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Abstract

The elderly population is increasing and the response of the society was to provide them
with services directed to them to cope with their needs. One of the oldest solutions
is the retirement home, providing housing and permanent assistance for the elderly.
Furthermore, most of the retirement homes are inhabited by multiple elderly people,
thus creating a community of people who are somewhat related in age and medical
issues. The Ambient Assisted Living (AAL) area tries to solve some of the elderly
issues by producing technological products, some of them dedicated to elderly homes.
One of the identified problem is that elderly people are sometimes discontent about
the activities that consume most of their day promoted by the retirement home social
workers. The work presented in this paper attempts to improve how these activities
are scheduled taking into account the elderlies’ emotional response to these activities.
The aim is to maximize the group happiness by promoting the activities the group likes,
minding if they are bored due to activities repetition. In this sense, this paper presents
an extension of the Cognitive Life Assistant platform incorporating a social emotional
model. The proposed system has been modelled as a free time activity manager which
is in charge of suggesting activities to the social workers.

Keywords: Emotional Agents, Ambient Intelligence, Multi-agent Systems,
Agent-based Simulation, Ambient Assisted Living

1. Introduction

Elderly population suffer from complicated medical conditions and require much
attention from an array of people, like doctors, nurses, family and caregivers, among
others. Although currently is very difficult to provide medical assistance to all of them,
efforts are being made to increase the number of services available to them. The assisted5

people resort to one or more of the following support systems: home health agencies,
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nursing homes, hospices, residential care communities and adult day service centres.
For instance, in the USA annually 8357100 people receive one type of these support
systems, being the home health agencies the most used service[1]. Also, the current
number of people that need long-term care are about 6.3 million [2], with tendency to10

increase sharply in the next years. This long-term care is designed to help people with
mild to severe cognitive or physical disabilities that affects 68% of people aged 65 and
older[3].

In 2050 it is expected the doubling of people receiving long-term care in relation
to the year 2000 figures, meaning that at least 27 million people are expected to be15

receiving assistance and some experts project even higher numbers due to the current
growth of population [4]. The issue with the presented values is that social security and
governments have said that they lack the funds to support everyone, even if there are
services available to everyone of them, which turns into a heavy monetary investment to
a person with prices ascending from 12000 Euros annually.20

Thus, they have to be cared and assisted and that usually is attributed to the family,
informal caregivers. The issue with resorting to them is that they are usually time
constricted and may be unable to care for a person with severe disabilities. This results
in severe complications both to the elderly as well as the family or friends, resulting
in a enormous strain to them, physically and more importantly psychologically [5].25

For instance, in Portugal the latest surveys show that there are more than 49 thousand
bedridden people at their family houses without access to proper medical assistance;
and that there are 110355 people dependent of others to perform their activities of daily
life (ADL)[6].

Another choice is the nursing home care, which usually welcomes people with30

75 years and older or with less age if they present health problems[7]. These places
and services provide constant attention and appropriate medical services to its users.
Furthermore, the nursing home facilities are equipped with technological resources or
can be easily upgraded to receive new devices if it is necessary. Moreover, in light
of the technological advances the nursing homes have been implementing Ambient35

Intelligence (AmI) systems aiming to improve its users everyday life [8, 9, 10].
The AmI aimed to revolutionize the way that the home environments (and envi-

ronments in general) were managed by introducing perception and action features into
common household devices, all of this in beneficence of the people living under those
environments. The information captured by the sensors systems available can be used to40

develop a context state, where more intricate considerations about the environment can
be achieved opposed to a simpler reaction system that only responds directly to each
sensor data.

Humans are complex so the environments that surround them are too. Technological
systems have a hard time accompanying this complexity, and while there are significant45

developments, considering every variable of the real world is still very much impossible.
The best effort of the available technology is to provide the environments with sensors
and computing power able to consider direct human interaction, alas decision processes.
Decisions should be the outcome of the composite status of the perceived environment,
where one factor (or sensor) is more important than the other, and the response to the50

desires of the people who inhabit the environment is paramount to the utility functions
of the system. One of the AmI goals is to consider, above all, the environment users
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preferences [11, 12].
The advances of the AmI are already considerable and growing, due to the interest

of the scientific community and the private sector [13]. For instance, there are already55

devices available to be bought of the shelf, able to be integrated into an AmI platform.
The impulse of the governments and even the European Union through special funding to
agile the active ageing and to promote solutions that should be accomplished in the near
future to comply with the crescent number of elderly people that the statistics present.
One of the main issues that nowadays most of the available projects and products have60

is the lack of re-usage and interoperability, meaning that the features that they provide
cannot be extended and the devices are certainly unable to communicate if they are from
different brands. It is pressing the need of integration in AmI projects, which some
projects are now addressing but the results are new and without much testing [14].

Not only are there issues in terms of the architecture, but in the concept too. Only65

very recently there were projects that used real input from the users to conceive the
project, while most of the development has taken little consideration the opinion of
the people that will be using the final product. This has lead to a poor adoption of the
project’s resulting products and to maintain the general distrust on these type of projects.

One of the proposed solutions is making questionnaires to the target users about70

their needs and wants, producing a dataset of the general features that are needed by the
general target population [15, 16].

One of the unexpected outcome was the inclusion of emotions and the psychological
state at the same level as physical problems by the people questioned. Therefore, we
must assume that comfort is not only provided by the ailment of physical conditionings75

but also by the psychological state, as elder depression is a serious state that affects a
large number of persons and has the ability to affect the physical state[17]. It is then
imperative that the AmI projects develop means to access and improve the psychological
state of their users.

Taking into account all of these aspects, this paper presents the Cognitive Life As-80

sistant and its extension with a Social Emotional Model which provides a methodology
to obtain the emotional state of a group of agents. Moreover, the proposed assistant
has been tested in the simulation of a retirement home that emulates real-life scenarios.
The aim is to create a suggestion system that aids the social workers of a retirement
home to plan and schedule ADLs according to the residents emotional status, promoting85

happiness of the group.
The rest of the paper is structured as follows, section 2 explains the related work,

with related AAL projects and the technologies and concepts used; section 3 explains the
Cognitive Life Assistant and its extension to get and manage emotional states; section 4
discusses the simulation of a retirement home and the emotional response of the agents90

(posing as possible users) and the validation of the actions performed by the platform;
finally, section 5 presents the discussion, which details the results and creates a parallel
between the simulation and a real life implementation.

2. Related work

Ambient Intelligence [18],[19] changed the concept of smart homes, introducing95

new devices and systems that help to improve people’s life quality. Systems that learn
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our tastes, smart homes that help reducing energy consumption [20], safer homes
for elderly [21],[22], among other applications. To achieve this, ambient intelligence
systems employ different artificial intelligence tools, sensor networks, mobile Internet
connections and new and sophisticated embedded devices. AmI applications imagine100

a future where technology surrounds users [23], and help them in their daily lives.
Nevertheless, we can detect a lack of research on how to use the existing technology
to the best possible effect. The automatic recognition of human activities, mainly
human emotions, in which human base a significant part of their decisions, is an
obvious prerequisite for new AmI applications, and requires novel methods to improve105

recognition rates, enhancing automatic decision making, and preserving the privacy of
monitored individuals. These are challenging issues, which must be addressed in current
and future AmI applications.

In this section, we first analyze the Cognitive Assistants concept and the Emotional
models, serving as a stepping stone for the analysis of some previous works in the area110

of AmI; they emphasize the importance of a strong relationship between users and the
system. After this, some works which includes the emotional states area are introduced,
showing how emotions can be used to a better representation of user’s behaviors.

2.1. Cognitive Assistants

In the latest years the theme of Cognitive Assistants (CA) has been developed to115

evolve the core values of the AAL, translating them into usable technological platforms
[24, 25, 26]. The CA’s evolved from the Cognitive Orthotics area into interoperational
platforms, mostly directed to elderly users, that focuses in actions that change the
everyday activities, such as remembering of medication, monitoring of falls or reading
biosignals, among others, with the goal of helping cognitively and physically. The120

technological goal is to be as heterogeneous as possible, meaning that any and every
sensor, actuator and service (software or not) can be connected to the platform and
communicate with the rest of the platform components. A CA can range from a game
that stimulates the memory and the cognitive response to a complete system that has
sensors that communicate their status to a central system, actuators that change the125

elements in the environment according to the response of the central system, and reports
these actions to an external service provider.

There are implementations of CA’s done in the past, some are services, like the
Jogger [27] that resorts to remind users of items or events that happened, to reinforce
their memories; the CASAS project [28] monitors a subset of ADL tasks to identify130

consistency and completeness in daily activities; and the Autominder [29] that provides
users with reminders averaging between what the users are doing and what should be
doing; and some are robotic systems such as Robovie [30], Autom [31], and Paro [32]
that serve as interacting interfaces. Nevertheless, there are several issues with these
projects, such as lack of interaction with the users, high level of failures in detecting135

activities, poor personalization, and cost, among others.
To achieve the better results, personalization is the key element, providing a human-

like feel to the operation process, meaning that the usual procedure of “one-size-fits-
all” is really not appropriate to most of the users as they fail to attend to each user
conditionings and cognitive status, which in these type of problems is imperative that140
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they are addressed to guarantee that the proposed solution is well adopted by each user
[33].

A pioneer advance is the usage of human emotions to model the services and
environments [34]. In our point of view emotions play a key role in the development of
personalized solutions since emotions reflect the state that the person is and therefore,145

each response can be adjusted not only to that person as well as his/her emotional status
(joy, sadness, etc.).

2.2. Emotion-based works
Human emotional states are defined as the way humans can express how they feel

in a specific period of time. These emotions can be affected by a great number of150

internal or external factors. Some examples of internal factors are the personality and
the cognitive processes such as attention. On the other hand, external factors are mainly
related with the environment, relationships among persons and cultural expectations
[35]. These factors involve many aspects of our lives, determining how people behave
in different situations or being the responsible of people’s response to certain stimuli.155

These responses are governed by the personality. Based on this, human emotions are
critical in any computational system which tries to simulate human behaviors. These
simulation processes need to incorporate different computational models that allow us
to give personality and/or emotions to artificial intelligent entities. Over the last few
years different approaches have been developed which deepen in this idea. We can160

find two relevant emotional models, the OCC Model (i.e. [36]) presented by Ortony,
Clore & Collins and the PAD model presented by Albert Mehrabian and James A.
Russell[37]. These models are frequently used in applications where an emotional
state can be simulated. The OCC model provides a good starting point to integrate an
emotional model into an intelligent software entity. However, the OCC model presents165

one important design problem due to its high dimensionality. In this sense, the PAD
(P=Pleasure, A=Arousal and D=Dominance) model is a simplification of the OCC
model. This model allows the representation of the emotion in a R3 space. Each one of
the components conforming this emotional model, allows to represent a measure of a
emotional state. According to this, the model obtains a numerical representation of all170

the emotions [38].
One of the existing works tries to emulate emotions in virtual humans [39]. This

work, called WASABI ([W]ASABI [A]ffect [S]imulation for [A]gents with [B]elievable
[I]nteractivity), tries to achieve the simulation of primary and secondary emotions using
virtual human’s cognitive reasoning capabilities combined with simulated embodiment.175

The simulation and direct expression of primary emotions is based on the idea of
capturing an agent’s bodily feeling as a continuous progression in three-dimensional
emotion space (PAD), while secondary emotions are understood as a type of emotions
that require higher cognitive reasoning abilities and a certain sense of time. The work
includes an empirical study which is reduced to three emotions, although authors believe180

that other emotions can be included in the validation. Another interesting work is the
work done by Jain and Kobti [40]. This work simulates the response of intelligent agents
in stress situations. Concretely, it includes an interesting example based on a hospital
simulation system. The proposed example employs a basic hospital model where nurse
servicing patients interact in various static and dynamic emotional scenarios. According185
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to authors, the obtained results allow to demonstrate that an increase in emotional stress
leads to higher error rates in the task performance of nurses. This work, although
interesting, lacks of some improvements like learning or adaptation capabilities of the
involved agents.

Apart from the use of some specific emotional model, other works have tried to190

introduce the contagion effect that humans can feel in multiple situations. One of these
works is the emotional contagion spiral model [41]. This model tries to give a solution
to the emotional propagation, distinguishing among different factors that influence in the
emotional contagion. This model is based on a emotional model that was proposed by
Barsade [42], which includes six hypotheses about how is produced the propagation of195

emotions. This work is applied in an evacuation simulation scenario, taking into account
how human behaviors are affected by the dynamicity and propagation of emotions.
Nevertheless, the complexity of these analysis provoques that these approaches are
limited to only one emotion, in this case fear. So, behaviors of simulated agents are also
affected by only one emotion.200

Over the last few years different approaches have tried to employ emotional models
to improve AAL services. AAL sevices rely on sensory data collected from the environ-
ment to reasoning about it in order to arrive at a correct diagnosis and advice or assist
the users accordingly. In this sense, existing approaches try to represent human moods
in order to enhance users’ comfort or simplify the human/systems interactions. In [43]205

authors propose an emotion-aware AmI architecture which evaluates human emotion
experiences providing people with proper emotional services. In this approach is the
user who directly communicates his mood by means of a mobile device. Other works
have try to integrate pattern recognition techniques in order to automatically detect the
emotional states of the people in an AAL environment. This is the case of [44] where an210

agent-based system aims the detection of user emotions for making recommendations
for the visitors of a museum. In this case, the emotional states are not always detected
and in some occasions the detected emotions are limited to a very narrowed set of basic
emotions.

We want to emphasize that working with emotional states is not only to recognize215

or to emulate human emotions. Also, it is necessary to employ personality models
providing a way to include personality to artificial intelligent entities. In this sense, the
most popular personality model is the Big Five Model (OCEAN) [45]. This personality
model represents and organizes the personality in five dimensions in a hierarchical way.
The five basic dimensions are: Openness, Conscientiousness, Extraversion, Agreeable-220

ness and Neuroticism. The OCEAN model has been used in some multi-agent systems
approaches and, in our opinion, it must be basic in any emotional-based system for an
AmI application.

Finally, in these types of systems the acceptance problematic exists and it should be
considered when deploying the developed platforms with real people. It gives way to225

the following question: “If no one uses a tool it does it matter?” Thus, this issue must
be considered as early as in the design process of the platform. [46, 47, 48] present an
extensive overview of this problematic and present some solutions to address this issue.
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3. Cognitive Life Assistant

The Cognitive Life Assistant (CLA) platform is a CA with the goal of implementing230

an environment that helps the users by assisting them on their ADL, being discrete and
integrated on the user life. The structure of the CLA is based on a MAS system and is
an evolution of the iGenda platform [49, 50]. The aim of the CLA is to create a platform
that can be extended by agents that provide unique features that assist the elderly users
and their caregivers. For instance, the features can be monitor falls through visual or235

other type of sensor or monitor the house air quality. The base features of the CLA are:

• Intra-operative API resorting to REST architecture, allowing the communication
between the external services and the CLA.

• Flexible user interface built for the Android OS and the Web. Comprehensible
information about all the care-receivers in one page.240

• Intelligent scheduling system that receives, processes and notifies the users about
incoming events from other users.

• Playful events scheduler. It comprehensibly schedules activities on the user free
time to promote active aging.

• Sensor systems support through the interoperability features and agents incorpo-245

ration.

CLA provides a modular connection system that allows two ways of adding new
agents to the platform: internal and external. The internal agents are directly deployed
on CLA and have to follow the internal communication protocols, benefitting from the
full access to the internal data and being of faster execution time. The external agents250

have limited access to the CLA and the data they can receive is limited to the external
interface protocol. Using a sensor platform as an example, it could be implemented as
an internal or external agent, it would depend if the producer would be able and willing
to comply with CLA’s communication protocols and build the appropriate ontology for
that agent; if the technology is incompatible with CLA or there are proprietary barriers255

then the agent can be connected externally, thus promoting the interoperability.
In terms of the playful events scheduler, its aim is to create an inclusive environment.

This agent looks for free time in the calendar and schedules activities that the user likes.
These activities are present in a database and are qualified according the user preferences;
the activities can be shared with other users or be done individually. Promoting active260

aging means maintaining social connections and promoting social activities, preferably
involving social building exercises.

The visual interface of the CLA is used to present the information about the events
and activities and to collect the opinion of the users about the events and activities
proposed. The collection of opinions process is constituted by a visual form that shows265

like and dislike buttons that the user can select. The visual form can be configured to be
presented after the activity is performed or at the end of the day (showing one form to
each activity sequentially). There is no active detection of the ending of the activity. To
show the form we calculate the mean time needed to perform the activity and a margin
(10-20 minutes) and activate the form afterwards.270
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Next subsection introduces how the CLA have been extended including a social
emotional model in order to emulate and work with human emotions in the decision-
making of the assistant.

3.1. Emotion-based CLA

The social aim of this work is to provide aging quality to the elderly. This is achieved275

through the creation of a safe environment that reflects the elderly taste. The retirement
homes dedicate a large period of time to social activities that promote bonding of their
users. Each activity typically occurs from 5 to 6 times on a week, having a duration
of 3 to 6 hours per event. Therefore, this means that most of the elderly wake time
is spent on these activities. These activities may not please all users, which leads to280

dissatisfaction of those who do not like these activities. The group happiness decreases
if there is a reasonable number of people that do not like those activities. In addition,
people are quickly tired of repeating activities, resulting in a feeling of unhappiness.
The activities are previously planned by a caregiver accounting the retirement home
resources and the users, but the caregiver may not really know the user’s preferences or285

fail to understand the user’s emotional response to each activity.
Our aim is to take into account the user’s emotional response to each activity and

plan the next activity to maximize the happiness levels of all the group of people. This
is achieved by perceiving each user response to a set of activities chosen randomly and
their emotional response and changing the activity list to contain only the activities that290

triggered a positive emotional response of the group. The social emotion presented by
Rincon et al. [51], provides a methodology to get the emotion of a group of agents
based on the PAD emotional model.

This model represents the social emotion of a heterogeneous group of entities
capable of expressing and/or communicating emotions. To define a social emotional295

model, it is necessary to first define the representation of an emotional state of an agent
according to the PAD model. The emotion of an agent agi is defined by a vector in
a R3 space, represented by the three components that make up the PAD emotional
model (P=Pleasure,A=Arousal and D=Dominance). The variation of each component
modifies the emotional state of the agent.300

#»
E agi = Pi,Ai,Di (1)

From this emotional representation of each agent, a social emotional representa-
tion is defined as a way to represent the emotion of a group of heterogenous agents.
This social emotion is composed by a triplet. This triplet consists of three vectors
(

#  »
CEAg, #»mAg, #»

σAg).
#  »
CEAg is the Central Emotion (CE) obtained by averaging the P,

A, D values of all the agents; #»mAg is the Max Distance which is a vector where each305

component is calculated by means of the Euclidean distance of each value of the PAD
and the CE; and #»

σAg is the Standard Deviation which allows to calculate the level of
emotional dispersion of a group of agents around the CE. A detailed explanation of this
model can be find in [51].

Another important feature of this model is the possibility of calculating the emotional310

distances among different groups of agents or between a group of agents and a target
emotion. The target emotion is dependent of the scenery, it is possible to define target
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emotions that makes the agents happy or angry. Being our model based on PAD
emotional model, the target emotion is defined over the same terms. But to select a
target emotion (in the PAD) there is only the necessity of knowing the final emotion.315

This procedure has been studied by other authors, that have created a set of tables for
each emotion, using these tables we can define the different targets emotions.

This approach can be used as a feedback in the decision making process of the CLA,
allowing the shift of the social emotion to a particular area of the PAD space; or shifting
the emotional state of a group of agents in relation to other groups of agents.320

Following the model defined in [34, 52], the CLA has been extended introducing a
new agent called SEtA (Social Emotional Agent) that allows us to calculate the Social
Emotion (SE) and, also, the distance between the SE and possible target emotions. The
aim of this agent is to get the emotion of all the agents of the group, and using this
information the agent is capable of calculating the social emotion of the group.325

The interaction process between the CLA and the new agent can be described in the
following way: In the beginning of each decision-making process, the CLA asks SEtA
to calculate the social emotion (SE) for the group of agents and the distance between
this SE and the target emotion (the target emotion is the emotion that the CLA wants
to achieve for the group); then, the CLA, taking into account these values, decides and330

sends different activities to all the agents; once all agents have evaluated the activities,
they send the emotional results to the SEtA in order to calculate again the SE.

The CLA is able to manage the suggestion system and schedule the shared activities
on all of the participant’s calendars. The module that manages this feature will have
to receive the input of each user about their feeling towards each finished activity; the335

activities will be classified according to the group emotional response. The objective is
to increase the probability of the preferred activities being chosen for future iterations.
The input of the system and the user is saved on CLA databases, relating the activity
with an emotion and personal response. Thereon, the activities are requalified according
to those values, thus in the following activities retrieval these are used in a correlating340

algorithm that adjusts the events to the emotion (trying to enforce positive emotions by
reinforcing them or reversing negative emotions).

Next section describes the implementation and evaluation of a case study based on
this emotion-based CLA.

4. Validation of the proposal: a retirement home simulation345

The presented proposal has been validated through a simulation of a retirement home.
Specifically, the case study employs real data collected by a Portuguese institution called
Fundação Manuel Francisco Clérigo1. The data used to our validation process went
through the OCEAN test to determine the personality of each person. The data obtained
was used to model each person as an agent. And, at the same time, this data was used to350

calculate the initial emotion using the Equation 2.

1http://www.fundacaoclerigo.com/
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Agent id Pleasure Arousal Dominance
Agent 0 0.444 0.049 0.337
Agent 1 0.6289 0.0093 0.399
Agent 2 0.3241 -0.3217 0.1789
Agent 3 0.3293 -0.0465 0.0613
Agent 4 0.2831 -0.4496 0.4533
Agent 5 0.3091 -0.1296 0.3238
Agent 6 0.5204 -0.0080 0.3128
Agent 7 0.5638 0.0093 0.1798
Agent 8 0.3103 -0.4316 0.3543
Agent 9 0.6560 0.1153 -0.0146
Agent 10 0.2873 -0.4906 0.1833
Agent 11 0.3794 0.2289 0.2069
Agent 12 0.3088 -0.0377 0.0877
Agent 13 0.1070 -0.0416 0.0389
Agent 14 0.86431 -0.1456 0.5213
Agent 15 0.5598 0.0093 -0.0142
Agent 16 0.5584 -0.0960 0.4138
Agent 17 0.6161 -0.0036 -0.1379
Agent 18 0.6550 -0.2007 -0.0820
Agent 19 0.2031 -0.2866 0.3234

Table 1: PAD initial values for the 20 agents used in the simulation scenarios.

#  »
CEP,A,D [0,4452105 -0,124945 0,20634]
#»
σP,A,D [0,490763456 0,220937982 0,717962146]
#»mP,A,D [0,7929 0,4906 1,038]

Table 2: Initial social emotion of the group of agents used in the different scenarios.

P0 = 0.59∗A+0.19∗N +0.21∗E

A0 =−0.59∗N +0.30∗O+0.15∗O

D0 = 0.60∗E −0.32∗A+0.25∗O+0.17∗C

(2)

The values obtained using the Equation 2 were applied to the agents as the initial
emotion. Based on this information the caregiver agent knows what is the initial
emotional state. At this center, there is a caregiver agent in charge of sending different
tasks with the goal of producing an emotion to all the individuals within the retirement355

home as close as possible to happiness. There are two types of tasks: Inside and
Outside Activities. Each one of the individuals is represented by an agent, which has
an emotional response according to the tasks it receives. Moreover, as the individual
emotions of the agents change, the social emotion of the whole retirement home will
change accordingly [51].360

The different scenarios have been designed in order to show how the social emotion
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facilitates the decision making of the CLA. All these scenarios are composed by 20
agents representing the elderly people at the retirement home that receive the activities
from the caregiver agent. These agents have at the beginning of the execution of each
scenario the initial emotions shown in Table 1, each one of these emotions was obtained365

by the OCEAN model for each one of such agents.
These initial emotions are needed to start the system and obtain a first social emotion

of the group. Once obtained this first vision of the emotion of the group, the caregiver
agent sends activities for each agent to try to change the group emotion through the
different activities. Each agent responds differently to each activity, affecting to its370

emotional state. The emotional change is made using a fuzzy logic algorithm following
a similar approach of the work made in [53]. This algorithm has as input the activity
that was sent by the caregiver agent. Inside of each fuzzy logic function we can find a
series of rules, each one reacting in a different way to the activity. These rules allow to
specify if an agent prefers more an activity than other. The response given by the fuzzy375

logic corresponds to an emotion expressed in PAD values associated to this specific
activity. All of such PAD values are then used to calculate the social emotion [51] of the
group of agents. Figure 1 shows an example of the fuzzy logic functions employed in
this process.

DOMINANCE PLEASURE

AROUSAL

Figure 1: Example of the fuzzy logic function employed in the emotion recognition of each PAD value.

In each one of the different simulation presented in this section, the aim is to reach a380

target emotion that in these cases is happiness. To try to achieve this goal, the social
emotional model has two measures (dispersion and maximum distance) that allow us to
know if we are reaching the target. The dispersion and maximum distance of such initial
values with respect to the target emotion we have taken into account in the simulation
Happy are shown in Table 2. Once the activity has ended, each agent sends its emotional385

state to the SEtA agent that evaluates the social emotion of the group and the distance
between this current social emotion and the goal emotion, that is, global happiness.
So, the caregiver agent’s purpose is to minimize such distance using the different tasks
available to it. Figure 2 shows the schema of the communication process between all
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Figure 2: Simulation execution schema of the extended CLA.

entities that composed the simulation. These entities can be divided into two groups:390

• CLA: (in blue) These are the agents that represent the CLA platform. It has the
task of sending the different activities to the agents. These activities allow to
modify the emotional state of each agent.

• SetA Agent: (in brown) it has the task of calculating the social emotion of the
group. This agent receives PAD vectors corresponding to the emotional state of395

each agent. Using this information the SetA agent calculates the social emotion.
This social emotion is sent to the caregiver agent to decide about changing the
activities or not.

The operation of the system relies on the CLA as a pivoting elements that connects
all parts of the system. It is responsible of sending the activities to the agents (Agent 1,400

..., Agent n) and collecting the information from the SetA agent about the social emotion
and selecting new events according to that information.

In the next subsections we have developed different scenarios changing the fuzzy
logic function that implements the emotional response of the different agents. So we
have five different scenarios: the first one corresponds to functions that are prone to like405

the activities proposed by the caregiver agent, the second one corresponds to functions
that dislike the activities (or the repetition of them), the third one corresponds to five
agents with functions that tend to like the proposals and fifteen to dislike them, the
fourth one corresponds to fifteen agents that tend to be bored by the caregiver proposals
and five agents that tend to be happy, and the last one corresponds to half the agents410

being happy and half being bored with the proposals. For each scenario 30 different
executions have been carried out. The different figures presented in each scenario show
for each datapoint the average value of the set of executions.

4.1. Scenario 1: All Agents like the activities
The first case analyzed is one in which the fuzzy logic functions used for the415

emotional response of the agent lead them to get close to Happy. If the agents like the
tasks provided by the caregiver agent they will be happy. However, each agent have the
possibility of reducing its emotional state (tending to be more bored) if the activity is
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repeated for a long time or if they dislike the activity. This emotional reaction causes a
change in the agent emotion from happy to boring. A graphical representation of this420

example can be seen in Figure 3 showing the emotional difference, which is calculated
between the social emotion and the target emotion emphHappy. In this case all agents
tend to like the activities sent by the caregiver agent and therefore the difference between
their social emotion and the target emotion (Happy) is decreased till in the end it is very
low.425

Figure 3: Scenario 1: All Agents are Happy.

Figure 4 represents the evolution of the dispersion around the group of agents’ social
emotion in this first scenario. These dispersions are calculated for each component of
the PAD vector. It can be observed that they become lower as time passes, meaning that
this is a very cohesive group that receives very positively all the activities suggested by
the caregiver agent.430

The maximum distance measurement lets us know if there is any agent far away
from the target emotion. To obtain this measure we use the Euclidean distance between
two points in the space. This distance is different from the maximum distances of the
model of social emotion, because these are the maximum distances for each component
of the vector PAD. A graphical representation of this example can be seen in Figure 5435

showing the max distance variation: as all agents are happy the max distance is low. As
agents modify their emotions depending on the task repetition, the graph shows some
variation in the max distance. These variations indicate that the agent has received from
the caregiver recurring activities, making the maximum distance to increase.

To sum up, this scenario corresponds to a very cohesive group of people that440

responds to the activities suggested by the caregiver agent very positively reaching a
happy emotion as intended.

4.2. Scenario 2: All Agents are Bored by the activities

The second case analyzed is one in which the fuzzy logic functions controlling the
emotional response of the agents are not responding properly to the suggestions of the445

caregiver agent, so the agents tend to get bored. Moreover, there is a possibility of
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Figure 4: Scenario 1: Max dispersion between the emotion of each agent.

Figure 5: Scenario 1: Max distance between happy emotion and the emotion of each agent.

getting bored if the activity is repeated by a long time. This emotional reaction causes a
change in the agent emotion from happy to boring. A graphical representation of this
example can be seen in Figure 6 showing the emotional difference, which is calculated
between the social emotion and the target emotion (happy).450

The progression of the graph (the high values) are a result of the difference between
the emotions happy and bored, thus the high values show that the agents are far way
from the target emotion happy.

Figure 7 represents the evolution of the dispersion around the group of agents’ social
emotion in this second scenario. These dispersions are calculated for each component455

of the PAD vector. It can be observed that they become greater as time passes, meaning
that the group is getting disjointed as it receives the activities suggested by the caregiver
agent.

A graphical representation of this example can be seen in Figure 8 showing the max
distance variation obtained in the group of agents. That is, as all agents are getting bored460

very quickly, the max distance is achieved at the same rate.
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Figure 6: Scenario 2: All Agents are Bored.

Figure 7: Scenario 2: Max dispersion between the emotion of each agent.

4.3. Scenario 3: Five Agents are Happy and Fifteen Agents are Bored with the activities

The fuzzy logic functions used in this scenario, makes the agents to be divided into
two groups: a first group composed by five agents, and the other by fifteen agents. A
graphical representation of this example can be seen in Figure 9 showing the evolution465

of the emotional difference between the social emotion and the target emotion. At
this Figure, it can be observed as the social emotion tends to be less happy than in the
scenario 1.

Figure 10 represents the evolution of the dispersion around the group of agents’ so-
cial emotion in this third scenario. These dispersions are calculated for each component470

of the PAD vector. It can be observed that they become greater as time passes, meaning
that the group is getting disjointed as it receives the activities suggested by the caregiver
agent. This behavior makes sense as five agents get happy with such activities but fifteen
get bored with them.

A graphical representation of this example can be seen in Figure 11 showing the max475
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Figure 8: Scenario 2: Max distance between target emotion happy and the emotion of each agent.

Figure 9: Scenario 3: Five Agents Happy and Fifteen Agents Bored.

distance variation. As there exist agents getting bored very quickly, and maintaining
such emotion during the scenario execution, the max distance achieves and maintains
high values very soon.

4.4. Scenario 4: Fifteen Agents are Happy and Five Agents are Bored with the activities

In this scenario we have situation contrary to the one presented in the previous480

one. A graphical representation of this example can be seen in Figure 12 showing the
evolution of the emotional difference. It can be observed there that the difference get
close to happy, although not very close due to the influence of the five agents that tend
to get bored.

Figure 13 represents the evolution of the dispersion around the group of agents’485

social emotion in this fourth scenario. These dispersions are calculated for each com-
ponent of the PAD vector. It can be observed that they maintains more or less similar
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Figure 10: Scenario 3: Max dispersion between the emotion of each agent.

Figure 11: Scenario 3: Max distance between target emotion happy and the emotion of each agent.

values during all the scenario execution excepting the pleasure component that increases
its dispersion.

A graphical representation of this example can be seen in Figure 14 showing the490

max distance variation. It can be observed that there will exist at least some agent that
will reach and maintain the bored emotion, but as commented in the previous figures,
the group social emotion tends to happy.

4.5. Scenario 5: Ten Agents are Happy and Ten Agents are Bored with the activities

The fuzzy logic functions used in this scenario, makes the agents to be divided495

into two groups of ten agents. A graphical representation of this example can be seen
in Figure 15 showing the evolution of the emotional difference. As time passes we
can observe a slight increasing because of the effect of repetition in the caregiver
suggestions.

A graphical representation of this example can be seen in Figure 16 showing the500

max distance variation. It can be observed that there will exist at least some agent that
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Figure 12: Scenario 4: Fifteen Agents Happy and Five Agents Bored.

Figure 13: Scenario 4: Max dispersion between the emotion of each agent.

will reach and maintain the bored emotion.
A graphical representation of this example can be seen in Figure 17 showing the max

distance variation. As all agents are happy the max distance is low. As the agent can
modify their emotion depending on the task repetition, the graph shows some variation505

in the max distance. These variations indicate that the agent has sent caregiver recurring
activities, making the maximum distance increase.

Table 3 shows the final values of the variables measured in each scenario. It shows
the distances to Happy and to Bored and their position in the PAD. While in scenario
1 and 2 the results are straightforward, the scenario 3 and 4 present interesting results.510

In the scenario 3 its observable the high values of ∆Happy and ∆Bored , this is explained
because the two groups display the opposite emotions very quickly, thus a balance is
established quickly, as observed in Figure 10. The dispersion dos not evolve significantly,
the agents clump into two groups and maintain that groups throughout the execution,
thus the almost equilibrium between the two emotions. The scenario 4 is the inversion515

of the scenario 3, therefore, the behaviour of the agents are alike the one showed in
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Figure 14: Scenario 4: Max distance between target emotion happy and the emotion of each agent.

Figure 15: Scenario 5: Ten Agents Happy and Ten Agents Bored.

scenario 3 but inverted.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
∆Happy 0,237 0,512 0,574 0,584 0,398
∆Bored 0,598 0,305 0,602 0,617 0,421
#»
σP,A,D Happy [0,374 0,181 0,564] [1,312 0,461 1,321] [0,702 0,257 0,725] [0,689 0,238 0,715] [0,985 0,350 1,010]
#»
σP,A,D Bored [1,529 0,619 1,209] [0,174 0,145 0,139] [1,327 0,541 1,049] [1,327 0,541 1,049] [1,088 0,450 0,860]
#»mP,A,D Happy [0,696 0,4497 1,038] [1,375 0,475 1,37] [1,375 0,475 1,37] [1,375 0,475 1,37] [1,375 0,475 1,37]
#»mP,A,D Bored [0,619 1,209 2,045] [1,321 0,175 0,145] [1,5294 0,6199 1,209] [1,209 2,045 1,327] [0,6199 1,212 2,045]

Table 3: Data Representing the final situation of the Five Scenarios.
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Figure 16: Scenario 5: Max dispersion between the emotion of each agent.

Figure 17: Scenario 5: Max distance between target emotion happy and the emotion of each agent.

5. Discussion

This paper deepens in the use of emotions in an AAL application, as a way to
improve the decision making process in this kind of systems. Concretely, the proposal520

consists of the implementation and tests of a ludic events scheduler aimed to elderly
people that are resident on retirement homes to promote active aging through the daily
proposal of activities that people generally like.

The proposed AAL system has been tested through the implementation of an agent-
based simulation environment where different scenarios have been designed and anal-525

ysed. Results show how the inclusion of emotions and the psychological state of elderly
people in the senior centre allows a more accurate activity scheduler. The proposed
activities can be measured and analysed according to the emotional changes in the group,
allowing the detection of undesirable situations.

The simulation results show interesting and positive results, where the system had530

in all of the cases had an impact in all scenarios (unfortunately not all were positive as
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expected). From them two conclusions can be derived:

• The simulated users tend to follow the community more than the positive effects
of the suggestions;

• The simulated users react rapidly to changes and go to emotional extremes quickly.535

The simulation then can be used as a platform for pre-implementation in real scenarios,
as it presents the most extreme outcome, thus highlighting possible social implications
on those outcomes. Unfortunately, there is not much research in this area, and due to
the specification of the platform and the proposed scenarios we are unable to provide
a scientific comparison to other systems. As explained in section 2, there are projects540

that aim the care for the elderly, and others in terms of detecting the emotional state of
the human-beings, but none that relates them, having as goal the direct interaction and
establishing a human-machine platform.

Due to external conditions (data protection liabilities and privacy concerns) we were
unable to implement this platform on a real environment; thus, we are unable to provide545

results of a real application. Until that is the case we will dedicate to the development
and fine-tuning of the platform, considering new implementations, or in an extreme
situation, address other type of users.

As future work, we want to measure the effect over the human behaviours produced
by possible emotional propagations among the people involved in the senior centre,550

including elderly and monitors. To do this a dynamic emotional model which considers
aspects like affinity, empathy and emotional attraction must be integrated in the proposed
simulation environment. Moreover, the acceptance problematic will be considered,
to establish an operation guideline, that tackles possible problems that the users may
present, and increase their acceptance values. Thus, effectively improving how elderly555

people react to new technologies and accept that they give them suggestions and change
their daily living.
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