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D↓ is a new dynamic logic combining regular modalities with the binder constructor 
typical of hybrid logic, which provides a smooth framework for the stepwise development 
of reactive systems. Actually, the logic is able to capture system properties at different 
levels of abstraction, from high-level safety and liveness requirements, to constructive 
specifications representing concrete processes. The paper discusses its semantics, given 
in terms of reachable transition systems with initial states, its expressive power and 
a proof system. The methodological framework is in debt to the landmark work of 
D. Sannella and A. Tarlecki, instantiating the generic concepts of constructor and abstractor 
implementations by standard operators on reactive components, e.g. relabelling and 
parallel composition, as constructors, and bisimulation for abstraction.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Almost 30 years ago, D. Sannella and A. Tarlecki claimed, in what would become a most influential paper in (formal) 
Software Engineering [31], that “the program development process is a sequence of implementation steps leading from a specification 
to a program”. Being rather vague on what was to be understood either by specifications (“just finite syntactic objects of some 
kind” which “describe a certain signature and a class of models over it”) or programs (“which for us are just very tight specifications”), 
the paper focuses entirely on the development process, based on a notion of refinement.

Indeed, the quest for suitable notions of implementation and refinement has been for more than four decades on the 
research agenda for rigorous Software Engineering. This goes back to Hoare’s paper on data refinement [19], which influ-
enced the whole family of model-oriented methods, starting with VDM [21]. A recent reference [33] collects a number of 
interesting refinement case studies in the B method, probably the most successful member of the family in what concerns 
industrial applications.

In such model-oriented approaches, a specification is said to refine another one if every model of the latter is a model 
of the former. Sannella and Tarlecki’s work complemented and generalised this view with the notions of “constructor” and 
“abstractor implementations”:

“constructor implementations which involve a construction ‘on top of’ the implementing specification, and abstractor implemen-
tations which additionally provide for abstraction from some details of the implemented specification” [31].
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The idea behind a constructor implementation is that for representing a specification SP one may use one or several 
given specifications and apply a construction on top of them to satisfy the requirements of SP. On the other hand, abstractor
implementations capture the fact that sometimes the requirements for a system are only satisfied up to an abstraction which 
usually involves hiding of implementation details. Over time, many others contributed along similar paths, with Sannella 
and Tarlecki’s specific view later consolidated in their landmark book [32]. All main ingredients were already there: i) the 
emphasis on loose specifications; ii) correctness by construction, guaranteed by vertical compositionality, and iii) genericity, 
as the development process is independent, or parametric, on whatever logical system better captures the requirements to 
be handled.

The present article investigates this approach in the context of reactive software, i.e. systems which interact with their 
environment along the whole computation, and not only in its starting and termination points [1]. The relevance of such an 
effort is anticipated in Sannella and Tarlecki’s book [32] itself: “An example of an area for which a satisfactory, commonly accepted 
solution still seems to be outstanding (despite numerous proposals and active research) is the theory of concurrency” (page 157). Dif-
ferent approaches in that direction have been proposed, of which we single out an extension to concurrency in K. Havelund’s 
PhD thesis [17]. His work, however, focused essentially on functional requirements expressed by algebraic specifications and 
implemented in a functional programming language.

As a matter of fact, the development of reactive systems, which are nowadays the norm rather than the exception, fol-
lowed a different path. Typical approaches start from the construction of a concrete model (e.g. in the form of a transition 
system [34], a Petri net [29] or a process algebra expression [20,4]) upon which the relevant properties are later formulated 
in a suitable (modal) logic and typically verified by some form of model-checking. Resorting to old software engineering 
jargon, most of these approaches proceed by inventing & verifying, whereas this paper takes the alternative correct by con-
struction perspective.

Actually, our research hypothesis is that also in the domain of reactive systems, loose specification has an important 
role to play, because it supports the gradual incorporation of further requirements and implementation decisions such that 
verification of the correctness of a complex system can be done piecewise in smaller steps. Additionally, this allows for the 
systematic documentation of design decisions, as a support to systems’ maintenance and refactoring.

Therefore, the challenge undertaken here is twofold. First, we propose a new logic to support the development of reac-
tive systems at different levels of abstraction. Then, we show how to adapt to this context Sannella and Tarlecki’s recipe 
according to which “specific notions of implementation (...) corresponds to a restriction on the choice of constructors and abstractors 
which may be used” [31].

To address these challenges, we introduce a new logic, D↓ , which is able not only to express abstract properties, such 
as liveness requirements or deadlock avoidance, but also to describe the concrete, recursive process structures which im-
plement them. The logic combines modalities indexed by regular expressions of actions, as in dynamic logic [16], and state 
variables and binders, characteristic of hybrid logic [7].

As a second contribution, the paper introduces a number of constructors and abstractors relevant to the development of 
reactive systems. Interestingly, it turns out that requirements of Sannella and Tarlecki’s methodology for vertical composition 
of abstractor/constructor implementations boils down to the congruence property of bisimilarity w.r.t. constructions on 
labelled transition systems, like parallel composition and relabelling.

This article is an extended version of our previous work [24], presented at Ictac’2016. As such it includes the complete 
proofs of all results, and two new sections: Section 5 discusses the expressive power of D↓ , while Section 6 introduces a 
sound proof calculus for it.

Apart from those new sections, section 2 introduces D↓ , and sections 3 and 4, respectively, characterise the development 
method, with a brief revision of the relevant background, and its tuning to the design of reactive systems. Finally, section 7
concludes and points out some issues for future work.

2. A dynamic logic with binders

2.1. D↓: syntax and semantics

D↓ logic is designed to express properties of reactive systems, from abstract safety and liveness requirements, down 
to concrete design decisions specifying the (recursive) structure of processes. It thus combines modalities with regular 
expressions, as originally introduced in dynamic logic [16], and binders in state variables. This logic retains from hybrid 
logic [7], only state variables and the binder operator first studied by V. Goranko in [13]. These motivations are reflected in 
its semantics. Differently from what is usual in modal logics, whose semantics is given by Kripke structures and satisfaction 
evaluated globally in each model, D↓ models are reachable transition systems with initial states at which satisfaction is 
evaluated.

Definition 1 (Model). For a finite set of atomic actions A, models are reachable A-labelled transition systems, i.e. triples 
(W , w0, R) where W is a set of states, w0 ∈ W is the initial state and R = (Ra ⊆ W × W )a∈A is a family of transition relations
such that, for each w ∈ W , there is a finite sequence of transitions Rak (wk−1, wk), 1 ≤ k ≤ n, with wk ∈ W , ak ∈ A, such 
that w0 = w0 and wn = w .
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The set of (structured) actions, Act(A), induced by A is given by

α � a | α;α | α + α | α∗

where a ∈ A.
Let X be an infinite set of variables, disjoint with A. A valuation for an A-model M = (W , w0, R) is a function 

g : X → W . Given such a g and x ∈ X , g[x 	→ w] denotes the valuation given by g[x 	→ w](x) = w and g[x 	→ w](y) = g(y)

for any other y 
= x ∈ X .

Definition 2 (Formulas and sentences). The set FmD↓
(A) of A-formulas is given by

ϕ ::= tt | ff | x | ↓ x. ϕ | @xϕ | 〈α〉ϕ | [α]ϕ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ

where x ∈ X and α ∈ Act(A). SenD
↓
(A) = {ϕ ∈ FmD↓

(A)|FVar(ϕ) = ∅} is the set of A-sentences, where FVar(ϕ) are the free 
variables of ϕ , defined as usual with ↓ being the unique operator binding variables.

D↓ retains from hybrid logic the use of binders, but omits nominals: only state variables are used, even as parameters 
to the satisfaction operator (@x). By doing so, the logic becomes restricted to express properties of states reachable from 
the initial state, i.e. processes.

To define the satisfaction relation we need to clarify how composed actions are interpreted in models. Let α ∈ Act(A) and 
M ∈ ModD

↓
(A). The interpretation of an action α in M extends the interpretation of atomic actions by Rα;α′ = Rα · Rα′ , 

Rα+α′ = Rα ∪ Rα′ and Rα∗ = (Rα)� , with the operations ·, ∪ and � standing for relational composition,1 union and Kleene 
closure.

Given an A-model M = (W , w0, R), w ∈ W and g : X → W ,

• M, g, w |= tt is true; M, g, w |= ff is false;
• M, g, w |= x iff g(x) = w;
• M, g, w |=↓ x. ϕ iff M, g[x 	→ w], w |= ϕ;
• M, g, w |= @xϕ iff M, g, g(x) |= ϕ;
• M, g, w |= 〈α〉ϕ iff there is a w ′ ∈ W with (w, w ′) ∈ Rα and M, g, w ′ |= ϕ;
• M, g, w |= [α]ϕ iff for any w ′ ∈ W with (w, w ′) ∈ Rα it holds M, g, w ′ |= ϕ;
• M, g, w |= ¬ϕ iff it is false that M, g, w |= ϕ;
• M, g, w |= ϕ ∧ ϕ′ iff M, g, w |= ϕ and M, g, w |= ϕ′;
• M, g, w |= ϕ ∨ ϕ′ iff M, g, w |= ϕ or M, g, w |= ϕ′ .

We write M, w |= ϕ if, for any valuation g : X → W , M, g, w |= ϕ . If ϕ is a sentence, then the valuation is irrelevant, 
i.e., M, g, w |= ϕ iff M, w |= ϕ . For each sentence ϕ ∈ SenD

↓
(A), we write M |= ϕ whenever M, w0 |= ϕ . Observe again 

the pertinence of avoiding nominals: if a formula is satisfied in the standard semantics of hybrid logic, then it is satisfiable 
in D↓ . Obviously, this would not happen in the presence of nominals.

The remaining of this section discusses the versatility of D↓ claimed in the introductory section. In the sequel, given a 
set of atomic actions A = {a1, . . . , an}, we write A and −ai to refer to structured actions a1 + · · · + an , and a1 + · · · + ai−1 +
ai+1 + · · · + an , respectively.

By borrowing regular modalities from dynamic logic [16,15], D↓ is able to express liveness requirements such as “after 
the occurrence of an action a, an action b can be eventually realised” with [A∗; a]〈A∗; b〉tt, or “after the occurrence of an action a, 
an occurrence of an action b is eventually possible if it has not occurred before” with [A∗; a; (−b)∗]〈A∗; b〉tt. Safety properties are 
also captured by sentences of the form [A∗]ϕ . In particular, deadlock freeness is expressed by [A∗]〈A〉tt.

Example 1. As a running example we consider a product line with a stepwise development of a file compressing ser-
vice, working both with text and image files. We start with an abstract requirements specification SP0, over the set 
A = {inTxt, inGif, outZip, outJpg} of atomic actions. Informally, inTxt (respectively, inGif ) stands for the input of a txt-file 
(respectively, a gif-file), and action outZip (respectively, outJpg) for the output of a zip-file (respectively, a jpg-file). Sentences 
(0.1)–(0.3) below express three requirements: (0.1) Whenever a txt-file has been received for compression, the next action 
must be an output of a zip-file, (0.2) whenever a gif-file has been received, the next action must be an output of a jpg-file, 
and (0.3) the system should never terminate.

(0.1) [A∗; inTxt](〈outZip〉tt ∧ [−outZip]ff
)

(0.2) [A∗; inGif](〈outJpg〉tt ∧ [−outJpg]ff
)

(0.3) [A∗]〈A〉tt

Obviously, SP0 is a very loose specification of rudimentary requirements with a huge set of possible models. �
1 Symbol · (rather than the more standard ;) is used throughout the paper to denote diagrammatic composition of binary relations, to distinguish the 

sequential action composition from its semantic denotation.
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Fig. 1. D2FSP Translator: Translating D↓ into FSP processes.

The logic D↓ , however, is also suited to directly express process structures and, thus, the implementation of abstract 
requirements. The binder operator is crucial for this. The ability to give names to visited states, together with the modal 
features to express transitions, makes possible a precise description of the whole dynamics of a process in a single sentence. 
Binders allow to express recursive patterns, namely loop transitions (from the current to some visited state). Actually, this 
kind of properties cannot be specified in the absence of a feature to refer to specific states in a model, as in standard modal 
logic. For example, sentence

↓ x0.
(〈a〉x0 ∧ 〈b〉 ↓ x1.(〈a〉x0 ∧ 〈b〉x1)

)
(1)

specifies a process with two states accepting actions a and b respectively. As discussed in the sequel, the stepwise develop-
ment of a reactive system typically leads to a set of requirements defining concrete transition systems. These are expressed 
in the fragment of D↓ omitting modalities indexed by the Kleene closure of actions, that can be directly translated into 
a set of FSP [25] definitions. Fig. 1 depicts the translation of the formula above as computed by a proof-of-concept im-
plementation of such a translator.2 Note, however, that sentence (1) is a loose specification of the envisaged scenario (e.g. 
a single state system looping on a and b also satisfies this requirement). Resorting to full D↓ concrete processes, unique up 
to isomorphism, can be defined, i.e. we may introduce monomorphic specifications. For this specific example, it is enough 
to consider, in the conjunction guarded by x1, the term @x1¬x0 (to distinguish between the states bound by x0 and x1), as 
well as to enforce determinism resorting to formula (det) in Ex. 3 below.

2.2. Turning D↓ into an institution

The concept of an institution has been introduced by Joseph Goguen and Rod Burstall in [11]. An institution formalises 
some basic ingredients that any logical system should provide when it is used as a specification framework in program 
development. The notion relies on a clear separation between syntax (signatures, sentences) and semantics (models) which 
are related by a satisfaction relation M |= ϕ between models and sentences.

In order to meet the necessary requirements to adopt Sannella and Tarlecki’s development method, logic D↓ has to be 
framed as a logical institution [11].

In this view, our first concern is about the category of signatures. As suggested, signatures for D↓ are finite sets A of 
atomic actions, and a signature morphism A σ A′ is just a function σ : A → A′ . Clearly, this defines a category, SignD

↓
.

Our second concern is about the models functor. Given two models, M = (W , w0, R) and M′ = (W ′, w ′
0, R

′), for a 
signature A, a model morphism (A-morphism, for short) is a function h : W → W ′ such that h(w0) = w ′

0 and, for each a ∈ A, 
if (w1, w2) ∈ Ra then (h(w1), h(w2)) ∈ R ′

a . Clearly, the class of models for A, and the corresponding morphisms, defines a 
category ModD

↓
(A).

Definition 3 (Model reduct). Let A σ A′ be a signature morphism and M′ = (W ′, w ′
0, R

′) an A′-model. The σ -reduct of 
M′ is the A-model ModD

↓
(σ )(M′) = (W , w0, R) such that

• w0 = w ′
0;

• W is the largest set with w ′
0 ∈ W and, for each v ∈ W , either v = w ′

0 or there is a w ∈ W such that (w, v) ∈ R ′
σ(a) , for 

some a ∈ A;
• for each a ∈ A, Ra = R ′

σ(a) ∩ W 2.

Lemma 1. Consider a signature morphism A σ A′ , a A′-model M ′ = (W ′, w ′
0, R

′) and its σ -reduct M = (W , w0, R). Then, 
for any action α ∈ Act(A),

2 See translator.nrc .pt.

http://translator.nrc.pt
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1. Rα = R ′
σ(α)

∩ W , and

2. for any w, v ∈ W ′ such that (w, v) ∈ R ′
σ (α)

, w ∈ W iff v ∈ W .

Proof. The proof is by induction on the structure of actions. The property holds by definition for basic actions a ∈ A. We 
consider below the case of sequential composition of actions (α; α′); the remaining cases follow a similar argument.

Rα;α′

= { ; defn}
Rα · Rα′

= { I.H.}
(R ′

σ(α) ∩ W 2) · (R ′
σ(α) ∩ W 2)

Hence,

(w, v) ∈ (R ′
σ(α) ∩ W 2) · (R ′

σ(α) ∩ W 2)

⇔ { · defn}
(∃z)

(
(w, z) ∈ (R ′

σ(α) ∩ W 2) ∧ (z, v) ∈ (R ′
σ(α′) ∩ W 2)

)

⇒ { set theory}
(∃z)

(
(w, z) ∈ (R ′

σ(α) ∧ (z, v) ∈ R ′
σ(α′)

) ∧
(∃z)

(
(w, z) ∈ W 2 ∧ (z, v) ∈ W 2)

)

⇔ { · defn }
(w, v) ∈ (R ′

σ(α) · R ′
σ(α′)) ∩ (W 2 · W 2)

⇒ { ∩ monotonicity (since W 2 · W 2 ⊆ W 2) + σ defn}
(w, v) ∈ (R ′

σ(α;α′)) ∩ W 2

Therefore Rα;α′ ⊆ R ′
σ(α;α′) ∩ W 2. For the converse direction:

R ′
σ(α;α′) ∩ W 2

= { σ and ; defn}
(R ′

σ(α)
· R ′

σ(α′)) ∩ W 2

⊆ { · monotonicity}
(
(R ′

σ(α)
∩ W 2) · (R ′

σ(α′) ∩ W 2)
) ∩ W 2

= { I.H.}

(Rα · Rα′) ∩ W 2

= { Rα, Rα′ ⊆ W 2}
Rα · Rα′

= { ; defn}
Rα;α′

�

Moreover, given any A′-morphism M ′
1

h M ′
2 , it is easy to check that ModD

↓
(σ )(M ′

1)
h ModD

↓
(σ )(M ′

2) is also 
a (Nom, A)-morphism.

Example 2. Let us consider the inclusion signature morphism {a} σ {a,b} and an {a, b}-model M depicted by

w0

a

b

·
b

·
a

·

The reduct of M is w0

a

·
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Lemma 2. For each A′-morphism M ′
1

h′
M ′

2 between two A′-models and for each signature morphism A σ A′ , we have a 

morphism M1
h M2 , where M1 = ModI(σ )(M ′

1), M2 = ModI(σ )(M ′
2) and h is the restriction of h′ to W1 .

Proof. The proof is by induction over the structure of W1. Note first that h is well defined in the sense that, for each 
w ∈ W1, h(w) ∈ W2:

• for the initial state w1
0 ∈ W1, we have by definition of h and since h′ is a morphism, h(w1

0) = h′(w1
0) = w2

0. By reduct 
definition, w2

0 ∈ W2.
• for each v ∈ W1, there is a w ∈ W1 such that (w, v) ∈ R ′ 2

σ(a)
for some a ∈ A. Since h′ is a morphism, we have also that 

(h(w), h(v)) ∈ R ′ 2
σ(a) . Assume, by I.H., that h(w) ∈ W2. Then, by reduct definition, h(v) ∈ W2.

The morphism properties for h are directly inherited from the morphism properties of h′ . �
Model morphisms are preserved by reducts, in the sense that, for each such morphism h : M′

1 → M′
2 there is another 

h′ : ModD
↓
(σ )(M′

1) → ModD
↓
(σ )(M′

2), where h′ is the restriction of h to the states of ModD
↓
(σ )(M′

1). Hence, for each 
signature morphism A σ A′ , a functor ModD

↓
(σ ):ModD

↓
(A′) → ModD

↓
(A) maps models and morphisms to the cor-

responding reducts. Finally, this lifts to a contravariant models functor, ModD
↓ : (SignD

↓
)op → Cat , mapping each signature 

to the category of its models and, each signature morphism to its reduct functor.
The third concern relates to the definition of the functor of sentences. Each signature morphism A σ A′ can be 

extended to a formulas’ translation σ̂ : FmD↓
(A) → FmD↓

(A′) by identifying variables and replacing, symbol by symbol, each 
action by the respective σ -image. In particular, σ̂ (↓ x.ϕ) =↓ x.σ̂ (ϕ) and σ̂ (@xϕ) = @xσ̂ (ϕ). Since FVar(ϕ) = FVar(σ̂ (ϕ)), for 
each signature morphism A σ A′ , we can define a translation of sentences SenD↓

(σ ) : SenD
↓
(A) → SenD

↓
(A′), by 

SenD
↓
(σ )(ϕ) = σ̂ (ϕ), ϕ ∈ SenD

↓
(A). This defines the intended functor SenD↓ : SignD

↓ → Set , mapping each signature to 
the set of its sentences, and each signature morphism to the corresponding translation of sentences.

Finally, our fourth concern is on the agreement of the satisfaction relation w.r.t. the satisfaction condition. This is estab-
lished in the following result:

Theorem 1. Let σ : A → A′ be a signature morphism, M′ = (W ′, w ′
0, R

′) ∈ ModD
↓
(A′), ModD

↓
(σ )(M′) = (W , w0, R) and ϕ ∈

FmD↓
(A). Then, for any w ∈ W (⊆ W ′) and for any valuation g : X → W and g′ : X → W ′ , such that, g(x) = g′(x) for all x ∈

FVar(ϕ), we have

ModD↓
(σ )(M′), g, w |= ϕ iff M′, g′, w |= σ̂ (ϕ).

Proof. The proof is by induction on the structure of formulas. For that, we denote ModD
↓
(σ )(M′) by (W , w0, R). With 

exception of formulas x, 〈α〉ϕ , [α]ϕ and ↓ x. ϕ , the proof of all the cases is trivial. Moreover, the arguments for 〈α〉ϕ and 
for [α]ϕ are analogous. Hence, we only consider the proofs for the following cases:
Formulas x:

ModD↓
(σ )(M′), g, w |= x

⇔ { |= defn}
w = g(x)

⇔ { by hypothesis g(x) = g′(x)}
w = g′(x)

⇔ { |= defn}
M′, g′, w |= x

⇔ { σ̂ defn}
M′, g′, w |= σ̂ (x)

Formulas ↓ x.ϕ:

ModD↓
(σ )(M′), g, w |=↓ x.ϕ

⇔ { |= defn}
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ModD↓
(σ )(M′), g[x 	→ w], w |= ϕ

⇔ { step (�), and I.H.}
M′, g′[x 	→ w], w |= σ̂ (ϕ),

⇔ { |= defn}
M′, g′, w |=↓ x.σ̂ (ϕ)

⇔ { σ̂ defn}
M′, g′, w |= σ̂ (↓ x.ϕ)

The step marked with a (�) is justified as follows: By hypothesis g(y) = g′(y), for any y ∈ FVar(↓ x.ϕ). Hence, g[x 	→
w](y) = g′[x 	→ w](y), for any y ∈ FVar(ϕ), and the induction hypothesis apply.

Formulas @xϕ:

ModD↓
(σ )(M′), g, w |= @xϕ

⇔ { |= defn}
ModD↓

(σ )(M′), g, g(x) |= ϕ

⇔ { g(x) = g′(x), and I.H.}
M′, g′, g′(x) |= σ̂ (ϕ),

⇔ { |= defn}
M′, g′, w |= @xσ̂ (ϕ)

⇔ { σ̂ defn}
M′, g′, w |= σ̂ (@xϕ)

Formulas〈α〉ϕ:

ModD↓
(σ )(M′), g, w |= 〈α〉ϕ

⇔ { |= defn}
ModD↓

(σ )(M′), g, v |= ϕ for some v ∈ W

such that (w, v) ∈ Rα

⇔ { Lemma 1, and I.H.}
M′, g′, v |= σ̂ (ϕ) for some v ∈ W ′

such that (w, v) ∈ R ′̄
σ(α)

⇔ { |= defn}
M′, g′, w |= 〈σ(α)〉σ̂ (ϕ)

⇔ { σ̂ defn}
M′, g′, w |= σ̂ (〈α〉ϕ) �

In particular:

Theorem 2 (Satisfaction condition). For any signature morphism A σ A′ ∈ SignD
↓

, model M′ ∈ ModD
↓
(A′) and sentence 

ϕ ∈ SenD
↓
(A),

ModD↓
(σ )(M′) |= ϕ iff M′ |= SenD↓

(σ )(ϕ).
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Proof. Since ϕ ∈ SenD
↓
(A), we have FVar(ϕ) = ∅, and hence, by Lemma 1, for any w ∈ W ,

ModD↓
(σ )(M′), w |= ϕ iff M′, w |= SenD↓

(σ )(ϕ).

Moreover, by reduct definition, w0 = w ′
0 ∈ W , and the result follows. �

3. Formal development à la Sannella & Tarlecki

Developing correct programs from specifications entails the need for a suitable logic setting in which meaning can be 
assigned both to specifications and their refinements. Sannella and Tarlecki have proposed a formal development method-
ology [31,32] which is presented in a generic way for arbitrary institutions. As already pointed out in the Introduction, 
Sannella and Tarlecki have studied various algebraic institutions to illustrate their methodology and they presume the lack 
of a satisfactory solution in the theory of concurrency. In this section we briefly summarize their crucial principles for for-
mal program development over an arbitrary institution, and illustrate the case of simple implementations by examples of 
our D↓-logic institution. The concepts of constructor and abstractor implementations will be instantiated for D↓ later on in 
Sect. 4.

In the sequel we assume given an arbitrary institution, with category Sign of signatures and signature morphisms, sen-
tences functor Sen : Sign → Set , and models functor Mod : Signop → Cat assigning to any signature � ∈ |Sign| a category 
Mod(�) whose objects are called �-models. As usual, the class of objects of a category C is denoted by |C |, and abbreviated 
to C when clear from the context.

3.1. Simple implementations

The simplest way to design a specification is by expressing the system requirements in a set of sentences over a suitable 
signature, i.e. as a pair S P = (Sig(S P ), Ax(S P )) where Sig(S P ) ∈ |Sign| and Ax(S P ) ⊆ |Sen(Sig(S P ))|. The (loose) semantics 
of such a flat specification S P is the pair (Sig(S P ), Mod(S P )) where

Mod(S P ) = {M ∈ |Mod(Sig(S P ))| : M |= Ax(S P )}.
In this context, a refinement step is understood as a restriction of an abstract class of models to a more concrete one. 
Following the terminology of Sannella and Tarlecki, we call a specification which refines another one an implementation. 
Formally, a specification S P ′ is a simple implementation of a specification S P over the same signature, in symbols S P � S P ′ , 
whenever Mod(S P ) ⊇ Mod(S P ′). Transitivity of the inclusion relation ensures the vertical composition of simple implemen-
tation steps.

Example 3. Two refinement steps are illustrated with simple implementations in the D↓ institution. Consider specification 
SP0 from Ex. 1 which expresses a few rudimentary requirements for the behaviour of a file compressing service. The action 
set A defined there provides the signature of SP0; similarly, its axioms are the three sentences (0.1)–(0.3) in the example.

First refinement step SP0 � SP1. SP0 is a very loose specification which would allow to start a computation with an arbitrary 
action. We will be a bit more precise now and require that at the beginning only an input (of a text or gif file) is allowed, 
as captured by axiom (1.1) below. Moreover whenever an output action (of any kind) happens, the system must go on with 
an input (of any kind), as in axiom (1.4). This leads to the specification SP1 with Sig(SP1) = Sig(SP0) = A and the following 
set of axioms Ax(SP1):

(1.1) 〈inTxt + inGif〉tt ∧ [outZip + outJpg]ff
(1.2) [A∗; inTxt](〈outZip〉tt ∧ [−outZip]ff

)

(1.3) [A∗; inGif](〈outJpg〉tt ∧ [−outJpg]ff
)

(1.4) [A∗; (outZip + outJpg)](〈inTxt + inGif〉tt ∧ [outZip + outJpg]ff
)

It is easy to check that SP0 � SP1 holds: Axioms (0.1) and (0.2) of SP0 occur as axioms (1.2) and (1.3) in SP1. It is also 
easy to see that non-termination (axiom (0.3) of SP0) is guaranteed by the axioms of SP1.

The level of underspecification is, at this moment, still very high. Among the multiple models of SP1, the LTS shown in 
Fig. 2, with initial state w0, exhibits an alternating compression mode.

Second refinement step SP1 � SP2 . This step rules out alternating behaviours as the one above. The first axiom (2.1) of 
specification SP2 is equivalent to axiom (1.1) of SP1. Alternating behaviours are ruled out by axioms (2.2) and (2.3) which 
require that, after any text or image compression, the initial state must be reached again. To express this we need state 
variables and binders which are available in D↓-logic. In our example we introduce one state variable x0 which names the 
initial state by using the binder at the beginning of axioms (2.2) and (2.3). Moreover, we only want to admit deterministic
models such that in any (reachable) state there can be no two outgoing transitions labelled with the same action. It turns 
out that D↓ makes possible to specify this property with the set of axioms (det) shown below. This leads to the specification 
SP2 with Sig(SP2) = Sig(SP1) = A and with axioms Ax(SP2):
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·
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·
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·
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Fig. 2. A model of SP1.
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outZip

w0

inGif

w1

outJpg

w0

inTxt

inGif

w1

outZip

w2

outJpg

Fig. 3. Models of SP2.

(2.1) (〈inTxt〉tt ∨ 〈inGif〉tt) ∧ [outZip + outJpg]ff
(2.2) ↓ x0. [inTxt](〈outZip〉x0 ∧ [−outZip]ff

)

(2.3) ↓ x0. [inGif](〈outJpg〉x0 ∧ [−outJpg]ff
)

(det) For each a ∈ A, the axiom: [A∗] ↓ x.(〈a〉tt ⇒ (〈a〉 ↓ y. @x[a]y))

Clearly, SP2, shown in Fig. 3, fulfils the requirements of SP1, i.e. SP1 � SP2. SP2 has three models which are shown in . 
(Remember that models can only have states reachable from the initial one.) The first model allows only text compression, 
the second one does the same for image compression, and the third supports both. The signature of all models is A, though 
in the first two some actions have no transitions.

Other variants of SP2 could be considered to underpin the expressive power of D↓ . If we want only the model where both 
text and image compression are possible, then we can simply replace in axiom (2.1) 〈inTxt〉tt∨〈inGif〉tt by 〈inTxt〉tt∧〈inGif〉tt. 
If we would like to require that text compression must be possible in any model but image compression is optional, thus 
ruling out the second model in Fig. 3, then we would simply omit ∨〈inGif〉tt in axiom (2.1). This is an interesting case since 
it shows that D↓ can express the so-called “may”-transitions present in modal transition systems [23] to specify options for 
implementations.

3.2. Constructor implementations

The concept of a simple implementation is, in general, too strict to capture software development practice, along which, 
implementation decisions typically introduce new design features, or reuse already implemented ones, usually entailing a 
change of signatures along the way. The notion of constructor implementation offers the necessary generalization. The idea 
is that for implementing a specification SP one may use a given specification SP’ and apply a construction to the models 
of SP’ such that they become models of SP. More generally, an implementation of SP may be obtained by using not only 
one but several specifications SP′

1, . . . , SP′
n as a basis and applying an n-ary constructor such that for any tuple of models 

of SP′
1, . . . , SP′

n the construction leads to a model of SP. Such an implementation is called a constructor implementation with 
decomposition in [32] since the implementation of SP is designed by using several components. These ideas are formal-
ized as follows, partially in a less general manner than the corresponding definitions in [32] which allow also partial and 
higher-order functions as constructors.

Given signatures �1, ..., �n, � ∈ |Sign|, a constructor is a total function κ : Mod(�1) × · · · × Mod(�n) → Mod(�). Con-
structors compose as follows: Given a constructor κ : Mod(�1) × · · · × Mod(�n) → Mod(�) and a set of constructors 
κi : Mod(�1

i ) × · · · × Mod(�
ki
i ) → Mod(�i), 1 ≤ i ≤ n, the constructor κ(κ1, . . . , κn) : Mod(�1

1) × · · · × Mod(�
k1
1 ) × · · · ×

Mod(�1
n) × · · · × Mod(�

kn
n ) → Mod(�) is obtained by the usual composition of functions.

Definition 4 (Constructor implementation). Given specifications SP, SP′
1, . . . , SP′

n , and a constructor

κ : Mod(Sig(S P ′
1)) × · · · × Mod(Sig(S P ′

n)) → ModD↓
(Sig(S P )),

〈S P ′
1, . . . , S P ′

n〉 is a constructor implementation via κ of S P , in symbols S P �κ 〈S P ′
1, . . . , S P ′

n〉, if for all Mi ∈ ModD
↓
(S P ′

i), 
κ(M1, . . . , Mn) ∈ ModD

↓
(S P ). We say that the implementation involves a decomposition if n > 1.
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3.3. Abstractor implementations

Often in formal program development properties of a specification are not literally satisfied by an implementation, but 
only up to an admissible abstraction. Usually such an abstraction concerns implementation details which are hidden from 
the user of the system and which may, for instance for efficiency reasons, not be fully conform to the requirements spec-
ification. In such cases the implementation is still considered to be correct if it shows the desired observable behaviour. 
In general this can be expressed by considering an equivalence relation ≡ on the models of the abstract specification, and 
requiring the implementation models to be only equivalent to models of the requirements specification.

Formally, let S P be a specification and ≡⊆ Mod(Sig(S P )) ×Mod(Sig(S P )) an equivalence relation. Let Abs≡(ModD
↓
(S P ))

be the closure of ModD
↓
(S P ) under ≡. A specification S P ′ , with the same signature as S P is a simple abstractor implemen-

tation of S P w.r.t. ≡ whenever Abs≡(ModD
↓
(S P )) ⊇ ModD

↓
(S P ′). Both concepts, constructors and abstractors can be 

combined as shown in the definition of an abstractor implementation. (For simplicity, the term constructor is omitted.)

Definition 5 (Abstractor implementation). Let SP, SP′
1, . . . , SP′

n be specifications, κ : Mod(Sig(S P ′
1)) × · · · × Mod(Sig(S P ′

n)) →
Mod(Sig(S P )) a constructor, and ≡⊆ Mod(Sig(SP)) × Mod(Sig(SP)) an equivalence relation. We say that 〈S P ′

1, . . . , S P ′
n〉 is an 

abstractor implementation of S P via κ w.r.t. ≡, in symbols S P �≡
κ 〈S P ′

1, . . . , S P ′
n〉, if for all Mi ∈ ModD

↓
(S P ′

i), κ(M1, . . . , Mn) ∈
Abs≡(ModD

↓
(S P )).

4. Reactive systems development with D↓

4.1. Constructor implementations in D↓

This section introduces a palette of constructors to support the formal development of reactive systems within D↓ , 
instantiating the definitions given in Sect. 3.2. The idea is to lift standard constructions on labelled transition systems (see, 
e.g. [34]) to constructors for implementations. The constructors introduced in the sequel will be illustrated with our running 
example.

Along the refinement process it is sometimes convenient to reduce the action set, for instance, by omitting some actions 
previously introduced as auxiliary actions or as options that are no longer needed. For this purpose we use the alphabet 
extension constructor. Remember that constructors always map concrete models to abstract ones. Therefore when omitting 
actions in a refinement step we need an alphabet extension on the concrete models to fit them to the abstract signature.

Definition 6 (Alphabet extension). Let A, A′ ∈ |SignD
↓ | be signatures in D↓ , i.e. action sets, such that A ⊆ A′ . The alpha-

bet extension constructor κext : ModD
↓
(A) → ModD

↓
(A′) is defined as follows: For each M = (W , w0, R) ∈ ModD

↓
(A), 

κext(M) = (W , w0, R ′) with R ′
a = Ra for all a ∈ A and R ′

a = ∅ for all a ∈ A′ \ A.

Example 4. The specification SP2 of Ex. 3 has the three models shown in Fig. 3. Hence, it allows three directions to proceed 
further in the product line.

Third refinement step SP2 �κext SP3. We will consider here the simple case of a service for text compression only. The 
following specification SP3 is a direct axiomatisation of the first model in Fig. 3 considered over the smaller action set 
A3 = {inTxt, outZip}. Hence, Sig(SP3) = A3 and the axioms in Ax(SP3) are:

(3.1) ↓ x0. (〈inTxt〉 ↓ x1. (〈outZip〉x0 ∧ [inTxt]ff) ∧ [outZip]ff)
(det) For each a ∈ A3, the axiom: [A∗

3] ↓ x.(〈a〉tt ⇒ (〈a〉 ↓ y. @x[a]y))

Since the signature of SP3 has less actions than the one of SP2, we apply an alphabet extension constructor κext :
ModD

↓
(A3) → ModD

↓
(A) which transforms the model of SP3 into an LTS with the same states and transitions but with 

an empty accessibility relation for the actions in A \ A3. Then, trivially, SP2 �κext SP3 holds. Specification SP3 is a simple 
example that shows how labelled transition systems can be directly specified in D↓ . This could suggest that we are al-
ready close to a concrete implementation. But this is not true, since SP3 is in principle just an interface specification which 
specifies the system behaviour “from the outside”, i.e. its interactions with the user. �

The standard way to build reactive systems is by aggregating in parallel smaller components. The following parallel 
composition constructor, synchronising on shared actions, caters for this.

Definition 7 (Parallel composition). Given signatures A and A′ the parallel composition constructor κ⊗ : ModD
↓
(A) ×

ModD
↓
(A′) → ModD

↓
(A ∪ A′) is a function mapping models M = (W , w0, R) ∈ ModD

↓
(A) and M′ = (W ′, w ′

0, R
′) ∈

ModD
↓
(A′), to the A ∪ A′-model M ⊗ M′ = (

W ⊗, (w0, w ′
0), R

⊗)
where W ⊗ ⊆ W × W ′ and R⊗ = (R⊗

a )a∈A∪A′ are the 
least sets satisfying (w0, w ′ ) ∈ W ⊗ , and, for each (w, w ′) ∈ W ⊗ ,
0
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w ′
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Fig. 4. Models of Ctrl and GZip.

(w1, w ′
0)

txt
(w2, w ′

1)

compTxt(w0, w ′
0)

inT xt

(w3, w ′
0)

outZip

(w2, w ′
2)

zip

Fig. 5. Model of Ctrl ⊗ GZip.

• if a ∈ A ∩ A′ , (w, v) ∈ Ra , (w ′, v ′) ∈ R ′
a , then (v, v ′) ∈ W ⊗ and 

(
(w, w ′), (v, v ′)

) ∈ R⊗
a ;

• if a ∈ A \ A′ , (w, v) ∈ Ra , then (v, w ′) ∈ W ⊗ and 
(
(w, w ′), (v, w ′)

) ∈ R⊗
a ;

• if a ∈ A′ \ A, (w ′, v ′) ∈ R ′
a , then (w, v ′) ∈ W ⊗ and 

(
(w, w ′), (w, v ′)

) ∈ R⊗
a .

Since, up to isomorphism, parallel composition is associative, the extension of this constructor to the n-ary case is 
straightforward. Parallel composition is a crucial operator for constructor implementations with decomposition; see Defini-
tion 4. Remember again that constructors always go from concrete models to abstract ones, i.e. in the opposite direction of 
the refinement process. Therefore the parallel composition constructor justifies the implementation of reactive systems by 
decomposition.

Example 5. Let us construct an implementation for the interface specification SP3 in Ex. 4, based on a decomposition into 
two components, a controller component Ctrl and a component GZip which does the actual text compression. The controller 
has actions ACtrl = {inTxt, txt, zip, outZip}. First, it receives a txt-file from the user (action inTxt). Then it hands over the text, 
with action txt, to the GZip component and receives the resulting zip-file (action zip). Finally, it returns the zip-file (action 
outZip) and becomes ready to process another compression. Hence, the controller component has signature Sig(Ctrl) = ACtrl . 
The axioms below specify a single model, shown in Fig. 4 (left), with the intended behaviour.

(4.1) ↓ x0. (〈inTxt〉 ↓ x1. (〈txt〉 ↓ x2. (〈zip〉 ↓ x3. (〈outZip〉x0 ∧ [−outZip]ff)
∧[−zip]ff)

∧[−txt]ff)
∧[−inTxt]ff)

(det) For each a ∈ ACtrl , the axiom: [A∗
Ctrl] ↓ x.(〈a〉tt ⇒ (〈a〉 ↓ y. @x[a]y))

The GZip component has the actions AGzip = {txt, compTxt, zip}. First, it receives (action txt) the text to be compressed 
from the controller. Then it does the compression (action compTxt), delivers the zip-file (action zip) to the controller and is 
ready for a next round. The GZip component has the signature Sig(Gzip) = AGzip and the axioms Ax(Gzip) are similar to the 
ones of the controller and not shown here. They specify a single model, shown in Fig. 4 (right).

To construct an implementation 
〈
Ctrl, GZip

〉
by decomposition (see Definition 4), we use the synchronous parallel com-

position operator “⊗” defined above. According to [32], Exercise 6.1.15, any constructor gives rise to a specification building 
operation. This means that we can define the specification Ctrl ⊗ GZip whose model class consists of all possible par-
allel compositions of the models of the single specifications. Since Ctrl and GZip have, up to isomorphism, only one 
model there is also only one model of Ctrl ⊗ GZip which is shown in Fig. 5. Therefore, we know by construction that 
Ctrl ⊗ GZip �κ⊗

〈
Ctrl, GZip

〉
is a constructor implementation with decomposition. It remains to fill the gap between SP3 and 

Ctrl ⊗ GZip which will be done with the action refinement constructor to be introduced in Definition 9.

Two constructions which are frequently used, and typically present in most process algebras, are relabelling and restric-
tion. They are particular cases of the reduct functor in the D↓ institution.
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Definition 8 (Reduct, relabelling and restriction). Let σ : A → A′ be a signature morphism. The reduct constructor κσ :
ModD

↓
(A′) → ModD

↓
(A) maps any model M′ ∈ ModD

↓
(A′) to its reduct κσ (M′) = ModD

↓
(σ )(M′). Whenever σ is a 

bijective function, κσ is a relabelling constructor. If σ is injective, κσ is a restriction constructor removing actions and transi-
tions.

An important refinement concept for reactive systems is action refinement where an abstract action is implemented by a 
combination of several concrete ones (see [14]). It turns out that an action refinement constructor can be easily defined in 
D↓-logic if we use the reduct functor for models over a signature consisting of structured actions built over atomic ones.

Definition 9 (Action refinement). Let A, A′ ∈ |SignD
↓ | be signatures in D↓ , i.e. sets of actions. Let D be a finite subset of 

Act(A′) considered as a signature in |SignD↓ | and let f : A → D be a signature morphism. The action refinement constructor

| f : ModD
↓
(D) → ModD

↓
(A) maps any model M′ ∈ ModD

↓
(D) to its reduct ModD

↓
( f )(M′).

Example 6. Let us establish a refinement relation between SP3 (Ex. 4) and Ctrl ⊗ GZip (Ex. 5). The signature of SP3 consists 
of actions A3 = {inTxt, outZip}, the signature of Ctrl ⊗GZip is the set A4 = {inTxt, txt, compTxt, zip, outZip}. To obtain an action 
refinement, we define the signature morphism f : A3 → Act(A4) by f (inTxt) = inTxt; txt; compTxt and f (outZip) = zip; outZip. 
Then, we apply the action refinement constructor | f : ModD

↓
(A4) → ModD

↓
(A3) induced by f . Clearly, the application of 

| f to the model of Ctrl ⊗ GZip leads to the model of SP3 explained above. Hence, SP3 �| f Ctrl ⊗ GZip, which combined with 
Ex. 5, justifies Ctrl ⊗ GZip �κ⊗

〈
Ctrl, GZip

〉
which completes a refinement chain:

SP0 � SP1 � SP2 �κext SP3 �| f Ctrl ⊗ GZip �κ⊗
〈
Ctrl,GZip

〉
.

Finally, let us discuss how the last specification in the chain could be implemented in a concrete process algebra. Trans-
lation from D↓ to FSP yields

Ctrl = (inTxt -> txt -> zip -> outZip -> Ctrl).
Gzip = (txt -> compTxt -> zip -> Gzip).

The FSP semantics of the two processes are just the two models of the Ctrl and Gzip specifications respectively. They 
can be put together to form a concurrent system(Ctrl || Gzip) by using the synchronous parallel composition of FSP
processes. Since the semantics of parallel composition in FSP coincides with the one of constructor κ⊗ , we conclude that 
the FSP system (Ctrl || Gzip) is a correct implementation of the interface specification SP3.

4.2. Abstractor implementations in D↓

Abstractor implementations in the field of algebraic specifications use typically observational equivalence relations be-
tween algebras based on the evaluation of terms with observable sorts. Interestingly, in the area of concurrent systems, 
abstractors have a very intuitive interpretation in terms of bisimilarity (aka bisimulation equivalence). Let us briefly recall 
this standard notion [27]:

Definition 10 (Bisimilarity). Given two models M = (W , w0, R) and M′ = (W ′, w ′
0, R

′) for signature A, a bisimulation be-
tween M and M′ is a relation B ⊆ W × W ′ that contains (w0, w ′

0), and is such that

(zig) for any a ∈ A, w, v ∈ W , w ′ ∈ W ′ , such that (w, w ′) ∈ B , if (w, v) ∈ Ra , then there is a v ′ ∈ W ′ such that (w ′, v ′) ∈ R ′
a

and (v, v ′) ∈ B;
(zag) for any a ∈ A, w ∈ W , w ′, v ′ ∈ W ′ , such that (w, w ′) ∈ B , if (w ′, v ′) ∈ R ′

a , then there is a v ∈ W such that (w, v) ∈ Ra

and (v, v ′) ∈ B .

The bisimilarity relation with respect to A, is the equivalence ≡A ⊆ ModD
↓
(A) × ModD

↓
(A) defined as

≡A � {(M1,M2) | there is a bisimulation between M1 and M2}.

Subscript A is omitted when the context is clear.
There is a number of well known properties of bisimulations that are used in the sequel. In particular, bisimulations are 

closed for composition, converse and union, and form a complete lattice whose top coincides with bisimilarity.
To motivate the use of an abstractor implementation for bisimilarity, let us consider the specification S P =

({a}, {↓ x.〈a〉x}). The axiom is satisfied by the first model in Fig. 6, but not by the second one. Clearly, however, both 
are bisimilar and so it should be irrelevant, for implementation purposes, to choose one or the other as an implementation 
of S P .
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Fig. 6. Behaviourally equivalent LTSs.

Vertical composition of implementations refers to the situation where the implementation of a specification is further 
refined in a subsequent step. For simple implementations it is trivial to show that two implementation steps compose. In the 
context of constructor and abstractor implementations the situation is more complex. A general condition to obtain vertical 
composition in this case was established in [31]. However, the original result was only given for unary implementation 
constructors. In order to adopt parallel composition as a constructor, we first generalise the institution independent result 
of [31] to the n-ary case involving decomposition:

Theorem 3 (Vertical composition). Consider specifications S P , S P1, . . . , S Pn over an arbitrary institution, a constructor

κ : Mod(Sig(S P1)) × · · · × Mod(Sig(S Pn)) → Mod(Sig(S P )),

and an equivalence ≡⊆ Mod(Sig(S P )) × Mod(Sig(S P )) such that S P �≡
κ 〈S P1, . . . , S Pn〉. For each i ∈ {1, . . . , n}, let S Pi �≡i

κi

〈S P 1
i , . . . , S Pki

i 〉 with specifications S P 1
i , . . . , S Pki

i , constructor

κi : Mod(Sig(S P 1
i )) × · · · × Mod(Sig(S Pki

i )) → Mod(Sig(S Pi)),

and equivalence ≡i⊆ Mod(Sig(S Pi)) × Mod(Sig(S Pi)). Suppose that κ preserves the abstractions ≡i , i.e. for each Mi, Ni ∈
Mod(Sig(S Pi)) such that Mi ≡i Ni , κ(M1, . . . , Mn) ≡ κ(N1, . . . , Nn). Then,

S P �≡
κ(κ1,...,κn)

〈
S P 1

1, . . . , S Pk1
1 , . . . , S P 1

n , . . . , S Pkn
n

〉
.

Proof. For each 1 ≤ i ≤ n and for all 1 ≤ j ≤ ki , let M j
i ∈ Mod(S P j

i ). By hypothesis, for each i, Mi ≡i κi(M1
i , . . . , M

ki
i ), for 

some model Mi ∈ Mod(S Pi). Since κ preserves abstraction ≡i , 1 ≤ i ≤ n,

κ(M1, . . . ,Mn) ≡ κ(κ1(M1
1, . . . ,M

k1
1 ), . . . , κn(M1

n, . . . ,Mkn
n )).

Since κ(M1, . . . , Mn) ∈ Abs≡(Mod(S P )), we get

κ(κ1, . . . , κn)(M1
1, . . . ,M

k1
1 , . . . ,M1

n, . . . ,Mkn
n ) ∈ Abs≡(Mod(S P )). �

The remaining results establish the necessary compatibility between the constructors defined in D↓ and behavioural 
equivalence ≡A ⊆ |ModD

↓
(A)| × |ModD

↓
(A)|, for A ∈ SignD

↓
, defined as bisimilarity.

Theorem 4. The alphabet extension constructor κext preserves behavioural equivalences, i.e. for any M1 ≡A M2 , κext(M1) ≡A′
κext(M2).

Proof. By hypothesis, since M1 ≡A M2, there is at least a bisimulation B ⊆ W1 × W2. Then, B is also a bisimulation 
between κext(M1) and κext(M2). Thus, for all actions a ∈ A′ \ A, the bisimulation conditions hold trivially. Therefore 
κext(M1) ≡A′ κext(M2). �
Theorem 5. The parallel composition constructor κ⊗ preserves behavioural equivalences, i.e. for any M1 ≡A1 M′

1 and M2 ≡A2 M′
2 , 

M1 ⊗M2 ≡A1∪A2 M′
1 ⊗M′

2 .

Proof. Suppose, without lost of generality, that M1 ≡1 M′
1 and M2 ≡2 M′

2, given the existence of bisimulations B1 and 
B2, respectively. Consider relation ∼ ⊆ (M1 ⊗M2) × (M′

1 ⊗M′
2) such that (w1, w2) ∼ (w ′

1, w
′
2) if w1 ≡1 w ′

1 and w2 ≡2
w ′

2. We prove that ∼ is a bisimulation. First note that (w10, w20) ∼ (w ′
10, w

′
20) since (w10, w ′

10) ∈ B1 and (w20, w ′
20) ∈ B2.

In order to prove the zig condition (the proof is similar for the zag case) we consider two kinds of admissible transitions:

1. Suppose that a ∈ A1 ∩ A2, (w1, v1) ∈ R1
a and (w2, v2) ∈ R2

a . Then a transition 
(
(w1, w2), (v1, v2)

)
R⊗

a . By zig in B1, there 
is a v ′

1 ∈ W ′
1 such that (v1, v ′

1) ∈ B1 and (w ′
1, v

′
1) ∈ R ′ 1

a . Analogously, there is a v ′
2 ∈ W ′

2 such that (v2, v ′
2) ∈ B2 and 

(w ′
2, v

′
2) ∈ R ′ 2

a . By definitions of R ′ ⊗ and ∼, 
(
(w ′

1, w
′
2), (v ′

1, v
′
2)

) ∈ R ′ ⊗
a and (v1, v2) ∼ (v ′

1, v
′
2).

2. Suppose that a ∈ A1 \ A2 and (w1, v1) ∈ R1
a . By zig in B1, there is a v ′

1 ∈ W ′
1 such that (v1, v ′

1) ∈ B1 and (w ′
1, v

′
1) ∈ R ′ 1

a . 
Moreover, by definition of relational converse, R ′⊗ , 

(
(w ′

1, w
′
2), (v ′

1, w
′
2)

) ∈ R ′ ⊗
a . Clearly, w2 ≡2 w ′

2. Therefore, (v1, w2) ∼
(v ′ , w ′ ). For transitions a ∈ A2 \ A1, the proof is analogous. �
1 2
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Theorem 6. Let f : A → Act(A′) be a signature morphism. The constructor | f preserves behavioural equivalences, i.e. for any 
M1, M2 ∈ ModD

↓
(Act(A′)), if M1 ≡Act(A′) M2 , then | f (M1) ≡A | f (M2).

Proof. Assuming M1 ≡A′ M2, let us consider a bisimulation B between M1 and M2. We prove that the restriction of B
to W 1 × W 2 is a bisimulation between | f (M1) and | f (M2). For the forward direction (cf., the zig component), suppose 
(w1, w ′

1) ∈ R1
a and (w1, w2) ∈ B ∩ (W1 × W2). By | f definition, (w1, w ′

1) ∈ R ′ 1
f (a)

and hence, by the observation below, 
(w2, w ′

2) ∈ R ′ 2
f (a)

for some (w ′
1, w

′
2) ∈ B . Since R ′ 2

f (a)
= R2

a and w2 ∈ W2, (w ′
1, w

′
2) ∈ B ∩ (W1 × W2). The proof for the other 

direction (zag) is analogous. The same argument still applies when considering transitions indexed by sequences of (sets of) 
actions, as in [1] for string bisimulation. �
5. On the expressive power of D↓

In the last section, bisimilarity is taken as a suitable equivalence relation for constructing abstractor implementations. 
Indeed, this is a usual notion of equivalence for transition systems. In standard modal logic it has a logical counterpart, 
often referred to as the Hennessy–Milner property: bisimilar states satisfy exactly the same modal sentences and, conversely, 
in two image-finite models (i.e. in which any state has at most finitely many outgoing transitions) any two states satisfying 
the same modal sentences are bisimilar. Obviously, the latter implication does also hold in D↓-logic since Hennessy–Milner 
logic is a fragment of D↓ (where, anyway, sentences are only interpreted in the initial state). However, the first implication 
of the Hennessy–Milner property does not hold in D↓: the logic fails to be modally invariant, i.e. bisimilar states do not 
necessarily satisfy the same D↓-sentences. A counterexample was presented in Sect. 4.2, Fig. 6. The first model satisfies the 
sentence ↓ x.〈a〉x but the second one doesn’t. This is not a surprise since D↓-logic is a very powerful logic. If we want to 
abstract from a specification w.r.t. bisimulation equivalence then we can use an abstractor implementation as explained in 
Sect. 4.2. Indeed the concept of an abstractor implementation would be meaningless if sentences of D↓-logic were preserved 
by bisimulation equivalence.

In this section we discuss the expressive power of D↓-logic and show that it allows us to specify finite A-models 
uniquely up to isomorphism. Since the converse direction also holds, i.e. isomorphic models satisfy the same A-sentences, 
D↓-logic is as powerful as model isomorphism to distinguish finite A-models.

Model morphisms were defined in Sect. 2.2. Two A-models M, M′ ∈ ModD
↓
(A) are isomorphic, in symbols M iso M′ , 

if there is a pair of morphisms h : M →M′ and h−1 :M′ →M such that h · h−1 = idM and h−1 · h = idM′ . The following 
result was originally presented in [18]:

Theorem 7. Let M and M′ be A-models such that M iso M′ . Then, for any A-sentence ϕ , we have

M |= ϕ iff M′ |= ϕ.

For the remainder of this section we assume given a finite, non-empty set A of actions and two finite A-models M =
(W , w0, R) and M′ = (W ′, w ′

0, R
′), i.e. the sets W , W ′ are finite. We show that there exists an A-sentence ϕM which 

determines M up to isomorphism. ϕM is constructed as follows:

ϕM =↓ w0.F(w0,Im(w0), W , {w0})
where the initial state w0 is introduced as a bound variable, F is algorithmically defined in Table 1, and for any state w ∈ W , 
Im(w) = {(a, v) ∈ A × W | (w, v) ∈ Ra} and, in the following algorithm, for any a ∈ A, Im(w, a) = {v ∈ W | (a, v) ∈ Im(w)}. 
The algorithm takes the model M and performs a recursive breadth-first traversal starting from the initial state of M. 
For each reached state w it checks its outgoing transitions and requires the existence of such transitions in the formula. 
Additionally it requires that no other transitions with source state w exist. If all states are visited the algorithm terminates 
by requiring that the states of M are pairwise different. The algorithm uses the states of M as variables. Whenever a new 
state v is reached, v is bound with the binder of D↓-logic.

Example 7. As an example, let M be the model on the right in Fig. 3. We show how ϕM can be derived by using the 
algorithm in Table 1.

ϕM =↓ w0.F(w0,Im(w0), W , {w0})
with Im(w0) = {(inTxt, w1), (inGif, w2)} and W = {w0, w1, w2}. Then we compute:

F(w0,Im(w0), W , {w0}) =
@w0〈inTxt〉 ↓ w1.F(w0, {(inGif, w2)}, W , {w0, w1}) =
@w0〈inTxt〉 ↓ w1.@w0〈inGif〉 ↓ w2.F(w0,∅, W , W ) =
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Table 1
Algorithm to construct an A-sentence.

F(w , ImageToVisit, StatesToVisit, BoundStates) =
if ImageToVisit 
= ∅
then {

//take a transition outgoing from w and specify that it is required;
//if the target state v has been introduced as a bound variable before
//then require @w 〈a〉v and continue;
//otherwise bind v as a variable, require @w 〈a〉 ↓ v and continue;
choose (a, v) ∈ ImageToVisit;
if v ∈ BoundStates
then return @w 〈a〉v ∧

F(w , ImageToVisit \{(a, v)}, StatesToVisit, BoundStates)
else return @w 〈a〉 ↓ v .

F(w , ImageToVisit \{(a, v)}, StatesToVisit, BoundStates ∪{v})
}
else {

//i.e. ImageToVisit = ∅, which means that all transitions outgoing
//from w are already specified;
//then finalise the visit of w by requiring that only the transitions
//outgoing from w are allowed at w and continue with some other
//state v which has been bound before but not yet visited
//if such a state exists;
//otherwise terminate by specifying that all states in W are different;
let finalise(w) = @w (

∧
a∈A [a](∨u∈Im(w,a) u));

StatesToVisit = StatesToVisit \ {w};
if StatesToVisit 
= ∅
then {

choose v ∈ BoundStates ∩ StatesToVisit;
return finalise(w) ∧ F(v , Im(v), StatesToVisit, BoundStates)

}
else return finalise(w) ∧∧

w 
=w ′∈W ¬@w w ′
}

where
∨

u∈∅ stands for ff.

@w0〈inTxt〉 ↓ w1.@w0〈inGif〉 ↓ w2.

@w0([inTxt]w1 ∧ [inGif]w2 ∧ [outZip]ff ∧ [outJpg]ff)∧
F(w1,Im(w1), {w1, w2}, W )

where

F(w1,Im(w1), {w1, w2}, W ) =
@w1〈outZip〉w0 ∧ F(w1,∅, {w1, w2}, W ) =
@w1〈outZip〉w0 ∧

@w1([inTxt]ff ∧ [inGif]ff ∧ [outZip]w0 ∧ [outJpg]ff)∧
F(w2,Im(w2), {w2}, W )

where

F(w2,Im(w2), {w2}, W ) =
@w2〈outJpg〉w0 ∧ F(w2,∅, {w2}, W ) =
@w2〈outJpg〉w0 ∧

@w2([inTxt]ff ∧ [inGif]ff ∧ [outZip]ff ∧ [outJpg]w0)∧
¬@w0 w1 ∧ ¬@w0 w2 ∧ ¬@w1 w2

Theorem 8. Let M and M′ be two finite A-models such that M |= ϕ iff M′ |= ϕ for all A-sentences ϕ . Then M iso M′ .
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Proof. We give only a sketch of the proof. Let ϕM be the A-sentence derived from M, as explained above. M and 
M′ satisfy the same A-sentences and therefore M′ satisfies, in particular, ϕM . Since ϕM specifies M uniquely up to 
isomorphism, we get M iso M′ . �
6. A proof system for D↓

This section introduces a proof system for D↓ , which, as explained before, combines a hybrid logic with binders H(@, ↓)

[6], but no propositional symbols (i.e. neither propositions nor nominals), with dynamic logic [12]. The proof system reflects 
this combination by putting together the proof systems of both components. First, because all state symbols considered 
are variables, the axioms of H(@, ↓) are restricted to state variables, instead of state variables and nominals, as one would 
expect. On the other hand, the dynamic part consists just of four axioms, expressing how composite programs behave. 
Axioms involving tests are omitted, as tests themselves are not allowed in the logic. The non-dynamic part of the axiomatics 
disregards the way programs are built. It introduces a modality symbol for each program in Act(A), and not just for the 
atomic ones. Thus, the logic can be taken as a multimodal logic with an infinite set of modality symbols Act(A). The proof 
system is as follows,

Axioms
Basic Kripke axioms:

(Taut) all propositional tautologies
(K) [α](ϕ → ψ) → ([α]ϕ → [α]ψ)

These are the axioms of a normal multimodal logic. The next three sets of axioms come from the axiomatization of hybrid 
logic (cf. [6]).

Axioms for @:

(K@) @s(ϕ → ψ) → (@sϕ → @sψ)

(@s-self-dual) @sϕ ↔ ¬@s¬ϕ
(Introduction) (s ∧ ϕ) → @sϕ

Axioms for the modal theory of labeling:

(Label) @ss
(Nom) @st → (@tϕ → @sϕ)

(Swap) @st ↔ @t s
(Scope) @t@sϕ ↔ @sϕ

Axioms for the interaction between @ and �:

(Back) 〈α〉@sϕ → @sϕ
(Bridge) (〈α〉s ∧ @sϕ) → 〈α〉ϕ

The axioms expressing how binders behave are taken from [6]:

Axioms for binders:

(b1) ↓x.(ϕ → ψ) → (ϕ →↓x.ψ)

(b2) ↓x.ϕ → (s → ϕ[s/x])
(b3) ↓x.(x → ϕ) →↓x.ϕ
(b4) ↓x.ϕ ↔ ¬ ↓x.¬ϕ (self-dual)

Finally, the axioms for composition of programs come from dynamic logic.
Axioms of dynamic logic:

(Comp) [α; β]ϕ ↔ [α][β]ϕ
(Alt) [α + β] ↔ ([α]ϕ ∧ [β]ϕ)

(Mix) [α∗]ϕ → ϕ ∧ [α][α∗]ϕ
(Ind) [α∗](ϕ → [α]ϕ) → (ϕ → [α∗]ϕ)

where x, s, t are variables, ϕ and ψ are arbitrary formulas and α, β ∈ Act(A). Note that in (b1) ϕ cannot contain free 
occurrences of x. Similarly, in (b2) s must be substitutable for x in ϕ .
The rules are as expected:

Rules:

Modus ponens: 
ϕ → ψ,ϕ

ψ

Necessitation: 
ϕ

[α]ϕ
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Variable localization: 
ϕ

↓x.ϕ

@s-necessitation: 
ϕ

@sϕ

Paste rules: 
@s(t ∧ ϕ) → θ

@sϕ → θ

@s〈α〉(t ∧ ϕ) → θ

@s〈α〉ϕ → θ

where t is a variable different from s, that does not occur in either ϕ or θ .
The first two rules are the rules of a normal multimodal logic, the last two come from hybrid logic. The rule of variable 

localization is the usual generalization rule for binding.

Deductions are defined in the usual way.

Definition 11.
A deduction of ϕ is a finite sequence ξ1, ..., ξn of formulas in FmD↓

(A) such that

• for every 1 ≤ i ≤ n − 1, either ξi is an axiom, or ξi is obtained from previous expressions in the sequence using a rule, 
and

• ξn = ϕ .

We write � ϕ , and call ϕ a theorem, whenever such a sequence exists.

The soundness of this proof system is not difficult to prove. As mentioned above, this can be considered as a logic over 
a multimodal language with a set of modality symbols Act(A). Its models can naturally be regarded as models of such a 
multimodal language. The interpretation of modalities corresponding to non atomic programs is defined by Rα;α′ = Rα · Rα′ , 
Rα+α′ = Rα ∪ Rα′ and Rα∗ = (Rα)� , as defined in Section 2). Given that the proof system for (multimodal) hybrid logic with 
binders H(@, ↓) is sound, we may conclude the validity of the non dynamic axioms and rules. For the dynamic component 
the result follows as a consequence of the definition of the interpretation of the operators over programs. Thus,

Theorem 9 (Soundness). If � ϕ then M |= ϕ for any model M.

Discussion on completeness. Establishing completeness seems to be harder. In [6] the authors presented a proof of com-
pleteness of a logic similar to D↓ , which they denote by H[↓, @](K ). There are three main differences: first they consider 
nominals and variables (not only variables as in D H), do not have composition of programs and their models do not have 
reachability restrictions. This does not allow a straightforward adaptation of their proof to the case at hands.

Let us discuss some problems arising when trying to combine the proof of completeness of hybrid logic with binders 
with the corresponding proof for dynamic logic. We will revisit the proof for hybrid logic with binders and will point out 
the problems arising in our setting. The reader not familiar with hybrid logic, can check the details in [6]. The standard 
proof of completeness of modal logic (and general extensions of modal logic, like hybrid logic) is a consequence of the 
following fact: Every consistent set of formulas (in a countable language) is satisfiable in a (countable) model.

Hence, we have tried to prove a similar result for our logic. More specifically, we have been trying to prove extend/adapt 
the proof given in reference [6] to the dynamic logic with binders discussed in this paper.

First of all, as in dynamic logic, we have to consider D↓ as a multimodal logic with modality symbols indexed by 
elements of Act(A), and build the associated canonical model (see below). In general, this is not a dynamic standard one, 
because Rα∗ is not equal to (Rα)� . Recall that a model of a multimodal logic is dynamic standard if it is a model of the 
dynamic logic such that the interpretation of non atomic programs is obtained from the interpretation of the atomic ones 
by means of the corresponding operations on the associated relations. In the strictly dynamic case, one needs to perform 
an adequate filtration in order to obtain a dynamic standard model that satisfies the original consistent set.

Typically, in modal logic the states of the canonical model Mc = (Sc, (Rc
α)α∈Act(A)) are the maximal consistent sets (MCS), 

i.e. consistent sets which are maximal with respect to inclusion, and the accessibility relation is defined by sRc
αt iff 

{ϕ | [α]ϕ ∈ s} ⊆ t . Note that in the context of this paper there is an additional requirement: the model must be reach-
able, as well. Here the first problem arises: It is not clear if the canonical model is reachable. Moreover, we should also 
consider how to deal with initial states.

The completeness proof for hybrid logic (with or without binders) considers only MCS which are labelled, in the sense 
that one of its elements is a state symbol. Then, the proof proceeds by showing that each consistent set can be extended to 
a MCS labelled by a nominal. This is another problem in our case, since D↓ has variables only.

The extended Lindenbaum’s lemma – Any consistent set of formulas � can be extended to a maximal consistent set with 
three desirable properties: labelled by a nominal, pasted (see [6]), and maximal consistent, plays a crucial role in the classical 
proof. Then, given a pasted maximal consistent set �, labelled by a nominal, we define the labelled model yielded by � as 
M = (S�, (R�

a )a∈Act(A)), where S� = {{ϕ | @sϕ ∈ �} | s is a state symbol}, R�
a is the restriction of Rc to S� , and the natural 

assignment g : X → S� is given by g(x) = {s ∈ S� | x ∈ s}. This model is the one that works in standard hybrid logic (mul-
timodal case). Its construction shows that every consistent set of formulas in the multimodal language Act(A) is satisfiable 
in a model with respect to a assignment function.
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To sum up, we have not been able to obtain the completeness proof. There are two main questions to overcome: (a) 
the canonical models have to be reachable and exhibit an initial state, and (b) D↓ has no nominals and hence MCS cannot 
be labelled by them. Concerning the latter, we conjecture that variables can be used, instead of nominals, in the pro-
cess.

7. Conclusions and future work

Building on our previous work [24], this paper completed the characterization of a new logic D↓ intended to specify 
abstract requirements for reactive systems, as well as concrete designs expressing (recursive) process structures. Therefore 
D↓ is appropriate to instantiate Sannella and Tarlecki’s refinement framework to provide stepwise, correct-by-construction 
development of reactive systems. We have illustrated this with a simple example using specifications and implementation 
constructors over D↓ . We believe that a case was made for the suitability of both the logic and the method as a viable 
alternative to other, more standard approaches to the design of reactive software.

Related work. Since the 80’s, the formal development of reactive, concurrent systems has emerged as one of the most active 
research topics in Computer Science, with a plethora of approaches and formalisms. For a proper comparison with this work, 
the following paragraphs restrict to two classes of methods: the ones built on top of logics formalised as institutions, and 
the attempts to apply to the domain of reactive systems the methods and techniques inherited from the loose specification 
of abstract data types.

In the first class, references [10,28,8] introduce different institutions for temporal logics, as a natural setting for the 
specification of abstract properties of reactive processes. Process algebras themselves have also been framed as institutions. 
Reference [30] formalises CSP [20] in this way. What distinguishes our own approach, based on D↓ , is the possibility to 
combine and express in the same logic both abstract properties, as in temporal logics, and their realisation in concrete, 
recursive process terms, as typical in process algebras.

Our second motivation was to discuss how institution-independent methods, used in (data-oriented) software devel-
opment, could be applied to the design of reactive systems. A related perspective is proposed in reference [26], which 
suggests the loose specification of processes on top of the CSP institution [30] mentioned above. The authors explore 
the reuse of institution independent structuring mechanisms introduced in the CASL framework [3] to develop reac-
tive systems; in particular, process refinement is understood as inclusion of classes of models. Note that the CASL
(in-the-large) specification structuring mechanisms can be also taken as specific constructors, as the ones given in this 
paper.

Future work. A lot of work, however, remains to be done. For example, decidability of D↓ is yet an open question. In [2]
it has been shown that nominal-free dynamic logic with binders is undecidable. But while [2] considers standard Kripke 
structures and global satisfaction, D↓ takes reachable models and satisfaction with respect to the initial states.

It would also be worthwhile to discuss satisfaction up to some notion of observational equivalence, as done in [5] for 
algebraic specifications, thus leading to a behavioural version of D↓ . Such a behavioural setting offers an interesting way to 
recover modal invariance for D↓ , as recently explored in [18].

The study of initial semantics (for some fragments) of D↓ is also in our research agenda. For example, theories in the 
fragment of D↓ that alternates binders with diamond modalities (thus binding all visited states) can be shown to have 
weak initial semantics, which becomes strong initial in a deterministic setting. The abstract study of initial semantics in 
hybrid(ised) logics reported in [9], together with the canonical model construction for propositional dynamic logic intro-
duced in [22] can offer a nice starting point for this task. Moreover, for handling more complex systems, data must also be 
represented in the logic.

A second line of inquiry is more directly related to the development method. For example, defining an abstractor on 
top of some form of weak bisimilarity would allow for a proper treatment of hiding, an important operation in CSP [20]
and some other process algebras through which a given set of actions is made non observable. Finally, our aim is to add 
a final step to the method proposed here in which any constructive specification can be translated to a process algebra 
expression, as currently done by our proof-of-concept translator D2FSP. A particularly elegant way to do it is to frame such 
a translation as an institution morphism into an institution representing a specific process algebra, for example the one 
proposed by M. Roggenbach [30] for CSP.
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