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Abstract

The risk of catastrophes is related to the possibility of occurring extreme val-

ues. Several statistical methodologies have been developed in order to evaluate the
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propensity of a process for the occurrence of high values and the permanence of

these in time. The extremal index θ (Leadbetter [16]) allows to infer the tendency

for clustering of high values, but does not allow to evaluate the greater or less

amount of oscillations in a cluster. The estimation of θ entails the validation of

local dependence conditions regulating the distance between high levels oscillations

of the process, which is difficult to implement in practice. In this work, we propose

a smoothness coefficient to evaluate the degree of smoothness/oscillation in the tra-

jectory of a process, with an intuitive reading and simple estimation. Application

in some examples will be provided. We will see that, in a stationary sequence, it

coincides with the tail dependence coefficient λ (Sibuya [21], Joe [15]), providing a

new interpretation of the latter. This relationship will inspire a new estimator for

λ and its performance will be evaluated based on a simulation study. We illustrate

with an application to financial series.
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1 Introduction

The occurrence of high values in a stochastic process can mean a natural, social or

economic catastrophe, which has motivated the development of statistical models

and techniques for extremes of random variables (see, e.g., Gomes and Guillou, [12]

and their references). The unpredictability we would like to dominate is based on

the propensity of the process for high values and the mean time permanency of these,
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usually measured by the arithmetic inverse of the extremal index θ (Leadbetter [16];

Hsing et al. [14]). Clustering of high values can be predicted in stationary sequences

that verify local dependency conditions D(k)(u), which regulate the distance between

oscillations of the process relative to high levels u (Chernick et al. [2]). Under the

validity of such conditions we can obtain expressions for the mean size 1/θ of a

cluster of high values. Not only the validation of local dependence conditions is

difficult in practice, but also the estimation of 1/θ does not give us information

about the greater or less amount of oscillations in a cluster.

In this work, we propose a measure to distinguish between sequences with more

oscillating trajectories from sequences with smoother ones, in what concerns the

proportion of exceedances that are upcrossings. It has an intuitive reading, is easy

to estimate and is free from validation of any conditions. This smoothness coefficient

of a block of variables {Xi, n ≤ i ≤ m} that we propose takes values in [0, 1] and

grows with the degree of concordance of the variables.

By concordance we mean the concept in Joe [15], where we say that random

variables X1, ..., Xs are more concordant than random variables Y1, ..., Ys, if P (X1 ≤

x1, ..., Xs ≤ xs) ≥ P (Y1 ≤ x1, ..., Ys ≤ xs) and P (X1 > x1, ..., Xs > xs) ≥ P (Y1 >

x1, ..., Ys > xs), for all x1, ..., xs ∈ (−∞,∞), that is, X1, ..., Xs are more likely than

Y1, ..., Ys to take on small values (and large values) simultaneously. For s = 2 the

two inequalities are equivalent.

We will apply it in theoretical examples. We will also verify that, in a stationary

process, it coincides with the tail dependence coefficient λ (Sibuya [21], Joe [15]),

which gives us a new reading for this well-known coefficient in the literature of

extremes. The new representation for the tail dependence coefficient inspires an

estimation procedure that will be analysed through a simulation study.
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This paper is organized as follows: in Section 2 we introduce the smoothness

coefficient and present some properties and examples. In Section 3 we consider a

new estimator for λ and analyse its performance through simulation. We illustrate

with an application to financial series in Section 4.

2 The smoothness coefficient

Consider {Xi}i≥1 a sequence of real random variables (r.v.) over the same proba-

bility space (Ω,A, P ) and denote Fi the distribution function (d.f.) of Xi, i ≥ 1.

In the sequel we consider Fi continuous for all i ≥ 1. The assessment of the risk

of occurrence of extreme phenomena is often associated with exceedances over high

real thresholds by the variables in the sequence. Various examples and areas of

application, such as finance, environment and actuarial science can be seen in, e.g.,

Maloney et al. [18] and references therein. A natural way to evaluate the propen-

sity for oscillations within a process {Xi}i≥1 is to compare the expected number of

oscillations around the instant i,

Oi,j = {Fi(Xi) ≤ u < Fj(Xj)} ∈ A, j = i− 1, i+ 1,

relative to real high levels u, with the expected number of exceedances of u,

Ei = {Fj(Xj) > u} ∈ A, j = i− 1, i+ 1,

around the instant i. Existing, at least, one exceedance between instants n and m

(n,m ∈ N), i.e., occurring {Fj(Xj) > u} for some j in {n, ...,m}, the expected total

of oscillations will be closer of the expected total of exceedances, for n ≤ i ≤ m, in
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processes with more oscillating trajectories. We then propose as a summary measure

of the result of this comparison between exceedances and oscillations, a coefficient

with values in [0, 1], which increases with the concordance of the variables.

Definition 2.1. The smoothness coefficient Sn,m of {Xi}n≤i≤m, 2 ≤ n < m, is

defined by

Sn,m = 1− lim
u↑1

E
(∑m

i=n

∑
j∈V (i) 1{Fi(Xi)≤u<Fj(Xj)}|

∑m
i=n 1{Fi(Xi)>u} > 0

)
E
(∑m

i=n

∑
j∈V (i) 1{Fj(Xj)>u}|

∑m
i=n 1{Fi(Xi)>u} > 0

) , (1)

where V (i) = {i− 1, i+ 1}, provided the limit exists.

Although expression (1) seems a little complex, it only translates the proportion

of exceedances that are oscillations, around each location i ∈ [n,m], given that

there is at least one exceedance. In the following we present a result with a simpler

alternative expression for coefficient Sn,m.

The proposed smoothness coefficient can naturally be expressed as a function of

tail dependence coefficients

λ(j|i) = lim
u↑1

P (Fj(Xj) > u|Fi(Xi) > u) ,

which can also be written as

λ(j|i) = 1− lim
u↑1

u− di,j(u)

1− u
, (2)

where di,j is the diagonal section of the copula of (Xi, Xj). These coefficients sum-

marize the behavior of the bivariate tails of a sequence and have been extensively

studied and applied in the literature of extremes (see, e.g., Schmidt and Stadtmüller

[20], Li [19], Ferreira and Ferreira [7], Lebedev [17], and references therein).
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Proposition 2.1. The smoothness coefficient Sn,m of {Xi}n≤i≤m, 2 ≤ n < m,

satisfies

Sn,m =
1

m− n+ 1

m∑
i=n

λ(i+ 1|i) + λ(i|i− 1)

2
,

provided λ(j|i) exists for all n ≤ i ≤ m and j = i− 1, i+ 1.

Proof. Observe that

Sn,m = 1− lim
u↑1

∑m
i=n

∑
j∈V (i) (P (Fj(Xj) > u)− P (Fi(Xi) > u,Fj(Xj) > u))∑m

i=n

∑
j∈V (i) P (Fj(Xj) > u)

= lim
u↑1

∑m
i=n

∑
j∈V (i) P (Fi(Xi) > u,Fj(Xj) > u)

2(m− n+ 1)(1− u)

=

∑m
i=n

∑
j∈V (i) limu↑1 P (Fj(Xj) > u|Fi(Xi) > u)

2(m− n+ 1)
.

(3)

This result points to the reading of λ = λ(j|i), j ∈ V (i), in a stationary process,

as the smoothness coefficient for any block of variables {Xi, n ≤ i ≤ m}.

Corollary 2.2. If {Xi}i≥1 is a stationary sequence with tail dependence coefficient

λ, then λ = Sn,m, 2 ≤ n < m.

Bivariate tail dependence increases with the concordance of the variables (Li,

[19]). We can therefore deduce the following properties from (3).

Proposition 2.3. Let the process {Xi}n≤i≤m have smoothness coefficient Sn,m,

2 ≤ n < m. Then

(i) Sn,m ∈ [0, 1];
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(ii) If {Xi, n ≤ i ≤ m} are more concordant than {Yi, n ≤ i ≤ m}, then S(X)
n,m ≥

S
(Y )
n,m.

Proof. Result (i) is straightforward from the coefficient definition, since P (Fi(Xi) ≤

u < Fj(Xj)) ≤ P (Fj(Xj) > u). Assertion (ii) results from Proposition 2.1 and the

fact that bivariate upper-tail dependence rises with concordance.

Remark 2.1. Observe that in Proposition 2.3 (ii) we only need the bivariate case of

the “weak more concordant" condition P (
⋂m
i=n Fi(Xi) > u) ≥ P (

⋂m
i=n Fi(Yi) > u).

For positive quadrant dependent variables in {Xi, n ≤ i ≤ m}, which is the case

of max-stable sequences, in the bounds of the bivariate concordance relation, we

have the independent and totally positive dependent variables. If all random pairs

{(Xi, Xj)}, j ∈ V (i), n ≤ i ≤ m, are independent we have Sn,m = 0, whereas if

they are totally positive dependent then Sn,m = 1.

In the context of max-stable sequences, the independence or total bivariate de-

pendence of the variables in {Xi, n ≤ i ≤ m} is equivalent to the independence or to-

tal dependence of all variables. Thus, if {Xi}i≥1 is max-stable, then for 2 ≤ n < m,

we will have Sn,m = 0 if and only if Xi, n ≤ i ≤ m, are independent and Sn,m = 1 if

and only if Xi, n ≤ i ≤ m, are totally dependent. For the context of max-stability,

we also have the possibility of relating Sn,m with the extremal coefficients ε (Tiago

de Oliveira [23], Smith [22]), which allows the estimation of the coefficients λ(j|i)

by estimating expected values (Ferreira, [10]).

Example 2.1. Consider the r-factor model (Einmahl et al. [4])

Xn = max
s=1,...,r

aαs,nZ
α
s , n ≥ 1,
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where factors Zs, s = 1, ..., r, are independent and Fréchet(α) distributed r.v., α >

0, and {as,n, s = 1, ..., r}n≥1 are non-negative constants such that
∑r

s=1 as,n >

0. Variables in {Xn}n≥1 are not identically distributed since each one of the r

factors Z1, ..., Zr contribute to the value of Xn with weights as,n updated over time

n. Specifically we have

Fn(x) = exp

(
−x−1

r∑
s=1

aαs,n

)
, x > 0, n ≥ 1 .

We have

λ(j|i) = lim
u↑1

P (Fi(Xi) > u,Fj(Xj) > u)

P (Fi(Xi) > u)

= 2− lim
u↑1

1− P (Fi(Xi) ≤ u, Fj(Xj) ≤ u)

1− u
.

Observe that

P (Fi(Xi) ≤ u, Fj(Xj) ≤ u) = P

Xi ≤ 1/(− lnu

(
r∑
s=1

aαs,i

)−1
), Xj ≤ 1/(− lnu

(
r∑
s=1

aαs,j

)−1
)



= P

(
r⋂
s=1

Zαs ≤ min

(
a−αs,i /(− lnu(

r∑
s=1

aαs,i)
−1), a−αs,j /(− lnu(

r∑
s=1

aαs,j)
−1)

))
.

Thus, for the dependence on the tail of Xi and Xj, we have

λ(j|i) = 2− lim
u↑1

1− u
∑r
s=1 max(aαs,i/

∑r
s=1 a

α
s,i,a

α
s,j/

∑r
s=1 a

α
s,j)

1− u

= 2−
r∑
s=1

max

(
aαs,i/

r∑
s=1

aαs,i, a
α
s,j/

r∑
s=1

aαs,j

)
.
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Denoting bs,n = aαs,n/
∑r

s=1 a
α
s,n, n ≥ 1, s = 1, ..., r, we have

Sn,m =
1

2(m− n+ 1)

m∑
i=n

(
2−

r∑
s=1

max(bs,i−1, bs,i) + 2−
r∑
s=1

max(bs,i, bs,i+1)

)

= 2− 1

2(m− n+ 1)

m∑
i=n

r∑
s=1

(max(bs,i−1, bs,i) + max(bs,i, bs,i+1)) .

Some intuitive cases present maximum or minimum smoothness. In the particular

case of as,n = as, for all n ≥ 1, we have a constant sequence and bs,n = bs, for all

n ≥ 1. Thus we obtain
∑r

s=1 bs = 1 and Sn,m = 1.

If r = 1, then {Xn}n≥1 is a sequence of totally dependent variables and we have

λ(j|i) = 1 and Sn,m = 1.

Under the special case of equally weighted factors, that is, as,n = an, s = 1, ..., r,

n ≥ 1, and Xn = aαn max
s=1,...,r

Zαs , we have

bs,n = bn ≡
aαn
raαn

=
1

r
, s = 1, ..., r, n ≥ 1,

and therefore

Sn,m = 2− 1

2(m− n+ 1)

m∑
i=n

r (max(bi−1, bi) + max(bi, bi+1))

= 2− 1

2(m− n+ 1)

m∑
i=n

r

(
2

r

)
= 1 .

If we consider α = 1, r = 2 and a1,i = 1 = 1−a2,i for odd i and a1,i = 0 = 1−a2,i

for even i, we obtain Sn,m = 0, for all n and m, 2 ≤ n < m.

Example 2.2. (Temporary Failures Model) Let {Yn}n≥1 be a sequence of indepen-

dent and identically distributed (i.i.d.) variables and independent of the sequence of
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Bernoulli variables {Zn}n≥1. Consider notations F (x) = P (Yn ≤ x), n ≥ 1, and

pn,n+1,...,n+s(i0, i1, . . . , is) = P (Zn = i0, Zn+1 = i1, . . . , Zn+s = is),

i0, . . . , is ∈ {0, 1}, s ≥ 1. We denominate by temporary failures model, a sequence

{Xn}n≥1 defined as follows:

X1 = Y1

Xn =


Xn−1 , se Zn = 0

Yn , se Zn = 1

, n ≥ 2.

Such designation relies on the interpretation of {Zn}n≥1 as a sequence of states

corresponding to the registration or non-registration of values of {Xn}n≥1. Thus,

if for example, {Z1 = 1, Z2 = 0, Z3 = 0, Z4 = 1, Z5 = 1, Z6 = 0, Z7 = 1, Z8 =

0, Z9 = 0, Z10 = 0, Z11 = 1}, we will have, almost surely, {X1 = Y1, X2 = Y1, X3 =

Y1, X4 = Y4, X5 = Y5, X6 = Y5, X7 = Y7, X8 = Y7, X9 = Y7, X10 = Y7, X11 = Y11}.

Zero sequences at the values of {Zn}n≥1 determine replicates of the last recorded

value of {Yn}n≥1. If n is the time, the zeros of Zn mean a stop of the register in

time, keeping the last record. Let us consider a short-failures model to illustrate

the smoothness coefficient calculation. In the short-failures model, we assume that

pn,n+1(0, 0) = 0, i.e., it is almost impossible to lose two or more consecutive records

of {Yn}n≥1.
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We start by deriving the common d.f. of Xn:

P (Xn ≤ x) = P (Xn−1 ≤ x, Zn = 0) + P (Yn ≤ x, Zn = 1)

= F (x)pn−1,n(1, 0) + F (x)pn(1)

= F (x)pn(0) + F (x)pn(1)

= F (x).

For u ∈ (0, 1] and v = F−1(u), where F−1 is the inverse function of F , we have

P (F (Xi) ≤ u, F (Xi+1) ≤ u)

= P (Xi ≤ v,Xi+1 ≤ v, Zi = 1, Zi+1 = 1)

+P (Xi ≤ v,Xi+1 ≤ v, Zi = 1, Zi+1 = 0)

+P (Xi ≤ v,Xi+1 ≤ v, Zi = 0, Zi+1 = 1)

= F 2(v)pi,i+1(1, 1) + F (v)pi,i+1(1, 0) + F 2(v)pi−1,i,i+1(1, 0, 1)

= u2(pi,i+1(1, 1) + pi,i+1(0, 1)) + upi,i+1(1, 0).

Therefore,

λ(i+ 1|i) = 2− lim
u↑1

1− P (F (Xi) ≤ u, F (Xi+1) ≤ u)

1− u

= 2− lim
u↑1

1− u2(pi,i+1(1, 1) + pi,i+1(0, 1))− upi,i+1(1, 0)

1− u

= 2− 2(pi,i+1(1, 1) + pi,i+1(0, 1))− pi,i+1(1, 0)

= 2− 2(1− pi,i+1(1, 0))− pi,i+1(1, 0)

= pi,i+1(1, 0),
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and we obtain the smoothness coefficient given by

Sn,m =
1

2(m− n+ 1)

m∑
i=n

(pi−1,i(1, 0) + pi,i+1(1, 0))

=
1

2(m− n+ 1)

m∑
i=n

(pi(0) + pi+1(0)).

We can see that Sn,m increases with the tendency to stop in the initial sequence

records, as expected. With some more time-consuming calculations, we can extend

the result to models with longer lasting failures.

We note that in this short-failures model, the estimation of pi,i+1(1, 0) allows

us to estimate Sn,m. The estimation of pi,i+1(1, 0) can be done from the natural

estimation of P (Xi = Xi+1) = E(1{Xi=Xi+1}), since, in general, {Yn}n≥1 and

{Zn}n≥1 are unobservable sequences.

3 A new estimator for λ under stationarity

The usual linear Pearson’s correlation coefficient does not give us enough insight

about the amount of dependence in the tails (Embrechts et al. [5]). Extreme values

theory is the natural framework to address this topic. The tail dependence coeffi-

cient λ is perhaps the most common measure of extremal dependency. Many other

coefficients have been presented in the literature, most of them related to λ (see,

e.g., Schmidt and Stadtmüller [20], Li [19], Ferreira and Ferreira [8], and references

therein). The smoothness coefficient introduced here is another measure of tail de-

pendence and from Corollary 2.2 it coincides with λ under stationarity. Inference

based on the definition in (1) is quite straightforward by taking the respective em-

pirical counterparts. Thus, we can state a new estimator for λ based on Sn,m, which

we denote λ̂FF . More precisely, considering a stationary sequence {Xn}n≥1 with
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marginal d.f. F and U(u) and E(u), respectively the number of upcrossings and the

number of exceedances of a high level u of {F (Xn)}n≥1, we have

λ̂FF := Ŝn,m = 1− U(u)

E(u)
. (4)

In the following we address a simulation study in order to analyse the perfor-

mance of λ̂FF in (4). We also consider two estimators of λ well-known and commonly

used in literature, motivated by (2):

λ̂LOG := 2− log d̂i,j(u)
log u and λ̂SEC := 2− 1−d̂i,j(u)

1−u ,

where

d̂i,j(u) :=
1

n− 1

n−1∑
i=1

1{F̂ (Xi)≤u,F̂ (Xi+1)≤u},

and F̂ corresponds to the empirical d.f. of F . See Frahm et al. [11] and references

therein.

The simulations correspond to 200 replicas of samples with size n = 1000 and

n = 5000 from the following models for {Xn}n≥1:

• First-order max-autoregressive (Davis and Resnick [3]) denoted MAR(1):

Xn = max (cXn−1, (1− c)Zn), 0 < c < 1, with {Zn}n≥1 a sequence of i.i.d. r.v.

with unit Fréchet d.f., as well as X0 and thus Xn, n ≥ 1. We have λ = c (see,

e.g., Ferreira and Ferreira [6]);

• First order moving-maximum (Davis and Resnick [3]) denoted MMA(1):

Xn = max (cZn, (1− c)Zn−1), 0 < c < 1, with {Zn}n≥1 a sequence of i.i.d. r.v.

with unit Fréchet d.f., as well as Z0 and thus Xn, n ≥ 1. We have λ =

max(c, 1− c) (see, e.g., Heffernan et al. [13]);
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• First order autoregressive Yeh-Arnold-Robertson Pareto(III) (Arnold [1]), de-

noted YARP(1):

Xn = min
(
p−1/αXn−1,

1
1−Un εn

)
, where {εn}n≥1, is a sequence of i.i.d. r.v.

coming from a Pareto(III)(0,σ,α), i.e., 1 − FX(x) = [1 + (x/σ)α]−1, σ, α > 0

and sequence {Un}n≥1 of i.i.d. r.v. coming from Bernoulli(p), 0 < p < 1,

independent of εn, n ≥ 1. We consider 1/0 ≡ +∞, X0 _Pareto(III)(0,σ,α)

and thus Xn, n ≥ 1. We have λ = p (Ferreira [9]).

The absolute bias (abias) and the root mean squared error (rmse) derived from

simulations are in Tables 1 and 2, where we considered the high level u given by the

95% sample quantile. Quantiles 90% and 99% were also used but do not improve

the results and are not reported. The values in bold correspond to the least absolute

bias and the least root mean squared error obtained in each model. We can see that

the three estimators have very similar performances. The estimator λ̂FF proposed

here, being of very simple application, thus constitutes a possible alternative.

4 Application to financial data

Financial investors are very interested in the risk assessment of stock markets. It

is commonly accepted that log-differences of index prices (log-returns) constitute

a stationary sequence. Markets that exhibit greater volatility or variability in a

short period of time represent greater risk. Hence volatility is of great interest to

investors. One way to assess volatility is through the absolute value of log-returns.

In the analysis that we are going to present, we consider the daily closing log-returns

of the following stock market indexes: DJI, S&P500 and FTSE100. We are going

to apply estimators λ̂LOG, λ̂SEC and λ̂FF , considering the 95% sample quantile,
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Table 1: Simulation results corresponding to the absolute bias (abias) and root mean
squared error (rmse) obtained for estimators λ̂FF , λ̂LOG and λ̂SEC , considering u the
95% sample quantile and n = 1000, within models MAR(1) with parameter values
c = 0.25, 0.5, 0.75, MMA(1) with parameter values c = 0.25, 0.5, 0.75 and YARP(1)
parameter values p = 0.25, 0.5, 0.75.

λ̂FF λ̂LOG λ̂SEC

n = 1000 abias rmse abias rmse abias rmse

MAR(1)

c=0.25 0.0559 0.0723 0.0579 0.0745 0.0566 0.0724

c=0.50 0.0556 0.0695 0.0557 0.0680 0.0561 0.0700

c=0.75 0.0457 0.0550 0.0489 0.0594 0.0456 0.0551

MMA(1)

c=0.25 0.0163 0.022 0.0198 0.0257 0.0277 0.0354

c=0.50 0.0453 0.0581 0.0430 0.0533 0.0461 0.0587

c=0.75 0.0439 0.0523 0.0348 0.044 0.0440 0.0527

YARP(1)

p=0.25 0.0520 0.0678 0.0531 0.0695 0.0524 0.0678

p=0.50 0.0576 0.0695 0.0503 0.0623 0.0577 0.0699

p=0.75 0.0469 0.0604 0.0485 0.0633 0.0471 0.0604

to each financial time series covering two one-year periods: 2015 and 2017 (Figure

1). So, roughly speaking, we can say that we will evaluate the behavior of financial

markets in two periods [n,m], chosen by us, before and after the Brexit referendum.

Recalling the definition of the smoothness coefficient, it is not the magnitude of

the oscillations that is being evaluated, but rather the greater or lesser number of

oscillations, that is, the tendency of the trajectory to oscillate. The results are given

in Table 3. They correspond to little soft trajectories and there is some decrease

in smoothness, from 2015 to 2017, in DJI and S&P500. According to the values
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Table 2: Simulation results corresponding to the absolute bias (abias) and root mean
squared error (rmse) obtained for estimators λ̂FF , λ̂LOG and λ̂SEC , considering u the
95% sample quantile and n = 5000, within models MAR(1) with parameter values
c = 0.25, 0.5, 0.75, MMA(1) with parameter values c = 0.25, 0.5, 0.75 and YARP(1)
parameter values p = 0.25, 0.5, 0.75.

λ̂FF λ̂LOG λ̂SEC

n = 5000 abias rmse abias rmse abias rmse

MAR(1)

c=0.25 0.0316 0.0406 0.0307 0.0390 0.0316 0.0405

c=0.50 0.0338 0.0414 0.0238 0.0301 0.0339 0.0415

c=0.75 0.0218 0.0279 0.0224 0.0285 0.0218 0.0279

MMA(1)

c=0.25 0.0180 0.0197 0.0066 0.0090 0.0205 0.0221

c=0.50 0.0325 0.0381 0.0183 0.0229 0.0326 0.0382

c=0.75 0.0321 0.0376 0.0183 0.0235 0.0320 0.0376

YARP(1)

p=0.25 0.0298 0.0372 0.0262 0.0316 0.0299 0.0373

p=0.50 0.0383 0.0445 0.0218 0.0281 0.0385 0.0446

p=0.75 0.0226 0.0286 0.0228 0.0282 0.0228 0.0287

obtained for the estimates of the proposed coefficient, we can say that the volatilities

of the DJI and S&P500 indices show more fluctuations in 2017 than in 2015. The

volatilities of the FTSE100 index do not present great differences in the intensity

of the fluctuations, when measured by this coefficient.
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Table 3: Estimates of λ̂LOG, λ̂SEC and λ̂FF , considering the 95% sample quantile, obtained
from volatility of the indexes DJI, S&P500 and FTSE100, in years 2015 and 2017.

DJI 2015 2017
λ̂LOG 0.3607 0.1105
λ̂SEC 0.3871 0.1526
λ̂FF 0.2308 0.0769

S&P500 2015 2017
λ̂LOG 0.2677 0.0241
λ̂SEC 0.2996 0.0723
λ̂FF 0.3077 0.0000

FTSE 2015 2017
λ̂LOG 0.2116 0.2041
λ̂SEC 0.2470 0.2400
λ̂FF 0.2308 0.1538

5 Conclusions

The tail dependence coefficient is one of the most well-known measures used in the

evaluation of the risk of extreme observations. This work reinforces the importance

and preference found by the use of this measure when relating it to the degree of

oscillations in the trajectory of a process. This aspect is particularly useful in the

evaluation of risk in financial, environmental, and other series. The contribution of

this work shows that there is still a way of researching around this coefficient and

the importance of investing in its estimation.
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Figure 1: Absolute value of daily closed log-returns (volatility) of DJI, S&P500 and FTSE
in years 2015 (left) and 2017 (right).
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