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POLYMER SINGLE SCREW EXTRUDER OPTIMIZATION USING 
TCHEBYCHEFF SCALARIZATION METHOD AND SIMULATED 

ANNEALING ALGORITHM  
 

Abstract. The single screw extrusion optimal design involves the optimization of six 
criteria that can be efficiently handled by a weighted Tchebycheff scalarization method. 
The performance of the method has been analyzed for three different methods to 
generate weight vectors.  
The experimental results show that the tested strategies provide similar and reasonable 
solutions and supply a valuable procedure to identify good trade-offs between 
conflicting objectives.  
Keywords: Single screw extrusion, Multi-objective optimization, Tchebycheff 
scalarization, Simulated annealing method  
 
 

1. Introduction  
The single screw extrusion (SSE) design is concerned with the definition of the 

optimal screw operating conditions and geometry in such a way that some selected 
criteria achieve their best values. The screw operating conditions and geometry can be 
established using empirical knowledge, combined with a trial-and-error approach until 
the desirable criteria values are attained. However, a more efficient approach is to 
handle the SSE design as an optimization problem. The optimization of the SSE design 
is a very difficult task since it deals with the optimization of several criteria that are 
conflicting [1,2,3,4], which means that the improvement of one criterion leads to 
another criterion degradation.  

The SSE design has been addressed in the past and the resulting multi-objective 
optimization problem has been solved by a multi-objective evolutionary algorithm 
(MOEA) named reduced Pareto set genetic algorithm (RPSGA) [2,3,5]. Most MOEA 
treat the multi-objective optimization problem as a whole and find the entire set of 
promising and desirable solutions in a single run of the algorithm. They are, in general, 
stochastic methods that generate, handle and mutate a population of solutions at each 
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iteration, like for example, the genetic algorithm, particle swarm optimization, 
differential evolution, ant colony optimization [6,7,8,9,10,11,12].  

This paper aims to contribute to the research area of the SSE optimal design 
throughout a weighted Tchebycheff scalarization approach. The selected criteria of the 
SSE design problem are optimized using a scalarization function. A vector of weights 
has to be provided to construct the weighted Tchebycheff scalarization function and 
converge to a single solution. It is expected that with different weight vectors, the 
weighted Tchebycheff approach will converge to the trade-off solutions of the multi-
objective optimization problem. Therefore, the success of the weighted Tchebycheff 
approach depends on an even distribution of the weight vectors. To analyze the 
performance and the effectiveness of the Tchebycheff approach, this paper tests three 
different methods to generate weight vectors. Although the differences are not 
significant, it is possible to identify the goodness of one relative to the others.  

This paper is organized as follows. Section 2 describes the SSE problem exhibiting 
the six criteria to be optimized and the decision variables of the problem. Section 3 
presents the basic concepts and a summary of some approaches to multi-objective 
optimization, Section 4 describes the proposed methodology to solve the SSE 
optimization problem and Section 5 contains a discussion of the obtained numerical 
results. Finally, Section 6 contains the conclusions of this study.  
 
2. Single Screw Extrusion Problem  

The most relevant criteria in the SSE design are the mass output (Q), the length of 
the screw required for melting the polymer (Zt), the melt temperature at die entrance 
(Tmelt), the mechanical power consumption (Power), the weighted average total strain 
(WATS) and the viscosity (Visco). These criteria, also called objective functions, 
depend on the values of two sets of parameters: the geometrical and the operating 
parameters. Given a set of parameter values, the corresponding objective function 
values are obtained using numerical modelling routines that describe the plasticizing 
SSE process [1]. Usually, the best design is attained by maximizing the objectives Q 
and WATS, and minimizing Zt, Tmelt, Power and Visco. 

The geometrical parameters are related with the internal screw diameter of the feed 
zone (D1) and metering zone (D3), the axial lengths of the feed (L1), compression (L2) 
and metering (L3) zones, the flight thickness (e) and the screw pitch (p). The parameter 
L3 can be obtained from the equation L3 = L − L1 − L2, since L is the total length of the 
screw (corresponding to the Zt objective function, which is to be minimized). 

The operating parameters that correspond to the operating conditions of the 
extruder are: the screw speed (N) and the temperature profile of the heater bands in 
the barrel (Tb1, Tb2, Tb3). The range of variation of the screw speed depends on the 
characteristics of the extruder’s motor and the reduction gear. The lower and upper 
bounds for the range of temperatures of the heater bands are the polymer melting 
temperature and the polymer onset of degradation, respectively. Thus, taking into 
consideration the extruder size range and layout, and assuming the processing of a 



120 

typical thermoplastic polyolefin (High Density Poyethylene-HDPE), the lower and 
upper bound vectors for these operating parameters are (10,150,150,150) and 
(60,210,210,210), respectively. 

The study in this paper assumes that the geometrical parameters are previously 
fixed. The aim is to find the optimal values for the operating parameters - herein also 
denoted as decision variables of the problem - represented generically by the vector 
x = (N,Tb1,Tb2,Tb3), in such a way that the objectives Q and WATS are maximized and 
Zt, Tmelt, Power and Visco are minimized. The multi-objective optimization 
formulation of the SSE problem is: 

 

Find a set of values for the vector (N,Tb1,Tb2,Tb3) ∈ Ω ⊂ R4   (1) 

such that the vector (Q,Zt,Tmelt,Power,WATS,Visco) is optimized, 

 
where the set Ω of feasible solutions is defined as Ω = {(N,Tb1,Tb2,Tb3) : 10 ≤ N ≤ 60, 
150 ≤ Tbi ≤ 210, i = 1,2,3}. 
 
3. Multi-objective Optimization  

Many problems emanating from industrial applications require the optimization of 
two or more objectives that are frequently conflicting. They are recognized as multi-
objective optimization (MOO) problems and their solutions have been tackled by 
many researchers using a variety of methods. Assuming the minimization, the MOO 
problem can be formally defined as:  

 

Find x∗ ∈ Ω ⊆ Rn that minimizes the functions vector (f1(x),...,fm(x)),  (2) 

 
where x ∈ Rn is the vector of the decision variables, n is the number of decision 
variables, Ω is the feasible search region and the components of the vector f : Rn → Rm 

are the m objective functions to be optimized. The space Rn is called the decision space 
and Rm is called the objective space. When the objective functions are not conflicting, 
it is possible to find a solution where every objective function attains its minimum 
[12]. However, if the objectives are conflicting, i.e, the improvement of one objective 
leads to another objective deterioration, it does not exist one single optimal solution, 
but a set of alternatives - the non-dominated solutions - further ahead called Pareto 
optimal set. The decision-maker then selects one (or more than one) compromise 
solution, among the alternatives, that better satisfies his/her preferences. 
 
3.1. Basic Concepts in MOO 

The basic concepts in MOO are the following. 

Definition 1. A vector f = (f1,...,fm) is said to dominate f¯ = (f¯
1,...,f¯

m) if and only if 
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 ∀i ∈ {1,...,m} fi ≤ f¯
i and ∃i ∈ {1,...,m} such that fi < f¯

i.  (3) 

 
Thus, when two solutions f 1 = f(x1) and f 2 = f(x2), x1, x2 ∈ Ω ⊆ Rn are compared, 

one of these three cases holds: i) f 1 dominates f 2, ii) f 1 is dominated by f 2, iii) f 1 and 
f 2 are non-dominated. 

Definition 2. Let f ∈ Rm be the objective functions vector. A solution x1 ∈ Ω is said to 
be Pareto optimal if and only if there is no other solution x2 ∈ Ω for which f(x2) 
dominates f(x1). 

Definition 2 says that x1 is Pareto optimal if there is no other feasible solution x2 

which would decrease some objective fi without causing a simultaneous increase in at 
least one other objective. Thus, it does not exist a single solution, but a set of solutions 
called Pareto optimal set (in the space of the decision variables) and the corresponding 
function vectors are said to be non-dominated. 

Definition 3. Given a MOO problem with objective function vector f ∈ Rm and the 
Pareto optimal set X∗, the Pareto optimal front (PF∗) is defined as: 
 

PF∗ = {f = (f1(x),...,fm(x)) such that x ∈ X∗}. 

 
The algorithms for MOO aim to find a good and balanced approximation to the 

Pareto optimal set (and Pareto optimal front PF∗). The goals are: 
i) to find a manageable number of Pareto function vectors; 
ii) to find Pareto function vectors that are evenly distributed along PF∗; 
iii) to support the decision-maker to formulate his/her preferences and identify the 

compromise solutions. 
 
3.2. General Approaches to MOO 

Taking into consideration the point in time when the preferences of the decision- 
maker participate in the optimization process, methods for MOO can be classified as 
[6,7,12]: 

– No preference participation: the preferences of the decision-maker are not taken 
into consideration. The solution obtained by a simple method will be accepted or 
rejected by the decision-maker. 

– A priori participation: the preferences of the decision-maker are taken into 
consideration before the optimization process. These methods require that the 
decision-maker knows beforehand the priority of each objective. 
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– A posteriori participation: no preferences of the decision-maker are considered 
before the process. However, the decision-maker chooses a solution from the set 
of alternatives provided by the Pareto optimal front. 

– Interactive participation: the decision-maker preferences are continuously used 
and adjusted during the optimization process. 
 
MOO methods with a priori and a posteriori decision-maker participation are the 

most known and popular. The easiest ones are a priori methods that combine the multi-
objective functions into a weighted scalar aggregation function, converting the MOO 
problem into a single objective optimization (SOO) problem. Simple and well-known 
SOO algorithms can then be used to find one optimal solution [6,7]. To obtain an 
approximation to the PF∗, the SOO method must be run as many times as the desired 
number of points using different weight vectors [13]. The most popular scalar 
aggregation function is the weighted sum. To solve problem (2) by the weighted sum 
method involves selecting a weight vector w = (w1,w2,...,wm) and minimizing the 
aggregation function 

 

푊 (푥;푤) = 푤 푓 (푥). 

 
If all weights are positive, minimizing Wsum provides a sufficient condition for Pareto 
optimality that is the minimum of Wsum is Pareto optimal. However, if wi ≥ 0 and w1 + 
··· + wm = 1 are the assumed conditions, and any of the wi is zero, the solution may be 
only weakly Pareto optimal [14,15]. It has been reported the inability of the weighted 
sum method to capture Pareto optimal points that lie on non-convex portions of the 
Pareto optimal front. This weighted sum method has been extensively used not only 
to compute a single solution that may reflect the decision-maker preference, but also 
multiple solutions that provide approximations to the Pareto optimal front, using 
different sets of weights. 

It is expected that different weight vectors will produce different trade-off points 
on the Pareto front. However, different sets of weights can lead to the same point or 
points very close to each other. Thus, choosing the sets of weights is an important 
issue since the solutions depend on the weights. Ideally, they must be an evenly 
distributed set of weights in a simplex. Nevertheless, it has been observed that the 
weighted sum method may fail to produce solutions evenly distributed on the Pareto 
front. 

It can also be the case that the relative value of the weights reflects the relative 
importance of the objectives representing the decision-maker preferences. Frequently, 
judgments of the decision-makers are vague and their preferences cannot be translated 
to numerical values. While setting exact weights to objectives may be difficult, it is 
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expectable that rank ordering the importance of objectives be easier. Thus, rank order 
weight methods aim to convert the list of ranks into numerical weights. Each rank, ri, 
is inversely related to the weight, e.g., ri = 1 denotes the highest weight, ri = m means 
the lowest weight [16]. The rank exponent weight method produces the weights 

 

   (4) 

 
where ri denotes the rank of the ith objective i = 1,...,m and t is a parameter that can be 
estimated by the decision-maker. The value t = 0 assigns equal weights to the 
objectives, and as t increases, the weights distribution becomes steeper [16]. 

Classical uniform design methods for generating evenly distributed set of weights 
in a simplex include the popular simplex-lattice design and simplex centroid design 
[17]. In [18], a constructive method for the creation of a {m,q}-simplex lattice is 
presented and used to obtain the uniformly distributed weight vectors, in a MOEA 
context. For a weights vector of m components and assuming that q is a positive 
constant, representing the number of points equally distributed on each axis, the 
simplex consists of all valid mixture combinations - i.e., sum 1 - that can be created 
for the m components from the q + 1 levels 0,1/q,2/q,...,(q − 1)/q,1. In general, it 
consists of  design points [19]. 

Another scalarization method based on weights to model preferences is the 
weighted Tchebycheff method [20]. As opposed to the linear aggregation of the 
weighted sum method, the weighted Tchebycheff method relies on a nonlinear 
weighted aggregation of the functions fi, as follows:  

 

Minimize Wmax (x;w) ≡ max {w1 | f1 (x)− z1∗
 | ,..., wm | fm (x)– zm∗

 |} 
subject to x ∈ Ω   (5) 

 
where  z∗ =( z1∗,..., zm∗) is the ideal point in the objective space, i.e., zi∗

 = min{fi(x) such 
that x ∈ Ω} for i = 1,...,m. Each term can be view as a distance function that minimizes 
the distance between the solution point and the ideal point in the objective space.  

Minimizing Wmax(x;w) can provide approximations to the complete Pareto optimal 
front by varying the set of weights [6,13]. Under some mild conditions, for each Pareto 
optimal x∗ ∈ X∗ there exists a weight vector w such that x∗ is the optimal solution of 
problem (5), and each optimal solution of problem (5) (associated with a weights 
vector w) is a Pareto optimal solution to problem (2) [6]. The weighted Tchebycheff 
method guarantees finding all Pareto optimal solutions with ideal solution z∗. One 
disadvantage of solving problem (5) is that Wmax(x;w) is not smooth at some points, 
although this is easily overcame by implementing a derivative-free optimization 
method. 
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Methods from the class of a posteriori decision-maker participation compute a set 
of solutions to approximate the PF∗ in a single run. They are, in general, stochastic 
population-based search techniques and are denoted by MOEA. These population-
based meta-heuristics work reasonably well on difficult problems and are naturally 
prepared to produce many solutions from which the set of Pareto optimal solutions 
can be emanated. Known examples with industry applications are NSGA-II [8], 
SPEA-2 [21] and RPSGA [3]. The reader is referred to [6,7,22,23,24] for more details. 

 
4. Weighted Tchebycheff Scalarization Algorithm 

This section aims to present the herein implemented weighted Tchebycheff 
scalarization algorithm that is used to solve the MOO problem (2) throughout the 
minimization of the Tchebycheff function Wmax(x;w), as shown in (5). To scale the 
objective values so that they are approximately of the same magnitude, the objectives 
must be normalized. Thus, each fi is replaced by: 
 

 ,  (6) 

 
where z∗ is the ideal objective vector and znad is the nadir objective vector. This way, 
the range of the normalized function is [0,1]. The vector znad is constructed with the 
worst objective function values in the complete Pareto optimal set X∗, i.e., zi

nad = 
max{fi(x) such that x ∈ X∗} for i = 1,...,m, which is a difficult task [25]. For normalized 
objectives, the maximization of Fi(x) can be reformulated as a minimization objective 
as follows: 
 

. 

 
To solve the MOO problem in (1), the approximations to zi∗, i = 1,...,m (see (6)) are 

found from empirical knowledge of the SSE equipment and the polymer material, 
which lead to the fi

min values presented in Table 1. The table also displays the specific 
objectives of the function vector f and the estimator for the vector znad, the vector fmax, 
obtained by empirical knowledge of the equipment and the polymer material. 
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Table 1. Objectives of the function vector f, f min and f max 

 
 

Let  be a set of Nweight weight vectors. According to the above 
stated, for each weights vector wi, the minimizer of Wmax(x;wi) is an approximation to 
a Pareto optimal solution of the problem (2). Thus, our methodology to obtain an 
approximation to the PF∗ is as follows. For each weights vector wi, an approximation 
to x∗(wi) and the corresponding functions vector (approximation to f(x∗(wi))) are 
computed by a SOO solver. The solution x(wi) obtained for the weights vector wi is 
used as the initial approximation to the SOO solver for the next problem constructed 
with the next vector wi+1. This process is repeated Nruns independent times. From the 
Nruns sets of function vectors (approximations to the Pareto optimal front), the non-
dominated function vectors are selected to better represent the trade-off between the 
objectives. From there on the decision-maker may identify a set of compromise 
solutions. Algorithm 1 describes the main steps of the methodology. 

 

 
 

In this study, the simulated annealing (SA) method is used to compute x(wi), in 
line 5 of the Algorithm 1. SA is a single solution-based meta-heuristic with origins in 
statistical mechanics. Meta-heuristics are approximate methods that can solve any 
complex optimization problem. As opposed to the exact methods, meta-heuristics do 
not require information about the properties of the mathematical functions involved in 
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the problem formulation. They are not problem-dependent methods. They search the 
feasible region for a reasonable good solution to the problem although they do not 
guarantee to find an optimal solution [26]. 

The SA method models the physical process of heating a material and controls the 
reduction of the temperature - the cooling process - in order to minimize the system 
energy and reduce defects [27]. This process is known as annealing. At each iteration 
of the SA algorithm, a new point is randomly generated using a generating probability 
function that depends on the temperature. The algorithm accepts a new point if it 
improves the objective function, but also accepts, with a certain probability, a new 
point that deteriorates the objective. See [26,27,28] for details. The temperature is used 
to control the search for the global solution, e.g., a higher temperature allows more 
new points to be accepted which lead to the exploration of different regions of the 
search space. On the other hand, a lower temperature favors the acceptance of 
improving new points which result in the local exploitation of a promising region. 
Along the iterative process, the temperature is systematically decreased through a 
cooling schedule. Algorithm 2 presents the main steps of the SA algorithm. 

 

 
 

5. Experimental Results 
The weighted Tchebycheff algorithm was coded in MATLAB® (MATLAB is a 

registered trademark of the MathWorks, Inc.). For each weights vector, the function 
Wmax(x;w) is minimized using the SA solver from the Global Optimization Toolbox of 
MATLAB - the simulannealbnd function. On the other hand, the solver 
simulannealbnd invokes the computerized simulator of the SSE process that provides 
the objective function values Q, Zt, Tmelt, Power, WATS and Visco (output) given a set 
of values of the decision variables (input) [1]. 
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For the experimental results the parameter values are set as follows: Itmax = 50 
(adopted stopping criterion for simulannealbnd), T0 = 100 (default value), κ = 0.95 
(default value) and Nruns = 5 with Nweights = 21. We note that the use of a high number 
of weight vectors increases the computational complexity of MOO methods and, in 
some applications, they become impractical. The fixed values assigned to the 
geometrical parameters are: L1 = 300, L2 = 300, D1 = 20.0, D3 = 26.0, p = 30.0 and 
e = 3.60. 

This study aims to analyze the performance of the Algorithm 1 when three different 
methods are used to generate the set of Nweights weight vectors, to solve the MOO 
problem throughout the minimization of Wmax(x;w). Setting weights is an approach to 
articulate preferences and may be applied to different methods [14]. 

The first implemented technique applies the rank exponent weight method, see (4), 
with t = 1 and the sequence of ranks r = (1,2,3,4,5,6). When t = 1 is set the method 
reduces to the rank sum weight method. With the generated weights vector, the 
technique constructs all permutations (without replacement), a total of 6! vectors, and 
randomly selects 21 vectors. With the six objectives optimized simultaneously, the 
weighted Tchebycheff algorithm produces a set of six-dimensional non-dominated 
solutions, the Pareto front.  

Since the most relevant objective is the mass output Q, to visualize the trade-offs 
between Q and the others, five two-dimensional projections of the Pareto front are 
drawn and shown in Figure 1. The (blue) small full circles represent the solutions 
obtained for all the sets of weight vectors, over 5 runs, and the (red) large circles are 
the non-dominated solutions among the whole set. Figures 1(a) and 1(c) show that as 
Q decreases, the lower are Zt and Power respectively. It is observed from Figure 1(d) 
that as Q decreases, the greater is WATS. The tendency shown by the cloud of non-
dominated solutions in Figure 1(b) indicates that for lower Q values there are several 
solutions with lower Tmelt values but there are also solutions with larger Tmelt values. 
From Figure 1(e) we can also see a considerable number of solutions with lower Q 
values but with moderate Visco values. The solution with the lowest value of Visco 
has a reasonable large value of Q.  

Table 2 shows the values of the decision variables and the corresponding objective 
values for the six identified and selected solutions from the Pareto front. They are the 
extremes of the Pareto front. Point A corresponds to the solution with the highest Q 
value, B, C, D and F are the Pareto solutions where Zt, Tmelt, Power and Visco attain 
their lowest values respectively, and point E corresponds to the Pareto solution with 
the highest value of WATS. 
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 (a) Q vs. Zt (b) Q vs. Tmelt 

 
0 5 10 

Q 
 

(c) Q vs. Power 

15 0 5 10 
Q 
 

(d) Q vs. WATS 

15

     
(e) Q vs. Visco 

Fig.1. Two-dimensional projections of the Pareto front, when rank sum weight method and random 
selection are used 
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Table 2. Solutions with the best values of the objectives, when rank sum weight method and random 
selection are used 

 
Another technique to generate the weight vectors is based on the rank exponential 

weight method, and uses the formula in (4) with the sequence of ranks r = (1,2,3,3,2,3) 
and the 21 values of t starting at 0, ending at 10, with a step of 0.5. The five two-
dimensional projections of the Pareto front are shown in Figure 2.  

Similar conclusions can be withdrawn relative to the behavior of the solutions, 
although with this weight generating method, the concentration of solutions is more 
expressive for large values of Q. Table 3 shows the values of the decision variables 
and the corresponding objective function values from the six extreme points of the 
Pareto front. 

 
Table 3. Solutions with the best values of the objectives for the rank exponential weight method 

 
 
The third technique, to generate the weight vectors, is based on the simplex lattice 

design. It starts by creating a {m,q}-simplex lattice, as presented in [18], where m = 6 
and q = 8. Since the great majority of the created design points contain null 
components, we only select the design points that have all components positive to 
compose a set of 21 weight vectors.  

The five two-dimensional projections of the Pareto front are shown in Figure 3. 
We note that the concentration of solutions is more expressive for lower values of Q, 
as was reported with the experiments based on the rank sum weight method. The other 
conclusions also apply here. The objective Q variation relative to the other objectives 
are similar to the previously described.  
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 (a) Q vs. Zt (b) Q vs. Tmelt 

 
0 5 10 

Q 
 

(c) Q vs. Power 

15 0 5 10 
Q 
 

(d) Q vs. WATS 

15

 
(e) Q vs. Visco 

Fig.2. Two-dimensional projections of the Pareto front for the rank exponential weight method 
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 (a) Q vs. Zt (b) Q vs. Tmelt 

 
(b) Q vs. Power    (d) Q vs. WATS 

 
(e) Q vs. Visco 

Fig.3. Two-dimensional projections of the Pareto front, when the simplex lattice design is used 
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The six extreme solutions, A, B, C, D, E and F from the Pareto front are reported 
in Table 4 and correspond to the higher value of Q, lower value of Zt, lower value of 
Tmelt, lower value of Power, higher value of WATS and lower value of Visco, 
respectively. Operating parameter values and objective values from other three 
solutions, marked with G, H and I in Figure 3, are displayed in last rows of Table 4. 
 
Table 4. Best objective values and other representative solutions using the simplex lattice design 

 
 
Analyzing the best values of the objective functions obtained from the three weight 

generating methods, we may conclude that the simplex lattice design technique 
provides in general slightly better objective values. To assist the decision-maker in 
his/her decision process, a widely used visualization strategy, known as value path 
graph, is depicted in Figure 4 in order to give more understanding and insights about 
the problem. This gives a parallel coordinate plot visualization for the Pareto solutions 
A, B, C, D, E, F, G, H, I reported in Table 4. The horizontal lines of different colors 
represent the values of the objectives for different trade-off solutions, i.e., each line is 
associated with one of the selected solutions. Objective values are normalized to 
facilitate interpretation and the comparison [29,30,31]. 

 
Fig.4. Value path of solutions produced by the simplex lattice design weight method 
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Solutions corresponding to points B and D are not included in the graph because 
they behave similarly to solutions E and G respectively. The graph highlights the 
trade-offs and also the similarity of solutions in terms of the objectives. For instance, 
solutions F and I are very similar. Solution F is better in terms of Q and Visco, but 
slightly worse in terms of Tmelt, Power and WATS. Solution H is a balanced 
compromise between all objectives. 

A pairwise coordinate plot (with correlation coefficient values) is depicted in 
Figure 5, which is useful to reveal (positive/negative) correlation or no (linear) 
correlation between pairs of objectives [32]. Due to its simplicity and completeness, 
this plot provides relevant information to the decision-maker. The numeric 
information inside each subplot contains: 

 

“correlation coefficient”[prob-value]number of points in the subplot. 

 
A value of prob-value less than 0.05 indicates that the correlation between the pair 

of objectives is considered statistically significant (positive if “correlation 
coefficient”> 0, negative if “correlation coefficient”< 0). 

 

 
Fig.5. Pairwise coordinate plot of the Pareto front produced by the simplex lattice design weight 

method 
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6. Conclusions 
In this paper, the MOO problem that emanates from the optimal operating 

conditions of a single screw extrusion is efficiently solved by the weighted 
Tchebycheff scalarization function and the SA method. Emphasis was given to the 
weight vectors generating process. Preferences relative to the importance of the 
objective functions have been also incorporated into the weight process. Experiments 
were conducted to compare the behavior of the non-dominated solutions provided by 
the three methods to generate weight vectors. To assist the decision-maker trade-off 
solutions have been identified from the two-dimensional projections of the Pareto 
front. The results were analyzed using a path value graph and a pairwise coordinate 
plot, in terms of the objectives, and show the viability of the weighted Tchebycheff 
method when solving the MOO single screw extrusion problem. 
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