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Abstract—Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Proin mattis, massa at dignissim luctus, sem sapien lobortis
massa, a ullamcorper urna ipsum quis lorem. Suspendisse potenti.
Ut venenatis condimentum fringilla. Nulla elementum elit lectus.
Integer ut bibendum orci, sit amet eleifend arcu. Phasellus nec
velit vulputate, facilisis lacus nec, facilisis tortor. Morbi eget erat
justo. Quisque placerat ultrices ex, sit amet accumsan neque
tempor ac. Aenean vel magna lobortis felis rutrum ultrices. Sed
vestibulum malesuada vestibulum. Phasellus egestas elementum
dolor, nec maximus ante. Duis porttitor, erat sit amet molestie
mattis, massa ipsum vulputate est, vitae maximus augue ipsum at
nisi. Donec ut est iaculis, dignissim erat et, ultrices eros. Aenean
cursus, elit id pellentesque molestie, est erat viverra ligula, sit.

I. INTRODUCTION

Multiple and often conflicting objectives naturally arise in
many practical problems in engineering, leading to the so-
called multi-objective optimization problems [1]. The solutions
to multi-objective optimization problems are characterized by
the trade-off relationship among the objectives. This set of
solutions is called the set of Pareto-optimal solutions and its
corresponding image in the space of objectives is named the
Pareto front. In general, finding the complete and exact set
of Pareto-optimal solutions is a hard task, therefore many
heuristic methods have been developed by the optimization
community to find approximations of this set, especially multi-
objective evolutionary algorithms (MOEA) [2, 3].

When there are few objectives to be considered, evolution-
ary algorithms are usually suitable to find high quality approx-
imations of the Pareto front. As the number of objectives grow,
we reach the field of many-objective optimization problems
(MaOPs) [4, 5]. The optimization of those problems becomes
harder as most solutions become incomparable in relation
to Pareto dominance. This border is not actually pecisely
defined but it has practical meaning, based on empirical studies
about the downgrading performance of most multi-objective
algorithms when the number of objectives increase. MOEA
have been successful and specialized to low dimensional multi-
objective problems, but their performance degrades with the
increasing number of objectives, as already discussed in many
different studies, see for instance [6].

The visualization gap is one of the important challenges
that are posed by MaOPs, as identified in a number of
studies [7, 8]. It is an obstacle to the interpretation of results,

qualitative assessment of the algorithms and in the analysis of
MOEA for MaOPs. An intuitive and high quality visualization
can enable the decision-maker to recognize characteristics of
the problem, realize the underlying trade-off, distribution of
solutions, among other features [9]. Over the years, many
reseachers have provided interesting visualization methods for
MaOPs. As evidence of the growing relevance of this issue,
it is notable that the last conferences of IEEE CEC and ACM
GECCO have hosted tutorials and special sessions dedicated
to the topic of visualization in MaOP.

Perhaps the most common approach for data visualization
in MaOPs is the Parallel Coordinates, given in [10]. An
interesting discussion on how to interpret results using Parallel
Coordinates can be found in [11]. The Radar chart (also
known as spider chart or polar chart) is also often used for
visualization [7]. It is simply a polar representation of the
parallel coordinates. Pryke et al. [12] presented a method
based on Heatmaps, for visualizing the objective and design
space simultaneously. Another interesting approach is RadViz
(Radial Coordinate Visualization) [13, 14], which is a data
visualization tool inspired from physics. RadViz is a dis-
play technique that places dimensional anchors (dimensions)
around the perimeter of a circle. Spring constants are used to
represent relational values among points - one end of a spring
is attached to a dimensional anchor, the other is attached to a
data point. Each data point is displayed at the point where the
sum of all spring forces equals zero. More recently, He and
Yen [8] presented a visualization method based on mapping
the high dimensional space into polar coordinate plot while
preserving the important characteristics of objective spaces
such as Pareto relationship, shape and location of the Pareto
front and the distribution of individuals. According to the
observed information from this tool, a new performance metric
named polar-metric has been proposed.

The method of Aggregation Trees [15, 7] was another
important step in visualization in MaOPs, allowing a greater
understanding of the problem. This method is based on the
sequential aggregation of objectives, which is visually repre-
sented into a tree, based on a measure of conflict between
pairs of (groups of) objectives. The method allows the visual-
ization of a hierarchy for aggregation of the objectives, with
possibility to create new constraints for the problem or reduce



the number of objectives in a further analysis [16]. Later, in
our previous work, we produced a form of interactive circular
visualization for inspecting the relationship among objectives
in a chord diagram [17], in order to assist understanding of the
problem by the decision-maker. In an extension of this work,
we developed a new visualization tool that follows the circular
design layout, mapping the solutions from high-dimensional
objective space into a 2D form of scattering that is based on
norm and angle information [18].

In this paper, we present a further development on this
visualization tool, integrating the chord diagram, the parallel
coordinates and the norm and angle mapping into the same
figure. The new visualization tool was developed in R language
and it will be available to the scientific community under GNU
license. It also follows the circular design layout, with layers or
tracks showing different levels of information. In terms of data
visualization techniques, the circular layout is an interesting
way to present large volume of data, because in addition to
being aesthetical to most people, it is an elegant and easy way
to illustrate relations among elements of the data such as one-
to-many, many-to-one and many-to-many. In the new version
developed, it is possible to visualize the format and distribution
of the Pareto front, the harmony and conflict between the
objectives and also the complementary information of the
parallel coordinates, all in the same visualization. With this
work, we try to fill the visualization gap and bring information
to the eye of the decision-maker and the optimizer, with an
intuitive overview of the obtained results.

In order to illustrate the integrated visualization tool, some
experiments were performed using the Benchmark Functions
proposed for the IEEE-CEC 2018 Competition on Many-
Objective Optimization [19, 20]. We use the tool to visualize
the results obtained by the algorithms NSGA-III [21], HypE
[22], RVEA [23], MOEA/DD [24] and PICEA-g [25], using
the PlatEMO MATLAB platform [26], with the same parame-
ter settings of the competition. The results on the Benchmark
Problems show the importance of the qualitative analysis of
the data. The experiments show how visualization can help
interpretation of the results and identification of strengths and
drawbacks of MOEA.

II. GROUPED VISUALIZATION IN CIRCULAR LAYOUT

A. Overview

The proposed visualization tool brings together in a single
figure three visualization methods: the Parallel Coordinates
[11], the Chord Diagram [17] and the Angular Mapping
[18]. Using a circular design layout provided by the Circlize
package [27] for R language, this method enables the spatial
location of points in high dimensional spaces, the visualization
of harmony/conflict among objectives, as well as the compar-
ison of approximation sets provided by different algorithms.

The circular design layout is composed of sectors and
tracks. Each sector is associated with an axis in objective space
(considering the orthogonal system of rectangular coordinates
to represent the original objective space) and each track
corresponds to a different method of visualizing data. The

input data is matrix of size N × M containing a set of N
points in the M -dimensional objective space, corresponding
to an approximation of the Pareto front. These points are then
divided among the objectives according to the angular distance
to the coordinate axes. Each point is associated with the
sector corresponding to the nearest coordinate axis. Figure 1
illustrates the elements of a sector: track A: Chord Diagram;
track B: Parallel Coordinates; and track C: Angular Mapping.
The objective index is indicated at the top of the sector (D).
The three visualization methods of each track are discussed in
more detail in the following sections.

Fig. 1: A: Chord Diagram; B: Parallel Coordinates; C: Angular
Mapping; D: index of the objective function.

This method was implemented in R using the Circlize
package [27], which in turn is based on the ideas of Circos
[28]. High definition images as well as the R-script are
available for download from the MINDS Lab website.

B. Chord Diagram

The first track of the circular layout is used to display
the chord diagram for MaOPs [18]. The Chord Diagram is a
circular approach to display vectors from an M -dimensional
space into a two-dimensional chart. In the Chord Diagram,
each arc represents one objective function of the problem. The
range of each objective in each arc is represented in proportion
along the arc length, with all the objectives of all sections
forming the circle. The range for each objective is shown from
the lower bound to the upper bound in clockwise direction.
The lower and upper bound of each objective can be obtained
directly from the data or set by the user. By default, the
range is normalized to [0, 1]. Each point in the M -dimensional
objective space is displayed by Bézier curves connecting the
corresponding values in each arc (each coordinate).

C. Parallel Coordinates

Parallel Coordinates is a usual technique for representing
high dimensional data [11]. In this method, the data are shown
in a two-dimensional chart, where each category corresponds
to a point on the horizontal axis and the values in each



category are represented on the vertical axis. In this way, each
point in M -dimensional space is represented by means of a
polyline with M − 1 segments passing through each of these
coordinates in the plane. The sequence of the data on the
horizontal axis generally follows the (usually arbitrary) order
established in the vector. However, for a better visualization
of the correlations between the objectives, this order can be
changed. The use of this method is not suitable for data
that are on very different scales from one another, therefore
normalization of data is often used. In addition, the repre-
sentation of many points by this method produces a drawing
with many lines, which is more difficult to analyze. It is
important to mention that only those points associated with the
objective and section are displayed in the track corresponding
to the Parallel Coordinates. Moreover, since we embed this
visualization into a section of the circle layout, it bends the
original Parallel Coordinates into the corresponding track of
the sector.

D. Angular Mapping

The Angular Mapping proposed in [18] uses three features
to map a point y in the M -dimensional objective space into a
two-dimensional chart. The first feature is the p-norm, usually
p = 2, of the vector i.e. ρ = ||y||p. The second feature
is the smallest angle θ between the vector and the vectors
e1, e2, . . . , eM of the canonical base, given by:

αi = arccos

(
yi
ρ

)
, i = 1, . . . ,M (1)

θ = min
i
αi (2)

The third feature is the index j for which the smallest angle
occurs:

j = argmin
i
αi (3)

The index j determines the division of the input data in
the sectors, that is, sector j will display only those points
for which the third feature is equal to j. In this way, the
points represented by the parallel coordinates and the angular
mapping in a given sector are those that have the smallest angle
with the axis representing the objective function of that sector.
In the M -dimensional space, the maximum value for the angle
is the one between the hyper diagonal h = (1, 1, . . . , 1) and
any canonical base vector ei = (0, . . . , 1, . . . , 0), which can
be calculated as θmax = arccos(1/

√
M) (in radians). With

these three values, it is possible to obtain an estimate of the
spatial location of the vector in space, as well as its relative
position in relation to other vectors. Unfortunately, some loss
of information is inevitable in this mapping, since different
vectors may have the same values of ρ, θ, j. The Angular
Mapping is displayed on track C, with the vertical scale (norm
values) on the left and the horizontal scale (angles ranging
from 0 to θmax) on the top.
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(a) Points in a flat surface using scatter plot.

(b) Visualization of the points in the integrated tool.

Fig. 2: Classification of points by angular proximity to the
coordinate axes.

E. Examples

In this section we present some examples in order to better
illustrate the proposed visualization tool. In Fig. 2a, we plot
350 points evenly distributed on a flat surface in the first
orthant of the three-dimensional space using scatter plot. The
points are classified according to their angular proximity to
each of the coordinate axes1, identified as objective functions.
In this way, the red dots (marked as B) are closer to objec-
tive 1, the blue dots (marked as +) are closer to objective 2
and the black dots (marked as ×) are closer to objective 3.
Figure 2b shows the visualization of these points using the
proposed integrated visualization tool, preserving the color
association.

In Fig. 2a, considering the black dots, objectives 1 and 2
vary in the interval (0.0.5) while the objective 3 varies in
the interval (0.5, 1). This fact can be clearly seen in Fig. 2b
on sector 3, in tracks A and B (chord diagram and parallel

1Note that the smallest angle necessarily corresponds to the highest objec-
tive value.
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(a) Scatter plot representation.

(b) Visualization of the points in the integrated tool.

Fig. 3: Surfaces with different norm in R3

coordinates, respectively). The spatial distribution of these
points can be observed on track C. Since the points lie in
a plane, the individual with the highest norm has the smallest
angle and the points with smaller norm are closer to the
maximum angle (they are located in the center of the plane,
see Fig. 2a). Due to the symmetry of the figure, these same
observations can be made for the red and blue dots.

Figure 3a shows a scatter plot of points distributed on
surfaces of constant p-norm (p equal to 0.5, 1 and 2). The
corresponding representation of these points in the integrated
visualization tool is shown in Fig. 3b. Note that the relative
position of the three surfaces can be easily seen on track C of
Fig. 3b.

III. RESULTS AND DISCUSSION

In order to explore the possibilities of using the integrated
visualization tool to aid the qualitative analysis of the obtained
solutions, some experiments were carried out using the Bench-
mark Functions proposed for IEEE-CEC 2018 Competition on
Many-Objective Optimization [19, 20]. For each problem in

the Benchmark Functions, we performed a single run of the
algorithms NSGA-III [21], Hype [22], RVEA [23], MOEA/DD
[24] and PICEA-g [25], using the PlatEMO MATLAB plat-
form [26], with the same parameter settings of the IEEE-
CEC 2018 Competition on Many-Objective Optimization. To
measure the quality of the approximation sets returned by
the algorithms, we used the inverted generational distance
(IGD) [29] and the hypervolume (HV) [30] performance
indicators, which are shown in the Table I. Of course, the
comparison of the results in Table I should be done with
care and reservation, since any meaningful comparison of
these algorithms using performance indicators should require
multiple runs and statistical analysis. We will leave this task
to the organizers of the competition. Our intention here is to
contrast the visualization of these results with the quantitative
comparison suggested by these perofrmance indicators, this is
why we utilize results from a single run.

Due to space constraints, we cannot present the results on
all the Benchmark Functions proposed for IEEE-CEC 2018
Competition on Many-Objective Optimization, therefore the
most interesting cases according to the judgement of the
authors are presented here. All the results and figures will be
available as supplementary material to this paper. Given the
space limitation, we have selected the functions MaF1, MaF2,
MaF5, MaF7 and MaF10.

Next we present the visualization of the results for the
problems MaF1, MaF5, MaF7 and MaF10 using the proposed
integrated tool. In order to obtain a better visualization of the
data, all the true Pareto fronts were normalized to the interval
[0,1]. In this way, the obtained solutions by the algorithms
preserve their relative position in relation to the true Pareto
front. In tracks A and B only the solution obtained is presented.
Track C shows the obtained solutions (blue dots) and the
Pareto front (black dots).

A. MaF1 Benchmark Problem

This problem has a linear plane with inverted Pareto front. In
the objective space, all solutions must be in the [0, 1] interval.
Figure 4 shows the obtained solutions for this problem, with
5 objectives. The Pareto Front representation of this problem
has a well-defined format, consisting of four sections of
aligned points: a larger section, an intermediate section and
two small sections. Only the Algorithm PICEA-g, see Fig. 4e,
obtained solutions close to the medium and small sections. The
algorithms NSGAIII and HypE. Fig. 4a and Fig. 4b, present
points close only to the main section. The solutions obtained
by MOEA/DD, see Fig. 4d, are highly concentrated in small
regions and there are few solutions close to objective 5.
This poor performance is probably due to the generation of
the weight vectors and replacement strategy of the version
of MOEA/DD implemented in PlatEMO. Nonetheless, this
algorithm was able to obtain solutions very close to the Pareto
front of the problem, although badly distributed. The algorithm
RVEA, Fig. 4c, presents few solutions. It is also possible
to see some solutions in sector 3 and solutions in sector 5
with unsatisfactory convergence. It suggests that RVEA was



TABLE I: IGD and HV metrics for the problems with 5, 10 and 15 objectives.

MaF1 MaF2 MaF5 MaF7 MaF10

IGD HV IGD HV IGD HV IGD HV IGD HV

5 objectives
NSGAIII 0.1865 0.0101 0.1134 0.0505 1.9698 4.2871e+04 0.2824 2.2729 0.3961 6.0417e+03
HypE 0.2222 0.0071 0.1389 0.0552 1.4929 1.8265 1.6333 5.9083e+03
RVEA 0.2848 0.0053 0.1199 0.0463 1.9693 4.2892e+04 0.4855 1.9416 0.3675 6.0430e+03
MOEA/DD 0.2104 0.0092 0.1211 0.0451 3.9302 3.6174e+04 0.4278 1.7530 0.7910 5.8907e+03
PICEA-g 0.1002 0.0206 0.0878 0.0549 1.5970 4.2180e+04 0.5864 2.2232 0.3815 6.0427e+03

10 objectives
NSGAIII 0.2613 1.1309e-06 0.3201 0.0081 87.8409 9.0409e+16 1.1922 2.3349 1.1839 8.6667e+09
HypE 0.7040 0 0.5477 0.0091 136.0161 7.3166e+16 4.2172 2.1315
RVEA 0.6475 1.1262e-08 0.2310 0.0066 100.8695 8.9850e+16 2.5231 2.1879 1.0398 8.6636e+09
MOEA/DD 0.3439 6.4020e-07 0.1759 0.0068 283.1526 5.1348e+16 2.8262 6.2928e-04 1.8960 8.6089e+09
PICEA-g 0.2196 1.6355e-06 0.2981 0.0085 56.5616 8.3100e+16 4.7664 2.2025 2.5639 8.6666e+09

15 Objectives
NSGAIII 0.3161 2.7216e-11 0.2058 5.0942e-05 2.5913e+03 5.5045e+36 4.3990 2.1798 1.7279 1.3914e+17
HypE 0.5862 0 0.6185 8.2382e-05 9.9815 1.9820 3.1511 1.3908e+17
RVEA 0.6276 8.4177e-14 0.8551 1.7687e-05 5.4979e+03 5.2601e+36 5.0452 2.0582 2.7017 1.3909e+17
MOEA/DD 0.4877 1.2558e-12 0.4244 3.5341e-05 7.3084e+03 2.9503e+36 3.1759 8.7923e-06 2.4108 1.3844e+17
PICEA-g 0.2663 0 0.4131 6.4692e-05 1.8505e+03 4.8646e+36 10.5846 2.0319 2.8856 1.3914e+17

(a) MaF1 on NSGAIII (b) MaF1 on HypE (c) MaF1 on RVEA

(d) MaF1 on MOEA/DD (e) MaF1 on PICEA-g

Fig. 4: MaF1 with 5 objectives

not able to eliminate these dominance resistant solutions in
this particular run. Although they present similar metrics,
the qualitative analysis of the figures in these particular runs
indicates a clear superiority of the MOEA/DD algorithm when
compared to the RVEA algorithm, in a hypothetical situation

where these were the only choices. In these specific runs,
NSGAIII and PICEA-g achieved better values of IGD and
HV. This superiority is also clear in the visual comparison of
the results.



(a) MaF5 on NSGAIII (b) MaF5 on RVEA (c) MaF5 on MOEA/DD

(d) MaF5 on PICEA-g

Fig. 5: MaF5 with 15 Objectives

B. MaF5 Benchmark Problem

This is a concave badly-scaled problem, with 15 objectives.
The last objective is in the range [0, 215], the 14th objective
is in the range [0, 214] and so on. For this problem and
instance, the NSGAIII algorithm, Fig. 5a, presented good
convergence and dispersion. Most of the solutions obtained
by the algorithms RVEA, Fig. 5b, and MOEA/DD, Fig. 5c,
are located in the objectives 11 to 15. The algorithm PICEA-
g, Fig. 5d, obtained the majority of its solutions distributed
between objectives 1 to 9 and many of them with insufficient
convergence. These results suggest that these methods are
quite sensitive to badly-scaled problems though in different
ways. Since NSGAIII relies on dominance relation, it is less
sensitive to the scale of the objectives. On the other hand,
HypE is strongly sensitive to scaling since it is guided by the
hypervolume.

C. MaF7 Benchmark Problem

The MaF7 Benchmark Problem presents 2M−1 discon-
nected segments. The algorithms NSGAIII and RVEA, see
Figs. 6a and 6c, present good convergence and dispersion. All
solutions of the algorithms HypE and PICEA-g, Figs. 6b and
6e, are close to the objective 10 and the solutions obtained
by the algorithm MOEA/DD are highly concentrated in sector
1, see Fig. 6d. This high concentration of solutions can be

observed by the thick and well defined lines in tracks A and
B of the graph.

The high concentration of solutions obtained by the
MOEA/DD close to objective 1 can also be observed by the
value of its HV metric, which presents a very different value
from the values of this metric for the other algorithms. How-
ever, although this metric shows very close values for the other
algorithms, the distribution of the solutions presents two very
different patterns. While the NSGAIII and RVEA algorithms
have good coverage of the Pareto Front, the solutions of the
HypE and PICEA-g algorithms are concentrated in sector 10
with no solutions in the other sectors.

D. MaF10 Benchmark Problem

The MaF10 benchmark Problem has a complex and irregular
shape containing concave and convex segments, and badly-
scaled range of the Pareto Front. These characteristics can be
observed by the irregular distribution of the points representing
the Pareto Front in track C. In this problem, the algorithms
NSGAIII and RVEA, Figs. 7c and 7b, present good conver-
gence and dispersion. The algorithm MOEA/DD, see Fig. 7c,
presents good solutions close to the objectives 1 and 2, but
few solutions in the other sectors. In a complementary way,
the PICEA-g algorithm, see Fig. 7d, presents a set of solutions
in sectors 3 to 9 but few solutions close to objectives 1 and 2



(a) MaF7 on NSGAIII (b) MaF7 on HypE (c) MaF7 on RVEA

(d) MaF7 on MOEA/DD (e) MaF7 on PICEA-g

Fig. 6: MaF7 with 10 objectives

and no solution near objective 10. Despite the very different
results regarding the distribution of the solutions obtained by
the algorithms in this problem, they all have a very similar
hypervolume metric.

IV. FINAL REMARKS

This paper presented a new integrated visualization method
able to present high quality information about the obtained so-
lutions of many objective optimization problems. The grouped
visualization method can display in a single graph more than
one set of solutions, allowing the qualitative comparison of
results of different MOEA in MaOPs. It is possible to see if
there is the formation of clusters, those regions neglected by
the algorithm, the spatial distribution of points as well as its
proximity to the Pareto Front and the presence of harmony or
conflict between objectives. This method can display the same
amount of solutions of the traditional methods.

An important characteristic of the proposed method is that,
for the same set of solutions, the information contained in
one sector is independent of the information contained in the
other sectors. In this way, for a high-dimensional optimization
problem (more than 15 objectives, for example), the data can
be divided into two or more circular graphs in order to avoid
creating very narrow sectors.

Finally, this method of visualization and the results on the
Benchmark Problems show the importance of the qualitative
analysis of the data. An example of this is the MaF10 problem
with 10 objectives, where the values of the HV are hard
to interpret, but the graphs indicate a very different spatial
distribution of the solutions obtained by each algorithm for
that problem.
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