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Abstract—An automatic algorithm to identify Standard
Denavit-Hartenberg parameters of serial manipulators is pro-
posed. The method is based on geometric operations and dual
vector algebra to process and determine the relative transforma-
tion matrices, from which it is computed the Standard Denavit-
Hartenberg (DH) parameters (ai, αi, di, θi). The algorithm
was tested in several serial robotic manipulators with varying
kinematic structures and joint types: the KUKA LBR iiwa R800,
the Rethink Robotics Sawyer, the ABB IRB 140, the Universal
Robots UR3, the KINOVA MICO, and the Omron Cobra 650.
For all these robotic manipulators, the proposed algorithm was
capable of correctly identifying a set of DH parameters. The
algorithm source code as well as the test scenarios are publicly
available.

Index Terms—Kinematic identification, Denavit-Hartenberg
parameters

I. INTRODUCTION

Kinematic identification refers to the determination of a

minimal number of parameters that completely describe the

position and orientation of a manipulator’s structure as a func-

tion of its joint positions. Many models have been proposed to

characterize a kinematic structure: the Standard and Modified

Denavit-Hartenberg (DH) convention [1], the Hayati model

[2], the Stone and Sanderson’s S-model [3] and recent models

based on Product of Exponentials (POE) [4], [5].

The Denavit-Hartenberg model is still the most used con-

vention to represent the robot’s kinematic structure. It provides

a guaranteed minimal representation, an intuitive method to

determine its parameters and most importantly, it works on

straight-forward linear algebra whose matrices are computa-

tionally fast to solve.

This work has been supported by FCT – Fundação para a Ciência e Tec-
nologia within the Project Scope: UID/CEC/00319/2019, the FCT scholarship
grant: SFRH/BD/86499/2012 and the DTx-Colab.

Independent of the convention used, there is a consistent

problem with robots, particularly serial structures that causes

repeatable but inaccurate movements. This problem derives

from manufacturing and assembly tolerances, wear and tear,

or permanent bending due to fatigue. The listed error sources

are reflected on the real kinematic model parameters, and on

the gap to the nominal parameter values. Kinematic errors

are especially impactful in serial manipulators where the

parameter deviations propagate through the kinematic chain.

Industrial robot calibration methods, particularly the ones

based on kinematic parameters, are compartmentalized in four

steps, i) modelling, ii) measurement, iii) identification, and

compensation [6], [7]. The proposed algorithm is primarily

related to the parameter identification step as a sub-type of

planar calibration methods [8], [9].

Another common problem to users that need to model

kinematic structures of robotic manipulators relates to the

inaccessibility of the model parameters, which are usually han-

dled internally by the controller. Even if the robot is properly

calibrated, the user has no access to the kinematic parameters

other than the nominal values in the documentation.

In this paper, we propose an algorithm for DH parameter

identification based on geometry and dual vector algebra for

any type of serial robot. The algorithm splits into two parts,

the first called “feature identification”. In this part, the robot’s

end-effector position is acquired after sequential movements

in each joint. The acquired set of points are processed to

determine the motion axis of each joint, an idea originally

explored by Stone [3] to determine the S-model parameters.

The second part, “parameter extraction”, applies dual vector

algebra to calculate the intermediate coordinate frames be-

tween consecutive joints, and then to extrapolate the Standard

DH parameters. The dual vector algebra concept was applied
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by Ketchel and Larochelle [10] to detect collisions between

robotic links modeled after cylindrical bodies.

To the best of our knowledge, the proposed algorithm is the

first capable of correctly identifying a set of DH parameters

for a wide range of differentiated robots, representing various

kinematic typologies. The method was tested against serial

robotic manipulators with: revolute and prismatic joints, in-

trinsically redundant and non-redundant structures, joints with

aligned motion axis, shoulder and wrist offsets, as well as with

curved wrists. It corrects and extends previous work by [11],

[12], which fails to deliver a correct set of DH parameters

for manipulators other than the industrial serial 6-DoF type.

The source code of the algorithm here proposed is available

at https://github.com/neuebot/Kinematic-Calibration.

The proposed method was tested with several robot models

with variable structures and joint dispositions including a

KUKA LBR iiwa R800, a Rethink Robotics Sawyer, an ABB

IRB 140, a Universal Robots UR3, a KINOVA MICO and

a SCARA-type Cobra 650 by Omron. A correct set of DH

parameters was identified for all.

The paper is organized as follows. Section II describes the

process of identifying the motion axis for a generic prismatic

or revolute joint. In section III it is explained how to determine

the relative transformation frames between joints from which

the DH parameters are extracted. Section IV presents the

results of the proposed method for different types of serial

manipulators.

II. FEATURE IDENTIFICATION

The objective of this section is to determine, for each joint

of the manipulator, its motion axis: a) for a revolute joint -

the plane and center of rotation; b) for a prismatic joint - the

sliding vector and a contained point. These values constitute

the input to the proposed algorithm.

To identify the motion axis of each joint, we move each

robot joint separately and acquire the position of a point

(p = (x, y, z)T ) at the robot’s end-effector relative to the

robot’s base reference frame. Either p is determined directly

from the robot controller, which allows for the extraction of

the controller’s intrinsic kinematic parameters, or p is deter-

mined using an external tracking sensor to achieve kinematic

calibration. For each joint, from the base to the end-effector,

a movement in joint space is executed, which translates to a

circular or linear trajectory of the tracked point (p) in Cartesian

space depending on the type of the joint.

For consistent and reliable results, our method imposes the

following requirements:

1) the reference frame attached to the first joint should be

aligned with the base reference frame;

2) the joint motion must be in the positive direction during

the motion acquisition;

3) the acquired position measurement step should be 3 to

4 orders of magnitude less than the nominal distance of

the generated trajectory;

4) the acquired point must be contained in the plane defined

by the normal to the last joint axis that contains the end-

effector position, see Fig. 1.

Fig. 1: Example of acquired point (p) contained in the plane

defined by the last joint axis (nn) and the position of the

flange. The acquired point must not be contained in the line

that passes through the last joint axis, i.e. p �= p∅.

The last condition assures that the tracked point trajectory

generated from the last joint is not reduced to a single point. In

addition, for the method here proposed, we recommend that:

1) each joint travels more than a third of its range;

2) each joint travels at identical and constant velocities -

to guarantee a similar number of samples and uniform

distribution of end-effector positions.

After acquiring the generated trajectories of p for each

isolated joint, one should end up with n trajectories (n
equates to the number of joints), each with m number of

points corresponding to the tracked point measurements, P ={
pj ∈ R

3, j ∈ {1, . . . ,m}}.

Since the process is iterative to each joint, we explain in the

following section how it applies to a generic prismatic and a

revolute joint.

A. Prismatic Joints

A prismatic joint motion will generate a linear trajectory

in workspace. The motion axis vector can be determined by

finding the best fitting line to the set of trajectory points.

Line and plane fitting are problems commonly addressed with

Orthogonal Distance Regression. The goal is to minimize the

distances between the set of points and the geometric element.

Let the position of the best fitting line be represented by a point

c belonging to the line, and let the vector n be the direction

vector. The orthogonal distance (dj) between each point (pj)

and the line is,

dj = ‖(pj − c)− ((pj − c) · n)n‖, (1)

assuming,

c =
1

m

m∑
j=1

pj . (2)

and without the loss of generality n to be a unit vector (i.e.

‖n‖ = 1). For clarity, consider the vector norm ‖•‖ to be the

Euclidean norm.
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The best fitting line minimizes the square sum of orthogonal

distances between the line and the points,

min
n

m∑
j=1

dj
2

equivalent to,

min
n

⎡
⎣ m∑
j=1

‖pj − c‖2 −
m∑
j=1

((pj − c) · n)2
⎤
⎦

that can be written as,

min
n

(‖M‖F − ‖Mn‖2) ,
where M is the matrix of 3×m mean-centered points, i.e.,

M =

⎡
⎢⎣
p1 − c

...

pm − c

⎤
⎥⎦ (3)

and ‖•‖F is the Frobenius norm. Thus, the problem translates

to finding,

n := arg max
n∈R3

‖n‖=1

‖Mn‖2. (4)

One efficient approach to deal with this problem relies on

Singular Value Decomposition (SVD) to determine the domi-

nant direction of data. Factorizing M into the product of three

matrices M = UΣVT , where U and V are unitary matrices

whose columns are orthonormal and Σ is a diagonal matrix

with positive and real singular values listed in decreasing order

(σ1 ≥ σ2 ≥ σ3 ≥ 0). It follows that,

‖Mn‖2 = ‖UΣVTn‖2 (5)

and given that U is an unitary matrix, the following is also

true,

‖Mn‖2 = ‖ΣVTn‖2.
Considering h = VTn, the function (4) is equivalent to,

n := arg max
n∈R3

‖n‖=1

[
(σ1h1)

2 + (σ2h2)
2 + (σ3h3)

2
]
. (6)

Provided the decreasing order of singular values, the function

is maximized for hmax = [1, 0, 0]T , which follows that,

n := Vhmax. (7)

The tail-arrow direction of n is also important because it

relates to the direction of the axis. As one of the imposed

requirements for the calibration was to record a linear joint

motion in the positive direction, one can guarantee the correct

tail-arrow direction of n by,

n =

{
n, if n · (pm × p1) ≥ 0

−n, if n · (pm × p1) < 0
. (8)

B. Revolute Joints

One logical approach to calculate the plane and center of

rotation is to determine the best fitting tri-dimensional circle to

the trajectory, from which it is straightforward to extrapolate

the plane and center of rotation. The first step consists in

determining the best fitting plane to the set of points P. To

keep a consistent notation, let this plane be represented by its

normal vector n, and a plane contained point c determined

from the centroid of the set of points, similar to the previous

subsection. The orthogonal distances between the plane and

the set of points are,

dj = (pj − c) · n. (9)

The problem of finding the best fitting plane is similar to the

one described in subsection II-A,

n := arg min
n∈R3

‖n‖=1

‖Mn‖2. (10)

which simplifies to,

n := arg min
n∈R3

‖n‖=1

[
(σ1h1)

2 + (σ2h2)
2 + (σ3h3)

2
]
. (11)

that is minimized for hmin = [0, 0, 1]T ,

n := Vhmin. (12)

Again and in a similar fashion to the previous subsection,

the tail-arrow direction of the plane vector can be correctly

determined using equation (8).

Now, since the best fitting plane for the points P has

been determined, we can determine the circle that best fits

these points in two dimensions, i.e projected into the plane

defined by n. First, the transformation of P to the best fitting

plane coordinates, n, is achieved with the Rodrigues’ rotation
formula,

pn,j = pj cos ρ+ (a×pj) sin ρ+ a(a ·pj)(1− cos ρ), (13)

which rotates P around an axis a of an angle ρ,

a = n× [0, 0, 1]T (14)

ρ = atan2
(‖n× [0, 0, 1]T ‖,n · [0, 0, 1]T ) . (15)

The projection of these points into the plane coordinates, XY -

plane, is then simply accomplished by using the x and y
coordinates.

With the projected points into the XY plane - Pn ={
pn,j ∈ R

3, j ∈ {1, . . . ,m}}, it is straightforward to deter-

mine the best 2D fitting circle. Consider a circle of radius r
and center (xc, yc), which is represented by,

(x− xc)
2 + (y − yc)

2 = r2 (16)

simplified as a function of x and y, one ends up with,

(2xc)x+ (2yc)y + (−x2
c − y2c + r2) = x2 + y2. (17)

We can now transform this into a system of linear first degree

equations using the projected points pn,j = (xj , yj , 0)
T to
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determine the circle center coordinates and radius. Converting

(17) to matrix notation (Ax = b),

A =

⎡
⎢⎣
x1 y1 1
...

...
...

xm ym 1

⎤
⎥⎦ , x =

⎡
⎣ 2xc

2yc
−x2

c − y2c + r2

⎤
⎦ ,

b =

⎡
⎢⎣
x2
1 + y21

...

x2
m + y2m

⎤
⎥⎦ .

The system is solved as a function of x through a least-squares

fitting approach. The goal is to minimize the square sum of

residual errors ‖b −Ax‖2. It is now straightforward to find

the center and radius of the circle once x is determined.
Having determined the best fitting circle in the plane de-

fined by n, it can be directly transformed to tri-dimensional

coordinates by applying the inverse transformation to (13), i.e.

inverting the axis and angle of rotation.

III. PARAMETER EXTRACTION

With the vector n and the point c determined relative to

the robot base reference frame and for each joint motion,

one can extrapolate the Denavit-Hartenberg parameters using

a geometric approach that consists of two steps:

1) determine the relative coordinate frames that relate each

actuated joint;

2) identify the DH parameters from the set of frames.

The relative coordinate frames (18) can be partially con-

structed from the information gathered thus far.

iTi+1 =

[
x̂i+1 ŷi+1 ẑi+1 pi+1

0 0 0 1

]
, (18)

where

ẑi+1 = ni+1

ŷi+1 = ẑ× x̂

Per definition, the z-axis should equate to the direction of the

joint axis (ni). Similarly, the x-axis can be determined from

the common normal to both direction axes, although this vector

might not be uniquely determined. From the right hand rule

the y-axis is directly determined once the z- and the x-axes are

known. On the other hand, determining the position vector of

each coordinate frame requires some Dual Vector geometrical

operations to calculate the intersection/closest points between

the axis lines.
Each pair of parameters (ni, ci) forms the base to represent

a line in tri-dimensional space. Alternatively, the same infor-

mation can be formulated in Plücker coordinates (S) using the

notation of the moment vector (k),

S =

[
n

c× n

]
=

[
n
k

]
. (19)

Analogous to complex numbers, dual number notation can be

expressed by a sum of two parts: the primary component or

real part (n) and the dual component or dual part (k) [13]:

S = n+ ε k (20)

where ε �= 0 and ε2 = 0. This representation is especially

useful to study the relationship of two straight lines in tri-

dimensional space, Fig. 2. Ketchel and Larochelle [10] pro-

posed an algorithm to classify this relationship based on dual

vector representation for the purpose of collision detection.

Using dual vector algebra to determine the dot and cross

Fig. 2: The relationship between two lines in space can be

parameterized by the shortest distance between lines d (dual

part), and the projected angle between the lines γ (real part)

[10]. The common normal is, ê = ‖n1 × n2‖. The distance

between lines is, d = (c2 − c1) · e. The angle between lines

can be determined from, γ = atan2 (‖n1 × n2‖,n1 · n2).

products of S1 and S2 one can determine the distance (d)

and angle (γ) that relate them,

Ŝ1 · Ŝ2 = (n1,k1) · (n2,k2)

= (n1 · n2,n1 · k2 + k1 · n2)

= n1 · n2 + ε(n1 · k2 + k1 · n2)

= cos γ − ε d sin γ

Ŝ1 × Ŝ2 = (n1,k1)× (n2,k2)

= (n1 × n2,n1 × k2 + k1 × n2)

= n1 × n2 + ε(n1 × k2 + k1 × n2)

= (sin γ − ε d cos γ) ê.

S1 and S2 are either: intersecting, identical, parallel, or

skewed; best explained in the flowchart Fig. 3.

A. Intersecting lines

The simplest case involves intersecting lines, as it logically

follows that the position vector should be located at the

intersection point,

pint =

⎧⎨
⎩

k1 × k2
n2 · k1

, if n1 · k2 − n2 · k1 �= 0

k2 × k1
n1 · k2

, if n1 · k2 − n2 · k1 = 0
. (21)

While (21) returns a solution for most cases, if any of the lines

passes through the origin of the reference system, its moment

vector becomes null (k = 0) making it impossible to determine

pit. Rajeevlochana et al. [12] proposed a solution for this spe-

cial case, which involves computing an auxiliary intersection

point at an auxiliary coordinate frame and then applying the

inverse transformation to obtain the real intersection point. The

auxiliary coordinate frame (1T1′ ) is found by applying a pure
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Fig. 3: The line relationship categorization process.

translation of a unit distance from the reference frame along

the common normal of the vectors n1 and n2,

1T1′ =

[
I3 ‖n1 × n2‖

0 0 0 1

]
. (22)

The computation of the auxiliary intersection point in the

auxiliary reference frame is exactly the same as for the normal

case (23), the only difference being the translation of the

auxiliary center of rotations coordinates (c1′ and c2′ ) and

consequently the auxiliary moment vectors (k1′ and k2′ ).

From the auxiliary system, the actual intersection point is

determined by translating the auxiliary intersection point back

to the original reference system, as given by:

pint =

⎧⎨
⎩
(1T1′)

−1 k1′ × k2′
n2 · k1′

, if n1 · k2′ − n2 · k1′ �= 0

(1T1′)
−1 k2′ × k1′

n1 · k2′
, if n1 · k2′ − n2 · k1′ = 0

,

(23)

where

k1′ = k1 + (‖n1 × n2‖ × n1)

k2′ = k2 + (‖n1 × n2‖ × n2)

The relative coordinate frame (18) is now fully defined for

intersecting lines:

pi+1 = pint

x̂i+1 = ‖ni × ni+1‖

B. Identical lines

Identical lines are perhaps the most uncommon of all

cases (see the SCARA robot “Cobra 650” in section IV). No

intersection point or common normal are uniquely determined

and thus it is up to the algorithm to decide both. The relative

coordinate frame (18) may be defined for identical lines

according to:

pi+1 = pi

x̂i+1 = n1′

C. Parallel lines

If the lines are parallel, there is no intersecting point and

there is no unique common normal. In this case, the algorithm

imposes a point through which the common normal should

pass through, for example, the center of rotation of the first

joint (c1) in the studied pair. Using Dual Vector algebra, a line

(S1′ ) can be drawn from c1 to the closest point along S2,

S1′ =

[
n1′

c1 × n1′

]
(24)

where

n1′ = ‖n1 × ((c2 − c1)× n1)‖ (25)

It is now possible to determine the intersection point between

S1′ and S2 with the method described for intersecting lines.

Note that, if both lines are parallel, the common normal vector

(specified as ê in Fig. 2) is calculated as in (25). The relative

coordinate frame (18) is now fully defined for parallel lines:

pi+1 = pint

x̂i+1 = n1′

D. Skewed lines

Finally, if the lines are skewed we have a two-part solution

representing the closest points along the lines S1 and S2 to

one another,

pint,1 =

(
k2 · e− cos γ k1 · e

sin γ

)
n1 + n1 × k1 (26)

pint,2 =

(−k1 · e+ cos γ k2 · e
sin γ

)
n2 + n2 × k2. (27)

The skewed lines case is specially relevant for robots that have

offsets. Both points are used to compute DH parameters. The

common normal in these cases is determined from the vector

that passes through both points.

pi+1 = pint,2

x̂i+1 = ni × ni+1

Due to the fact that two solutions are possible for the

common normal, accounting for the inverted vector, two

conventions are suggested.

Whenever the common normal is aligned with the previous

frame common normal, ‖x̂i+1 · x̂i‖ = 1, then the direction

of the current common normal should match the previous,

x̂i+1 = x̂i. Else, when considering two inverted common

normals with a non-zero y-component, ‖x̂i+1 · [0 1 0]‖ > 0,

we select the solution with a positive y-component.
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E. Extracting DH parameters

Knowing pi+1 and x̂i+1, we completely define the relative

coordinate frame between actuated joints independent from the

robot structure. To avoid ambiguities, the robot base frame is

purposely identical to the system reference frame, implying

that its origin is coincident with the origin of the first relative

coordinate frame (joint 0), and its z-axis aligned with the first

joint rotation axis. With the first relative coordinate frame

assigned, the process of finding the remaining DH parameters

is iterative for each i ∈ {0, . . . , n − 1}. Note that the point

pn (position of the last joint) as well as ẑn are required. This

problem is abbreviated by providing an end-effector position

(pn) as input, and assuming ẑn to be parallel to the last joint

rotation axis (ẑn−1). If not, the final frame (n−1Tn) is also

required as input.

After calculating the relative coordinate frames from the

base to the robot’s end-effector, the four DH parameters used

to describe each transformation are:

1) di, offset from the previous z-axis to the common

normal,

di = (pi+1 − pi) · ẑi (28)

2) θi, angle between the previous to the current x-axis

around the previous z-axis,

θi = atan2 ((x̂i × x̂i+1) · ẑi, x̂i · x̂i+1) (29)

3) ai, distances between origins along the common normal,

ai = (pi+1 − pi) · x̂i+1 (30)

4) αi, angle between the previous to the current z-axis

around the common normal,

αi = atan2 ((ẑi × ẑi+1) · x̂i, ẑi · ẑi+1) . (31)

IV. EXPERIMENT AND RESULTS

The algorithm was first tested and validated in V-REP

(Coppelia Robotics GmbH, Zürich, Switzerland), a robotics

simulator. With an extensive library of robotic models avail-

able, it permitted testing the algorithm with different models

containing varying kinematic structures, and joint types /

dispositions in space. The proposed method was tested with

the following virtual robot models: i) ABB IRB 140, 6-DoF

multipurpose industrial robot; ii) Universal Robot UR3, 6-DoF

collaborative robot; iii) KINOVA MICO, 6-DoF collaborative

robot with a curved wrist; and the iv) Omron Cobra 650, 4-

DoF SCARA robot.

The dimensions of each virtual model were verified against

the available online documentation [14]–[17]. Tests were con-

ducted in a dynamic simulation environment, meaning that

each robot link has a physically modeled body and the joints

connecting the links were driven by a dynamically simulated

motor based on torque/force input and a PID-controller. These

physical elements were handled by the Vortex physical engine

(CM Labs, Montreal, QC, Canada). The physics engine in-

herently introduces noise to the read joint and end-effector

positions, adding to the simulation realism.

The proposed method was then tested in two real robotic

systems, an LBR iiwa R800 (KUKA, Augsburg, Germany)

and a Sawyer (Rethink Robotics - HAHN Group, Bergisch

Gladbach, Germany). Both are lightweight anthropomorphic

serial manipulators designed for sensitive and cooperative

tasks, and tailored for research development.
The KUKA LBR iiwa R800 robot fits in the SRS

(spherical-revolute-spherical) category of redundant manipu-

lators [18]. In each of its 7 revolute joints the robot includes

torque sensors and position encoders. For real-time control

and acquisition of the robotic manipulator joint positions,

the module Connectivity Sunrise.FRI (Fast Robotic Interface)

was used. A client application running in a remote host was

developed to communication with the controller unit (Sunrise

Cabinet) in a local network. Each 5ms the client forwards the

target joint positions to be reached in the next control cycle,

and receives the current joint positions, Fig. 4.

Fig. 4: Example of the robot motion that generates the tracked

point trajectory for the second joint. The thicker lines represent

the position of the tracked point acquired relative to the robot

base frame. The thinner lines represent the best fitting circle

to the trajectories.

The Sawyer robot is an anthropomorphic robot with 7

revolute joints that contrary to the LBR iiwa R800 does not

have a SRS structure. This is due to due to several offsets

distributed along its kinematic chain - 2 at the shoulder, 1 at

the elbow and 1 at the wrist - which make it a particularly

interesting case for DH parameter identification. The Intera

SDK software interface was used to remotely communicate

with the controller using the ROS API [19]. The client

application receives the robot joint positions each 5ms.
The data acquisition process to determine the model param-

eters was similar across all robot models. The robots execute a

series of position controlled movements defined in joint space,

TABLE I. The sequence of motions proceeds iteratively from

the first to the last joint as follows1:

1) the robot executes a PTP (point-to-point) movement to

a set of initial joint positions, θinit;

2) the robot moves one joint to its starting position, θi,start;

3) the position of p starts being acquired;

4) the robot drives the same joint until reaching its end

position, θi,end;

1See video at https://youtu.be/DUqfr Q9n38
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5) the point acquisition stops and the file is saved under

the identification of the current joint.

The acquired points datasets files serve as the input for

the proposed algorithm implemented in MATLAB2, see an

example in Fig. 5.

Fig. 5: Acquired point trajectories. For each revolute joint, the

motion axis is represented at the center of rotation.

TABLE I: Initial, start and end joint coordinates used during

the trajectory execution. For readibility, the joint positions

are displayed in degrees, except for the Cobra’s J3 that is

displayed in millimeters.

J1 J2 J3 J4 J5 J6 J7

θinit 0 0 0 0 – – –
θi,start -90 -60 -30 -90 -90 -90 –

A
B

B

θi,end 90 60 90 90 90 90 –

θinit 0 0 0 0 – – –
θi,start -90 -115 -145 -90 -90 -90 –

U
R

3

θi,end 90 0 0 90 90 90 –

θinit 180 270 270 180 180 180 –
θi,start 90 180 90 90 90 90 –

M
IC

O

θi,end 270 270 270 270 270 270 –

θinit 0 0 0* 0 – – –
θi,start -115 -135 -200* -160 – – –

C
o

b
ra

θi,end 115 135 0* 160 – – –

θinit 90 -90 0 -90 0 90 0
θi,start -35 -105 -70 -110 -70 -35 -70

K
U

K
A

θi,end 105 35 70 30 70 105 70

θinit 90 -90 0 -90 0 90 0
θi,start -35 -105 -70 -110 -70 -35 -70

S
aw

y
er

θi,end 105 35 70 30 70 105 70

The proposed algorithm was tested for the robotic ma-

nipulators listed above. The measured DH parameters were

compared to the nominal values and the results are listed in

TABLE II. The parameters obtained have, for the most part,

sub-millimetric and sub-degree deviation to the nominal values

for the virtual and the real robotic manipulators. Two odd

cases occur as a consequence of the undetermination of the

common normals and intersection points in parallel joints of

the MICO and the UR3. The value discrepancy is related to

the d parameter, the offset from the previous z-axis to the

2Repository at https://github.com/neuebot/Kinematic-Calibration

common normal. These differences are related to the non-

continuity of the DH parameters in actuators with parallel, or

almost parallel consecutive joint axes. These discrepancies are

nullified in the next algorithm iteration where the joint axis i
and i+1 intersect, causing no impact in the Forward Kinematic

calculation. Another issue occurred with the UR3 robot, the

algorithm determined the common normal (x-axis) at the 5th

joint to be the inverse of the nominal values. This issue is

solved by providing the final frame (n−1Tn) as suggested in

subsection III-E.

Experiments were conducted with different ranges of joint

trajectories acquired. It is noteworthy that trajectories where

each joint traveled about a third of the total mechanical

range returned parameters more similar to the nominal values.

When the trajectory distance was increased beyond that point,

no noticeable differences were reported. On the other hand,

decreasing the traveled distance below a third of the total

range lead to increasingly dissonant DH parameters from the

nominal ones.

V. CONCLUSION

A novel algorithm for automatic determination of the Stan-

dard Denavit-Hartenberg parameters of serial robotic manipu-

lators was proposed. It determines a correct set of DH param-

eters for several robots with variable kinematic structures and

joint types/dispositions. The method was tested in two real

robots and four dynamically simulated robots, the later using

the Vortex physical engine to reproduce as closely as possible

the behavior of the real robots.

The applicability of the algorithm is twofold. First, if the

end-effector position is determined using the robot controller,

the intrinsic parameters used by the controller can be extracted

as they are usually non-accessible. Second, if an external

sensor (e.g. optical tracker) is used to measure the end-effector

position, one can perform kinematic calibration within the

error margin of the sensor.

The algorithm proved to be valid for the detection of DH

parameters on all tested systems and yet it is affected by

the limitations of the DH notation, i.e. the non-continuity in

actuators with parallel, or almost parallel consecutive joints.
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