ASSESSMENT AND FORECAST OF THE CULVERT'S PERFORMANCE WITHIN A ROAD INFRASTRUCTURE MANAGEMENT SYSTEM. LITERATURE REVIEW

F. Sousa^{1, 2}, J. Matos², A. Camões³

¹ Ascendi IGI, Infrastructure Innovation and Management, Matosinhos, Portugal.

² University of Minho, Institute for Sustainability and Innovation in Structural Engineering (ISISE), Guimarães, Portugal.

³ University of Minho, Centre for Territory, Environment and Construction (CTAC), Guimarães, Portugal.

e-mail: <u>fsousa@ascendi.pt</u>

SUMMARY

During the 21st century, within road infrastructure management there is a strong enforcement on preserving assets and prevent roadway collapses. As a result, public agencies have to implement periodic inspections and asset condition assessments. As pavements and bridges also culverts management play a special role in roadway safety, because they prevent roadbed erosion. The scope of this investigation is the assessment and forecast of culverts performance regarding rating condition and network reliability forecast. In addition, it intends to analyze hazards influence in the culvert serviceability, modelling the hazards actions on the infrastructure.

In this paper, is performed the literature review of studies done during the past decade comparing advantages and limitations. Five main subjects are identified in the development of a culvert management system, since the inventory and inspection framework, to forecasting models and risk assessment. Moreover, it will determine the correlation between subjects and will find gaps for improvement.

Keywords: *Culverts management system, culverts inventory, culvert inspection, risk assessment, hazards influence.*

1. INTRODUCTION

The highways infrastructure deterioration became a major challenge in the 21st century for roadway's administration and researchers. An accurate management of periodic inspections and assets condition rating implementation could avoid failures and road collapses. All around the world, road conservation agencies implemented some routines for the assets inventory, inspection and life service estimation, with a special focus on pavement and bridges.

However, in the past decade agencies got more concerned about culverts because they let the water go through the roadbed preserving it from erosion and also, the failure of such construction may lead to the interruption of significant part of the road [1]. Factors such as poor asset management, ineffective maintenance practices or even inadequate inspection programs may result in a sudden failure of the deteriorated underground infrastructures. Deteriorated culverts and drainage structures requires the road conservation agencies to implement proper inventory and inspection programs [2].

Firstly, to make a culvert inventory it is mandatory to establish a database structure taking into account all the components and features that can provide information about the culverts operation and possible behavior during its life cycle. Having significant relevance in particular, the location and surrounding area information, section and material type, culvert age, and flow characteristics. The culvert's service life may differ from its design life, and it depends largely on the supporting soil, local environment and corrosive/abrasive properties

October 7-9, 2020

Synergy of Culture and Civil Engineering – History and Challenges

of the transported fluid and solids [3]. Adequate inspection and maintenance practices can improve culvert's serviceability mitigating premature failure or degradation progress.

The inspection type and schedule are dependent from the culvert's inventory, mainly culverts age, size, materials, and importance. Therefore, regarding the variety of culvert types and sizes in a highway drainage system, the condition rating is evaluate with different methods or tools. However, the final condition states mostly provide the same information on the network reliability.

In addition, culverts have to support and maintain structural integrity during hazardous occurrences, like floodings or downpours, so risk assessment of culvert performance should take into account the hazards effects in the condition rating attributed in the inspection and life service estimation. Accordingly, it is important to measure actual culverts resilience and forecast future behavior to determine possible unsafety scenarios of the infrastructure [4].

Therefore, the concept of Culvert Relevance can be inserted to correlate different aspects, characteristics and database information, and hierarchize culverts network in the roadway infrastructure. As a result, culverts have different grades of importance and different concerns during a flood or a downpour, and that will depend on:

- Hydrological aspects, like design peak flow, watershed dimension, flow type (road platform drainage or natural stream), etc.;
- Culvert condition state, including maintenance issues, culvert age and remaining estimated service life, structural performance and materials, etc.;
- Culvert geographic information, with special attention to location and surrounding area information, soil and cover material, etc.;
- Roadway service information, regarding traffic classification and characterization, traffic evolution, social and economic influence, etc.;

The objective of this paper is to review studies and strategies done in culverts management and assessment. It also aims to compare methods and identify their advantages and limitations, or improvement opportunities to the continuous enhancement of the infrastructure management systems.

2. SURVEY SEARCH STRATEGY

In order to achieve the main goal of this paper, firstly a search was done on the scientific databases using keywords directly related to the assessment of culverts performance and infrastructure management system, such as:

- Culverts management system;
- Culverts inspection;
- Culverts reliability;
- Risk assessment models;

Likewise, the hazards impact is considered in the asset management and forecast. Searching for studies that would correlate the occurrence of these events with culvert failure modes.

Hence, it is possible to identify the most important subjects related to the culvert's assessment, which are the inventory data (age, span, location, type, etc.) and featuring every component of the culvert (invert, end protection, embankment, etc.). In addition, it must also be considered the inspection schedule and criteria providing the culvert condition rating. Furthermore, the use of the condition rating and inventory data in the infrastructure risk assessment, forecasting maintenance, and culvert repair or replacement. Due the application of predictive deterioration models to estimate the life cycle [5].

Finally, the information was organized in table 1 resuming the concepts and results from previous studies selected besides the advantages and knowledge evolution. Also, are identified the gaps or development opportunities to improve culverts management system.

October 7-9, 2020

Synergy of Culture and Civil Engineering – History and Challenges

Table 1. Concept matrix of the research. Subjects and observations of the articles.

	OBSERVATIONS			
ARTICLES	ADVANTAGES	LIMITATIONS / OPPORTUNITIES		
Fernando Delgado- Ramos et al., 2014	Good organization for the culverts inventory and characterization, with well-defined stages. Possible to diagnose pathologies nature. Decision-making support with GIS optional maps.	Culvert identification should provide more information about the structure (length, slope, embankment, etc.) Pathologies location do not consider the cross-section or the affected extension. Decision-making support is incomplete without risk assessment or forecast of the culvert's performance		
Akvan Gajanayake et al., 2018	Understand community led adaptation practices during a disaster induced road failure. Interview residents of a community after two flooding events and comparing different types of adaptation techniques with the literature review.	It is a sociological research based on qualitative data collected from the interviews and community capabilities. Road failure is not analyzed to understand the collapse mechanism or other issues that reduce the capability of infrastructure service.		
Yanqing Lian and Ben Chie Yen, 2003	Comparison of 28 different methods for culvert's risk calculation. Analysis of the proper method to apply in each situation of culvers failure. Definition of culvert failure ("Logic tree"). Consideration of failures related to hazards like floodings.	Focus only in failures caused by floodings. Does not consider structural failure or collapse. The analysis focus in the risk of rainfall overcome the culvert capacity, and doesn't consider other aspects that can be related with culvert failure or reliability.		
Mohammad Najafi and Deepak Bhattachar, 2010	Proper culvert's inventory and data collection format, with well-defined modules of characterization. Inspection program and condition assessment framework. Field inspection to validate the culvert's assessment.	Pathologies location does not consider the cross-section or extension affected on invert and footing. Does not consider hazards occurrence for pathology diagnosis. Decision-making support is incomplete without risk assessment and predictive models.		
M. G. Ryumin andE.S. Shepitko, 2017	Condition rating obtained by scoring every observed defect (Defect gradation system). Culverts forecast taking into account the relation between the culvert degradation, age and technical condition. Determination of the time to repair or inspect by the culvert degradation speed.	There isn't an inventory of the culvert's characteristics and design aspects including culvert components. Does not consider the defects location in the rating and condition assessment. Forecast does not indicate degradation increase due to hazards occurrence.		
Jay N. Meegoda et al, 2005	Decision to inspect, repair, rehabilitate or replace culverts based in the condition state, culvert's size and age. Budget control and network-level decision to prioritize culverts maintenance, repair or replacement.	Forecast does not indicate the degradation increase due to hazards occurrence.		
J. N. Meegoda et al., 2017	Development of the Drainage Information, analysis and Management System (DIAMS) are described. Budget control and network-level decision to prioritize drainage infrastructure maintenance, repair or replacement.	Forecast does not indicate the degradation increase due to hazards occurrence.		
J. N. Meegoda and Zhenting Zou, 2015	Decision to inspect, repair, rehabilitate or replace culverts based in the condition state, culvert's size and age. Budget control and network-level decision to prioritize culverts maintenance, repair or replacement.	Forecast does not indicate the degradation increase due to hazards occurrence.		
Boriss Misnevs et al., 2015	Assessment of natural factors that impact railway transportation. Risk assessment models for emergency situation. Algorithm of hazards and vulnerability analysis model of weather risks regarding railway transport.	The analysis and forecast of risk and vulnerability are applied to the transportation context and railway safety. Does not analyze hazards impact on the infrastructure deterioration or structural safety of the railway components.		
Ossama Salem et al., 2012	Survey study about the use of culvert's condition assessment in various DOT's (Department of Transportation). Implementation of preliminary deterioration model to circular metal culverts based on the condition rating and repair needs evaluation.	There is not an inventory of the culvert's characteristics and design aspects including the culvert's components. Pathologies location does not consider the cross-section or extension affected on the invert and footing. Forecast does not indicate the degradation increase due to hazards occurrence.		

October 7-9, 2020

Synergy of Culture and Civil Engineering – History and Challenges

3. RESULTS AND DISCUSSION

The objective to implement a Culverts Management System (CMS) in a roadway or railway, as a life cycle estimation based on the present condition rating and taking into account the design information and location [6]. Moreover the risk assessment of the infrastructure during the remaining life service, with the possibility of hazards occurrence, that can influence transportation safety or induce the collapse [7].

Therefore, in table 1 is resumed the literature review with identification of five main subjects that are correlated in the development of the CMS, and outlined in figure 1:

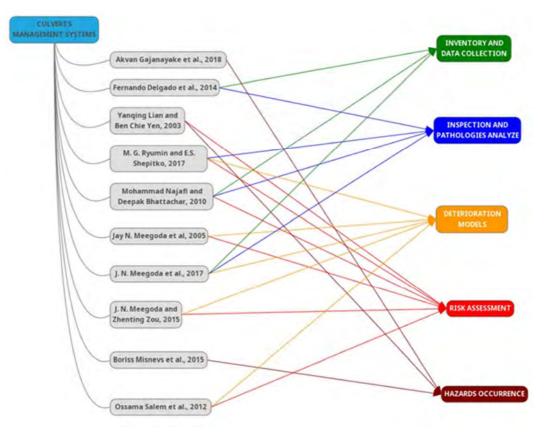


Fig. 1. Five main subjects in the CMS implementation. Relation regarding the literature review.

3.1. Inventory and Data collection

Regarding culverts characterization and design or location information. The scope is the construction of a database [8] containing general data (date of inventory, year built, inventory code, place code, etc.), structural data (shape, material, length, span, etc.), hydraulic information (design peak flow, drainage area, slope, etc.) and additional information related to the end treatments type and materials. Each culvert should have their own identification code, providing some information for the user, like explained at figure 2.

Fig. 2. Culvert code ID explanation – Relation between culvert geographic location and inventory code.

Likewise, culvert's components and every specific information need to be organized and stored in the database, always related with the culvert code ID, supplying all the information needed to the data collection and culvert management. Figure 3 presented a proposal database structure.

October 7-9, 2020

Synergy of Culture and Civil Engineering – History and Challenges

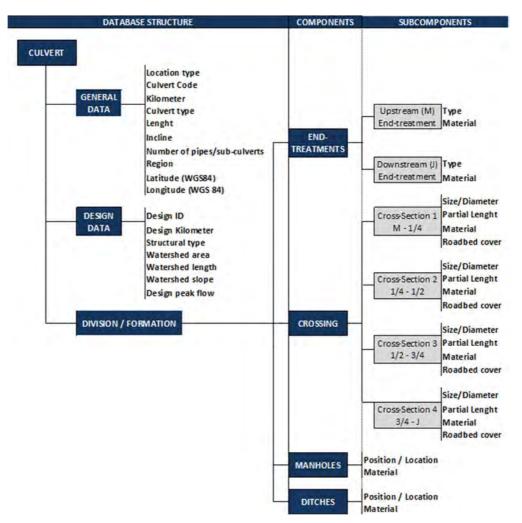


Fig. 3. Culverts database structure from a Portuguese Roadway Administration – Ascendi, S.A.

The database integrates two different types of data, divided into general and design data, with organized information obtained during the project inventory and information concerning the conception and construction of the roadway. In contrast, the culvert formation or division is established to organize information about field inventory, and so, culverts are separated in four different components, being two of them with subcomponents. For each component or subcomponent is mandatory to define their attributes, for example the type of end treatment and material applied. It is important to underline the crossing division into four subcomponents named "Cross-section" (figure 4), because enabling the measure and inventory of the roadbed cover for each cross-section along the crossing culvert, and therefore, embankment loads consideration. They also, have special importance in order to verify cross-sections impact in the road safety if some defects are identified during inspection program.

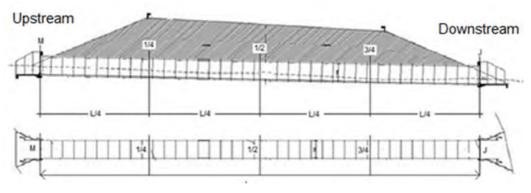


Fig. 4. Illustrative crossing culvert division.

October 7-9, 2020

Synergy of Culture and Civil Engineering – History and Challenges

3.2. Inspection and pathologies analyze

Implementation of the condition assessment framework based on field inspection reports from the experts. The various culvert components are inspected for defects through a condition rating system in order to obtain their performance score [2]. The condition rating defines all components with different weights considering the location and asset importance. For instance, considering figure 4 is possible to realize that the same pathology with the same extension, have different impacts if identifying in the cross-section 1 (M - $\frac{1}{4}$) then cross-section 2 ($\frac{1}{4} - \frac{1}{2}$). On contrary, the same defect occurring in the downstream end treatment can be very acceptable and has no effect in the performance score.

The Culvert Management System (CMS) has to be applied to all roadway culverts independently of the type of culvert and size or inspection type (visual or video CCTV). So, it is important to define optimized conditions rating system transversal to both inspections and with the same performance score. During the literature review, the most common performance score has five levels, but with different interpretations. However, across Europe is more accepted the use of a five level score, where Level 1 is good condition and Level 5 the worst condition or imminent collapse.

Besides that, it is important to take into consideration different damage processes and they should be graded with regarding their nature, intensity, extent and location [9]. It is relevant to list defects that can be observed during the components inspection and relate to the materials and damage process, allowing the same interpretation of the degradation mechanisms and impact on the culvert.

Culvert's performance score is important to define the inspection schedule and intervention or repair, depending on the action proposed to comply with quality control plans and restore the infrastructure's safety and security. In table 2 is presented the correlation between the culvert's performance score and the CMS quality control applied to highway administration.

Performance Score	Description	Code	Condition and Action
1	Good	PI 01	No significant defects
2	Suficient	PI02	Minor defects, not urgent
3	Bad	PI03	Defects to be addressed with medium term repair (2 - 4 years)
4	Very bad	PI04	Severe defects requiring short term action (1 - 2 years)
5	Imminent Failure	PI05	Very severe defects and dangerous to users safety. Immediate intervention is required

Table 2. Proposal relation between Culverts Performance score and Quality Control Actions.

3.3. Deterioration models and Risk Assessment

Stochastic and predictive models application to determine the culvert's performance and reliability during the remaining life service and maintenance requirements. The deterioration models are function of culvert material once the degradation speed is distinct. More importantly, those models are function of culvert's age and remain in the lifetime service. Therefore, in literature review are presented various methods for example the Culvert Degradation Speed using Fuzzy Logic [1] and the Culvert Deterioration Curve applying Weibull Model [10]. Culvert failure Probability is calculated, due to structural defects or insufficient capacity, depending of the performance score obtained by the damage processes analysis. Culverts can experiment different types of failure associated to the condition rating, loads and unpredicted events. The main purpose is to determine the associated risk to each asset and establish strategies to maintain transportation service and safety before collapses occurrence and accomplish quality control plans. It's possible to use different methods by different teams analyzing different types of failures, by combining the results to determine the total risk [5].

October 7-9, 2020

Synergy of Culture and Civil Engineering – History and Challenges

3.4. Hazards Occurrence

Analyze reduction of the infrastructure serviceability during natural disasters. Culverts have an important role during disasters, mainly flooding and downpours, for that reason their vulnerability facing natural risks must be assessed [7]. The CMS framework, beyond the inventory, condition assess and deterioration modelling could be a complement for culverts forecast performance during flooding or downpours.

Complementary to the structural defects also hydrological capacity due to sudden events should be taking into account, regarding the erosive strength associated to downpours and load effect into embankment soil. Firstly, culverts hydraulic capacity and behavior in a flood scenario must be evaluated, using the design data of the culverts inventory, and inspection and maintenance information to the model. Secondly, the impact on road and traffic safety, the alternatives routes have to be on the equation, crossing geographic information with traffic data and socioeconomic aspects. Therefore, culvert resilience to natural disasters has to be measured and then forecast future behavior, and intersect these information with the risk assessment due to damage process. So in order to take into account the culvert exposure due to sudden events, we can define the parameter Culvert Relevance (R) function of culvert hydrological information, the condition state and reliability information, geographic data and culvert location, and also roadway service information and socioeconomic impacts that can be measured.

```
R_{CULVERT} = f(HYDRO, CONDST, GEOGR, SERVINF).
```

The figure 5 presents all the proposed attributes to be considers on this approach, and correlation with inventory data and field information.

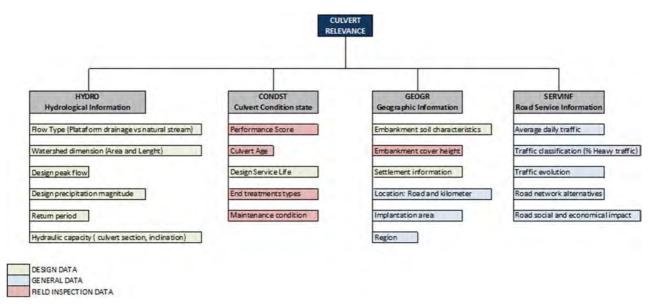


Fig. 5. "Logical tree" of parameter Culvert Relevance.

Hence, culvert relevance evaluation enables to hierarchize all culverts crossing the roadway, regarding all available information, and establish priorities for intervention and inspection. It also can provide important information about the actions and measures to apply during extreme rainstorms, minimizing impacts to users and infrastructure serviceability.

4. CONCLUSIONS

This paper made a literature review starting from a search about experimental and theoretical studies on culvert management systems and reliability. This analysis includes studies from a few countries and so it was possible to identify similar approaches to the subject. However, improvements in the culvert's assessment and forecast are still needed. For instance in the USA, the DIAMS (Drainage Information, Analysis and Management System) development was a requirement for Phase II of the Governmental Accounting Standards Board, Statement No. 34 (GASB-34) [6]. Following this example, perhaps the performance standards definition for the public agencies could lead to the development of assessment frameworks enhancing the infrastructure

October 7-9, 2020

Synergy of Culture and Civil Engineering – History and Challenges

systems service level. These standards should take into account the culvert's age and lifetime service, but also the inventoried components, materials and design properties. All this factors affect the culvert's condition rate and reliability, therefore should be considered in the predictive models and performance forecast.

In a brief summary, it was possible to identify gaps or improvement opportunities in previous studies, with special focus on inspections, assessment framework and the hazards consequences in the culvert's serviceability. In spite of these facts, the correlation between culvert condition states and predictive deterioration due hazards occurrence has not been studied yet. In addition, inspection methodology should result from a rigorous pathology analysis, featuring the severity, extension and location around the cross-section. Measures are also important in order to provide quantitative data during the assessment, mainly due the span's deformations and cross-section variation.

To sum up, Culverts Management Systems (CMS) has five main subjects since the inventory up to the assessment and forecast. To improve the reliability of CMS it is relevant to develop a model that correlates hazards with culverts assessment, taking into account the culverts relevance in the infrastructure. Inducing adaptations in culverts inventory, inspection framework and schedule. For example, a detailed cross-section characterization enables to identify pathologies location and extension. In the same way, pathologies could be catalogued by nature, severity and evolution probability due to hazards. Therefore, culvert condition rating is determined correlating damages severity and extension in function of culvert's age and lifetime service. However, the system reliability evaluation, needs to be complemented with the culvert resilience during sudden events.

REFERENCES

- [1] M. G. RYUMIN and E. S. Shepitko, "Forecast for Terms of Culvert Inspection and Repair," *Procedia Eng.*, vol. 189, no. May, pp. 598–604, 2017.
- [2] M. NAJAFI and D. V. BHATTACHAR, "Development of a culvert inventory and inspection framework for asset management of road structures," J. King Saud Univ. *Sci.*, vol. 23, no. 3, pp. 243–254, 2011.
- [3] J. MEEGODA, T. JULIANO, P. RATNAWEERA, and L. ABDEL-MALEK, "Framework for Inspection, Maintenance, and Replacement of Corrugated Steel Culvert Pipes," *Transp. Res. Rec. J. Transp. Res. Board*, vol. 1911, no. April 2015, pp. 22–30, 2007.
- [4] L. FOUCHER and T. BLÉS, "Résilience des ouvrages de gestion des eaux au changement climatique Méthodologie d'évaluation WATCH," *RGRA*, vol. 961, pp. 31–33, 2019.
- [5] Y. LIAN and B. C. YEN, "Comparison of Risk Calculation Methods for a Culvert," *J. Hydraul. Eng.*, vol. 129, no. 2, pp. 140–152, 2003.
- [6] J. N. MEEGODA, T. M. JULIANO, L. POTTS, C. TANG, and T. MARHABA, "Implementation of a drainage information, analysis and management system," *J. Traffic Transp. Eng.* (English Ed., vol. 4, no. 2, pp. 165–177, 2017.
- [7] B. MISNEVS, A. MELIKYAN, and D. BAZARAS, "Hazard Assessment of Weather Factors for the Occurrence of an Emergency on the Railway," *Procedia Comput. Sci.*, vol. 77, pp. 40–47, 2015.
- [8] F. DELGADO-RAMOS, M. S. SANCHEZ-LADRON-DE-GUEVARA, A. DIEZ-CONTRERAS, and M. PEREZ-DIAZ, "A Methodology for the Inventory of Road Culverts Pathologies Applied to the Province of Jaen (Andalusia, Spain)," *Procedia - Soc. Behav. Sci.*, vol. 160, no. Cit, pp. 597–606, 2014.
- [9] J. A. and N. T. R. HAJDIN, M. KUSAR, S. MASOVIC, P. LINNEBERG, "TU1406 Quality specifications for roadway bridges, standardization at a European level WG3," 2018.
- [10] J. N. MEEGODA and Z. ZOU, "Long-Term Maintenance of Culvert Networks," *J. Pipeline Syst. Eng.* Pract., vol. 6, no. 4, p. 04015003, Nov. 2015.
- [11] A. GAJANAYAKE, H. MOHSENI, G. ZHANG, J. MULLETT, and S. SETUNGE, "Community adaptation to cope with disaster related road structure failure," *Procedia Eng.*, vol. 212, no. 2017, pp. 1355–1362, 2018.
- [12] O. SALEM, B. SALMAN, and M. NAJAFI, "Culvert Asset Management Practices and Deterioration Modeling," *Transp. Res. Rec. J. Transp. Res. Board*, vol. 2285, no. 1, pp. 1–7, 2012.

IABSE SYMPOSIUM Wrocław 2020

Synergy of Culture and Civil Engineering – History and Challenges

REPORT

International Association for Bridge and Structural Engineering

IABSE

Publisher

IABSE Jungholzstrasse 28 8050 Zurich Switzerland Tel: +41 43 433 97 65 e-mail: secretariat@iabse.org Web: http: //www.iabse.org

ISBN: 978-3-85748-169-7

The first IABSE Online SYMPOSIUM Wrocław 2020

Synergy of Culture and Civil Engineering – History and Challenges

Editors

Jan Bień, Jan Biliszczuk, Paweł Hawryszków Maciej Hildebrand, Marta Knawa-Hawryszków, Krzysztof Sadowski

> Wrocław, Poland October 7-9, 2020

All papers have been reviewed by the International Scientific Committee of the IABSE Symposium Wrocław 2020, October 7-9.

All authors bear full responsibility for the content of their papers and the origin of presented photos and figures. Editors have not made any substantive changes to the published papers.

Chapter photos

Jan Biliszczuk Paweł Hawryszków Sky Tower Apartments Wroclaw Agglomeration Development Agency Centennial Hall Sipiński - Architectural Studio Budimex

Technical editing

Aleksander Mróz Olga Szymczyk Marco Teichgraeber Volodymyr Volotsiuga

Symposium Secretariat

Wrocław University of Science and Technology Wybrzeże Wyspiańskiego St. 27 50-370 Wrocław Poland Tel: +48 71 320 45 62 e-mail: iabse2020wroclaw@pwr.edu.pl Web: www.iabse2020wroclaw.pwr.edu.pl A IABSE SYMPOSIUM 7-9 October 2020 Synergy of Culture and Civil Engineering - History and Challenges

IABSE 2020 WROCŁAW POLAND

International Scientific Committee

Jan Bień, Poland – Chair

Eftychia Apostolidi, Austria Miguel A. Astiz, Spain Flávio Barbosa, Brazil F. Michael Bartlett, Canada Konrad Bergmeister, Austria Jan Biliszczuk, Poland Ane de Boer, Netherlands Fernando Branco, Portugal Eric Brehm, Germany Jorge de Brito, Portugal Eugen Brühwiler, Switzerland Ján Bujňák, Slovakia Elsa Caetano, Portugal José Campos e Matos, Portugal Alp Caner, Turkey Joan Ramon Casas, Spain Eleni Chatzi, Switzerland Christian Cremona, France Alvaro A.M.F. Cunha, Portugal Stephanos Dritsos, Greece John Duntemann, USA Lennart Elfgren, Sweden Ian Firth, United Kingdom Dan M. Frangopol, USA Yozo Fujino, Japan Yaojun Ge, China Christos Giarlelis, Greece Bruno Godart, France Roberto Gomez Martinez, Mexico Rade Hajdin, Switzerland Sergio Hampshire Santos, Brazil Paweł Hawryszków, Poland Stephen Hicks, New Zealand Chris Jurgens, South Africa Akio Kasuga, Japan Igor Kavrakov, Germany Ho-Kyung Kim, Republic of Korea Michael Kleiser, Austria Johann Kollegger, Austria Ryszard Kowalczyk, Poland

Andreas Lampropoulos, United Kingdom Dariusz Łydżba, Poland Fernando Madrazo-Aguirre, United Kingdom Ana Mandić Ivanković, Croatia Steffen Marx, Germany Philippe Menétrey, Switzerland Daniel Oliveira, Portugal Luis Oliveira-Santos, Portugal Vikram Pakrashi, Ireland Fabrizio Palmisano, Italy Carlo Pellegrino, Italy M. Dolores G. Pulido, Spain Wojciech Radomski, Poland Diogo Ribeiro, Portugal Daniele Rocchi, Italy Pavel Ryjáček, Czech Republic Marek Salamak, Poland Kristian Schellenberg, Switzerland Mike Schlaich, Germany Geralt Siebert, Germany Peter Simonsson, Sweden Enzo Siviero, Italy Tomasz W. Siwowski, Poland Bratislav Stipanić, Serbia Alfred Strauss, Austria Harshavardhan Subbarao, India Anton Syrkov, Russia Lars Toverud, Norway Wojciech Trochymiak, Poland Tina Vejrum, Denmark Jan Vitek, Czech Republic Alois Vorwangner, Austria Dawid Wiśniewski, Poland Adam Wysokowski, Poland Ye Xia, China Mariano Angelo Zanini, Italy Henryk Zobel, Poland Stefan Żmigrodzki, Canada Krzysztof Żółtowski, Poland

International Organising Committee

Jan Biliszczuk, Poland – Chair Paweł Hawryszków, Poland – Executive Chair

Olga Szymczyk, Poland / Germany – Secretary Elżbieta Burasińska, Poland – Financial Assistant

Maciej Hildebrand, Poland – Lead Editorial Team Marta Knawa-Hawryszków, Poland – Lead Graphic Design & Young Engineers Award Krzysztof Sadowski, Poland – Lead IT

Krzysztof Galik, Poland Aleksander Mróz, Poland Paweł Rawa, Poland Marco Teichgraeber, Poland Volodymyr Volotsiuga, Ukraine / Poland

ORGANISED BY

SUPPORTED BY

POLSKA IZBA INŻYNIERÓW BUDOWNICTWA

SPONSORS

GOLD SPONSOR Virtual Exhibitor

SILVER SPONSORS Virtual Exhibitors

BRONZE SPONSORS

Research & Design Office

MOSTY-WROCŁAW

€spe

YOUNG ENGINEERS PROGRAMME SPONSORS

STRUCTURAL ENGINEERING

INTERNATIONAL

A 10

MEDIA PARTNERS

INTERNATIONAL ONLINE MAGAZINE **e-mosty** BRIDGE DESIGN, CONSTRUCTION, OPERATION AND MAINTENANCE

PREFACE

On behalf of the International Association for Bridge and Structural Engineering (IABSE) we have great pleasure to welcome at the IABSE Symposium "Synergy of Culture and Civil Engineering – History and Challenges" on October 7-9, 2020 (Wrocław, Poland). The IABSE Symposium is organised by the Polish Group of IABSE and Wrocław University of Science and Technology (WUST).

The main goal of the Symposium is the creation of a forum for debate on the development of bridge and structural engineering as part of worldwide culture, and on current challenges in this area. The Symposium will be an important international event for scientists, experts, designers, contractors and all those who are interested in problems of bridges and other civil engineering structures, including not only technical issues, but also their presence in everyday life and in culture. A special invitation goes out to our younger colleagues, the builders of the future, to join us. Those born in or after 1986, should take advantage of the "IABSE Young Engineers Programme", including Young Engineers' Contribution Award sponsored by the IABSE Fellows and the Organising Committee.

The Scientific Committee, chaired by Jan Bień, Chair of the Polish Group of IABSE, and the Organising Committee, chaired by Jan Biliszczuk and Paweł Hawryszków, Secretary of the Polish Group of IABSE, have prepared a very attractive and innovative event, including Keynote, Plenary and Parallel Sessions. It has accepted 163 papers for presentation on the Symposium themes: Civil Engineering Structures as Monuments of Culture and Technical Development; Condition Assessment of Contemporary and Historical Structures; Conservation, Upgrading and Management of Contemporary and Historical Structures as well as the Future of Civil Engineering Structures.

We would like to thank the Authors of the papers for their valuable contribution, all members of the Scientific Committee for preparing the technical programme of this Symposium, and also we present our gratitude to all members of the Organising Committee for arranging all Symposium activities.

We are sure it will be a very fruitful event and we look forward to building new friendships and enhance old ones.

Jan Bień

Chair Scientific Committee

Jan Biliszczuk

Chair Organising Committee

IABSE 20

Paweł Hawryszków

Executive Chair Organising Committee

KEYNOTES

IABSE 2020

MANAGEMENT OF BRIDGE STRUCTURES – CHALLENGES AND POSSIBILITIES	
J. Bień M. Salamak	Page 8
OUTSTANDING CIVIL ENGINEERING STRUCTURES BUILT IN POLAND	
J. Biliszczuk P. Hawryszków R. Toczkiewicz K. Żółtowski	Page 32
CONDITION ASSESSMENT, MONITORING AND PRESERVATION OF SOME ICONIC CONCRETE STRUCTURES OF THE 20TH CENTURY	
R. Ceravolo	Page 59
CHALLENGE FOR NEXT GENERATION OF CONCRETE BRIDGES, NON-METALLIC BRIDGE WITH ZERO CEMENT CONCRETE	
A. Kasuga	Page 83
COMPOSITE DOWELS: THE WAY TO THE NEW FORMS OF STEEL-CONCRETE COMPOSITE STRUCTURES	
W. Lorenc	Page 98
BRIDGE AESTHETICS – FUNCTIONAL AND STRUCTURAL NEEDS VERSUS ARCHITECTURAL IMAGINATION	
W. Radomski	Page 139
BRIDGES IN THE WORLD HERITAGE LIST BETWEEN CULTURE AND TECHNICAL DEVELOPMENT	
E. Siviero V. Martini	Page 157
TOWARDS SUSTAINABLE TIMBER CONSTRUCTION THROUGH THE APPLICATION OF WOOD-WOOD CONNECTIONS	
Y. Weinand	Page 181

FORMER MASTER ENGINEERS

STEFAN BRYŁA – POLISH CREATOR OF THE FIRST WELDED ROAD BRIDGES

J. Biliszczuk J. Hołowaty J. Rabiega

Page 201

THE SWISS GIOVANNI LOMBARDI IN THE HISTORY OF CIVIL ENGINEERING OF XXI CENTURY

L. Ceriolo C. Zanini Barzaghi

Page 212

CIVIL ENGINEERING STRUCTURES AS MONUMENTS OF CULTURE AND TECHNICAL DEVELOPMENT

NOVEL STRUCTURAL ENGINEERING TECHNOLOGIES TO SERVE HERITAGE BRIDGES E. Brühwiler Page 221 WHY AND HOW TO INTRODUCE THE TEACHING OF HISTORY IN THE CURSUM STUDIORUM OF STRUCTURAL DISCIPLINES IN ENGINEERING FACULTIES L. Ceriolo Page 229 CONTRIBUTION OF INNOVATIVE TECHNIQUES FOR CONDITION ASSESSMENT OF HISTORICAL AND ICONIC STRUCTURES Page 237 B. Collin G. Camp P. Brouillac P. Carreaud H. Lançon **REBIRTH OF STONE BRIDGE IN THE CULTURAL CONTEXT** N.K. Hong H.M. Koh S.G. Hong Page 245 HISTORIC BRIDGE IN PLISZCZYŃSKA STREET IN LUBLIN S. Karaś Page 252 HISTORICAL CONDITIONINGS FORMING/SHAPING BRIDGES A. Leniak-Tomczyk G. Łagoda Page 260

COMBINING A ROAD VIADU	ART AND ENGINEERING – WARSAW'S OLDEST CT	
A. Marecki	M. Mistewicz	Page 268
THE CULTUR CULTURAL C	E-FORMING EFFECT OF A BRIDGE AS A SPATIAL-TEMPORAL ODE.	
T. Matusewi	CZ	Page 276
	ASSESMENT OF EXISTING SUSPENSION BRIDGE MEROON AND NIGERIA	
M.B. Petri		Page 283
	ORANDI AND HIS LEGACY IN THE REALIZATION CONCRETE BRIDGES	
E. Siviero	M. Culatti A. Zanchettin	Page 291
	ND HISTORICAL ASPECTS OF REPAIRING RA" FLYOVER IN WARSAW	
W. Trochym	ak K. Bucholc	Page 299
DEVELOPMEN REPUBLIC	NT OF CONCRETE BRIDGES IN THE CZECH	
J. L. Vítek		Page 307

ARCHITECTURE AND PLANNING

THIS IS NOT (ONLY) A BRIDGE "CECI N´EST PAS (JUSTE) UN PONT"	
P.P. Arroyo Alba	Page 316
STRUCTURAL STAINLESS STEELS: PRESERVING THE PAST AND CREATING TODAY'S LONG-LIFE ICONIC STRUCTURES	
A.P. Backhouse S.H. Mameng	Page 324
PLANNING POST-EARTHQUAKE SURVEYS: ASSESSMENTS AND RECONSTRUCTION OF SMALL HISTORICAL CENTRES	
V. Croce D. Diamantidis M. Sýkora	Page 332
STADIA ROOFS, THE DEVELOPMENT OF GRAVITY STRESSED CABLE NETS	
T. Finlay F. McCormick M. Birchall	Page 340
CHANGEABLE FATE OF COVERED TRAM TRACK APPLICATIONS	
I. Gisterek J. Makuch	Page 348
LINKING POLAND AND GERMANY – A NEW RAIL BRIDGE OVER THE RIVER ODRA: THE KÜSTRIN-KIETZ CROSSING	
B. Halaczek W. Strobl U. Kubenz B. Engel	Page 356
SYNERGY OF CULTURE AND CIVIL ENGINEERING – PROJECT "BRIDGE BUILDERS" ORGANISED BY WROCŁAW EUROPEAN CAPITAL OF CULTURE	
P. Hawryszków K. Galik M. Bocian	Page 364
PARAMETRIC GREEN FOOTBRIDGES IN URBAN SPACE. A NEW APPROACH TO DESIGN ENVIRONMENT- FRIENDLY STRUCTURES	
K. Januszkiewicz J. Gołębiewski	Page 372
INDOOR AIR QUALITY SIMULATION WITH REDUCED SCALE MODELS FOR HOUSING BUILDINGS IN THE CITY OF LIMA, PERU	

M. Regalado E. Santa Maria

ASSESSING HISTORICAL STRUCTURES ALONG MASS RAPID TRANSPORT CORRIDORS

BELGRADE BRIDGES ACROSS SAVA RIVER AS MONUMENTS OF TECHNICAL DEVELOPMENT IN BRIDGE ENGINEERING

B. Stipanić

B. C. Roy V. Pawar

Page 397

Page 390

ADVANCED TECHNOLOGIES IN CIVIL ENGINEERING

SUBMERGED FLOATING TUNNELS - SENSITIVITY IN HIGH CURRENTS	
J. Connell	Page 406
DEMOLITION OF FATIGUED BRIDGES WITH MOVABLE SCAFFOLDING SYSTEMS	
M. Däbritz	Page 414
PROGNOSIS OF THE LONG-TERM BEHAVIOR NEW CANTILEVERED BRIDGE IN WROCŁAW	
C. Machelski P. Wanecki	Page 422
THE SUBMERGED FLOATING TUBE BRIDGE: HISTORY OF A NEW STRUCTURE	
A. Minoretti T. O. Olsen	Page 430
GEOMETRICAL CONTROL IN SPAN BY SPAN CAST IN SITU CONSTRUCTION OF BRIDGE DECKS	
P. Pacheco J. Soares A. Guerra A. Torres A. Coelho H. Coelho	Page 438
AN INNOVATIVE DESIGN OF A LONG INTEGRAL BRIDGE IN THE UK	
M. Sankaran P. Isidorou	Page 446

BRIDGE OVER VISTULA RIVER IN CRACOW: THE FIRST RAILWAY NETWORK ARCH BRIDGE USING COLD-BENT HD SECTIONS AND COMPOSITE DOWELS	
R. Sęk K. Szewczyk B. Pilujski D. Sobala W. Lorenc M. Kożuch	Page 454
LIGHTWEIGHT STRUCTURES TECHNOLOGY FOR BRIDGES SMALL AND LARGE – SHORT HISTORY AND NEW DEVELOPMENTS.	
I.G. Siotor	Page 463
THE POLISH EXPERIENCE IN FRP COMPOSITE BRIDGE CONSTRUCTION	
T. Siwowski M. Kulpa M. Rajchel	Page 471
INNOVATIVE LIGHTWEIGHT FOOTBRIDGES IN COMPREHENSIVE MATERIAL AND DYNAMIC ANALYSIS	
B. Stankiewicz W. Sredniawa	Page 479
ASSESSMENT OF PRESTRESSED CONCRETE BRIDGES - CHALLENGES	
B. Täljsten B. Paulsson C. Popescu N. Bagge R. Nilforoush M. Emborg Th. Blanksvärd G. Sas L. Elfgren	Page 487
DANUBE CROSSING WITHIN THE D4R7 PROJECT IN BRATISLAVA	
W. Włodzimirski L. MT. López M. Smolnik J. Jarosz P. Łysiak	Page 495
REALIZATION OF TIMBER VEHICLE BRIDGE IN KOREA	
J. Yi N. K. Hong D. B. Kim C. K. Kim H. M. Koh W. Park	Page 503
OA666 IN LUXEMBOURG - HIGH STRENGTH STEEL FOR A VERY SLENDER HIGHWAY DECK IN TIGHT CONSTRUCTION SITE: A MODERN ANSWER TO A FUTURE TYPICAL PROBLEM	
R. Zanon D. Rademacher	Page 511

CHALLENGES IN DIAGNOSTICS AND REHABILITATION OF STRUCTURES

ENGINEERING KNOWLEDGE IN ANCIENT PALMYRA	
M. Barański	Page 520
UNUSUAL COMPOSITION AND LOAD-CARRYING CAPACITY OF A 100-YEAR OLD EARLY AGE STEEL EXPOSITION HALL	
V. Bogaert	Page 528
FORENSIC ANALYSES OF CRACKING IN EXTERIOR WALL CONSTRUCTIONS	
C. Chaudhry K. Burzynska	Page 536
AFTER A GREAT FIRE. THE PROBLEM OF ROOF RECOVERY IN HISTORIC BUILDINGS	
M. Doroz-Turek M. Barański	Page 544
CONDITION ASSESSMENT OF AN HISTORICAL STRUCTURE: THE CNIT VAULT IN PARIS	
B. Godart F. Schmidt J.J. Brioist J.P. Deveaud F. Dias	Page 552
RISK FACTORS DURING UNDERPINNING OF HISTORIC STRUCTURES	
J. Halpern J. Feuerborn J. Wu	Page 560
STRUCTURAL VERSUS AESTHETICAL CONCERNS IN RECONSTRUCTION OF HISTORICAL MASONRY BUILDINGS	
M. Hrasnica S. Medić	Page 569
INSTALLATION OF BUDDHA STATUE - MONUMENT OF ENGINEERING & CULTURE	
P.Y. Manjure	Page 577
VIBRATION MONITORING OF AN EXISTING MASONRY BUILDING UNDER DEMOLITION	
P. Martakis Y. Reuland V. Dertimanis E. Chatzi	Page 585

INCREASING THE LIFETIME OF ENGINEERING STRUCTURES THROUGH THE USE OF COMPOSITE LAGGINGS	
E. Mieloszyk A. Milewska M. Abramski	Page 593
RC ROOF STRUCTURES FROM POST-WAR TIME	
R. Ortlepp S. Ortlepp C. Beyer	Page 601
PRELIMINARY STUDY FOR THE RECONSTRUCTION OF THE TOWER HELMET OF ST. LUKE'S CHURCH IN DRESDEN	
R. Ortlepp	Page 609
EFFECT OF LOW RIBBING AND CONCRETE COVER THICKNESS ON THE ANCHORAGE OF BARS IN EXISTING R.C. STRUCTURES	
F. Palmisano M. Biasi R. Greco G.C. Marano	Page 617
THE HISTORIC OLYMPIC STADIUM IN HELSINKI OF 1938. DEVELOPMENT OF HIGHLY DYNAMICALLY LOADED UPLIFT BEARINGS FOR THE NEW MODERN STAND ROOFS INTEGRATE INCONSPICUOUS IN THE MONUMENTAL PROTECTED FACADE	
D. Wilming	Page 625
REBUILDING OF THE HISTORIC ST MARY'S CATHEDRAL IN THE CAPITAL OF WESTERN AUSTRALIA - SYNERGY OF HISTORY AND USABILITY OF STRUCTURE	
A. Wysokowski	Page 633

NEW IDEAS AND MATERIALS

THE DEFINITION OF DRIFT CAPACITY OF WALLS IN THE SEISMIC ASSESSMENT OF MASONRY BUILDINGS	
M. L. Beconcini P. Croce P. Formichi F. Landi A. Immorali	Page 642
RECENT DEVELOPMENTS IN DESIGN METHODS FOR MASONRY PILLAR STRUCTURES	
T. Cornelius	Page 650
COMBATING THE "SHOCK DOCTRINE" TO REPAIR HISTORICAL HYDRAULIC STRUCTURES	
R.A. Daniel	Page 658
DEVELOPMENT OF NACELLE ASSEMBLY LIFTING SYSTEM FOR SELF-ERECTING AND ON-SITE FABRICATED WIND TOWER	
J. E. Jones J. R. Dydo V. L. Rhoades	Page 666
EXAMPLES OF BUILDINGS PROTECTION AGAINST VIBRATIONS AS ELEMENT OF SUSTAINABILITY IN CIVIL ENGINEERING	
M. Knawa-Hawryszków	Page 676
THE COHERENT CONCEPT OF THE LEVER ARM IN A CROSS-SECTION	
W. Lorenc S. Balcerowiak J. Czajkowski J. Dobrzański	Page 684
FRACTURE ENERGY OF CONCRETE FOR BRIDGE ASSESSMENT	
R. Nilforoush J. Nilimaa N. Bagge A. Puurula U. Ohlsson M. Nilsson G. Sas L. Elfgren	Page 692
ANCHORAGE CAPACITY AND PERFORMANCE IN PLAIN AND STEEL-FIBRE-REINFORCED CONCRETE	
R. Nilforoush G. Pia M. Nilsson L. Elfgren	Page 700
EFFICIENT AND LOW INVASIVE STRENGTHENING OF EXISTING CONCRETE STRUCTURES IN SHEAR	
N. Randl P. Harsányi	Page 710

DAMAGE AND FAILURE MECHANISMS ASSOCIATED WITH STRESS TRANSFER OF TEXTILE OVERLAP JOINTS IN TEXTILE REINFORCED CONCRETE

E. Rossi N. Randl T. Mészöly P. Harsanyi

LATEST ACHIEVEMENTS IN CONCRETE STRUCTURES THREE-DIMENSIONAL PRINTING

P. Ziółkowski M. Niedostatkiewicz

SEISMIC, DYNAMIC AND FATIGUE ISSUES IN CIVIL ENGINERRING

SUSSPENSION STRING FUTURE STRUCTURE	
E. Beivydas	Page 733
DYNAMIC INVESTIGATIONS ON THE HEALTH STATE AND SEISMIC VULNERABILITY OF MORANDI'S PAVILION V OF TURIN EXHIBITION CENTER	
R. Ceravolo G. Coletta E. Lenticchia D. Minervini A. Quattron	e. Page 741
REPAIR PROJECT OF A VEHICULAR BRIDGE DAMAGED DURING THE 2017 PUEBLA-MORELOS EARTHQUAKE: SEISMIC EVALUATION	
D. Cervantes H. Guerrerro J.A. Escobar R. Gómez	Page 749
DLMS FOR PEDESTRIAN VIBRATION CONTROL ON BRIDGES J. Drobac I. Štimac Grandić A. Bjelanović	Page 757
COMPARISON OF THE STRUCTURAL BEHAVIOUR BETWEEN UNDER-DECK CABLE-STAYED AND UNDER-DECK SUSPENSION FOOTBRIDGES UNDER PEDESTRIAN ACTION	
K. Georgiadis A. M. Ruiz-Teran P. J. Stafford	Page 765
SEISMIC ISOLATION PROTECTION SYSTEM FOR THE 1081-BED ESKIŞEHIR CITY HOSPITAL IN TURKEY	
P. Huber M. Bresler L. Paroli U. Kruzel	Page 773
STUDY OF THE VOLODARSKY DRAWBRIDGE ISSUES	
A. Lang N. Labutin L. Diachenko	Page 781

Page 718

Page 726

VIBRATIONS OF FOOTBRIDGES CAUSED BY RUNNING PEOPLE	
M. Pańtak	Page 789
MODE I FATIGUE CRACK GROWTH TESTS ON PUDDLE IRON STRENGTHENED WITH CFRP PLATES	
B. Pedrosa J. Correia G. Lesiuk C. Rebelo A. Jesus R. Calçada	Page 797
PROBABILISTIC FIELDS OF FATIGUE CRACK GROWTH RATES OF PUDDLE IRON BASED ON HUFFMAN LOCAL APPROACH	
B. Pedrosa J. Correia G. Lesiuk C. Rebelo P. Huffman A. Jesus	Page 804
AMBIENT VIBRATION TESTS FOR MODAL CHARACTERIZATION OF AN EXISTING STEEL-CONCRETE COMPOSITE BRIDGE	
C. Pellegrino M.A. Zanini F. Faleschini F. Andreose L. Mancassola M. Frizzarin	Page 812
ON SUSPENSION BRIDGE FLUTTER ANALYSIS INCLUDING DRAG FORCE EFFECTS	
G. Piana A. Carpinteri	Page 820
FATIGUE ACCUMULATION COMPARISON OF SIMULATED TRAFFIC FLOW AND DESIGN LOADS IN REINFORCING STEEL OF R.C BRIDGES	
M. Ranta K. Julku H. Lilja	Page 828
HAMMERSMITH BRIDGE – INTEGRATION OF SITE TESTING AND NUMERICAL ANALYSIS	
R. Rusev R. Foster T. Abbott	Page 836
COMPARATIVE STUDY OF INTERNATIONAL MAJOR CODES FOR THE SEISMIC DESIGN OF BUILDINGS	
S. Hampshire Santos C. Giarlelis J. Jara A. Lampropoulos D. Lo Presti S. Montens F. Sutcu T. Takeuchi M. Traikova H. Varum J. White S. Zmigrodzki J.Pinto A. Arai	Page 844
SEISMIC RELIABILITY ANALYSIS OF A GRAVITY-DESIGNED TWO-SPAN OPEN-SPANDREL REINFORCED CONCRETE ARCH BRIDGE	
M.A. Zanini K. Toska G. Feltrin S. Balbo L. Hofer C. Pellegrino	Page 852

ANALYSES AND TESTING OF BRIDGES

EXTENDED VALIDATION FOR USING NONLINEAR FINITE ELEMENT ANALYSIS FOR ASSESSING EXISTING CONCRETE STRUCTURES	
A. de Boer M.A.N. Hendriks Y. Yang	Page 861
AXIAL ROTATION OF STEEL TUBULAR ARCH SPRINGS CONNECTED TO CONCRETE ABUTMENT	
V. Bogaert	Page 869
IMPLICATION OF CLIMATE CHANGE ON CLIMATIC ACTIONS ON STRUCTURES: THE UPDATE OF CLIMATIC LOAD MAPS	
P. Croce P. Formichi F. Landi	Page 877
BEHAVIOUR ASSESSMENT OF BRIDGES CONSIDERING THE EFFECT OF THE PROGRESSIVE SCOUR AND FILL OVER TIME	
D. Flores Vidriales R. Gómez Martínez D. Tolentino López	Page 885
ADDITIONAL EFFECTS FROM TRANSFORMING OPEN BRIDGE CROSS SECTION TO SEMI-CLOSED	
St. Ivanov V. Vestman P. Collin	Page 893
STRUCTURAL PERFORMANCE OF A MEDIEVAL STONE MASONRY ARCH BRIDGE	
D.V. Oliveira R. Allahvirdizadeh A. Sánchez B. Riveiro N. Mendes R.A. Silva F. Fernandes	Page 901
STRENGTHENING OF SLAB BRIDGES WITH TOP CONCRETE LAYERS	
MP. Pfleger M. Vill	Page 909
INFLUENCE OF A HOT ASPHALT MIXTURE ON THE STRESSES IN THE POST-TENSIONED BOX GIRDER	
M. Pustelnik J. Biliszczuk	Page 917

STEEL BRIDGE MEMBER RESISTANCE: EN1993-2 COMPARED TO AASHTO (USA)	
S. Rhodes B. Donoghue P. Icke	Page 926
ANALYSIS OF THE "PONTE DO ARCO" STONE MASONRY ARCH BRIDGE	
A. Rocco D.V. Oliveira E. Garbin F.M. Fernandes	Page 934
RESEARCH ON BRIDGE ELEMENTS MADE OF LIGHTWEIGHT	
CONCRETE REINFORCED WITH GFRP REBARS	
A. Wiater B. Piątek T. Siwowski	Page 942

BIM IN CIVIL ENGINEERING

IS BUILDING INFORMATION MODELLING A DISRUPTIVE INNOVATION?	
V. Boros	Page 951
INTEROPERABILITY OF CIVIL ENGINEERING BIM MODELS WITH VIRTUAL REALITY TOOLS	
F. Calderón de Diego R. Hindi J.A. Lozano Galant	Page 959
AN INTEGRATED BIM METHODOLOGY FOR THE SEISMIC ASSESSMENT OF MASONRY BUILDINGS	
P. Croce F. Landi M. Martino B. Puccini	Page 967
BIM BASIC WORKFLOWS IN BRIDGE DESIGN – CHALLENGES AND DIFFICULTIES	
Ł. Grobelny W. Trochymiak I. Czmoch	Page 975
OPEN BIM APPROACH FOR EFFICIENT SERIAL BRIDGE MODELING	
B. Will P.C. Max A. Brommer G. Deinl G. Strekelj V. Samec J. Stampler	Page 983

BRIDGE CONDITION ASSESSMENT, MAINTENANCE AND MANAGEMENT

CONCRETE-FILLED FRP TUBULAR MEMBERS IN MARINE AND BRIDGE STRUCTURES	
M. Abramski	Page 992
POSSIBLE APPLICATION OF FRP BRIDGES IN RENOVATION AND REPLACEMENT TASK OF RIJKSWATERSTAAT	
J. de Boon D. Schaafsma J. van der Heide	Page 1000
EVALUATION CRITERIA APPLIED IN BRIDGE INFRASTRUCTURE MAINTENANCE IN POLAND AND SELECTED COUNTRIES OF THE WORLD	
K. Bucholc W. Trochymiak	Page 1008
MECHANSIMS OF DEFECTS FORMATION OF WATERPROOFING MEMBRANES ON CONCRETE BRIDGE DECKS	
B. Chmielewska G. Adamczewski	Page 1016
REPAIR OF HIGH SILICON STEEL RAILWAY BRIDGES	
J. Hołowaty	Page 1024
STRUCTURAL REINFORCEMENT FOR HANGERS AND MAIN CABLE OF BOSPHORUS BRIDGE	
T. Idani M. Sugimura	Page 1032
THE COLLAPSE OF THE MORANDI'S BRIDGE: REMARKS ABOUT FATIGUE AND CORROSION	
S. Invernizzi F. Montagnoli A. Carpinteri	Page 1040
EXPERIMENTAL INVESTIGATION AND FEM ANALYSIS OF A COMPOSITE STEEL-CONCRETE BRIDGE SUPERSTRUCTURE WITH PARTIALLY ENCASED STEEL PROFILES	
A. Jiponov L. Georgiev	Page 1048
CORROSION PROTECTION OF STEEL BRIDGES WITH THERMAL SPRAY ZINC DUPLEX COATINGS – 50 YEARS EXPERIENCES	
O.Ø. Knudsen M. van Leeuwen M. Gagné H. Matre	Page 1055

RESISTANCE MODELS FOR SEMI-PROBABILISTIC ASSESSMENT OF HISTORIC STEEL BRIDGES	
R. Lenner P. Ryjacek M. Sykora	Page 1061
ADDRESSING ALL OF SOCIETY'S NEEDS IN THE SELECTION AND USE OF KEY BRIDGE COMPONENTS	
N. Meng G. Moor M. Fanselow	Page 1069
MONITORING-BASED RELIABILITY ASSESSMENT OF A STEEL ARCH BRIDGE	
H. Onysyk	Page 1077
REHABILITATION OF THE EXISTING 4 SPAN CONTINUOUS GIRDER BRIDGE USING PRESTRESSING TECHNIQUE	
R. Pejovic J. Pejovic N. Serdar	Page 1085
UPGRADING OF EXISTING BRIDGES WITH CFRP PRESTRESSING SYSTEM – RECENT POLISH EXPERIENCE	
B. Piątek P. Siwowska T. Siwowski	Page 1093
A COMPARISON BETWEEN LASER SCANNING, PHOTOGRAMMETRY AND INFRARED SCANNING TO CREATE 3D DIGITAL MODELS OF EXISTING CONCRETE BRIDGES	
C. Popescu B. Täljsten T. Blanksvärd L. Elfgren	Page 1101
DEGRADATION OF THE LONG-TERM OPERATED METALLIC BRIDGE MATERIALS AND ITS REHABILITATION USING COMPOSITE STRUCTURES	
J. Rabiega G. Lesiuk W. Wiśniewski	Page 1109
ADVANCED BRIDGE SOLUTIONS WITH LOW LIFE-CYCLE COSTS	
D. Rademacher A. Barceló O. Hechler	Page 1117
LONG-TERM MOVEMENT BEHAVIOUR OF BRIDGE BEARINGS AND EXPANSION JOINTS FROM SHM DATA	
T. Richli A. Chrysovergis N. Meng M. Treacy	Page 1125

THE ULTTIMATE LOAD TEST OF THE HISTORICAL RIVETED ROAD BRIDGE	
P. Ryjáček V. Stančík J. Braun P. Jašek	Page 1133
DETECTION OF SPARSE DAMAGES IN PLATES	
N. Sabourova I. Duvnjak N. Grip D. Damjanović Y. Tu C. Popescu U. Ohlsson L.Elfgren	Page 1141
UPGRADING POTENTIALS OF FOUNDING EPOCH HOUSES FOR HEAT WAVES INTENSIFIED BY CLIMATE CHANGE	
C. Schünemann D. Schiela R. Ortlepp	Page 1149
ASSESSMENT AND FORECAST OF THE CULVERT'S PERFORMANCE WITHIN A ROAD INFRASTRUCTURE MANAGEMENT SYSTEM. LITERATURE REVIEW	
F. Sousa J. Matos A. Camões	Page 1157
APPLICATION OF NEW TECHNOLOGY FOR REPLACEMENT OF DETERIORATED CONCRETE SLAB	
H. Suzuki D. Hashidume Y. Nakayama T. Ichinomiya	Page 1165
ENHANCING OF BRIDGE MANAGEMENT GIVEN FAILURES DATA	
A. Syrkov A. Sizikov	Page 1173
BRIDGEDECK PRESERVATION. WHERE DO WE COME FROM AND WHERE DO WE GO?	
D. Uebelhoer	Page 1181
EVALUATION OF LOAD CAPACITY AND DURABILITY BEARING STRUCTURES OF BRIDGES SUPERSTRUCTURES DUE TO WEAR	
A. I. Vasiliev	Page 1189
PONIATOWSKI BRIDGE & VIADUCT IN WARSAW – SAFETY OF PEOPLE AND STRUCTURE VERSUS CONSERVATION REQUIREMENT	
H. Zobel T. AlKhafaji W. Karwowski P. Mossakowski M. Wróbel	Page 1197

HISTORIC LATTICE ARCH BRIDGE, SEARCHING FOR REHABILITATION METHODS

K. Żółtowski					Page	1203
RECONSTRUCTION IN NIN	AND REST	ORATION (OF THE UPPE	R BRIDGE		
I. Štimac Grandić	D. Grandić	P. Šćulac	L. Matešić	P. Krolo	Page	1210

IABSE 2020 WROCLAW POLAND

LIST OF AUTHORS

Abbott T.	Page: 836	Brouillac P.	Page: 237
Abramski M.	Pages: 593; 992	Brühwiler E.	Page: 221
Adamczewski G.	Page: 1016	Bucholc K.	Pages: 299; 1008
AlKhafaji T.	Page: 1197	Burzynska K.	Page: 536
Allahvirdizadeh R.	Page: 901		
Andreose F.	Page: 812	Calderón deDiego F.	Page: 959
Arai A.	Page: 844	Calçada R.	Page: 797
ArroyoAlba P.P.	Page: 316	Camp G.	Page: 237
		Camões A.	Page: 1157
Backhouse A.P.	Page: 324	Carpinteri A.	Pages: 820; 1040
Bagge N.	Pages: 487; 692	Carreaud P.	Page: 237
Balbo S.	Page: 852	Ceravolo R.	Pages: 59; 741
Balcerowiak S.	Page: 684	Ceriolo L.	Pages: 212; 229
Barański M.	Pages: 520; 544	Cervantes D.	Page: 749
Barceló A.	Page: 1117	Chatzi E.	Page: 585
Beconcini L. M.	Page: 642	Chaudhry C.	Page: 536
Beivydas E.	Page: 733	Chmielewska B.	Page: 1016
Beyer C.	Page: 601	Chrysovergis A.	Page: 1125
Biasi M.	Page: 617	Coelho A.	Pages: 438; 438
Bień J.	Page: 8	Coletta G.	Page: 741
Biliszczuk J.	Pages: 32; 201; 917	Collin B.	Pages: 237; 893
Birchall M.	Page: 340	Connell J.	Page: 406
Bjelanović A.	Page: 757	Cornelius T.	Page: 650
Blanksvärd Th.	Pages: 487; 1101	Correia J.	Pages: 797; 804
Bocian M.	Page: 364	Croce V.	Pages: 332; 642; 877; 967
Bogaert V.	Pages: 528; 869	Culatti M.	Page: 291
Boros V.	Page: 951	Czajkowski J.	Page: 684
Braun J.	Page: 1133	Czmoch I.	Page: 975
Bresler M.	Page: 773		
Brioist J.J.	Page: 552	Damjanović D.	Page: 1141
Brommer A.	Page: 983	Daniel R.A.	Page: 658

Däbritz M.	Page: 414	Gisterek I.	Page: 348
De Boer A.	Page: 861	Godart B.	Page: 552
De Boon J.	Page: 1000	Gołębiewski J.	Page: 372
Deinl G.	Page: 983	Grandić D.	Page: 1210
Dertimanis V.	Page: 585	Greco R.	Page: 617
Deveaud J.P.	Page: 552	Grip N.	Page: 1141
Diachenko L.	Page: 781	Grobelny Ł.	Page: 975
Diamantidis D.	Page: 332	Guerra A.	Page: 438
Dias F.	Page: 552	Guerrerro H.	Page: 749
Dobrzański J.	Page: 684	Gómez Martínez R.	Pages: 749; 885
Donoghue B.	Page: 926		
Doroz-Turek M.	Page: 544	Halaczek B.	Page: 356
Drobac J.	Page: 757	Halpern J.	Page: 560
Duvnjak I.	Page: 1141	Hampshire Santos S.	Page: 844
Dydo R. J.	Page: 666	Harsányi P.	Pages: 710; 718
		Hashidume D.	Pages: 1165
Elfgren L.	Pages: 487; 692; 700; 1101	Hawryszków P.	Pages: 32; 364
Emborg M.	Page: 487	Hechler O.	Page: 1117
Engel B.	Page: 356	Hendriks M.A.N.	Page: 861
Escobar J.A.	Page: 749	Hindi R.	Page: 959
		Hofer L.	Page: 852
Faleschini F.	Page: 812	Hong N.K.	Pages: 245; 245; 503
Fanselow M.	Page: 1069	Hołowaty J.	Pages: 201; 1024
Feltrin G.	Page: 852	Hrasnica M.	Page: 569
Fernandes F.	Pages: 901; 934	Huber P.	Page: 773
Feuerborn J.	Page: 560	Huffman P.	Page: 804
Finlay T.	Page: 340		
Flores Vidriales D.	Page: 885	Ichinomiya T.	Page: 1165
Formichi P.	Pages: 642; 877	Icke P.	Page: 926
Foster R.	Page: 836	Idani T.	Page: 1032
Frizzarin M.	Page: 812	Immorali A.	Page: 642
		Invernizzi S.	Page: 1040
Gagné M.	Page: 1055	Isidorou P.	Page: 446
Galik K.	Page: 364	Ivanov St.	Page: 893
Garbin E.	Page: 934		
Georgiadis K.	Page: 765	Januszkiewicz K.	Page: 372
Georgiev L.	Page: 1048	Jara J.	Page: 844
Giarlelis C.	Page: 844	Jarosz J.	Page: 495
	-		-

L. Y. 1. D	D 1122	Martalata C	D 422
Jašek P.	Page: 1133	Machelski C.	Page: 422
Jesus A.	Pages: 797; 804	Makuch J.	Page: 348
Jiponov A.	Page: 1048	Mameng S.H.	Page: 324
Jones E. J.	Page: 666	Mancassola L.	Page: 812
Julku K.	Page: 828	Manjure P.Y.	Page: 577
/ -		Marano G.C.	Page: 617
Karaś S.	Page: 252	Marecki A.	Page: 268
Karwowski W.	Page: 1197	Martakis P.	Page: 585
Kasuga A.	Page: 83	Martini V.	Page: 157
Kim B. D.	Pages: 503; 503	Martino M.	Page: 967
Knawa-Hawryszków M	. Page: 676	Matešić L.	Page: 1210
Knudsen O.Ø.	Page: 1055	Matos J.	Page: 1157
Koh H.M.	Pages: 245; 503	Matre H.	Page: 1055
Kożuch M.	Page: 454	Matusewicz T.	Page: 276
Krolo P.	Page: 1210	Max P.C.	Page: 983
Kruzel U.	Page: 773	McCormick F.	Page: 340
Kubenz U.	Page: 356	Medić S.	Page: 569
Kulpa M.	Page: 471	Mendes N.	Page: 901
		Meng N.	Pages: 1069; 1125
Labutin N.	Page: 781	Mészöly T.	Page: 718
Lampropoulos A.	Page: 844	Mieloszyk E.	Page: 593
Landi F.	Pages: 642; 877; 967	Milewska A.	Page: 593
Lang A.	Page: 781	Minervini D.	Page: 741
Lançon H.	Page: 237	Minoretti A.	Page: 430
Leniak-Tomczyk A.	Page: 260	Mistewicz M.	Page: 268
Lenner R.	Page: 1061	Montagnoli F.	Page: 1040
Lenticchia E.	Page: 741	Montens S.	Page: 844
Lesiuk G.	Pages: 797; 804; 1109	Moor G.	Page: 1069
Lilja H.	Page: 828	Mossakowski P.	Page: 1197
Lo Presti D.	Page: 844		
Lorenc W.	Pages: 98; 454; 684	Nakayama Y.	Page: 1165
Lozano Galant J.A.	Page: 959	Niedostatkiewicz M.	Page: 726
López MT. L.	Page: 495	Nilforoush R.	Pages: 487; 692; 700
		Nilimaa J.	Page: 692
Łagoda G.	Page: 260	Nilsson M.	Pages: 692; 700
Łysiak P.	Page: 495		
-	-		

Ohlsson U.	Pages: 692; 1141	Rebelo C.	Pages: 797; 804
Oliveira D.V.	Pages: 901; 934	Regalado M.	Page: 380
Olsen O. T.	Page: 430	Reuland Y.	Page: 585
Onysyk H.	Page: 1077	Rhoades L. V.	Page: 666
Ortlepp R.	Pages: 601; 609 ; 1149	Rhodes S.	Page: 926
Ortlepp S.	Page: 601	Richli T.	Page: 1125
		Riveiro B.	Page: 901
Pacheco P.	Page: 438	Rocco A.	Page: 934
Palmisano F.	Page: 617	Rossi E.	Page: 718
Park W.	Page: 503	Roy C. B.	Page: 390
Paroli L.	Page: 773	Ruiz-Teran M. A.	Page: 765
Paulsson B.	Page: 487	Rusev R.	Page: 836
Pawar V.	Page: 390	Ryjáček P.	Pages: 1061; 1133
Pańtak M.	Page: 789		
Pedrosa B.	Pages: 797; 804	Sabourova N.	Page: 1141
Pejovic R.	Pages: 1085; 1085	Salamak M.	Page: 8
Pellegrino C.	Pages: 812; 852	Samec V.	Page: 983
Petri M.B.	Page: 283	Sankaran M.	Page: 446
Pfleger MP.	Page: 909	Santa Maria E.	Page: 380
Pia G.	Page: 700	Sánchez A.	Page: 901
Piątek B.	Pages: 942; 1093	Sas G.	Pages: 487; 692
Piana G.	Page: 820	Schaafsma D.	Page: 1000
Pilujski B.	Page: 454	Schiela D.	Page: 1149
Pinto J.	Page: 844	Schmidt F.	Page: 552
Popescu C.	Pages: 487; 1101; 1141	Schünemann C.	Page: 1149
Puccini B.	Page: 967	Serdar N.	Page: 1085
Pustelnik M.	Page: 917	Silva R.A.	Page: 901
Puurula A.	Page: 692	Siotor I.G.	Page: 463
		Siviero E.	Pages: 157; 291
Quattrone. A.	Page: 741	Siwowska P.	Page: 1093
		Siwowski T.	Pages: 471; 942; 1093
Rabiega J.	Pages: 201; 1109	Sizikov A.	Page: 1173
Rademacher D.	Pages: 511; 1117	Smolnik M.	Page: 495
Radomski W.	Page: 139	Soares J.	Page: 438
Rajchel M.	Page: 471	Sobala D.	Page: 454
Randl N.	Pages: 710; 718	Sousa F.	Page: 1157
Ranta M.	Page: 828		

Stafford J. P.	Page: 765	Vill M.	Page: 909
Stampler J.	Page: 983	Vítek L. J.	Page: 309 Page: 307
Stampler J. Stankiewicz B.	0	VIICK L. J.	rage. 507
Stančík V.	Page: 479	Wanecki P.	Dago: 422
	Page: 1133		Page: 422
Stipanić B.	Page: 397	Weinand Y.	Page: 181
Strekelj G.	Page: 983	White J.	Page: 844
Strobl W.	Page: 356	Wiater A.	Page: 942
Sugimura M.	Page: 1032	Will B.	Page: 983
Sutcu F.	Page: 844	Wilming D.	Page: 625
Suzuki H.	Page: 1165	Wiśniewski W.	Page: 1109
Syrkov A.	Page: 1173	Wróbel M.	Page: 1197
Szewczyk K.	Page: 454	Wu J.	Page: 560
Sýkora M.	Pages: 332; 1173	Wysokowski A.	Page: 633
Sęk R.	Page: 454	Włodzimirski W.	Page: 495
Średniawa W.	Page: 479	Yang Y.	Page: 861
		Yi J.	Page: 503
Štimac Grandić I.	Pages: 757; 1210		
Šćulac P.	Page: 1210	Zanchettin A.	Page: 291
		Zanini M.A.	Pages: 812; 852
Takeuchi T.	Page: 844	Zanini Barzaghi C.	Page: 212
Täljsten B.	Pages: 487; 1101	Zanon R.	Page: 511
Toczkiewicz R.	Page: 32	Ziółkowski P.	Page: 726
Tolentino López D.	Page: 885	Zobel H.	Page: 1197
Torres A.	Page: 438		
Toska K.	Page: 852	Żółtowski K.	Pages: 32; 1203
Traikova M.	Page: 844	Żmigrodzki S.	Page: 844
Treacy M.	Page: 1125		
Trochymiak W.	Pages: 299; 975; 1008		
Tu Y.	Page: 1141		
Uebelhoer D.	Page: 1181		
Van Der Heide J.	Page: 1000		
Van Leeuwen M.	Page: 1055		
Varum H.	Page: 844		
Vasiliev I. A.	Page: 1189		
Vestman V.	Page: 893		

IABSE REPORTS

AVAILABLE IN PRINT (selected copies) and ONLINE: https://www.shop-iabse.org/

- Vol. 116 Synergy of Culture and Civil Engineering History and Challenges, Wrocław 2020
- Vol. 115 The Evolving Metropolis, New York 2019
- Vol. 114 Towards a Resilient Built Environment, Asset and Risk Management, Guimaraes 2019
- Vol. 113 Young Engineers Colloquium, Shanghai 2018
- Vol. 112 Tomorrow's Megastructures, Nantes 2018
- Vol. 111 Engineering the Past, to Meet the Needs of the Future, Copenhagen 2018
- Vol. 110 Engineering the Developing World, Kuala Lumpur 2018
- Vol. 109 Engineering the Future, Vancouver 2017
- Vol. 108 Creativity and Collaboration, IABSE Conference, Bath 2017
- Vol. 107 Ignorance, Uncertainty, and Human Errors in Structural Engineering, Helsinki 2017
- Vol. 106 Bridges and Structures Sustainability Seeking Intelligent Solutions, Guangzhou 2016
- Vol. 105 Structural Engineering, Providing Solution to Challenges, Geneva 2015
- Vol. 104 Elegance in Structures, IABSE Conference, Nara 2015
- Vol. 103 Safety, Robustness and Condition Assessment of Structures, IABSE Workshop, Helsinki 2015
- Vol. 102 Engineering for Progress, Nature and People, Madrid 2014
- Vol. 101 Long Span Bridges and Roofs Development, Design and Implementation, Kolkata 2013
- Vol. 100 Safety, Failures and Robustness of Large Structures, IABSE Workshop, Helsinki 2013
- Vol. 99 Assessment, Upgrading and Refurbishment of Infrastructures, IABSE Conference, Rotterdam 2013
- Vol. 98 Global Thinking in Structural Engineering: Recent Achievements, IABSE Conference, Sharm El Sheikh 2012
- Vol. 97 Large Structures and Infrastructures for Environmentally Constrained and Urbanised Areas, Venice 2010
- Vol. 96 Sustainable Infrastructure Environment Friendly, Safe and Resource Efficient, Bangkok 2009
- Vol. 95 Recent Major Bridges, IABSE Workshop, Shanghai 2009
- Vol. 94 Information and Communication Technology (ICT) for Bridges, Buildings and Construction Practice, Helsinki 2008
- Vol. 93 Improving Infrastructure Worldwide Bringing People Closer, Weimar 2007
- Vol. 92 Responding to Tomorrow's Challenges in Structural Engineering, Budapest 2006
- Vol. 91 Operation, Maintenance and Rehabilitation of Large Infrastructure Projects, Bridges and Tunnels, IABSE Conference, Copenhagen 2006
- Vol. 90 Structures and Extreme Events, Lisbon 2005
- Vol. 89 Role of Structural Engineers towards Reduction of Poverty, IABSE Conference, New Delhi 2005

- Vol. 88 Metropolitan Habitats and Infrastructure, Shanghai 2004
- Vol. 87 Structure for High-Speed Railway Transportation, Antwerp 2003
- Vol. 86 Towards a Better Built Environment Innovation, Sustainability, Information Technology, Melbourne 2002
- Vol. 85 Innovative Wooden Structures and Bridges, IABSE Conference, Lahti 2001
- Vol. 84 Cable-Supported Bridges Challenging Technical Limits, IABSE Conference, Seoul Korea 2001
- Vol. 83 Structures for the Future The Search for Quality, IABSE Conference, Rio de Janeiro 1999
- Vol. 81 Concrete Model Code for Asia Design, Materials and Construction, and Maintenance, IABSE Colloquium, Phuket 1999
- Vol. 79 Long-Span and High-Rise Structures, Kobe 1998
- Vol. 77 Saving Buildings in Central and Eastern Europe, IABSE Colloquium, Berlin 1998
- Vol. 76 Evaluation of Existing Steel and Composite Bridges, IABSE Workshop, Lausanne 1997
- Vol. 73/1+2 Extending the Lifespan of Structures, San Francisco 1995
- Vol. 72 Knowledge Support Systems in Civil Engineering, IABSE Colloquium, Bergamo 1995
- Vol. 71 Places of Assembly and Long-Span Building Structures, Birmingham 1994
- Vol. 70 Structural Preservation of the Architectural Heritage, Rome 1993
- Vol. 69 Structural Serviceability of Buildings, IABSE Colloquium, Göteborg 1993
- Vol. 68 Knowledge-Based Systems in Civil Engineering, IABSE Colloquium, Beijing 1993
- Vol. 67 Remaining Structural Capacity, IABSE Colloquium, Copenhagen 1993
- Vol. 66 Length Effect on Fatigue of Wires and Strands, IABSE Workshop, Madrid 1992
- Vol. 65 Structural Eurocodes, IABSE Conference, Davos 1992
- Vol. 64 Bridges: Interaction between Construction Technology and Design, St. Petersburg/Leningrad 1991
- Vol. 63 Interaction between Major Engineering Structures and the Marine Environment, IABSE Colloquium, Nyborg 1991
- Vol. 62 Structural Concrete, IABSE Colloquium, Stuttgart 1991

IABSE CONGRESS REPORTS

19th Congress Report, Stockholm 2016
Challenges in Design and Construction of an Innovative and Sustainable Built Environment
18th Congress Report, Seoul 2012
Innovative Infrastructures - Toward Human Urbanism
17th Congress Report, Chicago 2008
Creating and Renewing Urban Structures Tall Buildings, Bridges and Infrastructure
16th Congress Report, Lucerne 2000
Struct. Eng. for Meeting Urban Transportation Systems
15th Congress Report, Copenhagen 1996
Struct. Eng. in Consideration of Economy, Environment and Energy

Published by

IABSE Jungholzstrasse 28 8050 Zurich Switzerland Tel: +41 43 433 97 65 e-mail: secretariat@iabse.org Web: http: //www.iabse.org

ISBN: 978-3-85748-169-7