
Comparison of major LiDAR data-driven feature

extraction methods for autonomous vehicles

Fernandes, Duarte ∗

dduartefernandes@gmail.com

Névoa, Rafael *

Silva, António Simões, Cláudia Monteiro, João
Novais, Paulo Melo-Pinto, Pedro

Abstract

Object detection is one of the areas of computer vision that has ma-
tured very rapidly. Nowadays, developments in this research area have
been playing special attention to the detection of objects in point clouds
due to the emerging of high-resolution LiDAR sensors. However, data
from from a Light Detection and Ranging (LiDAR) sensor is not charac-
terised by having consistency in relative pixel densities and introduces a
third dimension, raising a set of drawbacks. The following paper presents a
study on the requirements of 3D object detection for autonomous vehicles;
presents an overview of the 3D object detection pipeline that generalises
the operation principle of models based on point clouds; and categorises
the recent works on methods to extract features and summarise their per-
formance.

1 Introduction

Deep Learning research area has been witnessing tremendous growth, leading
to developments that allow its implementation in a wide range of applications.
It has been mostly used in object detection and classification tasks, with au-
tonomous driving systems as one of its main targets. These deep learning al-
gorithms for object detection can be implemented following a specific Neural
Network architecture and adopt a technology, of which RGB cameras are the
most widely used. However, this technology has some disadvantages - prone
to adverse light and weather conditions and no depth information is provided -
that have been hampering the 3D object detection models of achieving a fully
reliable and feasible solution. For these reasons, Light Detection and Rang-
ing (LiDAR) sensing technology has drawn the attention of both academic and
industrial community. It offers 360◦Field-of-View and introduces a third di-
mension that allows precise distance measurements, etc [7]. To achieve a fully

∗Both authors contributed equally to this work

1



safety-critical system for autonomous vehicles, 3D object models must meet the
following fundamental requirements: (1) real-time operation, which is feature
sensor-driven; and (2) detection of a wide range of classes with high accuracy
and (3) . These requirements are limited by state-of-the-art of LiDAR sensors.
For instance, LiDAR sensors Velodyne VLS-128 and Velodyne HDL-64E are
able to offer a frame rate up to 20 Hz [7]. Thus, inference time lower than 50 ms
must be imposed to 3D object detection models. Moreover, models must detect
also objects smaller than cars, such as cyclists or pedestrians, requiring a high
density of points. Velodyne VLS-128 and Velodyne HDL-64E provide a point
cloud with 3 and 1.3 million points, respectively, resulting in point clouds with
different sparsity as shown in 1. However, computing more points will naturally
affect negatively the inference time of a network. Assuring these requirements
is one of the main challenges of 3D object detection models.

Although a 3D object detection is composed by several blocks, the key de-
sign to enable real-time operation and also accuracy is the process of feature
enconding [6]. This block is the only block of the model pipeline that directly
processes all input points from the point cloud for feature extraction that feeds
the following block. Therefore, it is expected that the feature extractor are fast
enough at processing the data to assure that satisfactory inference timed are
achieved. However, as LiDAR beams are narrow by nature, sensors are likely
to disregard narrow objects (e.g. lampposts or even persons) [10]. In order to
overcome this limitation, current sensing technologies tend to either increase the
number of reading when scanning the sensor surrounding or increase the LiDAR
sensors resolution. As the number of points increases, it is expected to improve
algorithms accuracy, but it might sacrifice the inference time of the solution.
Therefore, features extractors must apply mechanisms to exclude points with
no relevant information and assure that only extracted features that are mean-
ingful in the context of current vehicle’s surrounding scenario are forwarded
to the following block. This article will pay special attention to the feature
extractors addressed in the literature, analysing how techniques suggested on
noteworthy research projects have evolved to better explore the nature of point
clouds and optimise their performance metrics.

This paper is structured as follows: Section 2 highlights the main research
challenges and describes the generic pipeline of a 3D object detection model; in
section 3, we categorise feature extractors according to the architecture adopted,
review the models addressed in the literature, and compare its performance on
a benchmark dataset; and Section 4 provides a brief summary and concludes
this document.

2 LiDAR-based Object Detection Challenges

The LiDAR sensor is becoming a key element in self-driving cars, mainly because
of its long-range detection abilities, its high resolution and the good performance
under different lighting conditions. Several approaches developed research based
on LiDAR data to provide real-time object detection and identification as will be

2



Figure 1: Point Clouds of the same scene obtained by two different sensors. The
top image displays a point cloud with 3 million points, while the bottom image
is the result of a frame with 1.3 millions points. Image from [2]

further shown. Thus, research lines were guided to the development of suitable
object detector algorithm architectures for self-driving cars, using LiDAR sens-
ing technology. However, LiDAR data consists of high-dimensional unstructured
point clouds of sparse nature, which affect the solution both methodologically
and computationally.

LiDAR sensors produce unstructured data containing typically around 106

3D points per 360-degree sweep, which impose large computational costs. Pro-
cessing and inferring objects in a LiDAR point-cloud will directly impact the
inference time of the model, which can make the solution unsuitable for real-
time applications. Also, point clouds come with non-uniform density in different
areas, which introduces a significant challenge for point set feature learning [9].

To allow a better trade-off between accuracy and inference time, several de-
sign choices were adopted. The resulting design solutions led to an appropriate
downstream detection pipeline, which includes the following stages: (1) Li-
DAR data representation: Organise the point clouds into a structure that
allows further computations;(2) Data Object Detector: According to the
data representation, this stage aims to perform at least two tasks: feature map
extraction and detection of objects of interest;(3) Multi-task header: This
aims at performing object class prediction and bounding box regression.

In the next section, we will provide a proper description of a generic 3D
object detection pipeline based on LiDAR data.

3



2.1 Generic 3D Object Detection Pipeline

Figure 2 depicts the generic pipeline architecture used by 3D object detection
algorithms. This pipeline architecture evidences the diversity of solutions and
design choices in each architecture stage. As mentioned before, this architecture
comprises three stages: (1) Data Representation, (2) Data Object Detector, and
(3) Multi-task header.

Figure 2: Generic architecture pipeline proposed for description of the operation
principle of any 3D object Detection algorithm.

In the Data Representation stage, the raw point clouds are organised into
a structure that allows the next block to process it more suitably according to
their design choices. The existing models have adopted the following method-
ologies: voxels, frustums, pillars or 2D projections. The Data Object Detector
will receive point clouds in a structure according to the before-mentioned repre-
sentations and will perform at least two tasks: feature map extraction and de-
tection of objects of interest in these point clouds. Several methodologies have
been adopted to extract low- and high-dimensional features from point clouds
to produce the feature map. Some research works opt by hand-crafted feature
encoders, others use deep network architectures to apply convolutions and ex-
tract features. Finally, the multi-task header performs object class prediction,
bounding box regression, and determination of objects orientation. These tasks
are accomplished using the feature maps and the objects of interest generated
by the Feature Encoder.

3 Feature Extractors

3.1 CNN-based

Convolutions networks are one of the preferred techniques used for extract-
ing features from Spatio-temporal data as evidenced by the large of projects
adopting it. Standard ”dense” implementations of convolutional networks are

4



a well-matured technique, with multiple variations derived from extensive re-
search studies, achieving high performance when applied to dense data. Ap-
plying these convolutional architectures to sparse data, such as LiDAR point
clouds, is a very inefficient process. Considering that moving from two- to three-
dimensional space, the number of points to process increases significantly and
the higher dimensional space is, the higher the probability of relevant input data
being sparse, it makes sense to take advantage of this spatial sparsity to speed
up the feature extraction process. This minimises the number of points to be
processed, reducing computational time and resources.

In [4], an approach for dealing with sparsity in 2D image classification and
online handwriting recognition is presented, wherein a ground state is considered
for hidden variables which receive no meaningful input, thus only having to be
calculated once per forward pass during training and once for all passes during
test time. Consequently, only the value of the hidden variables that differ from
their ground state must be calculated, memoizing the convolutional and max-
pooling operations. The forward propagation of the network is performed by
calculating, for each layer, a feature matrix – composed of one-row vector for
the ground state and one for each active spatial location in the layer – and a
pointer matrix – to store the number of the corresponding row in the feature
matrix. Based on the aforementioned work in [3], the same author adapted this
concept to perform sparse convolutions on 3D space.

In the approaches presented in [4, 3], a site in the input/hidden layer is
defined as active if any element in the layer that it takes as an input is not in
its ground state. This leads to a rapid increase in the active sites of deeper
layers, “dilating” the sparse data in every layer during a forward pass, making
it impractical when implementing modern convolutional neural networks such
as VGG networks, ResNets and DenseNets. To overcome these challenges, the
research work in [5] offers a new approach to sparse convolutions, largely based
on the mechanisms of [4, 3]. The authors of Submanifold Sparse Convolutional
Networks propose two slightly different sparse convolution operations, a Sparse
Convolution (SC) and Valid Sparse Convolutions (VSC). SC interprets active
sites and ground states - replaced with a zero vector in this implementation -
the same way as the sparse convolutions mentioned before, and since there is
no padding, the output size is reduced. VSC’s methodology also ignores ground
states, replacing them with a zero vector, while distinctly handling the active
states. First, padding is applied, so that the output is of the same size as the
input. Then, instead of making a site active if any of the inputs to its receptive
field is active, only its central position is considered, dealing with the dilation
of the set of active sites and ensuring that the output set of active sites mir-
rors that of the input set. Without the problem of dilation of active sites, the
networks implemented with these convolutional operators can be much deeper.
On the other hand, restricting the output of the convolutions using this method
can hinder the hidden layers ability to capture relevant information. Implemen-
tation of these convolutions is done using a feature matrix - containing one row
for each active site – and a rule generation algorithm using a hash table to store
the location and row for all active sites. A comparison between the operation

5



of sparse convolutions and submanifold sparse convolutions is depicted in Fig.3.
The middle extractor in [12] uses a combination of the techniques mentioned
above, taking advantage of submanifold sparse convolutions and sparse convo-
lutions (to perform downsampling), improving the speed of the algorithm by
using a custom GPU-based rule book algorithm.

Figure 3: 3x3 Sparse convolution vs 3x3 Submanifold convolution.

PointNet [9] extract point-wise features directly from point clouds using a
novel CNN-based architecture. This network encodes space features of each
point within a subset of points from a euclidean space and extracts local and
global structures. Then, it combines both input points and the extracted fea-
tures into a global point cloud’s signature. For this purpose, it implements
a non-hierarchical neural network that comprises three main blocks: a max-
pooling layer, a local and global information combination structure, and two
joint alignment networks.

3.2 Compound methods

Figure 4 depicts an architecture of a compound feature extraction method to
learn more meaningful information from point clouds. It merges two different
types of feature extractors to complement each other, forming a ”single-stage”
end-to-end feature extractor.

The purpose of this synergy is to explore the advantages of feature extrac-
tors based on PointNet to encode local-features from regions, and a CNN-based
extractor to take the role of global-feature extractor. The latter extractor lever-
ages the local-features previously extracted to add more context to the shape
description. This solution outputs a feature description in the form of a ten-
sor, designated single feature map representation (c.f.Figure 4) to feed a Region
Proposal Network (RPN) [13], [12], [6] or a Multi head [14].

6



Figure 4: Architecture of a compound-based feature extractor.

Projects VoxelNet [13], SECOND [12], MEGVII [14] and PointPillars [6]
are examples of recent and novel research works that followed up the above de-
scribed method. The former three research works converts point cloud data into
equally spaced 3D voxels that feed the feature extractor based in the architec-
ture depicted in Figure 2. These projects differ from each other in the choices
made for each stage as shown in table 1. Regarding the local-feature extrac-
tor, both VoxelNet and SECOND implement an solution called Voxel Feature
extractor that follows a voxel-wise approach, whereas the MEGVII rely on a
extractor called 3D feature extractor. The Voxel Feature extractor applies a
simplified version of PointNet to take all the points within a voxel as input and
takes 20 ms to extract point wises features from it. The 3D feature extractor
addressed in MEGVII adopts the solution previously detailed that combines
regular 3D sparse convolutions for features extraction and a submanifold sparse
convolution to downsample the feature map. On the other hand, the PointPil-
lars project divides the point cloud data in pillars and applies a local-feature
extractor called Pillar Feature Net with a runtime of 1.3 ms [6]. The pillars
points are subject to data augmentation as this model introduces a variable re-
gard to its distance to the arithmetic mean of all points of respective pillar. To
convert a point cloud to a sparse pseudo-image, the encoder first learns a set of
features from pillars, then scatter them back to the original pillar locations to
create the 2D pseudo-image. This image is forwarded to a 2D CNN that follows
the same architecture as the one analysed in subsection 3.1. This solution relies
in a simplified version of PointNet to extract local features from pillars.

Regarding the global-feature extractor, it consists in the element responsi-
ble for grouping all local feature into larger units and processing it to produce
higher level features. Literature has shown that different solutions can be used
to perform these tasks. The research project VoxelNet opted by implement-
ing a 3D CNN, however it reduces the processing speed of features extraction.
The 3D CNN runtime, 170 ms, is much higher than the required inference
time of the whole network. For this reason, SECOND, MEGVII and Point-
Pillars adopted faster run time local-features extractors. SECOND replaced
3D CNN by a Submanifold with Sparse Downsampling, reducing runtime to
20 ms. However, more recent works, such as MEGVII and PointPillars, have
already outperformed SECOND in terms of inference time. PointPillars resorts
to a 2D CNN with a runtime of 7.7 ms to output the final features as result of

7



the concatenation of all features originated from different strides. The project
MEGVII sets a RPN like the one adopted in VoxelNet but to operate only as
a global-feature encoder, i.e. does not perform the object detection as in [13].
Therefore, this RPN concatenates all features to construct the high resolution
feature map need by further blocks to detect and classify objects. According to
authors this project outperformed previous works in terms of accuracy, neverthe-
less, this model was tested against a manipulated dataset. Data augmentation
techniques has been applied to generate a more balanced data distribution -
this technique allow trained models to achieve better performing results. This
project does not provide runtime analysis.

Table 1: Architecture design choices and run time of feature extractors and
Benchmark KITTI accuracy performance on moderate level

Projects Local Extractor Global Extractor Time (ms) AP(%)

VoxelNet Voxel-Feature 3D CNN 190 65%
SECOND Voxel-Feature Submanifold CNN 22 74%
MEGVII Submanifold CNN RPN - -%
PointPillars Pillar-Feature 2D CNN 9 75%

3.3 Fusion-based methods

Several methods, such as PointsNet, MV3D and PointFusion, propose a com-
bination of images and LIDAR data to improve performance and detection ac-
curacy. These models succeeded in difficult scenarios, such as classifying small
objects.

Frustum PointNet [8] uses a feature extraction based on an object-wise ap-
proach. It utilises 2D CNN detectors to propose 2D regions from the image
and classify them. These 2D regions are then lifted to a 3D point cloud, be-
coming frustum proposals also called Frustum-cloud. Afterwards, they apply
PointNet++ to the regions to further estimate the location, size and orientation
of 3D objects.

Another relevant fusion-based work is MV3D [1], which fuses data from RGB
images and LiDAR sensors, to extract high-dimensional features. It produces
a multi-view representation of 3D point clouds and extracts feature maps from
each view. They combine features from the front view, bird’s eye view (BEV)
and camera view to alleviate the information loss. Instead of using object-
wise features, such as in F-PointNet, it uses region-wise features extracted from
BEV. RPNs are applied to generate 3D object proposals using the bird’s eye
view map as input. Then, a region-based fusion network combines features from
the multiple views and provides object proposal’s class predictions and oriented
3D bounding box regression.

PointFusion [11] provides 3D object detection by fusing images and 3D point
cloud’s information. Firstly, they supply the RGB image to an RPN that pro-
poses 2D object crops. Then, they combine point-wise features provided by

8



PointNet in 3D point clouds, image geometry features using ResNet architec-
ture, and combine both outputs in a fusion network. This fusion network pro-
vides 3D bounding box regression for the object in the crops.

Fusion-based methods present some drawbacks that must be considered.
First, the need for synchronisation time and calibration with the LIDAR sensor
is a limiting factor. This time synchronisation and calibration task makes the
solution more sensitive to sensor failures. Then, there is an increase in costs
associated with the use of an additional sensor. For the three before-mentioned
projects, we compare the results achieved in KITTI benchmark for 3D AP on
KITTI test set for moderate difficult in three categories, namely pedestrian,
car and cyclist. PointFusion states that their model in car class achieved 63
AP, while MV3D and F-PointNet achieved 62.68 and 70.39 respectively. For
the pedestrian class, PointFusion achieved 28.03 AP, and F-PointNet 44.89 AP.
For the cyclist class, PointFusion achieved 29.42 AP, and F-PointNet 56.77 AP.
Regarding inference time, F-PointNet performs detection at 8.3 Hz, MV3D at
2.7Hz and PointFusion at 0.77 Hz. Due to the poorer accuracy on the detection
of smaller objects, data-fusion is stated to be the bets approach, with research
work [10] suggesting the use of a Ultrasonic Rangefinder.

4 Conclusions

Object detection research works have either prefer to preserve all geometric
information and perform object detection with 3D ConvNets, or compact all
information and perform 2D convolutions. The former approach requires ex-
pensive computations, which hinder the inference time (3D CNN takes 170 ms
in VoxelNet [13] against the 7.7 ms runtime of the 2CNN implemented in [6]),
which may turn the deployed model impractical for real-time requirements with
no sign of accuracy performance improvement, according to the reported results.
On the other hand, compacting the information in 2D projections and perform-
ing 2D convolutions is less computationally heavy, but introduces information
losses. For this reason, some research works rely on compound methods that
take advantage of the sparse nature of point clouds or fusion-based methods,
suggesting that the direct application of a 2D CNN-based extractor leads to a
poorer performance. In addition, the fusion-based performance results above
presented show that excluding the third dimension of the point cloud leads to
poorer accuracy, while the response time is still higher than compound-based
solutions even though the number points are lower. Compound-based solutions
are only based in LiDAR and have achieved the best performance so far, show-
ing that splitting feature extractor into two stages conduct to better accuracy,
while the achieved response time is satisfactory in some cases thanks to the
exclusion of points with no representative value and application of 2D CNNs
to process local-features instead of the whole point cloud. Summing up, in the
present SoA, feature extractors solutions have achieved low runtimes and tech-
niques to manage the trade-off between metrics have emerged, but accuracy of
such solutions seems still far from the performance needed. For this reason,

9



projects have explored the fusion of technologies, showing promising results but
also raising some new challenges. Furthermore, MEGVII project has shown that
data augmentation strategies lead to models with better accuracy results.

Acknowledgements
This work is supported by European Structural and Investment Funds in the FEDER component,
through the Operational Competitiveness and Internationalization Programme (COMPETE 2020)
[Project no 037902; Funding Reference: POCI-01-0247-FEDER-037902]

References

[1] Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3d object detection
network for autonomous driving. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 1907–1915 (2017)

[2] Forbes: Velodyne rolling out 128-laser beam lidar.
https://www.forbes.com/sites/alanohnsman/2017/11/29/
velodyne-rolling-out-128-laser-beam-lidar-to-maintain-driverless-car-vision-lead/
(November 2017), accessed on 2019-11-22

[3] Graham, B.: Sparse 3d convolutional neural networks. CoRR
abs/1505.02890 (2015), http://arxiv.org/abs/1505.02890

[4] Graham, B.: Spatially-sparse convolutional neural networks. CoRR
abs/1409.6070 (2014), http://arxiv.org/abs/1409.6070

[5] Graham, B., van der Maaten, L.: Submanifold sparse convolutional net-
works. CoRR abs/1706.01307 (2017), http://arxiv.org/abs/1706.01307

[6] Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Point-
pillars: Fast encoders for object detection from point clouds (2018)

[7] Prime, A.: Velodyne alpha puck. https://velodynelidar.com (Dec 2017),
accessed on 2019-11-22

[8] Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum pointnets for 3d
object detection from rgb-d data. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 918–927 (2018)

[9] Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point
sets for 3d classification and segmentation. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 652–660
(2017)

[10] Wiseman, Y.: Ancillary ultrasonic rangefinder for autonomous vehicles.
International Journal of Security and Its Applications 12(5), 49–58 (2018)

10



[11] Xu, D., Anguelov, D., Jain, A.: Pointfusion: Deep sensor fusion for 3d
bounding box estimation. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. pp. 244–253 (2018)

[12] Yan, Y., Mao, Y., Li, B.: Second: Sparsely embedded convolutional detec-
tion. Sensors 18(10), 3337 (2018)

[13] Zhou, Y., Tuzel, O.: Voxelnet: End-to-end learning for point cloud based
3d object detection (2017)

[14] Zhu, B., Jiang, Z., Zhou, X., Li, Z., Yu, G.: Class-balanced grouping and
sampling for point cloud 3d object detection (2019)

11


