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In this work we assess the transferability of deep learning models to detect beyond the standard model
signals. For this we trained deep neural networks on three different signal models: tZ production via a
flavor changing neutral current, pair production of vectorlike T-quarks via standard model gluon fusion and
via a heavy gluon decay in a grid of three mass points: 1, 1.2 and 1.4 TeV. These networks were trained with
tt̄, Z þ jets and dibosons as the main backgrounds. Limits were derived for each signal benchmark using
the inference of networks trained on each signal independently, so that we can quantify the degradation of
their discriminative power across different signal processes. We determine that the limits are compatible
within uncertainties for all networks trained on signals with vectorlike T-quarks, whether they are produced
via heavy gluon decay or standard model gluon fusion. The network trained on flavor changing neutral
current signal, while struggling the most on the other signals, still produces reasonable limits. These results
indicate that deep learning models are capable of providing sensitivity in the search for new physics even if
it manifests itself in models not assumed during training.
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I. INTRODUCTION

Although machine learning has a long history in high
energy physics (HEP), we have recently witnessed a surge
in interest in new methods and algorithms emerging from
deep learning [1]. Deep learning models differ from those
of traditional machine learning as they are composed of a
stack of layers with nonlinear functions that have the
capacity to learn hierarchical features from the inputs
[2]. Indeed, it has been shown that deep learning models
for a computer version trained on a certain task can be
adapted to a different, albeit similar, task [3] as the layers
closer to the inputs learn low-level features that progres-
sively become higher level as they are transformed by
the subsequent layers. In computer vision this manifests as
the first layers learn about localized pixel variations, the
following learn about textures and patterns, and finally the
last encode high-level features such as dog or cat. This has
led to reusing deep learning models trained on a specific

task, say to discriminate between dogs and cats, to perform
a different one, say to discriminate between cars and trucks,
by keeping the lower layers and train or fine-tune the layers
responsible for the high-level features. A natural question
then arises if the same transferability happens on deep
learning models used in HEP. More specifically, how
transferable is a deep learning model trained on recon-
structed physical observables in the discriminative task of
separating signal from background when different signals
are considered? Since the task is the same we will not
retrain or fine-tune the last layers. Instead, we will assess
how a trained model can perform the same task given a
different signal sample.
The goal of this work is to study how deep learning

models trained on a specific signal are transferable to new
signals unseen during training. As such, a few benchmark
signals were considered, having in common the presence of
tZ þ X final states. Since the target topology determines
which Standard Model (SM) backgrounds have to be
considered, we focused on events with at least a pair of
leptons, arising from the decay of the Z-boson or top quark,
as well as with jets originating from b-quarks, from the
decay of the top quark. Three classes of well motivated
signalswere considered in this context: (a) tZ productionvia
effective field theory operators inducing a flavor changing
neutral current (FCNC) coupling utZ; (b) pair production of
vectorlike T-quarks (VLT) via a SM gluon and (c) pair
production of vectorlike T-quarks via a beyond-SM (BSM)
heavy gluon. By testing the ability of the model to recognize
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these new signal events, we probe an intermediate step of
generic detection, in the midway between fully signal-
tailored classifiers and anomaly detectors.
The remainder of the paper is organized as follows. We

start by briefly describing and motivating the BSM phe-
nomenological grounds covering the new physics signals
explored in the paper. The following section presents the
data used in the analysis, from signal and background
simulation to event selection and data preparation.
Afterwards we present the deep neural network (DNN)
model and the procedure used for its architecture optimi-
zation. Results are presented and discussed in the section
that follows, with conclusions being drawn at the end.

II. BEYOND STANDARD MODEL SIGNALS

FCNC interactions in single top-quark production can
appear in dimension-four or dimension-five operators of an
effective SM extension. The search for FCNC processes
involving top quarks and Z-bosons at the Large Hadron
Collider (LHC) has been performed considering both tt̄
production with t → qZ decays (with q being an u- or
c-quark) [4,5] and tZ production [6]. In the current paper
we focus on the tZ production via a utZ FCNC coupling
[7,8] since it produces a final state belonging to the tZ þ X
category we are targeting.
Both the ATLAS and CMS collaborations have devel-

oped a comprehensive program to search for vectorlike
quarks at the LHC, targeting an extensive list of different
final states. Among those, multilepton final states origi-
nated by the pair production of T-quarks, where at least one
of them decays into tZ, were performed and stringent limits
on the mass of the new quarks as a function of the
branching ratio (BR) for the considered decays were
obtained [9,10]. We focus on this tZ final state, considering
the pair production of T quarks via a SM gluon and
assuming that T belongs to a weak isospin doublet, where
the BRðT → tZÞ is approximately 1=2 [11,12]. In order to
illustrate the effect on the signal kinematics, different T
masses were considered: 1.0, 1.2 and 1.4 TeV.
One class of models predicting the existence of vector-

like T-quarks is the composite Higgs models [13] with
partial compositeness [14]. In such models, new massive
color octets are naturally expected and thus the pair
production of T-quarks can occur via this new heavy
gluon, producing events with kinematic properties expected
to be different from the TT̄ production via a SM gluon
[15,16]. In the current paper we consider as benchmark a
heavy gluon with a mass of 3.0 TeVand the same T masses
and weak isospin charge as for the standard production
case.

III. SIMULATED SAMPLES

We use simulated samples of proton-proton collision
events generated with MADGRAPH5_MCATNLO2.6.5 [17] at

leading order with a center-of-mass energy of 13 TeV. The
parton showering and hadronization was performed with
PYTHIA 8.2 [18], using the CMS underlying event tune
CUETP8M1 [19] and the NNPDF 2.3 [20] parton distri-
bution functions. The detector simulation employs the
DELPHES3 [21] multipurpose detector simulator with the
default configuration, corresponding to the parameters of
the CMS detector.
We target processes with a final state composed of at

least two leptons (i.e., electrons or muons), at least one jet
identified as originated by the fragmentation of a b-quark
and large scalar sum of transverse momentum (pT) of all
reconstructed particles in the event (HT > 500 GeV) [22],
motivated by a generic search for large mass resonances
with intermediate products involving top quarks and W=Z
vector bosons in the decay chain. Our main source of
background is therefore composed of Z þ jets, top pair (tt̄)
production and dibosons (WW, WZ and ZZ). To obtain a
robust statistical representation of the backgrounds across a
significant region of the phase space, and especially in the
highHT limit where most of the signal is expected to be, we
generate each of the mentioned backgrounds in ranges of
kinematic properties by applying an event filter at parton
level according to the following:

(i) The top/anti-top pT (ptop
T ) for tt̄: ptop

T < 100 GeV,
ptop
T ∈ ½100; 250� GeV, ptop

T > 250 GeV.
(ii) The scalar sum of the pT of the hard-scatter

outgoing particles for Z þ jets: HT < 250 GeV,
HT ∈ ½250; 500� GeV, HT > 500 GeV.

(iii) W=Z pT (pW=Z
T ) for dibosons: pW=Z

T < 250 GeV,
pW=Z
T ∈ ½250; 500� GeV, pW=Z

T > 500 GeV.
Over 18 M events were simulated: 500 k per signal

sample, 8 M for Z þ jets, 3 M for tt̄ and 1.5 M per
diboson sample. The background and signal samples are
normalized to their expected yield after selection using
each process generation cross section at leading order,
computed with MADGRAPH5, matching a target luminosity
of 150 fb−1. The full dataset statistics is then split into three
subsets according to the 0.3∶0.2∶0.5 proportion, to be used
by the DNN for training, validation and test, respectively.
Figure 1 shows the distribution of HT and leading large-

radius jet pT for the total simulated background and each
signal. TT̄ production via the SM gluon exhibits significant
kinematic dependency on the vectorlike T mass, with
heavier T processes producing harder final state objects.
On the contrary, the kinematics of TT̄ production by the
heavy gluon is determined by the 3.0 TeV BSM gluon,
much heavier than any of the mT cases, and is thus less
sensitive to the T-quark mass. Nonetheless, there are
substantial kinematic differences between the TT̄ produc-
tion via a heavy gluon when compared to the standard
production case. While TT̄ is characterized by large
momenta final states, FCNC is on average closer to the
SM background processes in terms of HT and momenta of
the final state objects.
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IV. DEEP NEURAL NETWORK
ARCHITECTURE AND TRAINING

We train a DNN to distinguish each signal type from the
set of backgrounds, using basic information constituted of
the four-momenta of the reconstructed particles as provided
by the Delphes simulation:

(i) ðη;ϕ; pT;mÞ of the five leading jets and large-
radius jets;

(ii) ðη;ϕ; pTÞ of the two leading electrons and muons;
(iii) multiplicity of jets, large-radius jets, electrons

and muons;
(iv) ðET;ϕÞ of the missing transverse energy (MET),

where ϕ is the azimuthal angle defined in the transverse
plane, η is the pseudorapidity and m the invariant mass. ET
is the energy in the transverse plane. Jets are built from
calorimeter energy clusters grouped using the jet finder
algorithm anti-kt with radius parameter R ¼ 0.4 and R ¼
1.0 for jets and in large-radius jets, respectively. Additional
inputs are the HT and the N-subjetiness of the leading
large-radius jet (τN with N ¼ 1; 2;…; 5) [23].

DNNs are defined by a set of parameters, called hyper-
parameters, which specify their architecture. Although
bigger networks (those with more consecutive layers and
units per layer) provide greater representational and
approximating power, they can also overfit to training data
and therefore lose generalization on new, unseen, data.
Therefore, it is an important step in the DL workflow to
assess the best configuration for the DNN for the task
at hand. In order to find the best architecture, we imple-
mented a Bayesian optimization procedure using SCIKIT-

OPTIMIZE [24]. The deep neural networks themselves
were implemented in KERAS [25] on top of TensorFlow

[26]. Preprocessing and general data manipulation were
performed using NUMPY [27], PANDAS [28], and SCIKIT-

LEARN [29].
At each iteration of the Bayesian optimization loop, the

performance of the network was assessed by the area under
the receiver operating characteristics (ROC) curve on the
valuation set. We compared the best architecture for each
signal and found them to be very similar across the different
signals. As a result, we fixed the architecture present in
Table I for all signals, and trained a network on each signal.
Training was performed on batches of 2048 events and
made use of early stopping after 15 epochs without
improvement, while the learning rate was reduced by a
factor of 3 after five epochs without improvement. Physical
weights were used as training sample weights after being
classwise normalized, i.e.,

XNb

i

w̃b
i ¼

XNs

i

w̃s
i ; ð1Þ

where w̃b
i (w̃s

i ) and Nb (Ns) are the training weights and
number of events of the background (signal). We notice that
this retains the relative weight ratios for different subsam-
ples within each class in the sample. The value of the sum is
irrelevant, as it can be absorbed into the learning rate, and
we set it to 1.

V. RESULTS OF EXCLUSION LIMITS

With the trained networks, we proceeded to compute the
predictions on all test samples, each comprised of the same
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FIG. 1. Distribution of the (top) HT and (bottom) leading large-
radius jet pT for total background and each signal type: tZ
production by FCNC, and TT̄ production via heavy guon or
without heavy gluon for mT ¼ f1.0; 1.2; 1.4g TeV. The distri-
butions are normalized to the generation cross section and to an
integrated luminosity of 150 fb−1.

TABLE I. Hyperparameters used by all DNNs.

Hyperparameter Value

Hidden layers 3
Units 352
Unit activation function Selu
Unit weights initializer LeCun Normal
Dropout rate 10%
Initial learning rate 10−3

Optimizer Nadam
Maximum epochs 1000
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background sample and a signal sample. The output is read
as the probability of an event being of the signal in which
the network was trained, i.e.,

DNNSðXiÞ ¼ pðSjXiÞ; ð2Þ

where DNNS is the deep neural network trained on signal S
and Xi the reconstructed variables of the event i.
The prediction distributions of the network trained on the

TT̄ produced via SM with mT ¼ 1.4 TeV for the back-
ground and each test signal are shown in Fig. 2. Although
the network is unequivocally more performant in classify-
ing the signal it was trained on, it is still able to identify
other signal types as nonbackground. The quality with
which this is done for each signal matches what is expected
from the kinematic differences of the signals, presented in
Fig. 1. In Fig. 3 we present receiver operating characteristic
(ROC) curves that show how the discriminating power
degradates as we change the model used to predict signal,
which is quite evident for FCNC signal. The bottom figure
corresponds to the ROC curves of the predictions shown
in Fig. 2.
These distributions are used as the inputs of OpThyLic

[30], a software to compute limits using the CLs method
[31]. Poissonian statistical uncertainties on each bin of the
distributions were included in the limit computation. From
this we obtained the 95% upper limit on the signal strength,
defined as the signal cross section normalized to the
predicted cross section, computed with MADGRAPH5, μ.
This procedure was done for each combination of train and
test samples and the results are presented in Table II. The
central values presented in the table are used to produce the
heatmap in Fig. 4. The quoted uncertainties correspond
to 1σ variations around the expected limit and incorporate
the statistical uncertainty on the generated signal and

background samples. We also present the value of the
limit obtained for the fit to the HT distribution as a baseline
to highlight how the discriminative power of the DNNs
improves the sensitivity.
As expected, we observe that the signals with stricter

limits are those with lower VLT masses for each case of
either SM or heavy gluon production. A more interesting
observation is that the limits seem to be reasonably
insensitive to which VLT signal we used to train the
discriminative DNN.
The limits computed on the sample with FCNC signal

show clear degradation as we use any network trained on
VLT signals. This is easily understood as the FCNC does
not produce new heavy states, and as such its kinematics
are manifestly different from those produced by VLT
signals, being instead very similar to other SM processes.
For comparison, Table II also shows the limits for each

signal type obtained by fitting the HT distribution as a
simpler, but commonly used [9], alternative to the use of
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FIG. 2. Distribution of the predictions for total background and
each signal type, for the network trained on the TT̄ signal
produced via SM with mT ¼ 1.4 TeV. The distributions are
normalized to the generation cross section and to an integrated
luminosity of 150 fb−1.

FIG. 3. Receiver operating characteristic (ROC) curves for the
FCNC signal as predicted by all models (up), and for all signals as
predicted by the model trained on TT̄ produced via SM with
mT ¼ 1.4 TeV signal (down), where we notice that the curve for
the FCNC signal is not shown with this level of zoom.
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DNN. We observe that for each signal, the limits obtained
by employing a DNN are always better or compatible
within the 1σ uncertainty than the ones obtained through
the HT fit, regardless of the signal the model was trained
on. This provides evidence that the usage of DNNs as
discriminants can still provide impactful discrimination
over signals not used during training.
In order to better assess the impact on the limits as we

use a network trained on a different signal, we normalize
the columns with respect to the value of μ obtained by the
network trained on the respective signal. These results are
presented in Table III. We also present the central values of
this table as a heatmap in Fig. 5. With the normalized
results it becomes more clear that for the VLT signals the
limits are insensitive within uncertainties to the specific

signal used to train the network. Perhaps more surprisingly,
the same holds when we use DNN trained on signals with
heavy gluon on signals without and vice versa, as signals
produced from a heavy gluon will have different kinematics
to those produced from a SM gluon.
Although there is a clear degradation of the upper limits

of the FCNC signal when using a network trained on VLT
signals, the change of the upper limits on those signals
using the FCNC trained models is not as severe. This
suggests that even in a limiting case where the signal is very
similar to SM processes, such as the FCNC, it can still be
used to train a network that can discriminate background
from other much different signals. This might indicate that,
for a DNN, signals are more alike to each other than to
background, which can be interpreted as follows. During

FIG. 4. Heatmap of the central value of the limits on μ obtained
for all combinations of training and testing signals, as presented
in Table II.

TABLE II. Upper limits on signal strength, μ, from the fit to the DNN output distribution for all combinations of train and test signals,
and from the fit to the HT distribution.

Test

HG No HG

FCNC HG, 1.0 TeV HG, 1.2 TeV HG, 1.4 TeV 1.0 TeV 1.2 TeV 1.4 TeV

Train FCNC 6þ2
−2 0.14þ0.07

−0.04 0.18þ0.08
−0.06 0.22þ0.10

−0.06 0.4þ0.2
−0.1 1.2þ0.5

−0.4 4þ1
−2

HG 1.0 TeV 50þ20
−20 0.03þ0.01

−0.01 0.04þ0.02
−0.01 0.06þ0.04

−0.02 0.06þ0.03
−0.02 0.27þ0.15

−0.09 1.1þ0.6
−0.3

1.2 TeV 50þ20
−20 0.022þ0.011

−0.007 0.03þ0.02
−0.01 0.05þ0.03

−0.02 0.05þ0.02
−0.02 0.22þ0.11

−0.07 0.9þ0.5
−0.3

1.4 TeV 40þ20
−10 0.022þ0.012

−0.007 0.03þ0.02
−0.01 0.05þ0.03

−0.01 0.05þ0.02
−0.02 0.22þ0.11

−0.07 0.9þ0.5
−0.3

No HG 1.0 TeV 90þ50
−30 0.020þ0.010

−0.007 0.027þ0.014
−0.009 0.04þ0.02

−0.01 0.04þ0.03
−0.01 0.19þ0.09

−0.07 0.7þ0.4
−0.2

1.2 TeV 40þ20
−10 0.022þ0.011

−0.007 0.03þ0.02
−0.01 0.05þ0.02

−0.02 0.05þ0.02
−0.02 0.22þ0.11

−0.07 0.9þ0.4
−0.3

1.4 TeV 50þ20
−20 0.023þ0.012

−0.008 0.03þ0.02
−0.01 0.05þ0.03

−0.02 0.05þ0.02
−0.02 0.22þ0.11

−0.08 0.9þ0.5
−0.3

Fit to HT distribution 90þ40
−20 0.11þ0.04

−0.04 0.11þ0.05
−0.03 0.12þ0.05

−0.04 0.3þ0.1
−0.1 0.8þ0.3

−0.2 1.7þ0.7
−0.5

FIG. 5. Heatmap of the central value of the normalized limits
obtained for all combinations of training and testing signals, as
presented in Table III.
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training a DNN will learn a decision function that defines a
separation hypersurface between the regions supporting
signal and background events in the high dimensional input
space. While different signals are supported at different
regions the background is common to all of them, which
leads to each DNN trained on a specific signal to learn
similar ways of isolating large parts of the background. It is
this shared learned representational capacity of the back-
ground that is being transferred when we apply a trained
DNN on a new signal.

VI. CONCLUSION

In thisworkwe set out to explore the transferability ofDNN
trained to discriminate between signal and background using
reconstructed physical observables. Here we approached the
notion of transferability as how a model trained on a given
signal performs when discriminating between signal and
background on a different signal. The different signals fell
under three classes: a FCNCmodel without new heavy states,
VLT states produced by SM gluon, and VLT states produced
by a new heavy gluon. For the latter two cases we considered
three different points of the parameter space where we varied
the masses of the VLT states.
We have shown that the upper limits for the physical

models with the VLT states are insensitive within uncer-
tainties to which network discriminator we trained, as long
as it was trained on a signal with VLT states. These results
highlight that discriminative DNN are highly transferable
across signals with similar new heavy states across different
points of their parameter space. It should also be noted that
the same transferability is observed between signals cor-
responding to significantly different models, where impor-
tant kinematic differences between the reconstructed final
state objects are expected.
Furthermore, we showed that networks trained in any

signal can provide similar or greater sensitivity than

performing limits on the fit to the HT distribution,
demonstrating the aforementioned transferability of a
trained DNN to new signals. More specifically, we showed
that the FCNC signal, being the most different of the seven,
can still be used to train a DNN that provides discriminative
power to other signals that are kinematically very different.
This suggests that in their training, DNNs learn features
that are able to identify background, which is the same for
all new physics. Ultimately, this means that the usage of
DNNs in the discriminating step of an analysis might help
to find new physics not assumed in its training. This fosters
the idea that deep learning may contribute to a novel
framework for generic searches, providing a powerful way
to increase the sensitivity of searches for new physics
phenomena at colliders. Future studies, beyond the scope of
the present paper, can be done to verify the obtained results
using detailed simulations of the LHC experiments. Also, it
would be interesting to compare DNNs with other machine
learning methods, also in terms of transferability of the
results.
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TABLE III. Normalized limits obtained for all combinations of training and testing signals.

Test

HG No HG

FCNC HG, 1.0 TeV HG, 1.2 TeV HG, 1.4 TeV 1.0 TeV 1.2 TeV 1.4 TeV

Train FCNC 1.0þ0.4
−0.3 5þ2

−2 6þ2
−2 4þ2

−1 9þ4
−3 6þ2

−2 4þ2
−1

HG 1.0 TeV 9þ4
−3 1.0þ0.5

−0.3 1.3þ0.7
−0.4 1.2þ0.6

−0.4 1.3þ0.7
−0.4 1.2þ0.6

−0.4 1.3þ0.7
−0.4

1.2 TeV 8þ4
−2 0.8þ0.4

−0.2 1.0þ0.5
−0.3 1.0þ0.5

−0.3 1.1þ0.5
−0.4 1.0þ0.5

−0.3 1.0þ0.5
−0.3

1.4 TeV 7þ3
−2 0.8þ0.4

−0.3 1.0þ0.5
−0.3 1.0þ0.5

−0.3 1.1þ0.6
−0.4 1.0þ0.5

−0.3 1.0þ0.5
−0.4

No HG 1.0 TeV 20þ9
−5 0.7þ0.4

−0.2 0.8þ0.4
−0.3 0.8þ0.4

−0.3 1.0þ0.5
−0.3 0.9þ0.4

−0.3 0.8þ0.4
−0.3

1.2 TeV 7þ3
−2 0.8þ0.4

−0.2 1.0þ0.5
−0.3 0.9þ0.5

−0.3 1.1þ0.5
−0.4 1.0þ0.5

−0.3 1.0þ0.5
−0.3

1.4 TeV 9þ4
−3 0.8þ0.4

−0.3 1.0þ0.5
−0.3 1.0þ0.5

−0.3 1.1þ0.6
−0.3 1.0þ0.5

−0.3 1.0þ0.5
þ0.3
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