methods designed for MOO, in terms of convergence to the
Pareto optimal solutions, dimensionality of the Pareto front, vi-
sualization of solutions and decision-making. An efficient way of
obtaining an approximation set of the solutions to these problems
is through stochastic heuristic algorithms, particularly Multi-
Objective Evolutionary Algorithms (MOEA) [5,6]. Assuming no
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prior preference provided by the decision-maker (DM), MOEAs
are designed to find an unbiased, well-distributed approxima-
tion of the entire Pareto front, a task that becomes harder in
MaOPs [7]. It is also possible to use preference information in
MOEAs [7–10]. Nonetheless, although focusing the search on a
given region of interest, the scalability issue remains a challenge
for preference-based MOEA.

Several factors characterize a good approximation set of so-
lutions to a MOO problem: convergence to the true Pareto front,
representativeness of the set (also involving the concept of diver-
sity) and coverage of the obtained approximation in the objective
space. Coverage is generally understood as the extension of the
set or how well the set of solutions covers the extreme points
of the Pareto front. Representativeness is the presence and good
distribution of solutions along the Pareto front surface, providing
to the DM a good representation of the Pareto front in terms
of the potential to analyzing different trade-offs related to the
objectives. Convergence means that the solutions obtained should
be as close as possible to the Pareto front. Another factor that may
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be desirable in many practical cases is related to the robustness
of the solutions found. In real-world problems the presence of
noise, disturbances and variability is a rule, not an exception. In
addition to being locally Pareto optimal, it is desirable that the
solutions offered to the DM are less sensitive to the impact of
uncertainties or unforeseen scenarios. In this way a sub-optimal
solution (locally Pareto optimal), but that presents little variation
under the presence of noise and uncertainties, can be considered
better than an optimal solution that presents a high variability
due to these effects.

One way to measure algorithm performance is through the use
of benchmark functions (also called test functions or test suites in
the literature), which are artificial problems with a well-defined
mathematical formulation, known solutions and a variety of fea-
tures and difficulties. Benchmarking allows one to test algorithms
in the task of obtaining approximations to Pareto fronts of these
test functions, such that the quality of these approximations, and
hence the performance of the algorithm, can be measured. The
key assumption behind this is that an optimization algorithm that
performs well in those problems would also perform well in real-
world problems. Additionally, by analyzing the performance of a
given algorithm or group of algorithms in problems with different
features, the designer can better understand the strengths and
weaknesses of each method. The use of benchmarking drives
research and development in computational intelligence, opti-
mization and machine learning, allowing to find the weaknesses
and strengths of MOEAs more comprehensively [11].

There are many benchmark problems available for assessing
the performance of MOEA, such as those described by Cheng
et al. [2] and Tian et al. [12]. Some of the well known and
widely used test problems are DTLZ [13], WFG [14,15], ZDT [16],
CTP [17] among others, see [12]. Some of these benchmark prob-
lems have been repeatedly used for demonstrating difficulties of
the Pareto dominance based MOEA algorithms in MaOPs, see for
instance [18]. More recently, many studies have identified weak-
nesses with the most well-known benchmark problems, pointing
out that new test problems are desirable in the literature to drive
research and development of MOEA [2,11]. Some studies have
tried to identify desirable characteristics of benchmark problems
in MaOPs, see for instance [19], many of which are not present
in most benchmarks in the literature. More recent benchmark
problems have been proposed in [11,20–25]. Benchmark prob-
lems are discussed in Section 2 and the desirable characteristics
in Section 3.1.

Nowadays, with the variety of benchmarks available in the
literature, researchers got to a point in which any new MOEA
developed should be tested on a wide variety of benchmark test
suites, with dozens of different problems. Instead of proposing
yet another set of fixed benchmark problems, this paper takes a
different stand. In this paper we propose a parameterized genera-
tor of scalable and customizable benchmark problems for MaOPs.
It is able to generate problems that reproduce features present
in other benchmarks and also problems with some new features.
The software engineering community has developed some years
ago the concept of generative testing. In short, generative testing
allows one to specify properties the software should have. Then
the testing library generates test cases in a smart way [26,27].
Following this idea, we propose here the concept of generative
benchmarking, which is a similar approach for benchmarking
MOEAs: we develop in this paper a test generator, able to gener-
ate an infinite number of MOO problems, by varying a number of
parameters that control specific features that the problem should
have.

With this generative testing approach, one can generate scal-
able and customizable benchmark problems by controlling a
number of features, such as scalability in the number of variables

and objectives, bias, robustness, deceptiveness, multimodality,
shape of the Pareto front, and constraints. These features are
discussed in more detail in Section 3. The instance generator (see
Section 4) offers the possibility of precise control over the spatial
location of points in the objectives space, which is an essential
characteristic to verify the efficiency of methods that propose to
find solutions in specific regions of the space of the objectives,
mainly in MaOPs. This work opens up a new perspective in
benchmarking and testing MOEA. A number of test cases, combin-
ing different characteristics, can be randomly and automatically
generated and the competing algorithms are then executed over
each test case. Nonparametric statistical analysis for multiple
comparison can then be used, following the best practices in
experimental comparison of stochastic algorithms [28–30].

The paper is organized as follows: Section 2 presents an
overview of benchmark problems in the literature as well as
their limitations. Section 3 describes desirable characteristics for
test problems and introduces a new set of benchmark functions
that pose more challenges for MOEA. Section 4 describes the
parameterized generator of scalable and customizable benchmark
problems. At the end, Section 5 describes the conclusions and
discusses some possible directions for future research.

2. An overview of test functions

In this section, we review benchmark problems in the liter-
ature for multi-objective test problems: Zitzler, Deb and Thiele
(ZDT) test suite [16], Deb, Thiele, Laumanns and Zitzler (DTLZ)
test suite [13], and Walking Fish Group (WFG) toolkit [14]. A com-
mon feature of these problems is that the optimization variables
can always be written as x = (xp, xd), where xp is a vector with
M − 1 elements that controls the position of its image in the
objective space and xd is a vector with N − (M − 1) coordinates
that controls the distance of its image to the Pareto front. Recent
benchmarks in the literature are discussed in Section 2.4. Finally,
in Section 2.5 we discuss their main limitations.

2.1. ZDT benchmark

Zitzler, Deb and Thiele (ZDT) [16] proposed the family of
functions ZDT1-ZDT6, in order to compare the effectiveness of dif-
ferent MOEAs. Although this benchmark considers only problems
with two objectives, it introduced the idea of having a subset of
variables responsible for the position and variables responsible
for the distance in the objective space. This constructive approach
for benchmark problems is used in other works that followed on
benchmarking for MaOPs.

The ZDT problems have variables in the [0, 1] range, except
for ZDT5, which has binary domain [14]. In all functions, xp
is composed by only one coordinate, which corresponds to the
objective value f1(x) = x1. The second objective f2(x) is defined by
means of different expressions with xp and xd, being responsible
for convergence and distribution of the population on the Pareto
front in the different problems. Vector xd has a variable size (29
for ZDT1 to ZDT3, 9 for ZDT4 and ZDT6 and 10 for ZDT5). The
functions present Pareto fronts that are convex (ZDT1 and ZDT4),
concave (ZDT2 and ZDT6) and disconnect (ZDT3) [14]. However,
the ZDT benchmark is limited to two objectives and its main focus
is on the convergence of the solutions towards the Pareto front.

2.2. DTLZ benchmark

Deb, Thiele, Laumanns, and Zitzler (DTLZ) [13] presented the
DTLZ1-DTLZ9 problems, which are scalable for any number of
objectives. Scalability is a desirable feature which makes these
test functions suitable for testing MOEA in MaOPs [13,14]. These
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problems have a well-defined solution, namely xi ∈ [0, 1] for
xi ∈ xp and xj = 0.5 for xj ∈ xd. In all problems, the Pareto front is
located in the first orthant1 of the objective space and its shape
is quite simple: either a sphere, a curve or a simplex.

DTLZ1 is an M-objective problem with a simple linear Pareto
front. As pointed out by the authors [13], the only difficulty
provided by this problem is the convergence towards the Pareto
front. The search space contains (11k

− 1) local Pareto-optimal
fronts to attract the MOEAs. DTLZ2-DTLZ3 use a function based
on spherical coordinate system to determine the position of the
points in the objective space. For xi ∈ [0, 1], i = 1, . . . ,M − 1
the function corresponds to the surface of a sphere in the first
orthant of space RM . Similarly, the geometric characteristics of
this surface make the objectives conflicting and an adequate
distribution of the vectors xp guarantees a good distribution of
the points in the Pareto front. In DTLZ4, xi is replaced by xα

i ,
where α is a bias parameter, in order to introduce a bias and
make the spatial distribution of the points in the objective space
harder; α = 100 is suggested in [13]. In DTLZ5 and DTLZ6,
a slight modification in the auxiliary function turns the Pareto
front into a curve contained in a sphere in the first orthant of
the objective space in problems with three objectives. DTLZ7 to
DTLZ9 problems do not use the spherical coordinate system in the
M-dimensional space. The DTLZ7 presents a simple formulation
for objectives 1 to M − 1 : fi(x) = xi for 1 ≥ i ≥ M − 1. The last
objective fM (x) is the only one dependent on the other variables
of the problem. DTLZ7 presents 2M−1 disconnected regions in
the Pareto front. DTLZ8 and DTLZ9 are the only problems that
present inequality constraints in this family. The former presents
M constraints and the latter M −1. The Pareto front of the DTLZ8
problem with three objectives is composed of a straight segment
and a triangular shaped flat surface, and the Pareto front of the
DTLZ9 problem is quite similar to that presented by the DTLZ5
problem.

In the problems DTLZ1 to DTLZ7, the decision space has N =

M − 1 + k variables. The first M − 1 variables give the spatial
location of the points in the objective space, while the remaining
k = N − M + 1 variables are responsible for the convergence
of points to the Pareto front. Thus, in these problems a vector in
the decision space can be written as x = (xp, xd), where xp is
the portion responsible for the spatial location of the points in
the objective space and xd responsible for convergence. In DTLZ8
and DTLZ9, it is suggested N = 10M variables [13]. The k values
suggested are k = 5 for DTLZ1, k = 10 for DTLZ2-DTLZ6 and
k = 20 for DTLZ7. The optimal Pareto set for problems DTLZ1-
DTLZ7 is xi ∈ [0, 1] for xi ∈ xp; xj = 0.5 for xj ∈ xd in
DTLZ1-DTLZ5; and xj = 0 for xj ∈ xd in DTLZ7. Lastly, the solution
for the DTLZ8 and DTLZ9 problems is not presented.

2.3. WFG benchmark

Huband et al. [14] divided the desirable characteristics into
those related to the fitness landscape and the Pareto optimal
front geometry. Also, they analyzed the scalability and the sep-
arability of the MOO problems. According to the authors, the
problem should be well defined for any number of objectives and
be scalable, since a problem with more decision variables than
objectives in general presents more difficulties to the optimizer.
For a vector x = (x1, . . . , xN ) in the decision space, any variable
xi is classified in two ways: xi is a distance parameter if its vari-
ation produces a new y that changes the dominance relationship
between F (y) and F (x). Otherwise, xi is a position parameter. If a

1 The first orthant is the set of points x = (x1, . . . , xM ) of the M−dimensional
space with xj ≥ 0, j = 1, . . . ,M . In R2 the first orthant is the first quadrant, in
R3 the first orthant is the first octant and so on.

variable xi has the same optimal value x⋆
i regardless of the values

of the other decision variables, then this variable is separable.
Otherwise, xi is non-separable. If every variable of an objective
fi(x) is separable, then this objective is separable. Consequently,
if all objectives are separable, then the problem F (x) is separable.
The solutions x⋆

= (x⋆
1, . . . , x

⋆
N ) of the problem in the decision

space are classified according to the location of x⋆
i in the interval

[Li,Ui] where this variable is defined. If x⋆
i is close to the extremes

Li or Ui, then x⋆
i is on extremal parameter. Otherwise, if x⋆

i is
located near the center of the interval [Li,Ui], then x⋆

i is a central
(medial) parameter.

With reference to the convergence in the objective space, the
authors pointed out that a problem can be classified as unimodal
or multimodal, where the deceptiveness is an specific type of
multimodality. In a deceptive problem, the sub-optimal solutions
lead the population of the MOEA to a region far from the one
where the global optimum is located. A final aspect is the Pareto
front. In a problem with M objectives, the Pareto front is, in
general, a surface S of dimension M − 1. If the Pareto front
dimension is less than M−1, then the problem is degenerate. This
surface can be concave, convex, flat or a mixture of these formats.
This surface can also be connected, i.e. given any two points A and
B in S, there is always a path c contained in S connecting these
points. Otherwise, the Pareto front is disconnected.

Huband et al. [14] also indicated several recommendations for
the construction of test problems, such as: (a) extremal or central
parameters should not be used; (b) adjustable dimension of the
decision and objective space; (c) the search and objective space
must be dissimilar, i.e., the variables in the search space with
intervals of different sizes (dissimilar parameter domains), as well
as the solutions in the objective space (dissimilar tradeoff ranges);
(d) the optimal solution should be known; and (e) must present
different shapes of Pareto front.

Based on these recommendations, the authors presented a
nine functions toolkit, WFG1-WFG9. Starting from a vector of
parameters z, a sequence of transformations is applied in order to
obtain another vector x that adds the desired characteristics. The
problem is then defined by minimizing the objectives fi(x), 1 ≤

i ≤ M . The vector z has k + l = N ≥ M positions, with the
first k variables determining the position of F (x) in the objective
space and the last l variables responsible for the distance from
F (x) to the Pareto front of the problem. The transformed vector x
has M positions, the first M −1 coordinates being responsible for
the position of F (x) in the objective space and the last variable
responsible for the distance from F (x) to the Pareto front of the
problem. In this way, this class of problems can be represented by
a sequence of applications Z

t(z)
−→ X

F (x)
−−→ Y, where Z is the decision

space, X is the space of the parameters and Y is the objective
space, with 0 ≤ zi ≤ zi,max, and 0 ≤ xi ≤ 1.

2.4. Other test suites

Since benchmark test problems are of great significance for the
development of MOO algorithms, new test functions have been
created to introduce new features and difficulties to compare the
ability of the several MOEAs.

More recently, Wang et al. [11] proposed a test problem gen-
erator that enables the design of MOO problems with complex
Pareto front boundaries. The generator allows the researcher
to control the feature of boundaries, consequently varying the
difficulty for the MOEAs in achieving uniformity-diversity and
breadth-diversity. Matsumoto et al. [20] examined the influence
of the shapes of the Pareto Front as well as the shape of the fea-
sible region. Since scalability is not enough to impose difficulties
for the MOEAs, the authors proposed a set of seven test problems
with hexagon and triangular types of Pareto fronts. The results
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indicated differences between the algorithms used, given the dif-
ferent curvatures of the functions. Yue et al. [21] proposed a novel
family with 12 scalable multimodal MOO problems with differ-
ent characteristics, such as scalability, presence of local Pareto
optimal solutions, non-uniformly distributed Pareto shapes and
discrete Pareto front, being all of them continuous optimization
problems. Helbig and Engelbrecht [31] and Jiang et al. [22] fo-
cused on dynamic MOO (DMOO) problems. The former described
a set of characteristics of an ideal set of DMOO benchmarking
functions and proposed different problems for each characteristic.
The latter proposed 15 scalable problems challenging the current
dynamic algorithms to solve them. Ma and Wang [24] designed
a test suite consisting of 14 problem instances for constrained
multi-objective optimization, which tries to model characteristics
extracted from real-world applications. Yu, Ji and Nolhofer [23], in
turn, proposed a set of test problems whose Pareto fronts consist
of complex knee regions, i.e. an important geometric feature
on the Pareto-optimal front, ‘‘where it requires an unfavorably
large sacrifice in one objective to gain a small amount in other
objectives’’ [23]. Weise and Wu [25] proposed a benchmark suite
tunable towards different difficulty features for bit string based
problems. Although that work is not applicable to MaOPs and is
from the discrete domain, it shows that the proposed idea of a
tunable benchmark suite is interesting in optimization in general.

These recent works bring important contributions for the re-
search and development of optimization algorithms in different
ways, specially for modeling features from practical problems and
adding new aspects to the performance evaluation of MOEAs.
However, at the same time, this brings a notable drawback to the
researchers developing new methods: one has to work with 3 to
6 benchmarks from the literature in order to compare different
competing MOEA.

2.5. Limitations

The main limitation of the ZDT family is that the problems are
restricted to two objectives. Nevertheless, because it presents a
large number of variables responsible for population convergence
and it is easy to implement, this set is still valid to evaluate
algorithms for problems with two objectives.

In the DTLZ family, the most used problems are DTLZ1 to
DTLZ4. They are scalable to any number of objectives but have
a small variety of Pareto Front shapes, namely a plane for DTLZ1
and a sphere for the others. In addition, the number of variables
related to the positioning of solutions F (x) in the objective space
is restricted to M − 1. The authors suggest a way to increase the
difficulty of the problems by replacing the nominal value of the
variable xi (1 ≤ i ≤ M − 1) by the meta-variable yi given by the
mean value of q variables, using Eq. (1)

yi =
1
q

iq∑
k=(i−1)q+1

xk (1)

which makes the spatial location of the points in the objective
space depend on a larger number of variables. However, this
strategy is not challenging enough to the current MOEAs.

DTLZ5 and DTLZ6 have a degenerate Pareto front, but present
inconsistencies in problems with more than three objectives [32].
DTLZ7 has a very simple formulation, fi(x) = xi, 1 ≤ i ≤

M−1, with fM (x) the only objective with more elaborate algebraic
expression. In addition, it has as an optimal solution an extremal
value (xi = 0,M ≤ i ≤ N). The DTLZ8 and DTLZ9 problems are
partially degenerate and their results are difficult to interpret in
high dimensions, besides not presenting a known solution set for
validation of results.

Another limitation also present in the DTLZ family is the
lack of formulations related to robust optimization, as well as

the absence of inequality and equality constraints. DTLZ8 and
DTLZ9 problems, as mentioned, present inequality constraints,
but without any possibility of customization.

The WFG toolkit, in its turn, was carefully crafted, marked by
the list of virtues and failures raised after extensive and rigorous
analysis of the work presented so far. Although WFG offers a
number of advantages, it also has some significant limitations.
For example, a characteristic present in WFG1 is the idea of flat
regions in the objective space, i.e. a region where small perturba-
tions in the variables do not affect in a straightforward way the
value of the objectives. A global optimum in a flat region may
lead to similar results by MOEAs with different performance. The
lack of geometric meaning of the transformations also makes it
difficult to analyze the results obtained. The analysis of the results
is restricted to the existing evaluation metrics.

The characteristics of the most classical test suites are also
discussed in a number of works in the literature, see Ishibuchi
et al. [33], Huband et al. [14] and Zapotecas-Martínez et al. [19]. It
is important to realize that even for the most popular test suites,
such as ZDT, DTLZ and WFG, the well-diversified approximate
solutions can also be easily attained by MOEAs. The most recent
research has focused either on specific types of problems, as
DMOO [22,23] or on variations on the Pareto Front shape [20].
However, the problems remain fixed and without any customiza-
tion and the properties of deceptiveness and robustness are not
included.

3. A customizable family of benchmark problems

3.1. Desirable characteristics

In principle, test functions should consist of a variety of prob-
lems that are capable to capture a wide variety of desirable
characteristics. In order to list the main characteristics, we con-
sider some recommendations that have already been made in the
literature combined with our own ideas in Table 1. The related
references are also indicated.

Trying to cover these directives, this section introduces a
new set of scalable and customizable benchmark problems for
MaOPs. The proposed test suite uses the bottom-up approach [13,
19]. Once the Pareto optimal front, the objective space, and the
decision space are separately constructed, this method has facili-
tated the design of MOO problems. We propose the minimization
problem described in Eq. (2), using either a multiplicative or an
additive approach.

min F (x), F : RN
→ RM

subject to
{
φi(x) ≤ Ai, i = 1 . . . k1
ξj(x) = Ij, j = 1 . . . k2, Ij ∈ {1 . . .M}

(2)

where F (x) = Fp(x)Fd(x) or F (x) = Fp(x) + Fd(x). In this problem,
a vector x in decision space RN can be written as x = (xp, xd) ∈

RN
= RR

× RS , where xp = (x1, . . . , xR) ∈ RR and −1 ≤ xi ≤

1, i = 1 . . . R, is a vector with R coordinates, responsible for
the positioning of points F (x) in the objective space and xd =

(x1, . . . , xS) ∈ RS with 0 ≤ xj ≤ 1, j = 1 . . . S, is a vector with
S coordinates, responsible for the convergence of F (x). φi(x) and
ξj(x) are constrains. The details of the functions Fp(x) and Fd(x)
are discussed next.

3.2. Function Fp(x)

The function Fp(x) is responsible for the relative position of
the points in the objective space and the conflict among the
objectives. The basic definition is given in Eq. (7), which describes
the surface of a hypersphere of radius 1 in the first orthant of
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Table 1
Listing of desirable features for test problems.
Characteristic Description Reference

Pareto optimal set known Many performance measures require knowledge of the Pareto front. Additionally, the true
Pareto front should be simple to generate and the spatial location of solutions in the
objective space should be also known.

[6,14,25,34]

Scalability The test suite should be scalable for any number of objectives with free definition of number
of variables as well as free definition of number of objectives.

[4,6,11,13,14,31]

Pareto front geometries The Pareto front geometries include linear, nonlinear, convex, concave, mixed,
discontinuous/disconnected, inverted and so on. As explained by Yue et al. [21], generally a
nonlinear geometry is harder than the linear one. Also, the discontinuous/disconnected may
cause some algorithms to fail. Rich variety of shapes for the Pareto front is highly desirable.

[11,20,21,31]

Pareto set geometries The Pareto set geometries should include linear and nonlinear, connected and disconnected,
and symmetric and non-symmetric. Also, the main idea is to evaluate the algorithms.

[21]

Constraints Set of inequality and equality constraints which are easy to interpret and identify their
validity and violation.

[24]

Modality The function can be unimodal, multimodal or deceptive. A deceptive problem may cause the
most difficulty for EAs, swarm-based algorithms and other meta-heuristics, since the
sub-optimal solutions lead the population to a region far from the one where the global
optimum is located.

[19,31,32]

Separability There are two concepts of separability involved: one is related to the separability between
distance and position parameters. The other is related to controlling the degree of separability
of the function in terms of the optimal values.

[4,19,23]

Dissimilarity The parameters of the test problem and the tradeoff ranges in each objective should have
domains of dissimilar magnitude.

[2,32]

Independent parameters Parameters in each function that independently adjust the challenges presented to the DM
regarding to the convergence and coverage.

[11,19]

No extremal or medial
parameters

Both are to prevent exploitation by truncation, based on correction operators in the case of
extremal parameters and on intermediate recombination in the case of medial parameters.

[14]

Bias It represents the difficulty in sampling parts of the Pareto front causing a natural impact on
the search process.

[11,14,20,35]

Multi-modality with brittle
global optima and robust local
optima

It is possible to formulate a problem where each objective presents a global optimum and
several closer sub-optimal solutions. However, in only one of the sub-optimal solutions,
robustness is observed. The evaluation of this robust sub-optimal solution is stable, that is,
the objectives present a minimum variation for a significant range of values in the decision
space. A robust solution should still work satisfactorily when the design variables change
slightly. This feature is desirable in many practical problems, since the presence of noise,
disturbances and variability is always frequent.

[21,36–39]

Customization Benchmark functions should have parameters to control specific features of the problem. The
user should be able to generate different instances with controllable difficulties.

[11,25]

space RM in spherical coordinates and depends on at least M − 1
variables. The preference for this equation is due to the fact that it
describes the spatial location with simplicity and precision. Two
modifications are presented that aim to increase the number of
variables and the diversity of formats to this surface.

One way to increase the difficulty presented to the optimizer
in finding the best distribution of points in objective space is to
replace xi of Fp(x) by the meta-variable yi defined in Eq. (3). It
corresponds to the mean of q + t values in the set of variables
xi(i−1)q+1, . . . , xiq+t from the original decision space.

yi =
1

q + t

⏐⏐⏐⏐⏐⏐
iq+t∑

j=(i−1)q+1

xj

⏐⏐⏐⏐⏐⏐ , −1 ≤ xj ≤ 1 (3)

Note that the difference between the meta-variables presented
in Eqs. (1) and (3) is the sum of t at the upper bound of the
summation. Unlike the meta-variable (1) proposed for the DTLZ
family, in Eq. (3), each sub-interval where it is calculated the
average, shares t elements with the previous sub-interval and t
elements with the next sub-interval, increasing the dependency
between the decision space variables. However, it is necessary
that 2t + 1 < q for each sub-interval, guaranteeing the presence
of at least one independent variable xi from neighboring intervals,
and, consequently, that there is at least one solution that reaches
any region of the Pareto front. Thus, the subspace RR which is
responsible for positioning the points in decision space will have
(M − 1)q + t variables. The distribution of the meta-variables yi
in the parameter vector x is presented in Eq. (4) given in Box I.

Fig. 1 illustrates the effect of using the meta-variables yi on
a MOO problem. The DTLZ2 problem with three objectives was
selected and it was used the variable y in Eq. (3) with parameter
q = 10. In Fig. 1a the obtained solution with t = 0 is presented,
which corresponds to the use of the variable y defined by Eq. (1),
whereas in Fig. 1b the parameter t = 4 was used. For both, the
NSGA-III algorithm [40] available in the platEMO platform [12]
was used with the same hyper-parameters. When comparing
Figs. 1a and 1b, we immediately notice the degradation effect of
the spatial distribution over the solutions by using the proposed
meta-variables.

The use of this meta-variable has two important advantages:

1. Considering the decomposition of vector x = (xp, xd) in
decision space the xp component generally has M − 1
components. Thus, the increase in the number of decision
space variables corresponds to the increase in the number
of variables of the xd component. The meta-variable allows
scaling of the xp vector to more than M − 1 variables.
This more flexible form of design space scaling allows
the use of this class of test problems in large scale MOO
algorithms [41].

2. In general, the vector xp is randomly initialized according
to a uniform distribution over a range [a, b]. This distribu-
tion has mean (b−a)/2 and variance (b−a)2/12, making the
initial population symmetrically distributed in the central
region of this range. The meta-variable is initialized in the
same way. However, after its transformation, the initial
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x =(
y1  

x1, . . . ,   
y2

xq+1, . . . , xq+t ,xq+t+1, . . . , x2q,
y3  

x2q+1, . . . , x2q+t ,x2q+t+1 . . . , . . . , x3q+t , , . . .

. . . ,

yM−1  
x(M−2)q+t+1, . . . , x(M−1)q+t )

y1 =
1

q + t

⏐⏐⏐⏐⏐⏐
q+t∑
j=1

xj

⏐⏐⏐⏐⏐⏐ ,
y2 =

1
q + t

⏐⏐⏐⏐⏐⏐
2q+t∑
j=q+1

xj

⏐⏐⏐⏐⏐⏐ ,
...

yM−1 =
1

q + t

⏐⏐⏐⏐⏐⏐
(M−1)q+t∑

j=(M−2)q+1

xj

⏐⏐⏐⏐⏐⏐

(4)

Box I.

Fig. 1. Implications of the parameter t in the meta-variable y applied in DTLZ2 problem.

population accumulates non-symmetrically at the begin-
ning of the interval. This new biased configuration poses
an unprecedented challenge to optimization algorithms.

The shape of this surface can be controlled by changing the
norm of points. If x = (x1, . . . , xM ) is a point in RM , a p -norm
∥x∥p (also called ℓp norm) of x is given by the Eq. (5)

∥x∥p =

(
M∑
i=1

|xi|p
)1/p

(5)

where p ≥ 1 and |xi| is the absolute value of xi (note that the
absolute value of xi is the norm ℓ2 of xi, i.e., |xi| = ∥xi∥2.). If
p = 2 the p-norm is called the Euclidean norm and if p = 1
it is the Manhattan norm (or taxicab norm). The infinite norm
(or Tchebycheff norm) of the vector x ∈ RM , denoted by ∥x∥∞,
is defined as ∥x∥∞ = max |xi|, 1 ≤ i ≤ M . So, consequently
limp→∞ ∥x∥p = ∥x∥∞. If 0 < p < 1, the expression (5)
does not define a norm, but a quasi-norm, since the triangular
inequality is not satisfied [42]. Nonetheless, p values greater than
zero are going to be used in Eq. (5) to produce constant norm (or

quasi-norm) surfaces. Fig. 2 presents constant norm curves with
different p values in R2 space.

In this way, the function Fp(x) can be defined by:

Fp(x) =
T (x)
h(x)

(6)

where T (x) is responsible for the distribution of the points in ob-
jective space, defined by Eq. (7), dependent on the meta-variable

yi =
1

q + t

⏐⏐⏐∑iq+t
j=(i−1)q+1 xj

⏐⏐⏐ and h(x) = ∥T (x)∥p.

T (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t1(x) = cos(y1π/2) cos(y2π/2) . . . cos(yM−2π/2) cos(yM−1π/2)

t2(x) = cos(y1π/2) cos(y2π/2) . . . cos(yM−2π/2) sin(yM−1π/2)

t3(x) = cos(y1π/2) cos(y2π/2) . . . sin(yM−2π/2)

.

.

.

tM−1(x) = cos(y1π/2) sin(y2π/2)

tM (x) = sin(y1π/2)

(7)

Another desirable characteristic is the dissimilarity of the ob-
jectives. In general, each objective of benchmark problems for
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Fig. 2. Points with different p−norm value in R2 space.

multiobjective optimization has its optimal values limited in the
range [0, 1], i.e. 0 ≤ fi(x) ≤ 1, but this hardly reflects real-world
problems. Some authors, such as Huband et al. [32] and Cheng
et al. [2], presented functions with dissimilar objectives, being
0 ≤ fi(x) ≤ ξ , with ξ a power or a multiple of 2. However,
these problems only present objectives with non-negative values.
An optimization problem with dissimilar objectives with positive
and negative values is presented in Eq. (8)

D(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d1(x) = 2(2f1(x) − 1)
d2(x) = 4(2f2(x) − 1)
d3(x) = 6(2f3(x) − 1)

...

dM (x) = (2M)(2fM (x) − 1)

(8)

where fi(x) represents the ith objective obtained after the evalu-
ation of F (x) = Fp(x)Fd(x).

Once 0 ≤ fi(x) ≤ 1, then −2i ≤ di(x) ≤ 2i. In fact, if fi(x) = 0
then di(x) = 2i(0 − 1) = −2i as well as if fi(x) = 1 then
di(x) = 2i(2 − 1) = 2i. Note that the function D(x) transfers
the origin from objective space O = (0, . . . , 0) to the point
O′

= (−2, −4, . . . ,−2M), but it does not change the surface’s
concavity.

3.3. Function Fd(x)

This function is responsible for the convergence of points
towards the Pareto front and, in some cases, for the shape of the
Pareto front. This function makes use of the auxiliary functions
g(x) and φ(x).

3.3.1. Auxiliary function φ(x)
The auxiliary function φ(x) aims to incorporate some infor-

mation about the position of F (x) relative to the hyper-diagonal
d = (1, 1, . . . , 1) (or another vector d) in the objective space. For
the point x ∈ RN in the decision space, the point Fp(x) is on a
surface of p-norm (quasi-norm) constant in the objective space,
with ∥Fp(x)∥p = 1. The ϕ angle between the hyper-diagonal d
and Fp(x) is calculated by means of

ϕ(x) = arccos
(
d · Fp(x)T

|d||Fp(x)|

)
(9)

This value must be normalized into the range [0, 1]. For the
vector d = (1, 1, . . . , 1), the angle ϕ is maximal if the vector
defined by Fp(x) is aligned with some vector of the canonical base
ei = (0, . . . , 1, . . . , 0), that is, if Fp(x) = λei for some λ > 0. In
this case, the maximum angle is ϕmax = arccos

(
1

√
M

)
and the

value of the normalized distance function φ(x) is given by

φ(x) =
ϕ(x)
ϕmax

(10)

3.3.2. Auxiliary function g(x)
The auxiliary function g(x) is responsible for the convergence

of the points in the objective space. In this work we present two
versions: deceptive and multi-modal with brittle global optima
and stable local optima. Other versions of this function can be
incorporated into this proposal in order to satisfy some special
need.

The first version, a parameterized deceptive function, is char-
acterized by the presence of a global optimum and two local
minima. Another relevant characteristic of this function is the
influence of the relative position of the point in the objective
space. The relative position is given by the function φ(x) (Eq. (10)).
The topology of this problem favors the sub-optimal solutions,
making the global optimum difficult to achieve. The deceptive
function proposed, g(x), is defined by Eq. (13). It presents, for each
variable xi ∈ xd, two local minima (in xi = 0 and xi = 1) and one
global (in xi = v) optima located in a deep valley of width 2r .

The Fig. 3a presents the construction details of the function
g(x). If 0 ≤ xi ≤ v − r (and v + r ≤ xi ≤ 1), the function g(x)
is a line connecting the points A and B (D and E respectively).
If v − r < xi < v + r then g(x) is a complete cycle of the
cosine trigonometric function connecting the points B, C and D.
The v and r parameters do the correlation between the position
and distance, respectively, of a point in the objective space and
introduce a bias in the decision space. They are defined as follows:

v(xp, xi) =
1.2 + sin

(
2π (1 − φ(xp))1.05i

)
2.4

(11)

r(xp) = 0.015 cos(2kπφ(xp)) + 0.025 (12)

This special format has as motivation to hide the location of
the optimal value xi by a small opening of the valley determined
by the parameter r , leading the population to the local minima
located at the beginning and the end of the range. Note that r(xi)
and v(xi) use the normalized function φ(x). As seen before, this
function estimates the relative position of a point in the objective
space, controlling the range of the valley (segment BD in the 3a).
In Eq. (12), the factor k = 1 produces two large ranges and one
narrow range. In a general way, k + 1 large valleys and k narrow
valleys will be produced. Fig. 3d shows the contour lines of g(x)
for the first variable of the vector x using k = 5.

The proposed deceptive function g(x) is defined by

g(x) =

∑
xi∈xd

z(xp, xi) (13)

where

z(xp, xi) =

⎧⎪⎪⎨⎪⎪⎩
5(xi+r−v)

v−r + 10 if 0 ≤ xi < v − r

5(cos( xi+r−v

r π ) + 1) if v − r ≤ xi ≤ v + r
5(xi−v−r)

v+r−1 + 10 if v + r < xi ≤ 1

(14)

Fig. 3b presents the function g(x) for a single variable xi ∈

[0, 1] with r parameter equal to 0.1, 0.05 and 0.01. Fig. 3c presents
the variation of g(x) when φ(x) and the first variable x1 of xd
varies from 0 to 1. Figs. 4a to 4d show the contour lines of g(x)
for i = 1, 5, 10 and 20, respectively.
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Fig. 3. Deceptive function g(x).

The second version for the function g(x) presents a special
multi-modal distance function, with a brittle global optimum and
local optima. The global optimum and some of the local optima
near it are sensitive to the presence of noise on their optimal val-
ues in the Decision Space. However, there is a region with stable
local optima, whose values present little variation when this same
noise is added to the optimal values in the Decision Space. This
type of function is appropriate for the validation of algorithms
designed for robust optimization [43–46], whose goal is to find
stable solutions, that is, solutions that, when evaluated, show
little variation when some noise is added in their neighborhood.
The multi-modal function g(x) is the combination of logistic and
trigonometric functions. It has no extremal variables and the ro-
bust solutions are located in the (0.1, 0.3) range. The global opti-
mal solution is xi = 0.60 (precisely xi = 0.600066066066066 . . .)
but it is sensitive to noise in its neighborhood. The robust g(x) is
defined by Eq. (15).

g(x) =

∑
xi∈xd

[
−w(xi) (y(xi) − z(xi)) +

y(xi) − 1
2

+ e−60xi + 0.631
]

(15)

where

y(xi) =
1

1 + e−20(xi−0.6) (16)

z(xi) =
1

1 + e−20(xi−0.7) (17)

w(xi) = cos(40πxi) (18)

The function g(x) is illustrated in Fig. 5a for a single variable
x1 ∈ [0, 1]. Fig. 5b shows the effect caused by the presence
of noise in xd variables of the g(x) function. The figure shows
solutions obtained with the optimal value (xi = 0.6 ∈ xd
— blue dots) and the stable local optima value (xi = 0.2 ∈

(0.1, 0.3)) — red dots) in the DTLZ2 problem with two objectives.
To verify the robustness of these solutions, an ϵ noise with
uniform distribution (ϵ ∼ U(−0.1, 0.1)) was added to the global
optimum and in the stable local optimum. It is possible to see that
when these solutions were re-evaluated, there were no changes
in the distribution and convergence of the stable solutions (black
dots), whereas the optimal solutions present unsatisfactory per-
formance in the presence of noise (yellow dots). In this sense the
stable local optimal solution is robust, while the global optimal
solution is not robust. Note that using this function it is possible



I.R. Meneghini, M.A. Alves, A. Gaspar-Cunha et al. / Applied Soft Computing Journal 90 (2020) 106139 9

Fig. 4. Contour lines of the deceptive function g(x) for i = 1, 5, 10, 20 and k = 1 for a single variable x.

to create test problems where the robustness of the solutions can
be tested in all objectives. Recent work on robust optimization
uses test functions where robustness can be controlled for only
one objective or uses common test problems [44,45,47,48].

3.4. Equality and inequality constraints

The proposed optimization problem F (x) easily allows the
incorporation of equality and inequality constraints with the ma-
nipulation of the φ(x) function defined previously in Eq. (10) and
one vector d. Since this function allows the spatial location of
points in the objective space, the main idea is to select solutions
with special values of φ(x) for a particular vector d. Since 0 ≤

φ(x) ≤ 1, we just select some thresholds A, B, with 0 < A < B < 1
and define the following constraints:

φ(x) ≥ A (19)

φ(x) ≤ A (20)

A ≤ φ(x) ≤ B (21)

In addition to the constraints presented in Eqs. (19)–(21), it
is possible to select large regions in the objective space in the
following way: consider a problem where the objective space is
located in the first orthant of RM space. In this case, consider
the angle θi between the point y = F (x) and the vectors of the
canonical basis ei = (0, . . . , 1, . . . , 0), with 1 ≤ i ≤ M . Let
θj = min{θ1, . . . , θM} and j the objective associated with this
minimal value. The function ξ (x) associates the vector x to the

objective j which has the smallest angular distance of F (x). It is
easy to see that ξ (x) = j is not an injection function, because
for F (x) = (1, . . . , 1) we have θ1 = θ2 = · · · θM , for example. In
these cases where min{θ1, . . . , θM} = {θj1, . . . , θjk}, make ξ (x) =

min{j1, . . . , jk} and define the constraint represented in Eq. (22).

ξ (x) = j (22)

In this way, using this classification it is possible to select one
or more regions that should be included or excluded from the
Pareto front. All possibilities listed here can be incorporated into
the MOP explicitly as constraints or as penalties in the distance
function Fd(x). Fig. 6 illustrates some examples. Figs. 6a and 6b
present the Pareto front of a three objective problem by applying
the constraint defined in Eq. (19). Instead of a single reference
vector d, each canonical base vectors e1 = (1, 0, 0), e2 = (0, 1, 0)
and e3 = (0, 0, 1) were used as reference. Fig. 6a uses A = 0.5
while Fig. 6c uses A parameter equal to 0.5, 0.3 and 0.1 for the
vectors e1, e2 and e3 respectively. Notice that the resulting Pareto
front is similar to an inverted Pareto front, but it is generated as
a result of adding constraints. The same procedure is used in a
problem with five objectives, using the canonical base vectors
e1, . . . , e5 and A = 0.5. The Pareto front is shown in Fig. 6b
using the RadViz visualization tool [49]. In this figure, the red
points represent the vectors e1, . . . , e5 just as reference. These
examples illustrate how to use the constraint set to obtain a rich
variety of shapes for the Pareto front. Fig. 6d illustrates the use
of the constraint defined by Eq. (21) using d = (1, 1, 1), A = 0.3
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Fig. 5. Robust function g(x).

and B = 0.7. This constraint can produce a disconnected Pareto
front. Lastly, Fig. 6e shows the constraint defined by Eq. (22) in
a problem with eight objectives using the CAP-vis tool [50,51].
In this example, the Pareto front consists only of points near the
axis of the second objective in terms of angular distance. For
more details about reading this chart, see [50]. For this case the
constraint in Eq. (22) was defined as ξ (x) = 2.

4. Proposed generator of benchmark problems

This section presents a new test function generator for scalable
and customizable benchmark problems in MaOPs. This new set
uses the bottom-up approach and allows the creation of scalable
problems for any number of objectives, presenting Pareto fronts
with different shapes and topologies.

The auxiliary functions previously defined allow the formu-
lation of several customizable optimization problems. We refer
to it as the Generalized Position-Distance (GPD) test functions.
The generated functions are all scalable and use either the de-
ceptive version, Eq. (13), or the multimodal version, Eq. (15),
of function g(x). The dissimilarity of the functions can also be
controlled. In addition, each GPD test problem can present any
of the constraints described in Section 3.4.

All the functions generated use the bottom-up approach in the
multiplicative or additive form, as described in Eq. (23).

min F (x),F : RN
→ RM

subject to
{
φi(x) ≤ Ai, i = 1 . . . k1
ξj(x) = Ij, j = 1 . . . k2, Ij ∈ {1 . . .M}

(23)

The decision space RN
= RR

× RS is separable, being the
vectors RR responsible for the relative position of F (x) in the
objective space (position parameters) and RS for the convergence
of points in the Pareto front (distance parameters). The space
RR has r = (M − 1)q + t coordinates, where M is the number
of objectives and q, t are the parameters of the meta-variable
y defined by Eq. (3), with 2t + 1 < q. If q = 1 and t = 0
then yi = xi and Eq. (7) is the usual multidimensional polar
coordinates. Then, to define any problem instance, it is necessary
to specify the number of objectives M . The number of variables
of the decision space is given by N = (M − 1)q + t + S, where q
and t are the meta variables parameters and S is the number of
variables used in some distance functions. If the meta-variable is

used then xp ∈ [−1, 1]R and xd ∈ [0, 1]S for the distance functions
presented in this paper.

Fp(x) defines the relative position of points in the objective
space and the p-norm (or quasi-norm) of the Pareto front. This
function uses the parameters q, t (previously defined) and p, the
latter being used to normalize the Pareto front, affecting its shape.

Points in a constant norm surface in high dimensional space
have unbalanced coordinates. For example, in space with M di-
mensions, a vector ei = (0, . . . , 0, 1, 0, . . . , 0) with canonical
base has p-norm equal to 1 for any value of p > 0. Points located
on the edge of the first orthant of the space RM have constant p-
norm equal to 1. On the other hand, in an extreme case, a vector v
parallel to the hyper-diagonal d = (1, . . . , 1) with p-norm equal
to 1 has the following coordinates:

v =
d

∥d∥p
(24)

=

(
1

p√M
, . . . ,

1
p√M

)
(25)

For a fixed p value, 1
p√M

decreases very quickly. Fig. 7 exem-
plifies the evolution of the values of 1

p√M
related to the space

dimension M . It is possible to realize that this value decreases
with M reaching values close to zero in high dimensionality. It
can be solved easily by determining an ideal value for p. As an
example, use p >

ln(M)
ln(2) to obtain 1

p√M
> 1

2 . In this way, for MaOPs,

we suggest p =

⌈
ln(M)
ln(2)

⌉
.

Fd(x) establishes the radial distance between the points in the
objective space and the Pareto front using some auxiliary func-
tion. The literature presents many examples of such functions,
with distinct characteristics [11,13,52]. The auxiliary functions
introduced in this paper present the following peculiarities:

1. Use of the relative position of a point in the objective space
by the φ(x) function correlating position and distance. With
this feature, changing the relative position by changing the
xp vector changes the distance function value to the same
xd vector;

2. Deceptiveness: a large portion of the decision space leads
to a suboptimal distance value while optimal distance val-
ues are restricted to a small region of this space;
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Fig. 6. Constrained Pareto front using different reference vectors d and thresholds A and B.

3. Robustness: An optimal distance solution is sensitive to
small disturbances while suboptimal solutions have more
stability in the presence of noise in distance variables.
The proposed auxiliary function makes a Robust Multi-
objective Optimization Problem where the robustness can
be analyzed on all objectives. In a recent paper, He et al.
[45] present a Robust Multi-objective Evolutionary Algo-
rithm but the test function used enables analysis of robust-
ness of solutions in just one objective.

The deceptive auxiliary function uses a parameter k in Eq. (12)
that defines the number of large and narrow valleys. The robust
auxiliary function has no parameters. Since the smallest value of
each of its components in both functions is equal to zero, the
corresponding function Fd(x) is g(x) in the additive approach and
1 + g(x) in the multiplicative case.

In addition to the Fd(x) functions listed above, it is possible
to create other functions by manipulating the proposed g(x)
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Fig. 7. 1
p√M

on M-dimensional spaces.

distance and φ(x) functions. For example,

Fd(x) =
φ(x)5

2
+ g(x) + 0.5 (26)

presents a Pareto front with convex and concave regions, which
are symmetrical to the hyper-diagonal d = (1, 1, . . . , 1) of the
first orthant of the objective space. Figs. 8a and 8b show the
Pareto front of this problem with two and three objectives.

A function with disconnected Pareto front and symmetric with
the hyper-diagonal d = (1, . . . , 1) of the first orthant in the
objective space can be produced by using:

Fd(x) =
cos(3πφ(x))2

10
+ g(x) + 1 (27)

Figs. 8c and 8d show the Pareto front of this problem with two
and three objectives.

In addition to the possibilities listed above, the constraints
presented in Eqs. (19) to (22) can be added, as well as the
dissimilarity of objectives as the presented in Eq. (8).

This proposal for generating test problem instances focuses on
the combination of the parameters presented for the composi-
tion of the meta-variable y, the position function Fp(x) and the
distance function Fd(x), as well as the combined use of one or
more constraints. The composition of these parameters is capa-
ble of producing an unlimited number of multi-objective, multi-
purpose, large-scale optimization benchmark problems that can
be multimodal, deceptive, dissimilar, constrained, and others.

Table 2 presents the main parameters of the proposed instance
generator. Suppose as an example that a robust problem with the
following characteristics is required:

1. Two objectives and several decision variables;
2. Convex, dissimilar objectives and disconnected Pareto

front;
3. Multiplicative approach.

This specific problem can be produced by setting the following
parameters:

1. Set M = 2 and use the meta-variables in Eq. (3) with
q = 10, t = 4 and S = 15, generating the minimization
problem F : R29

→ R2.
2. Set p = 2 and use D(x) in Fp(x) function. Include the

φ(x) ≥ 0.3 and φ(x) ≤ 0.7 constraints, using d = (1, 1).
Other values for A can be used instead 0.3 and 0.7, as well
as for the vector d and any other value greater than 1 for
parameter p.

3. Define F (x) = Fp(x)Fd(x) where Fd(x) = 1 + g(x) and g(x)
is defined by Eq. (15).

A deceptive MaOP for which the nominal values of the objec-
tives are not discrepant but the first objective is always higher
than the others can be created by making M > 3, p =

⌈ log(M)
log(2)

⌉
,

using the g(x) deceptive auxiliary function and the ξ (x) = 1
constraint.

The following is a quick roadmap for building test function
instances.

Input: Number of Objectives M , number of distance variables
S, reference vector d, a list of parameters q, t , p, k, and
other features that should be imposed on the problem
(deceptiveness, dissimilarity, separability, constraints etc.);

Decision Space design: Initialize the Decision Space. If meta-
variable yi is used, set R = (M −1)q+ t , else do R = M −1.
Then generate the decision vector x = (xp, xd) ∈ RR+S

where xp ∈ [−1, 1]R and xd ∈ [0, 1]S .

Evaluates the position function Fp(x): If the meta-variable is
used, evaluate Eq. (3)

yi =
1

q + t

⏐⏐⏐⏐⏐⏐
iq+t∑

j=(i−1)q+1

xj

⏐⏐⏐⏐⏐⏐ , −1 ≤ xj ≤ 1

Else do yi = |xi|, i = 1 . . .M−1. Then project xp into space
RM using the spherical coordinates in Eq. (7)

T (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t1(x) = cos(y1π/2) cos(y2π/2) . . . cos(yM−2π/2) cos(yM−1π/2)

t2(x) = cos(y1π/2) cos(y2π/2) . . . cos(yM−2π/2) sin(yM−1π/2)

t3(x) = cos(y1π/2) cos(y2π/2) . . . sin(yM−2π/2)

.

.

.

tM−1(x) = cos(y1π/2) sin(y2π/2)

tM (x) = sin(y1π/2)

Evaluate the p−norm ∥T (x)∥p in Eq. (5)

∥T (x)∥p = h(x) =

(
M∑
i=1

|ti(x)|p
)1/p

and normalize T (x) by defining the Eq. (6)

Fp(x) =
T (x)
h(x)
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Fig. 8. Pareto front of the distance function (26) and (27) with 2 e 3 objectives.

Table 2
List of parameters for generative benchmarking.
Parameter Equation Feature Notes

M Number of objectives M ≥ 2

N Number of decision variables N = R + S where Fp(x) : RR
→ RM and Fd(x) : RS

→ R

q, t (3) Meta-variable yi , bias,
separability.

Defines the length and the overlap size of the meta-variable yi and the dimension
R = (M − 1)q + t of RR space. Setting q = 1 and t = 0 get the usual M − 1 position
variables. 2t + 1 < q.

p (5) p-norm value, shape of the
Pareto front.

Defines the p-norm value used in the Fp(x) function, controlling the convexity or
concavity of the front. p > 0

d Reference vector Used in φ(x) function, see (10).

k (12) Valley width Defines the number of narrow and wide valleys in the r(x) function.

D(x) (8) Dissimilar Objectives Performs the PF transformation from 0 ≤ fi(x) ≤ 1 to −2i ≤ fi(x) ≤ 2i

g(x) Auxiliary function Defines the problem as being deceptive (13), multimodal, or having robust solutions
(15),

+, × (23) Defines the problem as additive or multiplicative

A, B (19) to (21) Inequality constrains Defines the inequality constrains. 0 ≤ A < B ≤ 1

j (22) Equality constrains Defines the equality constrains ξ (j). 0 ≤ j ≤ M
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Additionally, if the problem is dissimilar, calculate Eq. (8)

D(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d1(x) = 2(2f1(x) − 1)
d2(x) = 4(2f2(x) − 1)
d3(x) = 6(2f3(x) − 1)

...

dM (x) = (2M)(2fM (x) − 1)

and do Fp(x) = D(x).

Evaluate the distance function Fd(x): If function φ(x) is used in
any step, evaluate the angle ϕ(x) between vector d and
Fp(x) (Eq. (9)) and the normalized angular distance φ(x)
(Eq. (10)) using

ϕ(x) = arccos
(
d · Fp(x)T

|d||Fp(x)|

)
φ(x) =

ϕ(x)
ϕmax

Note that in the first orthant the maximum angle ϕmax is
the angle between the vector d and one canonical basis
ei. In case of a dissimilar problem, this angle must be cal-
culated before applying D(x) function. Select one auxiliary
function g(x) (Eqs. (13), (15), (26), (27) or any other appro-
priate equation of your choice) and build the appropriate
distance function Fd(x).

Define the constrains: Using one or more inequality or equality
constraint, for e.g. Eqs. (19), (20), (21) or (22).

The proposed instance generator has great flexibility. Its mod-
ular structure allows for multipurpose problem creation. Its basic
structure can be extended by adding new auxiliary functions g(x)
and φ(x), as well as new constraints or other meta-variable y.

5. Conclusions

Benchmark functions are an important validation tool for opti-
mization algorithms and for driving research and development in
computational intelligence. The functions analyzed in this paper
showed many virtues. The proposed procedure for generating
benchmark problems is able to maintain the qualities of the test
problems presented before and fits the desirable characteristics
exposed in the literature. The functions are easy to implement
and interpret, present known Pareto solutions, and are scalable
to any number of objectives. A variety of Pareto shapes and
topologies bring this proposed optimization problem closer to
real problems and brings more challenges in the development of
new algorithms.

Another great advantage of the proposed GPD benchmark
generator is the possibility of creating optimization problems for
robust optimization with several characteristics, which is missing
from existing test suites and it is becoming a major gap in the
specialized literature. Along with this, it is possible to set equality
and inequality constraints which have a clear and easy formula-
tion and interpretation. By removing regions of the Pareto front
a large variety of Pareto shapes and geometries can be produced.

It is known that obtaining optimal solutions in MaOPs is a very
hard task. Although these functions are scalable to any number of
objectives and present different shapes of Pareto fronts, a visual-
ization task of the solutions may require some effort from the
DM. The proposed generative testing approach can be extended
to support other features of additional classes of problems.

Finally, to publicize the generative benchmarking method pro-
posed, it is interesting to include it in platEMO, a MATLAB plat-
form for MOEA, as highlighted recently by Tian et al. [12], or as a
Python library.
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