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Abstract Feature selection plays a central role in predictive analysis where datasets 
have hundreds or thousands of variables available. It can also reduce the overall 
training time and the computational costs of the classifiers used. However, feature 
selection methods can be computationally intensive or dependent of human exper-
tise to analyze data. This study proposes a neuroevolutionary approach which uses 
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multiobjective evolutionary algorithms to optimize neural network parameters in 
order to find the best network able to identify the most important variables of ana-
lyzed data. Classification is done through a Support Vector Machine (SVM) classi-
fier where specific parameters are also optimized. The method is applied to datasets 
with different number of features and classes. 

1 Introduction 

In predictive analysis, feature selection is the process of identifying the most im-
portant, preferably a few, variables or parameters which are relevant in predicting 
the outcome. Other motivations can exist, such as: feature set reduction, to reduce 
resource utilization on future data collections; general data reduction, to increase 
algorithm speed; or performance improvement, to increase predictive accuracy [1]. 
For a n-dimensional dataset there exist 2n possible feature subsets, becoming im-
practical to evaluate all possible solutions for a large n, leading to an NP-Hard com-
binatorial problem [2]. 

Several studies have been proposed to tackle feature selection problems. Simul-
taneously, there is research work using multiobjective evolutionary algorithms 
(MOEA) applied to different data classifiers. However, according to [3] most of the 
approaches for feature selection concerning optimization techniques are based on a 
single objective. There are a few studies which use multiobjective optimization for 
feature selection problems. 

In [4], the authors proposed a framework for SVM based on multiobjective op-
timization to minimize the risk of the classifier. The same approach is presented in 
[5] with the aim of minimizing the number of features of the model. In [6], the 
authors used hierarchical MOEA to perform feature selection by generating a set of 
classifiers and selecting the best set of them. In [7], a MOEA optimization method-
ology is proposed to deal with feature selection problems using a SVM classifier. 
The proposed approach is applied and validated in a problem of cardiac Single Pro-
ton Emission Computed Tomography (SPECT). 

In [8], [9] and [10] authors apply successfully neuroevolutionary approaches in 
different kinds of problems concerning multiobjective optimization.  

The present study suggests a neuroevolutionary approach to deal with feature 
selection problems. In order to reduce complexity of the optimization, artificial neu-
ral networks (ANNs) are used to map the most relevant features of analyzed data. 
MOEA is applied to optimize and find the best classifier parameters and ANNs 
which gives the most relevant features. The methodology is applied in datasets with 
different numbers of features, samples and classes. To compare the results, a binary 
approach, i.e., without using ANNs, is also applied. 
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2 Methodology 

Regarding feature selection problems, that usually leads with thousands of features, 
the binary representation can increase drastically the computational costs necessary 
to evaluation because the search space increases with the number of features, since 
each feature is represented as one single bit in the chromosome of genetic algorithm. 
Usually, bit 0 means that the feature should not be considered by the classifier and 
bit 1 means the opposite, i.e., feature should be considered in the classification pro-
cess. Therefore, this study proposes an alternative codification scheme, based on 
ANNs. Each chromosome encodes the weights and biases of an ANN instead of 
considering all the binary features for classification. The ANN is structured in three 
layers, where the Input Layer receives the number of a single feature and the output 
is the probability of the input feature being considered by the classifier. The number 
of inputs is the number of bits necessary to encode the number of features. For in-
stance, if a dataset is composed by samples with 2000 features, 11 bits are required. 
On the other hand, the same example using binary representation it will requires a 
chromosome of at least 2000 genes to encode each feature. Although this study use 
a fixed topology for the ANNs (with 20 neurons in the hidden layer), different to-
pologies can be used by the MOEA. Fig. 1 illustrates the ANN considering the to-
pology for the given example. The chromosome (without classifier parameters) will 
need only 272 genes to encode all ANN parameters instead of 2000 genes necessary 
by the binary chromosome. Fig. 2 and Fig. 3 illustrate the structure of chromosome 
for binary and neuroevolutionary approaches, respectively. 

2.1 Classifier 

It is important to point out that any classifier can be used with the proposed meth-
odology. However, in this study a Support Vector Machine classifier was consid-
ered for the experiments. 

Support Vector Machines (SVMs) are a set of models with associated learning 
algorithms that can be applied to classification and regression. The samples in a 
dataset are represented as points in space, so points of different categories can be 
separated by a hyper-plane or a set of hyper-planes. Although SVMs are binary 
linear classifiers, additional methods, such as kernel methods, can be applied to per-
form non-linear classifications. SVMs classifiers had been successfully applied in 
many machine learning problems. 

The SVM classifier performance heavily depends on the selection of the right 
parameters, such as kernel function, kernel coefficients and regularization. In this 
study, a SVM non-linear classifier with Radial Basis Function (RBF) was consid-
ered with two different parameters to be optimized: the regularization (C) and the 
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kernel gamma parameter (γ). This type of classifier was already used by [7] in fea-
ture selection problems with multiobjective optimization. 

 
Fig. 1 Neural Network partially represented. Input layer receives a feature number in binary form 
(bits b0, b1 … b10). Hidden layer has a total of 20 neurons (only four are show on the figure). Output 
layer is composed by one single neuron that gives output p, which is the probability of input feature 
be relevant (selected) to the classifier 

 

 
Fig. 2 Example of a chromosome for binary representation. The use information of each feature is 
encoded in one single bit, parameters for the classifier should be encoded at the end of the chro-
mosome using binary representation 

 
 

 
Fig. 3 Chromosome representation for neuroevolutionary approach. Each gene encodes a real num-
ber which might represent a weight or bias (of the ANN) or a parameter for the classifier  
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2.2 Performance Measure for Classification 

A systematic analysis of performance measurements for classification can be found 
in [11]. When dealing with binary classification, i.e., when datasets are composed 
by samples of two distinct (non-overlapping) classes, the precision metric of the 
classifier can be expressed by equation: 

 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 
 

where TP is the number of true positives, i.e., the number of samples correctly clas-
sified and FP is the number of false positives, i.e., the number of samples that be-
longs to a given class, but were incorrectly assigned to the other class. 

For multi-class datasets the precision P can be expressed by the equation: 
 

𝑃 =
∑ 𝑡𝑝)

𝑡𝑝) + 𝑓𝑝)
+
),-

𝑙  
 

where tpi is the number of true positives for a given class, fpi is the number of false 
positives, i.e., the number of samples of the given class that were incorrectly clas-
sified in another class, and l is the total number of possible classes. 

2.3 Multiobjective Optimization 

In feature selection problems there are two main conflicting objectives: the minimi-
zation of the number of features used for classification and the maximization of 
classifier precision. Thus, multiple solutions with different tradeoffs (number of 
features versus precision) can emerge from multiobjective optimization approaches. 

The methodology proposed in this study combines the reduction of the search 
space (by using ANNs) with the minimization of objectives (number of features and 
classification error) into a single approach by using Neuroevolutionary MOEA 
(Multiobjective Optimization Evolutionary Algorithm). Fig. 4 illustrates the overall 
algorithm. 
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Fig. 4 Algorithm for the proposed approach for feature selection using neuroevolutionary and mul-
tiobjective optimization evolutionary methods 

 
The algorithm comprises a multiobjective optimization evolutionary process. It 

starts by an initial population of solutions which can be randomly generated. The 
ANNs are used in the evaluation phase to provide the features and parameters to be 
used by the classifier. The classifier is applied to the dataset considering the pro-
vided parameters and objective functions values are calculated from classification 
results. The process continues by sorting the solutions following a fitness criterion 
and deciding if convergence is reached or more iterations are needed. Evolution is 
promoted by selection and variation procedures. 

At the end, a Pareto front composed by a set of non-dominated solutions which 
give different tradeoffs between the number of features used for classification and 
the precision of the classifier is expected. In this context, two objective functions 
can be defined: 

 
𝑓- = Number of features used for classification 
𝑓/= Classifier error defined as 𝑓/ = 1 − 𝑃 , where P is the classifier precision 

expressed between [0.0, 1.0]. 
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By defining 𝑓/  as the classifier error, the optimization problem becomes mini-
mize (at the same time) 𝑓- and 𝑓/ . 

3 Experimental Design 

To evaluate the proposed approach, eight datasets were chosen from UCI Machine 
Learning Repository1 and one well known dataset (colon) was chosen from the lit-
erature in feature selection. All datasets comprise different number of features, sam-
ples and classes. Thus, a multiclass SVM classifier implementation was used in the 
experiments. Table 1 lists all datasets. 

Table 1 Datasets used in the experiments 

Dataset Features Samples Classes 
colon 2000 64 2 

ionosphere 34 351 2 
musk-1 166 476 2 
sonar 60 208 2 

semeion 256 1593 10 
yeast 8 1484 10 
libras 90 360 15 
wine1 12 1600 10 
solar 12 1066 7 

 

The proposed approach was implemented in MATLAB using the models and 
functions provided by the Statistics and Machine Learning Toolbox to perform 
SVM multiclass classification. The multiobjective optimization algorithm was 
implemented based on the SMS-EMOA algorithm [12]. In each generation, one 
single offspring is produced. The selection is done using a uniform distribution and 
variation is performed by the SBX-Crossover operator, which is designed to work 
with real number representations. Since the parameters of the classifier and of the 
neural networks are real numbers, this operator is adequate for the 
neuroevolutionary approach. The fitness of each solution and replacement strategy 
are based on Pareto front and hypervolume measure [13]. 

To compare the results, a binary approach was also applied to the datasets. The 
overall algorithm is the same, except by the evaluation and variation phases, where 
each solution is represented by a binary chromosome (Fig. 2) and a two point 
crossover operator is used instead of the SBX-Crossover. 

                                                        
1 Available at https://archive.ics.uci.edu 
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Concerning the classifier parameters C (regularization) and γ (kernel gamma), 
after preliminary experiments with all datasets and based on former studies found 
in the literature, the following intervals were defined: [1, 500] for C and [0.01, 10] 
for kernel gamma, respectively. To encode these values in the binary representation, 
10 bits were used for each parameter. This leads to 2-3 possible integer values that 
are normalized into the respective parameter interval. 

All classifications were performed using k-fold cross- validation with k = 10. 
The partitions for each dataset were pre-defined and used for both binary and 
neuroevolutionary approaches. The size of each population was set to 150 
individuals (solutions) and the number of maximum generations was set to 300 due 
to computational time constraints. 

4 Results and Discussion 

Fig. 5 and Fig. 6 show the evolution of the hypervolume for each generation for 
binary and neuroevolutionary approaches, respectively. All values were normalized 
concerning the origin and the maximum allowed point for all datasets. All curves 
are visually similar in both cases, but it can be seen that most of the curves in Fig. 
6 (neuroevolutionary) converges slightly faster than Fig. 5. 

Table 2 lists the hypervolume of Pareto front of final populations for both 
representations. Better results are highlighted. The neuroevolutionary approach 
presented better results for 5 of the 9 datasets, 3 datasets presented equal results and 
only one dataset (wine1) presented higher hypervolume for binary approach. 

To illustrate the results of each optimization, Fig. 7 and Fig. 8 show the initial 
and final populations for datasets semion and colon (neuroevolutionary), 
respectively. Other datasets were omitted due to space constraints. It can be seen 
clearly the evolution of initial population to a set of optimal solutions which gives 
different tradeoffs between the number of features (𝑓-) and the classifier error (𝑓/). 

For all datasets, an optimal solution (located in the knee of the Pareto curve) was 
selected from final population. Table 3 lists these solutions along with its classifier 
parameters, precision and number of features (better precision results are 
highlighted). In terms of classifier precision, for five of nine datasets, the 
neuroevolutionary approach presented better results. For the dataset sonar, 
neuroevolutionary reached 100% of precision using only one feature to 
classification against the binary approach, which found 2 features with 83% of 
precision. For datasets semeion and wine1, the neuroevolutionary approach 
presented better classifier precision, but the number of features was higher than the 
binary approach. The results for dataset semeion were 85% of precision (neuro) 
against 83% (binary) and the number of features were 22 (neuro) against 17 
(binary). For dataset wine1, the results were 75% of precision (neuro) versus 73% 
(binary) and 4 features (neuro) versus 3 features (binary). 

Concerning the dataset libras, the neuroevolutionary approach reached 85% of 
precision against 87% for binary approach, but only 6 features were used (against 7 
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features for binary). Datasets ionosphere and solar presented exactly the same 
results (precision and number of features) for both approaches. Only the dataset 
yeast presented better results for the binary approach: 59% of precision against 58% 
for neuroevolutionary, using 5 features in both approaches. 

 

Fig. 5 Hypervolume evolution for each dataset using binary representation 

 

Fig. 6 Hypervolume evolution for each dataset using neuroevolutionary approach 
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Fig. 7 Initial and final populations for dataset semeion (neuroevolutionary approach) 

 

Fig. 8 Initial and final populations for dataset colon (neuroevolutionary approach) 

 

 



11 

Table 2 Hypervolume for Pareto front of final populations for binary and neuroevolutionary ap-
proaches 

 Hypervolume 
Dataset Binary Neuroevolutionary 

colon 0.85 0.86 
ionosphere 0.99 0.99 

musk-1 0.77 0.78 
sonar 0.78 0.99 

semeion 0.05 0.08 
yeast 0.19 0.19 
libras 0.22 0.26 
wine1 0.50 0.46 
solar 0.46 0.46 

Table 3 Optimal solutions selected from Pareto front of final population for each dataset (classifier 
parameters, precision and number of features are listed) 

 Binary Neuroevolutionary 
Dataset C, γ P f1 C, γ P f1 

colon 324.08, 8.33 0.97 2 45.07, 8.24 0.98 2 
ionosphere 17.08, 0.47 1.00 1 354.72, 9.99 1.00 1 

musk-1 32.19, 9.71 0.82 2 124.01, 18.57 0.84 2 
sonar 90.67, 0.63 0.83 2 72.99, 3.00 1.00 1 

semeion 258.30, 1.58 0.83 17 474.86, 0.89 0.85 22 
yeast 1.00, 0.16 0.59 5 475.85, 1.89 0.58 5 
libras 1.00, 0.33 0.87 7 288.02, 0.20 0.85 6 
wine1 23.90, 0.01 0.72 3 218.43, 0.02 0.75 4 
solar 21.47, 2.52 0.71 3 126.47 ,3.31 0.71 3 

 
Table 4 shows the features that correspond to the optimal solutions obtained 

using the neuroevolutionary and binary approaches for the colon dataset. The 
precision, number of features and features selected in each solution are indicated. It 
can be observed that the number of solutions and the number of features of each 
solution using the neuroevolutionary approach are smaller. Feature 1 is present in 
all solutions. Feature 513 is selected for 2 neuroevolutionary solutions and 5 binary 
solutions. Features 2001, 2003, 2005, 2008, 2010, 2011, 2015, 2019 and 2020 are 
present in binary solutions. Solutions B6 to B10 have a precision of 1.000 and are 
very similar, sharing a large number of features. 
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Table 4 Optimal solutions from the final population for dataset colon 

 Neuroevolutionary Binary 

P 0.865 0.971 0.974 0.854 0.971 0.972 0.973 0.974 1.000 1.000 1.000 1.000 1.000 
f1 2 3 7 14 15 16 21 22 23 24 24 22 22 

Feature N1 N2 N3 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 
780              
1184              
769              
773              
785              
833              
837              
853              
513              

1              
2001              
2003              
2005              
2008              
2010              
2011              
2015              
2019              
2020              
2002              
2013              
1740              
42              

187              
498              
1955              
2007              
544              
632              
1464              
1466              
1497              
2017              
883              
1483              
1687              
102              
2004              
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5 Conclusions 

This study proposes a neuroevolutionary approach to deal with feature selection 
problems by using multiobjective evolutionary algorithms. Considering n-dimen-
sional datasets, to perform feature selection using binary representations or exhaus-
tive search becomes impractical for a large n. In this context, the proposed approach 
can drastically reduce the search space by using Artificial Neural Networks to pro-
vide the most important features to classify the data with maximum precision. Since 
the number of features and the classification precision are conflicting objectives, by 
using multiobjective optimization a set of solutions (Pareto front) with different 
tradeoffs between the objectives can be obtained. 

The methodology was applied to nine datasets with different number of features, 
samples and classes. To compare the results, a binary representation was also 
applied. When comparing the Pareto front of both representations (in terms of 
hypervolume), the neuroevolutionary approach presented better (or equal) results 
for eight of nine datasets. 

For each dataset, an optimal solution was selected from the Pareto front 
considering the point closest to the knee of the curve (to give an equal relationship 
between classifier precision and the number of features). When comparing these 
points in both representations, for seven of nine datasets the neuroevolutionary 
approach presented better (or equal) results in terms of classifier precision. Different 
results were also achieved for the number of features. Only one dataset presented 
better results for binary approach. However, it is important to point out that by using 
the neuroevolutionary approach, the search space is drastically reduced, since the 
parameters of ANN are being evolved instead of the binary representation for each 
feature. 

By including classifier parameters in the optimization, the algorithm was able to 
find the best combination of C (regularization) and kernel gamma (of the SVM 
Classifier) for each dataset in order to reach better classification precision. 

Future works can address different parameters or kernel functions for the SVM 
classifier, or even the use of other classifiers to perform the classification. Other 
ANN topologies can also be considered. 
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