
Global Attractivity for Scalar Differential Equations

with Small Delay

Teresa Fariaa,�∗ and José J. Oliveirab,†
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Abstract

For scalar functional differential equations ẋ(t) = f(t, xt), we refine the method of Yorke and

3/2-type conditions to prove the global attractivity of the trivial solution. The results are applied

to establish sufficient conditions for the global attractivity of the positive equilibrium of scalar

delayed population models of the form ẋ(t) = x(t)f(t, xt), and illustrated with the study of two

food-limited population models with delay, for which several criteria for their global attractivity

are given.
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1. Introduction

For the last decades, a great interest has been devoted to the study of functional differential

equations (FDEs), motivated by their extensive use in biology and other sciences. Differential

equations with delays have served as models in population dynamics, ecology, epidemiology, disease

modelling, neural networks. Naturally, the use of time-delays in differential equations leads to

more realistic mathematical models. In general, however, large delays give rise to loss of stability,

unbounded solutions, etc., whereas even small delays produce oscillatory phenomena, in agreament

with observed biological processes.
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In this paper, we study the global attractivity of equilibria of scalar delayed differential equa-

tions, with particular emphasis on positive equilibria of differential equations which appear as

models for the growth of a single species population. Note that, for models used in population dy-

namics or epidemics, only positive solutions are meaningful, due to their biological interpretation.

Let C := C([−τ, 0]; IR) be the space of continuous functions from [−τ, 0] to IR, τ > 0, equipped

with the sup norm ‖ϕ‖ = max−τ≤θ≤0 |ϕ(θ)|. We consider general scalar FDEs

ẋ(t) = f(t, xt), t ≥ 0, (1.1)

where f : [0,∞) × C → IR is continuous. As usual, xt denotes the function in C defined by

xt(θ) = x(t + θ),−τ ≤ θ ≤ 0.

For a given continuous function f : [0,∞) × C → IR such that f(t, 0) ≡ 0, we shall establish

sufficient conditions for the global attractivity of the zero solution of (1.1). In fact, we only need

to guarantee existence and continuity of solutions to (1.1), which is the case if f satisfies the

Carathéodory conditions (see [7]). First, we set some notation. If x(t) is defined for t ≥ 0, we say

that x(t) is oscillatory if it is not eventually zero and it has arbitrarily large zeros; otherwise, it

is called non-oscillatory. An equilibrium E∗ of (1.1) is said to be globally attractive if all solutions

of the equation tend to E∗ as t → ∞. For c ∈ IR, we use c also to denote the constant function

ϕ(θ) = c, −τ ≤ θ ≤ 0. For ϕ ∈ C and c ∈ IR, we say that ϕ ≥ c if and only if ϕ(θ) ≥ c, θ ∈ [−τ, 0];

analogously, ϕ > c if and only if ϕ(θ) > c, θ ∈ [−τ, 0].

To study the behaviour of solutions of delay differential equations, and in particular the

stability of equilibria, one approach is to give conditions on the size of the delays and coefficients,

such as the so-called 3/2-type conditions, so that the FDE is expected to behave similarly to an

ordinary differential equation if the delays are sufficiently small. This is the setting initiated with

the remarkable work of Wright [21], which established that all positive solutions of the delayed

logistic equation ẋ(t) = ax(t)
(
1 − x(t − τ)/K

)
converge to the positive equilibrium K as t → ∞

if aτ ≤ 3/2. Further significant contributions were given by Yorke [24], Yoneyama [23], So et al.

[18], Liz et al. [12], among others. The so-called Yorke condition,

−aM(ϕ) ≤ f(t, ϕ) ≤ aM(−ϕ), for t ≥ 0, ϕ ∈ C, (1.2)

where a > 0, M(ϕ) := max {0, supθ∈[−τ,0] ϕ(θ)}, was introduced in [24], and used together with the

restriction aτ < 3/2 to deduce that all oscillatory solutions of (1.1) with sufficiently small initial

conditions tend to zero as t → ∞. In [22, 23], Yoneyama extended the work of Yorke, replacing

the constant a by a non-negative continuous function λ(t), such that

inf
t≥τ

∫ t

t−τ
λ(s)ds > 0, sup

t≥τ

∫ t

t−τ
λ(s)ds <

3
2
. (1.3)
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Some recent generalizations of the Yorke condition in [1, 4, 12, 25] motivated the work in this

paper. For more discussions and related results, we refer the reader to the books of Gopalsamy [5]

and Kuang [10], the papers [2, 8, 9, 13, 14, 17, 18, 19, 20], and references therein.

In this paper, the following hypotheses will be considered:

(H1) there is a piecewise continuous function β : [0,∞)→ [0,∞) with supt≥τ
∫ t
t−τ β(s)ds <∞,

and such that for each q ∈ IR there is η(q) ∈ IR such that for t ≥ 0 and ϕ ∈ C,ϕ ≥ q,

then

f(t, ϕ) ≤ β(t)η(q);

(H2) if w : [−τ,∞) → IR is continuous and wt → c = 0 in C as t → ∞, then
∫∞
0

f(s, ws) ds

diverges;

(H3) there exist piecewise continuous functions λ1, λ2 : [0,∞) → [0,∞) and a constant b ≥ 0

such that, for r(x) :=
−x

1 + bx
, x > −1/b, then

λ1(t)r(M(ϕ)) ≤ f(t, ϕ) ≤ λ2(t)r(−M(−ϕ)), for t ≥ 0, (1.4)

where the first inequality holds for all ϕ ∈ C and the second one for ϕ ∈ C such that

ϕ > −1/b ∈ [−∞, 0), and M(ϕ) := max {0, supθ∈[−τ,0] ϕ(θ)} is the Yorke’s functional;

(H4) there is T ≥ τ such that, for

αi := αi(T ) = sup
t≥T

∫ t

t−τ
λi(s)ds, i = 1, 2,

we have

Γ(α1, α2) ≤ 1, (1.5)

where Γ : (0,∞)× (0, 5/2) ∪ (0, 5/2)× (0,∞)→ IR is defined by

Γ(α1, α2) =




(α1 − 1/2)α2
2/2 if α1 > 5/2

(α1 − 1/2)(α2 − 1/2) if α1, α2 ≤ 5/2

(α2 − 1/2)α2
1/2 if α2 > 5/2.

(1.6)

For t ≥ 0, ϕ ∈ C, note that (H3) implies that f(t, ϕ) ≤ 0 if ϕ ≥ 0 and f(t, ϕ) ≥ 0 if ϕ ≤ 0,

and in particular x = 0 is an equilibrium of (1.1). On the other hand, if b = 0 so that r(x) = −x,

it is clear that (H3) and (H4) imply (H1).

With the exception of the refinements in the Yorke and 3/2-type conditions (H3)-(H4), these

hypotheses have already appeared in the literature. Together with (H3), hypothesis (H1) is used to

guarantee that all solutions are bounded (cf. [12]); (H2) is used to force non-oscillatory solutions of
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(1.1) to zero as t→∞ (cf. [18]), whereas (H3)-(H4) allow us to deal with oscillatory solutions. The

use of a rational function r(x) in (1.4) was first introduced by Liz et al. [12], with λ1(t) ≡ λ2(t) ≡ α,

and further exploited in [4]. In [4], the situation of two different rational functions r1(x), r2(x)

in the Yorke condition was also considered, λ(t)r1(M(ϕ)) ≤ f(t, ϕ) ≤ λ(t)r2(−M(−ϕ)), however

under a constraint stronger than the 3/2-condition in (1.3). Also, instead of introducing a rational

function in (1.2), for a particular class of scalar FDEs Muroya [14] considered a strictly decreasing

function h : IR→ IR, with h(0) = 0 and either h(−∞) or h(∞) finite.

Clearly, (H4) is a modified version of the 3/2-condition in (1.3). In fact, for λ1(t) ≡ λ2(t), we

obtain α1 = α2 := α, and Γ(α1, α2) ≤ 1 reduces to α ≤ 3/2. In this sense, the major novelty of the

work presented here consists of considering two different functions λ1(t), λ2(t) in hypothesis (H3).

Actually, the particular case of (1.4) with b = 0 was considered in [25], under an assumption much

more restrictive than (H4). We also remark that, as we shall see, Γ(α1, α2) ≤ 1 is satisfied if

α1α2 ≤ 9/4.

The following result was proven in [4]:

Theorem 1.1. [4] Assume (H1), (H2), (H3) with λ1(t) = λ2(t) := λ(t), t ≥ 0, and α := α(T ) =

supt≥T
∫ t
t−τ λ(s)ds < 3/2, for some T ≥ τ . Then the zero solution of (1.1) is globally attractive.

If b > 0 and λ(t) > 0 for t large, the same result holds for α = 3/2.

The purpose of this paper is to prove Theorem 1.1 under the more general Yorke condition

(H3), as well as to use this setting to study some scalar population models with delays. The main

results can be summarized as follows:

Theorem 1.2. Assume (H1)-(H4), with Γ(α1, α2) < 1 for Γ as in (1.6). If b > 0, assume also that

α1 ≤ α2. Then the zero solution of (1.1) is globally attractive. If b > 0 and λi(t) > 0 for t large,

i = 1, 2, the same result holds for Γ(α1, α2) = 1.

For the proof of the above theorem, we address separately the cases of a rational function r(x)

in (H3) with b = 0 (i.e., r(x) = −x) and b > 0, respectively in Sections 2 and 3. Furthermore,

for the case b = 0, instead of (H3) we shall also consider a weaker hypothesis (see (H3’) below),

and generalize results in [1, 13]. With b = 0, and even under the more restrictive assumption

(1.2), recall that there are counter-examples for which aτ = 3/2 and the trivial solution of (1.1)

is not globally attractive, showing that condition aτ < 3/2 is sharp (see e.g. [22]). In Section 4,

we apply the results to general delayed scalar population models of the form ẋ(t) = x(t)f(t, xt),

and improve the criterion for global stability established in [4], even for the situation λ1(t) ≡ λ2(t)

(see Theorem 4.1). Finally, also in Section 4, two food-limited population models with delay that

have been considered in the literature are addressed within the present framework, and weaker

sufficient conditions for the global asymptotic stablility of the positive equilibrium of such models
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are obtained. We note that different choices of functions λ1(t), λ2(t) in (H3) lead to different

stability criteria.

2. The case b = 0 in (H3)

In this section, we take b = 0 in (H3), so that r(x) = −x for all x ∈ IR. For this situation, in

fact we first conduct our study replacing the Yorke condition (1.4) by a weaker condition:

(H3’) there are piecewise continuous functions λ1, λ2 : [0,∞)→ [0,∞) and h : IR→ IR, with h

non-increasing and satisfying

|h(x)| < |x| for x = 0 (2.1)

such that

λ1(t)h(M(ϕ)) ≤ f(t, ϕ) ≤ λ2(t)h(−M(−ϕ)), for t ≥ 0, ϕ ∈ C. (2.2)

Observe that for b = 0, (H1) follows trivially from (H3’) and (H4). The goal is to show the

global attractivity of the zero solution of (1.1) under (H2), (H3’) and (H4). Some previous lemmas

are required.

Lemma 2.1. Assume (H3’) and that supt≥τ
∫ t
t−τ λi(s)ds, i = 1, 2, are finite. Then, all solutions

of (1.1) are defined and bounded on [0,∞). Moreover, if (H2) holds and x(t) is a non-oscillatory

solution of (1.1), then x(t)→ 0 as t→∞.

Proof. The first statement follows from the techniques in [23]. Assume now (H2), and consider

a non-oscillatory solution x(t) of (1.1). If x(t) is eventually positive, from (H3’) we have f(t, xt) ≤ 0

for t large, hence x(t) is eventually non-increasing, and converges to some c ≥ 0 as t → ∞. Since

x(t) = x(t0)+
∫ t
t0
f(s, xs) ds, t ≥ t0, from (H2) we conclude that c = 0. The case of x(t) eventually

negative is treated in a similar way.

Lemma 2.2. Assume (H3’) and that supt≥τ
∫ t
t−τ λi(s)ds, i = 1, 2, are finite. Let x(t) be an

oscillatory solution of (1.1), and u, v ≥ 0 be defined as

u = lim sup
t→∞

x(t), −v = lim inf
t→∞

x(t), (2.3)

Then, for any T ≥ τ and αi := αi(T ) = supt≥T
∫ t
t−τ λi(s)ds, i = 1, 2, we have

u ≤ h(−v) max{1/2, α2 − 1/2}, u ≤ h(−v)α2
2/2 (2.4)

and

−v ≥ h(u) max{1/2, α1 − 1/2}, −v ≥ h(u)α2
1/2. (2.5)
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Proof. Fix T ≥ τ and ε > 0. Then, there is T0 ≥ T such that

−vε := −(v + ε) ≤ xt ≤ u + ε := uε for t ≥ T0.

If u = 0, clearly (2.4) holds. Otherwise, consider a sequence (x(tn)) of local maxima, x(tn) >

0, tn → ∞, tn − 2τ ≥ T0, x(tn) → u as n → ∞. We may assume that x(t) < x(tn) for tn − t > 0

small. As in [12, Remark 3] and [1, Lemma 3.2], we deduce that there exists ξn ∈ [tn − τ, tn) such

that x(ξn) = 0 and x(t) > 0 for t ∈ (ξn, tn]. For t ≥ T0, we have −xt ≤ vε, hence

ẋ(t) ≤ λ2(t)h(−vε), (2.6)

and we get

−x(t) ≤ h(−vε)
∫ ξn

t

λ2(s) ds , t ∈ [T0, ξn].

Let t ∈ [ξn, tn] and θ ∈ [−τ, 0]. We have x(t + θ) > 0 if t + θ ∈ (ξn, tn] and x(t + θ) ≥
−h(−vε)

∫ ξn
t−τ λ2(s)ds if t + θ ≤ ξn. Therefore, M(−xt) ≤ h(−vε)

∫ ξn
t−τ λ2(s) ds, and (H3’) yields

ẋ(t) ≤ λ2(t)h
(
− h(−vε)

∫ ξn

t−τ
λ2(s) ds

)
≤ λ2(t)h(−vε)

∫ ξn

t−τ
λ2(s) ds, t ∈ [ξn, tn]. (2.7)

From (2.6) and (2.7), we write

ẋ(t) ≤ h(−vε) min
{
λ2(t), λ2(t)

∫ ξn

t−τ
λ2(s) ds

}
, ξn ≤ t ≤ tn. (2.8)

Set Λn :=
∫ tn
ξn

λ2(s) ds. From (2.7),

x(tn) =
∫ tn

ξn

ẋ(t) dt ≤ h(−vε)
∫ tn

ξn

λ2(t)
[ ∫ t

t−τ
λ2(s) ds−

∫ t

ξn

λ2(s) ds
]
dt

≤ h(−vε)[α2Λn − Λ2
n/2].

(2.9)

Since Λn ≤ α2 and the function x �→ α2x− x2/2 is increasing for x ≤ α2, we obtain

x(tn) ≤ h(−vε)α2
2/2.

By letting n→∞ and ε→ 0+, the above estimate leads to

u ≤ h(−v)α2
2/2. (2.10)

We now consider separately the cases Λn ≤ 1 and Λn > 1, and adjust the arguments in So et

al. [18]. If Λn ≤ 1, since Λn ≤ max(1, α2) and α2x−x2/2 ≤ max(1, α2)x−x2/2 ≤ max(1, α2)−1/2

for 0 < x ≤ 1, from (2.9) we obtain

x(tn) ≤ h(−vε)
(
max(1, α2)− 1/2

)
= h(−vε) max {1/2, α2 − 1/2}. (2.11)
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If Λn > 1, choose ηn ∈ (ξn, tn) such that
∫ tn
ηn

λ2(s) ds = 1. From (2.8), we have

x(tn) ≤ h(−vε)
{∫ ηn

ξn

λ2(t) dt +
∫ tn

ηn

λ2(t)
( ∫ ξn

t−τ
λ2(s) ds

)
dt

}

= h(−vε)
{∫ ηn

ξn

λ2(t) dt +
∫ tn

ηn

λ2(t)
( ∫ ηn

t−τ
λ2(s) ds−

∫ ηn

ξn

λ2(s) ds
)
dt

}

= h(−vε)
∫ tn

ηn

λ2(t)
( ∫ ηn

t−τ
λ2(s) ds

)
dt

= h(−vε)
∫ tn

ηn

λ2(t)
( ∫ t

t−τ
λ2(s) ds−

∫ t

ηn

λ2(s) ds
)
dt

≤ h(−vε)
[
α2 −

1
2

( ∫ tn

ηn

λ2(s) ds
)2]

= h(−vε)
(
α2 −

1
2
)
.

(2.12)

From (2.11) and (2.12), by letting n→∞ and ε→ 0+, we obtain

u ≤ h(−v) max{1/2, α2 − 1/2}. (2.13)

From (2.10) and (2.13), we get (2.4). The proof of the estimates in (2.5) follows using argu-

ments similar to the ones above for the proof of (2.4), by considering a sequence (x(sn)) of local

minima, and is omitted.

We are now in the position to prove the main results of this section.

Theorem 2.1. Assume (H2), (H3’) and (H4). Then the zero solution of (1.1) is globally attractive.

Proof. It is sufficient to consider the case of an oscillatory solution x(t) of (1.1). Since x(t) is

bounded, define u, v as in (2.3), 0 ≤ v, u <∞. Suppose that u ≥ v (the case v ≥ u is analogous).

The first inequalities in (2.4) and (2.5), and the fact that h is a non-increasing function

satisfying (2.1), imply that u ≤ −h(u)M(α1, α2), where

M(α1, α2) := max{1/2, α1 − 1/2} max{1/2, α2 − 1/2}. (2.14)

If α1, α2 ≤ 5/2, and α1 ≤ 1 or α2 ≤ 1, then M(α1, α2) ≤ 1; if 1 ≤ α1, α2 ≤ 5/2, then M(α1, α2) =

Γ(α1, α2) ≤ 1. Hence, for α1, α2 ≤ 5/2 one concludes that u ≤ −h(u). If u > 0, this leads to the

contradiction u < u, and therefore u = 0.

We now assume α1 > 5/2. From (2.4) and (2.5), one gets

u ≤ −h(u)(α1 − 1/2)α2
2/2 = −h(u)Γ(α1, α2) ≤ −h(u),

and again one concludes that u = 0. The case α2 > 5/2 is similar.

Since u = 0 and 0 ≤ v ≤ u, thus also v = 0. This proves that x(t)→ 0 as t→∞.
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Theorem 2.2. Assume (H2),(H3’) and that for some T ≥ τ and αi = supt≥T
∫ t
t−τ λi(s)ds, i = 1, 2,

we have either

max{1/2, α1 − 1/2} max{1/2, α2 − 1/2} ≤ 1 , (2.15)

or

α1α2 ≤ 9/4. (2.16)

Then the zero solution of (1.1) is globally attractive.

Proof. It is sufficient to prove that Γ(α1, α2) ≤ 1 if either (2.15) or (2.16) holds. Assuming

(2.15), then α1, α2 ≤ 5/2, and consequently Γ(α1, α2) ≤M(α1, α2) ≤ 1, for M(α1, α2) as in (2.14).

Now let α1α2 ≤ 9/4. If α1, α2 ≤ 5/2, then necessarily (2.15) holds. In fact, if α1, α2 ≤ 3/2 then

M(α1, α2) ≤ 1, so we may consider e.g. the case α1 > 3/2 and α2 < 3/2. For α1 ∈ (3/2, 5/2]

and α2 ≤ 1, we obtain M(α1, α2) = (α1 − 1/2)/2 ≤ 1. If α1 ∈ (3/2, 5/2] and α2 > 1, then

α2 ∈ (1, 9/(4α1)], and we get

M(α1, α2) = (α1 −
1
2
)(α2 −

1
2
)

≤ (2α1 − 1)(9− 2α1)
8α1

=
−4α2

1 + 20α1 − 9
8α1

= − (2α1 − 3)2

8α1
+ 1 < 1.

Now, let α1α2 ≤ 9/4, with α1 > 5/2. Then α2 ≤ 9/(4α1) and

Γ(α1, α2)− 1 =
(
α1 −

1
2

)α2
2

2
− 1 ≤ 1

64α2
1

[−64α2
1 + 162α1 − 81] < 0.

Similarly, if α1α2 ≤ 9/4 with α2 > 5/2, we obtain Γ(α1, α2) = (α2 − 1/2)α2
1/2 < 1.

From the above proofs, it is clear that Theorem 2.1 holds if in (H3’) one replaces condition

(2.1) by |h(x)| ≤ |x|, provided that Γ(α1, α2) < 1. Hence, with h(x) = −x in (2.2), a generalization

of Yoneyama’s classical result [23] is obtained as follows:

Corollary 2.3. Assume (H2), and that:

(H3*) there are piecewise continuous functions λ1, λ2 : [0,∞)→ [0,∞) such that

−λ1(t)M(ϕ) ≤ f(t, ϕ) ≤ λ2(t)M(−ϕ);

If in addition (H4) holds with Γ(α1, α2) < 1, then the zero solution of (1.1) is globally attractive.

In particular, this is the case if α1α2 ≤ 9/4, with (α1, α2) = (3/2, 3/2).

Proof. For α1, α2 > 0 with (α1, α2) = (3/2, 3/2), then α1α2 ≤ 9/4 implies Γ(α1, α2) < 1,

proving the last statement of the corollary.

Observe that assumption (H3*) reads as (H3), for the case b = 0. Note also that, if α1α2 ≤ 9/4,

it is necessary to impose (α1, α2) = (3/2, 3/2): as already remarked, even for λ1(t) ≡ λ2(t) and
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α := α1 = α2, condition ατ < 3/2 is sharp. On the other hand, we emphasize that Corollary 2.3

was obtained in [25] under the restriction

min{α1, α2}max{α2
1, α

2
2} < (3/2)3,

which is clearly stronger than the condition α1α2 < 9/4.

For the case of a scalar FDE with one discrete delay ẋ(t) = f(t, x(t − τ)), the next criterion

generalizes the result by Matsunaga et al. [13], where only the particular case f(t, x) = λ(t)h(x)

with λ = λ1 = λ2 and h as in (H3’) was considered:

Corollary 2.4. Let f : [0,∞) × IR → IR be a continuous function, and suppose that there are

piecewise continuous functions λ1, λ2 : [0,∞) → [0,∞) and h : IR → IR, with h non-increasing

satisfying (2.1) and

λ1(t) min{0, h(x)} ≤ f(t, x) ≤ λ2(t) max{0, h(x)}, t ≥ 0, x ∈ IR. (2.17)

If in addition (H2) and (H4) are satisfied, then the zero solution of ẋ(t) = f(t, x(t− τ)) is globally

attractive.

In Section 4, we shall apply these results to some scalar delayed differential equations used in

population dynamics. Nevertheless, a simple illustration of Corollary 2.3 is shown by the following

example. Let a, b : [0,∞)→ [0,∞) be continuous functions with
∫∞
0

a(t)dt =∞ or
∫∞
0

b(t)dt =∞,

and consider the equation

ẋ(t) = −max{a(t)x(t), b(t)x(t− τ)}, t ≥ 0. (2.18)

Defining f(t, ϕ) = −max{a(t)ϕ(0), b(t)ϕ(−τ)}, it is clear that (H3*) is satisfied with λ1(t) =

max{a(t), b(t)}, λ2(t) = min{a(t), b(t)}. Let αi = αi(T ) be as in (H4). If Γ(α1, α2) < 1, from

Corollary 2.3 we conclude that x = 0 is a global attractor of all solutions of (2.18).

3. The case b > 0 in (H3)

Throughout this section, we consider b > 0, for b as in (H3). By a time scaling, we may

assume that the time delay is τ = 1. Also, the scaling x �→ bx allows us to reduce to the case b = 1.

Hence, without loss of generality, we now take τ = 1 and b = 1, so that C = C([−1, 0]; IR) and

r(x) = − x

1 + x
, x > −1.

Recall that r is decreasing, with limx→−1+ r(x) =∞, limx→∞ r(x) = −1.

In this section, the restriction α1 ≤ α2 in (H4) will be imposed to deduce the global attractivity

of the zero solution of (1.1). By the change of variables x �→ y = −x, we may as well consider a
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function f(t, ϕ) for which g(t, ϕ) := −f(t,−ϕ) satisfies (H1)-(H4). Clearly, in this case one should

take the situation α2 ≤ α1 in (H4). In some sense, the need for a restriction on the relative sizes

of α1, α2 is natural, since the two different functions λ1(t), λ2(t), together with r(x), are taken to

impose a boundedness condition on f , with different types of bounds on the left and right hand

sides of zero.

First, some auxiliary properties are established.

Lemma 3.1. Assume (H1), (H3) and that supt≥τ
∫ t
t−1

λ1(s)ds < ∞. Then, all solutions of (1.1)

are defined and bounded on [0,∞). Moreover, if (H2) holds and x(t) is a non-oscillatory solution

of (1.1), then x(t)→ 0 as t→∞.

Proof. The result was proven in [4, Lemma 2.1].

Following the work in [12], for given 0 < α1 ≤ α2 we define the auxiliary functions Ai :

(−1,∞)→ IR and Bi : (− 1
αi+1 ,∞)→ IR, i = 1, 2, by

Ai(x) = x + αir(x) +
1

r(x)

∫ 0

x

r(t)dt if x = 0, x > −1, Ai(0) = 0,

Bi(x) =
1

r(x)

∫ 0

−αir(x)
r(t)dt if x = 0, x > − 1

αi + 1
, Bi(0) = 0.

Note that for x = 0 in the domain of Ai, Bi, then

Ai(x) = −1 + αir(x)− 1
r(x)

log(1 + x), Bi(x) = −αi −
1

r(x)
log(1− αir(x)). (3.1)

The following properties can be easily checked (see also [12]):

Lemma 3.2. The functions Ai, Bi are differentiable, with B′i(x) < 0 for all x > − 1
αi+1 and

A′i(x) < 0 for −1 < x < αi − 1, i = 1, 2. Moreover, Ai(αi − 1) = Bi(αi − 1), A′i(0) = 1
2 − αi and

A′′i (0) = 2αi − 1
3 .

For αi > 1/2, we consider also the auxiliary rational functions

Ri(x) = A′i(0)
x

1− x
νi

, x > νi, (3.2)

where νi := 2A′i(0)
A′′
i
(0) = − 6αi−3

6αi−1 < 0. Note that ν1 ≥ ν2 for α1 ≤ α2.

Lemma 3.3. For αi > 1, then Ai(x) < Ri(x) for x ∈ (νi, 0) and Ai(x) > Ri(x) for x ∈ (0, αi−1),

i = 1, 2.

Proof. See [12, Lemma 3].
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Lemma 3.4. For 1 < α1 ≤ α2 such that Γ(α1, α2) ≤ 1, where Γ is defined by (1.6), then

R2(A1(x)) ≤ x for 0 ≤ x < α1 − 1.

Proof. We have R1(α1 − 1) ≥ ν1 if and only if (α1 − 3/2)(α1 − 1) ≤ −ν1. In particular,

R1(α1 − 1) ≥ ν1 for 1 < α1 ≤ 3/2. From Lemma 3.3, and since R1, R2 are decreasing, we obtain

A1(x) ≥ R1(x) > ν1 ≥ ν2, 0 ≤ x < α1 − 1,

thus also R2(A1(x)) ≤ R2(R1(x)) := R(x), 0 ≤ x < α1 − 1, where

R(x) =
ax

β + γx
,

with a = A′1(0)A′2(0)ν1ν2 > 0, β = ν1ν2 > 0, γ = −(A′1(0)ν1 + ν2) > 0. Since

R′(x) ≤ R′(0) = A′1(0)A′2(0) = Γ(α1, α2) ≤ 1, x ≥ 0,

we conclude that R2(A1(x)) ≤ R(x) ≤ x, 0 ≤ x < α1 − 1.

Lemma 3.5. For 0 < α1 ≤ α2 such that Γ(α1, α2) = 1, then

B1(x) > ν2 (3.3)

and

R2(B1(x)) ≤ x, for x ≥ max {0, α1 − 1}. (3.4)

Proof. Fix 0 < α1 ≤ 3/2. For α2 = α2(α1) > 0 such that Γ(α1, α2) = 1, then ν2 = ν2(α1) =

− 6
6+α2

1
if 0 < α1 ≤ 1, and ν2 = ν2(α1) = − 6

2α1+5 if 1 < α1 ≤ 3/2. On the other hand, B1(x) >

B1(∞) = −α1 + log(α1 + 1) for x > − 1
α1+1 . Since the function α1 �→ −α1 + log(α1 + 1)− ν2(α1)

is decreasing on (0, 3/2] and positive at α1 = 3/2, then B1(x) > ν2 for all x > − 1
α1+1 and

0 < α1 ≤ 3/2.

We now prove (3.4). Some straightforward but involved computations of derivatives are omit-

ted, which can be easily checked with the help of a mathematical software.

Since A1(α1 − 1) = B1(α1 − 1), from Lemma 3.4 we conclude that R2(B1(α1 − 1)) ≤ α1 − 1

if α1 − 1 ≥ 0, thus the estimate in (3.4) holds for x = max {0, α1 − 1}. By using the definitions in

(3.1) and (3.2), it is easy to see that R2(B1(x)) ≤ x if and only if F (x, α1) ≤ 0, for F defined by

F (x, α1) =

(
1 +

x

α1( 1
2 − α2 + x

ν2
)

)
α1x

1 + x
− log

(
1 +

α1x

1 + x

)
, x ≥ max {0, α1 − 1},

where α2 = α2(α1) and ν2 = ν2(α1). Hence, it sufficient to show that ∂F
∂x (x, α1) ≤ 0 for x ≥

max {0, α1 − 1}. One has

∂F

∂x
(x, α1) =

(ax2 + bx + c)x
4(1 + x)2( 1

2 − α2 + x
ν2

)2(1 + (1 + α1)x)
,
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where
a = a(α1) = (2− 4α2 + 4/ν2)(1 + α1) + 4(α1/ν2)2

b = b(α1) = (2− 4α2)(3 + 2α1) + 4(1 + α2
1 − 2α2

1α2)/ν2

c = c(α1) = 4(1− 2α2) + α2
1(1− 4α2) + 4α2

1α
2
2 .

Case 1: 0 < α1 ≤ 1. We have c = 0, a = P1(α1)
9α2

1
and b = 2P2(α1)

α2
1

, where

P1(x) = x6(x2 + 12) + 6x4(−x + 5)− 36(x2 + 2)(x + 1), P2(x) = x2(x2 + 6)− 4(2x + 3).

By studying the signs of the derivatives of P1(x), P2(x), we can show that P1(x) < 0, P2(x) < 0

for x ∈ (0, 1), hence a < 0, b < 0, and consequently ∂F
∂x (x, α1) ≤ 0 for x ≥ 0.

Case 2: 1 < α1 ≤ 3/2. Then a = P3(α1)
9(2α1−1) , b = 2P4(α1)

3(2α1−1) and c = 16(α1−1)2

(2α1−1)2 > 0, where

P3(x) = 8x5 + 36x4 + 6x3 − 97x2 − 90x− 42, P4(x) = 8x3 + 16x2 − 32x− 31.

By studying the derivatives of P3(x), P4(x), we see that a < 0 and b < 0. To conclude that
∂F
∂x (x, α1) ≤ 0 for all x > α1−1, we need to show that α1−1 ≥ z+(α1), where z+(α1) = b+

√
b2−4ac
2|a|

is the positive root of ax2 + bx + c. But α1 − 1 ≥ z+(α1) is equivalent to P5(α1) ≤ 0, where

P5(x) = 16x4(x + 3)− 8x2(11x + 10) + 261x− 391.

Again, by studying the sign of the derivatives of P5(x) and the position of its roots, one can see

that P5(x) < 0 for all x ∈ (1, 3/2]. This completes the proof.

We now define D1 : [0,∞)→ IR by

D1(x) =

{
A1(x) , 0 ≤ x < α1 − 1

B1(x) , x ≥ max {0, α1 − 1}
,

so that D1 = B1|[0,∞) in the case α1 ≤ 1. For x ≥ 0, note that x < α1 − 1 is equivalent to

α1r(x) < −x. Since log x ≥ x− 1 for x > 0, from (3.1) we have

A1(x)−B1(x) ≥ α1 − 1 + α1r(x) +
1

r(x)

[
1− α1r(x)

1 + x
− 1

]
= 0, x > 0, (3.5)

where the equality holds only if x = α1−1. For 0 < α1 ≤ α2 such that Γ(α1, α2) = 1, we therefore

conclude that D1 is continuous, decreasing and, from the lemma above,

R2(D1(x)) ≤ x, x ≥ 0. (3.6)

A last preliminary lemma is established below.
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Lemma 3.6. Assume (H1),(H3) with b > 0, and (H4). Let x(t) be an oscillatory solution of (1.1),

and u, v ≥ 0 be defined as

u = lim sup
t→∞

x(t), −v = lim inf
t→∞

x(t). (3.7)

Then we have

−v ≥ B1(u). (3.8)

Moreover, if λi(t) > 0 for t large and αi > 1, i = 1, 2, then

−v ≥ A1(u) for u < α1 − 1, u ≤ A2(−v) for v < 1. (3.9)

Proof. We first note that x(t) is bounded, thus 0 ≤ u, v <∞. Fix ε > 0, and for T as in (H4)

choose T0 ≥ T such that

−(v + ε) ≤ x(t) ≤ u + ε, t ≥ T0 − 2. (3.10)

Now consider a sequence (x(sn)) of local minima, x(sn) < 0, sn → ∞, sn − 2 ≥ T0, x(sn) → −v
as n → ∞. As in the proof of Lemma 2.2 (cf. [1, 12]), we deduce that, if sn are chosen so that

x(t) > x(sn) for sn − t > 0 small, then there exists ηn ∈ [sn − 1, sn) such that x(ηn) = 0 and

x(t) < 0 for t ∈ (ηn, sn].

Define λ̂1(t) = α−1
1 λ1(t). From (3.10), M(xt) ≤ u + ε for t ≥ T0 − 1, where M is the Yorke’s

functional. Using twice the first inequality in (1.4) (cf. [4, Theorem 2.7]), we prove that

x(sn) ≥ −
1

r(u + ε)

∫ ψ(ηn)

ψ(sn)

r(s) ds,

where ψ(t) = −α1r(u + ε)[1−
∫ t
ηn

λ̂1(s)ds]. Since ψ(ηn) = −α1r(u + ε) and ψ(sn) ≥ 0, then

x(sn) ≥ −
1

r(u + ε)

∫ −α1r(u+ε)

0

r(s) ds = B1(u + ε).

By letting n→∞ and ε→ 0+, we obtain the estimate (3.8).

Now let λ1(t) > 0 for t ≥ t0 for some t0 ≥ T . Consider the function (cf. [4, 12]) s1 : [t0,∞)→
[s1(t0),∞),

s1(t) =
1
α1

∫ t

0

λ1(s) ds, t ≥ t0.

The function s1(t) is one-to-one and onto. Denoting by t1 = t1(s) its inverse, we effect the change

of variables y(s) = x(t1(s)), s ≥ s1(t0). Eq. (1.1) is transformed into an equation of the form

ẏ(s) = g1(s, ys), s ≥ s1(t0), (3.11)

where g1 satisfies the estimate (cf. [4, 12])

g1(s, ϕ) ≥ α1r(M(ϕ)), s ≥ s1(t0), ϕ ∈ C.
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For 0 ≤ u < α1−1, then α1r(u) < −u, and the estimate −v ≥ A1(u) follows now from [12, Lemma

4] applied to Eq. (3.11). Analogously, we consider the change y(s) = x(t2(s)), where t2 = t2(s) is

the inverse of s2(t) = 1
α2

∫ t
0
λ2(s) ds for s large, leading to the equation ẏ(s) = g2(s, ys), where g2

satisfies

g2(s, ϕ) ≤ α2r(−M(−ϕ)),

for s large and ϕ ∈ C such that ϕ > −1. Note that r(x) and A2(x) are defined only for x > −1.

For α2 > 1 and v < 1, then α2r(−v) > v, and in a similar way one proves u ≤ A2(−v). See [4, 12]

for more details.

The main result of this section is as follows:

Theorem 3.1. Assume (H1)-(H4), with b > 0 and λi(t) > 0 for t large, i = 1, 2. If α1 ≤ α2, then

all solutions x(t) of (1.1) are defined and bounded for t ≥ 0 and satisfy x(t)→ 0 as t→∞.

Proof. For non-oscillatory solutions, the result is given in Lemma 3.1. Now let x(t) be an

oscillatory solution, and define u, v as in (3.7). Replacing in (H3) α2 by a constant α̂2 > α2 if

necessary, we may assume that Γ(α1, α2) = 1. Note that D1(u) = A1(u) if u < α1 − 1, otherwise

D1(u) = B1(u), hence we deduce −v ≥ D1(u) from (3.8) and (3.9). From (3.3) and (3.5), then we

get −v ≥ D1(u) > ν2. From (3.6), we now obtain

R2(−v) ≤ R2(D1(u)) ≤ u. (3.12)

If v > 0, (3.9), (3.12) and Lemma 3.3 imply that

u ≤ A2(−v) < R2(−v) ≤ u,

which is a contradiction. Hence v = 0, and from Lemma 3.6 also u = 0. The proof is complete.

Theorem 3.2. Assume (H1)-(H4), with b > 0. If α1 ≤ α2 and Γ(α1, α2) < 1, then all solutions

x(t) of (1.1) are defined and bounded for t ≥ 0 and satisfy x(t)→ 0 as t→∞.

Proof. If α1 ≤ α2 and Γ(α1, α2) < 1, we can find ε > 0 such that (H3) and (H4) are fulfilled

with λi(t) replaced by λ̂i(t) := λi(t) + ε, and the result is immediate from Theorem 3.1.

Theorem 1.2 stated in the Introduction follows now from Corollary 2.3 and Theorems 3.1 and

3.2. On the other hand, recall that, as shown in Section 2, we have Γ(α1, α2) ≤ 1 if either (2.15)

or (2.16) holds; and that Γ(α1, α2) < 1 if (2.16) is satisfied with (α1, α2) = (3/2, 3/2).

Remark 3.1. The present setting can be applied to equations (1.1) with time-dependent

bounded discrete delays, ẋ(t) = f0(t, x(t− τ1(t)), . . . , x(t− τn(t))), where τi : [0,∞)→ (0,∞) are

continuous, τi(t) ≤ τ . In fact, for f(t, ϕ) = f0(t, ϕ(−τ1(t)), . . . , ϕ(−τn(t))) and τ(t) = max{τi(t) :

14



1 ≤ i ≤ n}, t ≥ 0, ϕ ∈ C, the results in Sections 2 and 3 are valid if we replace
∫ t
t−τ λi(s)ds by∫ t

t−τ(t) λi(s)ds (i = 1, 2) in hypothesis (H4).

4. Applications to scalar population models

In applications, scalar delayed population models often take the form

ẋ(t) = x(t)f(t, xt), t ≥ 0, (4.1)

where f : [0,∞)× C → IR is continuous. Due to the biological interpretation of model (4.1), only

positive solutions are to be considered and therefore admissible. Hence, we only select admissible

initial conditions

x0 = ϕ, with ϕ ∈ C0, (4.2)

where Cα denotes the set

Cα := {ϕ ∈ C : ϕ(θ) ≥ α for θ ∈ [−τ, 0) and ϕ(0) > α} (α ∈ IR), (4.3)

and observe that solutions of initial value problems (4.1)-(4.2) are positive for t > 0 whenever they

are defined.

Let u(t) be a positive solution on [0,∞) whose stability we want to investigate (e.g., u(t) is a

steady state or a periodic solution). The change x̄(t) = x(t)/u(t) − 1 transforms (4.1) into (after

dropping the bars)

ẋ(t) = (1 + x(t))F (t, xt), (4.4)

where F (t, ϕ) = f(t, ut(1 + ϕ))− f(t, ut), for which the set of admissible initial conditions is C−1.

We shall now apply the study in Sections 2 and 3 to equations written in the form (4.4), improving

recent stability results in the literature (see e.g. [1, 4, 11, 12, 15, 17]).

For a given function F : [0,∞) × C−1 → IR continuous, we assume hypotheses (H1)-(H4)

restricted to C−1, i.e., we suppose that (H1)-(H4) hold with ϕ ∈ C replaced by ϕ ∈ C−1. We note

that if (H3) holds for ϕ ∈ C−1 with b < 1, then F (t, ϕ) ≤ λ2(t)r(−1) for t ≥ 0, ϕ ∈ C−1, and

consequently (H1) is fulfilled with β(t) = λ2(t) and η(q) ≡ r(−1), q ∈ IR.

First, a general result for Eq. (4.4) is proven.

Theorem 4.1. For F : [0,∞)×C−1 → IR continuous, assume that hypotheses (H1)-(H4) with ϕ

restricted to C−1 are satisfied. If b = 1/2, assume in addition that λi(t) > 0 for t large, and either

(i) b > 1/2 and α1 ≤ α2, or

(ii) b < 1/2 and α2 ≤ α1.

Then, the solutions x(t) of (4.4) with initial conditions in C−1 are defined for t ≥ 0 and satisfy

x(t)→ 0 as t→∞.

15



Proof. We first suppose that b ≥ 1/2. The change of variables y(t) = log(1 + x(t)), t ≥ 0,

transforms (4.4) into

ẏ(t) = f(t, yt), t ≥ 0, (4.5)

where f(t, ϕ) = F (t, eϕ−1). For ϕ ∈ C, then ψ = eϕ−1 > −1. Since F satisfies (H3) in the phase

space C−1, we have

f(t, ϕ) ≥ λ1(t)r(M(eϕ − 1)) = λ1(t)r(eM(ϕ) − 1), t ≥ 0, ϕ ∈ C

f(t, ϕ) ≤ λ2(t)r(−M(−eϕ + 1)) = λ2(t)r(e−M(−ϕ) − 1), t ≥ 0, ϕ ∈ C with eϕ − 1 > −1/b.
(4.6)

For b = 1/2, define h(x) = r(ex − 1) = −2
(
1 − 2

ex+1

)
, x ∈ IR. Then h is nonincreasing,

|h(x)| < |x| for x = 0, and

λ1(t)h(M(ϕ)) ≤ f(t, ϕ) ≤ λ2(t)h(−M(−ϕ)), t ≥ 0, ϕ ∈ C.

From Theorem 2.1, we conclude that the solutions y(t) of (4.5) satisfy y(t)→ 0 as t→∞.

For b > 1/2, define r1(x) = −x
1+(b−1/2)x . We can easily check that r(ex − 1) ≥ r1(x) for x ≥ 0

and r(ex− 1) ≤ r1(x) for −1/(b− 1/2) < x ≤ 0. Also, if b > 1, condition x > −1/(b− 1/2) implies

that ex − 1 > −1/b. From (4.6), we therefore conclude that f satisfies (H3) with r(x) replaced by

r1(x). On the other hand, since F satisfies (H1) and (H2) for ϕ ∈ C−1, it is clear that f satisfies

(H1) and (H2) for ϕ ∈ C. For α1 ≤ α2 in (H4), from Theorem 3.1 it follows that zero is a global

attractor of all solutions of (4.5).

If 0 ≤ b < 1/2, we effect the change of variables z(t) = − log(1 + x(t)), t ≥ 0, and Eq. (4.4)

becomes

ż(t) = g(t, zt), (4.7)

where g(t, ϕ) = −F (t, e−ϕ − 1). We obtain

g(t, ϕ) ≤ λ1(t)[−r(M(e−ϕ − 1)] = −λ1(t)r(eM(−ϕ) − 1), t ≥ 0, ϕ ∈ C

g(t, ϕ) ≥ λ2(t)[−r(−M(−e−ϕ + 1)] = −λ2(t)r(e−M(ϕ) − 1), t ≥ 0, ϕ ∈ C.
(4.8)

Let r2(x) = −x
1+(1/2−b)x . We now have −r(e−x − 1) ≥ r2(x) for x ≥ 0 and −r(e−x − 1) ≤ r2(x) for

−1/(1/2− b) < x ≤ 0, hence g satisfies (H3) restricted to C−1, where (1.4) reads as

λ2(t)r2(M(ϕ)) ≤ g(t, ϕ) ≤ λ1(t)r2(−M(−ϕ)).

For α2 ≤ α1 in (H4), taking into account Theorem 3.1, we conclude that all solutions z(t) of (4.7)

satisfy z(t)→ 0 as t→∞.

Remark 4.1. If b = 1/2 and there are arbitrarily large zeros of λ1(t), λ2(t), from Theorem 3.2

we conclude that the statement in Theorem 4.1 is still valid if we further impose Γ(α1, α2) < 1.
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Remark 4.2. Even in the situation λ(t) := λ1(t) = λ2(t), t ≥ 0, Theorem 4.1 slightly improves

[4, Theorem 3.2], where it was required the strict inequality α := α1 = α2 < 3/2 if b = 1/2,

instead of α ≤ 3/2. Therefore, all the criteria established in [4] for several population models can

be improved at least for the case b = 1/2.

Example 4.1. We study the asymptotical behaviour of positive solutions of the delay differ-

ential equation

Ṅ(t) = ρ(t)N(t)
K −

∑n
i=1 aiN

p(t− τi(t))
K +

∑n
i=1 si(t)Np(t− τi(t))

, t ≥ 0, (4.9)

where ai > 0,K > 0, p ≥ 1, ρ(t), si(t), τi(t) are continuous functions, 0 ≤ τi(t) ≤ τ, ρ(t), si(t) >

0, t ≥ 0, for i = 1, . . . , n. Eq. (4.9) (with n = 1 or n > 1) has been studied by several authors (see

[1, 4, 5, 6, 15, 16]).

We follow here the approach in [1]. For a :=
∑n
i=1 ai, let 1 + x(t) =

(
N(t)/N∗

)p
, where

N∗ =
(K

a

)1/p

is the unique positive equilibrium of (4.9), so that (4.9) becomes

ẋ(t) = −pρ(t)(1 + x(t))
∑n
i=1 aix(t− τi(t))

a +
∑n
i=1 si(t)[1 + x(t− τi(t))]

, t ≥ 0. (4.10)

This equation has the form (4.4), for F defined by

F (t, ϕ) = pρ(t)f(t, ϕ(−τ1(t)), . . . , ϕ(−τn(t))), t ≥ 0, ϕ ∈ C−1(t), (4.11)

where

f : [0,∞)× [−1,∞)n → IR, f(t, x1, . . . , xn) =
−

∑n
i=1 aixi

a +
∑n
i=1 si(t)(1 + xi)

.

Theorem 4.2. Assume ∫ ∞
0

ρ(t)
1 +

∑n
i=1 si(t)

dt =∞, (4.12)

and that Γ(α1, α2) ≤ 1, where α1, α2 are defined by

α1 =
p

2
sup
t≥T

∫ t

t−τ(t)

ρ(s)
σ(s)

ds, α2 = p sup
t≥T

∫ t

t−τ(t)

ρ(s)
1 + σ(s)

ds (4.13)

for some T > 0 large, with

σ(t) = min{1, σ(t)}, for σ(t) = min
1≤i≤n

(si(t)/ai),

and τ(t) = max1≤i≤n τi(t) for t ≥ 0. Then, all solutions of (4.9) with initial conditions in C0 tend

to the positive equilibrium N∗ as t→∞. In particular, this result holds if in addition to (4.12) we

have

p2

(∫ t

t−τ(t)

ρ(s)
σ(s)

ds

) (∫ t

t−τ(t)

ρ(s)
1 + σ(s)

ds

)
≤ 9/2, for large t ≥ 0. (4.14)
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Proof. From (4.12), it follows that F satisfies (H2) restricted to C−1 (cf. [1, 4]). Set

r(x) =
−x

1 + 1
2x

, x ≥ −1.

For given t ≥ 0 and ϕ ∈ C−1, denote xi := ϕ(−τi(t)) and y := a−1
∑n
i=1 aixi. Note that y ≥ −1.

If M(−ϕ) = 0 or
∑n
i=1 aixi ≥ 0, clearly F (t, ϕ) ≤ 0. Now let M(−ϕ) > 0 and

∑n
i=1 aixi < 0.

Then

f(t, x1, . . . , xn) ≤
−y

1 + a−1σ(t)[a +
∑n
i=1 aixi]

=
−y

1 + σ(t)(1 + y)
≤ r(y)

1 + σ(t)
.

Since y ≥ −M(−ϕ) and r is decreasing, we get

f(t, x1, . . . , xn) ≤ (1 + σ(t))−1 r(−M(−ϕ)),

and hence the estimate

F (t, ϕ) ≤ (1 + σ(t))−1 pρ(t)r(−M(−ϕ)). (4.15)

If M(ϕ) = 0 or
∑n
i=1 aixi ≤ 0, then F (t, ϕ) ≥ 0. Suppose now that M(ϕ) > 0 and

∑n
i=1 aixi >

0. Then, we have

f(t, x1, . . . , xn) ≥
−y

1 + a−1σ(t)[a +
∑n
i=1 aixi]

=
−y

1 + σ(t)(1 + y)
≥ r(y)

2σ(t)
,

with y ≤M(ϕ), hence

F (t, ϕ) ≥ (2σ(t))−1 pρ(t)r(M(ϕ)). (4.16)

From (4.15) and (4.16), we conclude that F : [0,∞)× C−1 → IR satisfies (H3) with r(x) as above

and λ1(t) = (2σ(t))−1 pρ(t), λ2(t) = (1 + σ(t))−1 pρ(t). Since the coefficient b in the rational

function r(x) is b = 1/2 < 1, then (H3) implies (H1). For α1, α2 as in (4.13), hypothesis (H4) is

satisfied. The conclusion follows from Theorem 4.1.

Other criteria for the global attractivity of N∗ are given below.

Theorem 4.3. Assume (4.12), and

p

1 + σ0

∫ t

t−τ(t)
ρ(s)ds ≤ 3

2
, for large t ≥ 0, (4.17)

where σ0 = inft≥0 min1≤i≤n(si(t)/ai), and τ(t) = max1≤i≤n τi(t) for t ≥ 0. Then all admissible

solutions N(t) of (4.9) satisfy N(t)→ N∗ as t→∞.

Proof. For σ0 as above, set

r(x) =
−x

1 + bx
, where b =

σ0

1 + σ0
.

For given t ≥ 0 and ϕ ∈ C−1, consider xi := ϕ(−τi(t)) and y := a−1
∑n
i=1 aixi.
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As in the above proof, only the cases M(−ϕ) > 0 and
∑n
i=1 aixi < 0, or M(ϕ) > 0 and∑n

i=1 aixi > 0 have to be addressed, since otherwise (1.4) is trivially satisfied. Let M(−ϕ) > 0

and
∑n
i=1 aixi < 0. Then

f(t, x1, . . . , xn) ≤
−y

1 + a−1σ0[a +
∑n
i=1 aixi]

=
r(y)

1 + σ0
.

Since y ≥ −M(−ϕ) and r is decreasing, we get f(t, x1, . . . , xn) ≤ (1 + σ0)−1 r(−M(−ϕ)), and

hence the estimate

F (t, ϕ) ≤ (1 + σ0)−1 pρ(t)r(−M(−ϕ)). (4.18)

If M(ϕ) > 0 and
∑n
i=1 aixi > 0, then we have

f(t, x1, . . . , xn) ≥
−y

1 + a−1σ0[a +
∑n
i=1 aixi]

=
r(y)

1 + σ0
,

with y ≤M(ϕ), hence

F (t, ϕ) ≥ (1 + σ0)−1 pρ(t)r(M(ϕ)). (4.19)

From (4.18) and (4.19), we conclude that F : [0,∞)× C−1 → IR satisfies (H3) with r(x) as above

and λ1(t) = λ2(t) = (1 + σ0)−1 pρ(t). Since b < 1, then (H3) implies (H1), and Theorem 4.1 yields

the conclusion.

Under additional conditions, different choices of λ1(t), λ2(t) in (H3) are possible, leading to

better criteria.

Theorem 4.4. Let σ(t) := min1≤i≤n(si(t)/ai) for t ≥ 0. In addition to (4.12), assume that one

of the following conditions holds:

(i) σ0 := supt≥0 σ(t) ≤ 1 and there is T ≥ τ such that Γ(α1, α2) ≤ 1, where

α1 =
pσ0

1 + σ0
sup
t≥T

∫ t

t−τ(t)

ρ(s)
σ(s)

ds, α2 = p sup
t≥T

∫ t

t−τ(t)

ρ(s)
1 + σ(s)

ds;

(ii) σ0 := inft≥0 σ(t) ≥ 1 and there is T ≥ τ such that Γ(α1, α2) ≤ 1, where

α1 = p sup
t≥T

∫ t

t−τ(t)

ρ(s)
1 + σ(s)

ds, α2 =
p

1 + σ0
sup
t≥T

∫ t

t−τ(t)
ρ(s) ds.

Then, all positive solutions of (4.9) tend to the positive equilibrium N∗ as t→∞. In particular,

in both situations (i) and (ii), this conclusion holds if (4.12) and α1α2 ≤ 9/4.

Proof. For 0 < b < 1, set

rb(x) =
−x

1 + bx
, θb(t, x) =

1 + bx

1 + σ(t)(1 + x)
, t ≥ 0, x ≥ −1.
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Fix ϕ ∈ C−1, t ≥ 0, and denote xi := ϕ(−τi(t)), y := a−1
∑n
i=1 aixi. For M(−ϕ) > 0 and∑n

i=1 aixi < 0, we have −1 ≤ y ≤ 0, and

f(t, x1, . . . , xn) ≤
−y

1 + σ(t)[1 + y]
= rb(y) θb(t, y). (4.20)

If M(ϕ) > 0 and
∑n
i=1 aixi > 0, then y ≥ 0 and

f(t, x1, . . . , xn) ≥
−y

1 + σ(t)[1 + y]
= rb(y) θb(t, y). (4.21)

Note that σ0 ≤ 1 if and only if σ0/(1+σ0) ≤ 1/2, and σ0 ≥ 1 if and only if σ0/(1+σ0) ≥ 1/2. On

the other hand, supt≥0 σ(t)/(1 + σ(t)) ≤ b implies that y �→ θb(t, y) is nondecreasing for all t ≥ 0,

and inft≥0 σ(t)/(1 + σ(t)) ≥ b implies that y �→ θb(t, y) is nonincreasing for all t ≥ 0. For σ0 ≤ 1,

we choose b = σ0/(1 + σ0), and from (4.20) and (4.21) we therefore obtain

λ1(t)rb(M(ϕ)) ≤ F (t, ϕ) ≤ λ2(t)rb(−M(−ϕ)), for t ≥ 0, ϕ ∈ C−1, (4.22)

with λ1(t) = pρ(t)θb(t,∞) and λ2(t) = pρ(t)θb(t, 0), i.e.,

λ1(t) =
pσ0ρ(t)

(1 + σ0)σ(t)
, λ2(t) =

pρ(t)
1 + σ(t)

, t ≥ 0.

In this case, b ≤ 1/2 and λ1(t) ≥ λ2(t) for t ≥ 0. For σ0 ≥ 1, choose b = σ0/(1+σ0). Hence, (4.20)

and (4.21) lead to (4.22), with

λ1(t) =
pρ(t)

1 + σ(t)
, λ2(t) =

pρ(t)
1 + σ0

, t ≥ 0.

For this situation, b ≥ 1/2 and λ1(t) ≤ λ2(t) for t ≥ 0. Invoking Theorem 4.1, the proof of the

theorem is complete.

We now related these results with known criteria established in the literature. In [1], Theorem

4.3 was proven with (4.17) replaced by p
∫ t
t−τ(t) ρ(s)ds ≤

3
2 for large t. The more general case of Eq.

(4.9) with possible unbounded delays was studied by Qian [15], who proved the global asymptotic

stability of N∗ assuming (4.12) and

p

1 + a−1S0
sup
t≥τ(t)

( ∫ t

t−τ(t)
ρ(s)ds

)
≤ 1,

where S0 := inft≥0

∑n
i=1 si(t). Clearly, a−1S(t) ≥ σ(t). However, the above condition is stronger

than (4.17) if
1 + a−1S0

1 + σ0
<

3
2
.
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The case n = 1 of (4.9) reads as

Ṅ(t) = ρ(t)N(t)
K − aNp(t− τ(t))

K + S(t)Np(t− τ(t))
, t ≥ 0, (4.23)

with K > 0, p ≥ 1, ρ(t), S(t), τ(t) are continuous and positive functions, and τ(t) ≤ τ . It has been

studied by many authors (see [5, 6, 16] and references therein), since it has been proposed as an

alternative to the delayed logistic equation (case S(t) ≡ 0 and p = 1) for a food-limited single

population model. For (4.23), we have σ(t) = a−1S(t) and σ0 = a−1 inft≥0 S(t) = a−1S0. With

a = 1 and a single constant discrete delay τ , So and Yu [16] established the uniform and asymptotic

stability (but not the global attractivity) of the positive equilibrium N∗ of (4.23) assuming (4.12)

and

p sup
t≥τ

( ∫ t

t−τ

ρ(s)
1 + S(s)

ds
)
<

3
2
,

a condition less restrictive than (4.17). For (4.23), Theorem 4.3 was proven in [4, 12], but the strict

inequality was required in (4.17) if S0 := inft≥0 S(t) = a, i.e., if σ0 = 1.

Example 4.2. Consider the scalar FDE with one discrete delay proposed by Gopalsamy [5]

and studied in [3, 11],

Ṅ(t) = ρ(t)N(t)
[ K − aN(t− τ)
K + λ(t)N(t− τ)

]α
, t ≥ 0, (4.24)

where ρ, λ : [0,∞)→ (0,∞) are continuous, a,K, τ > 0 and α ≥ 1 is the ratio of two odd integers.

Note that for α = 1 and p = 1, Eqs. (4.23) and (4.24) coincide. As before, we only consider

positive solutions, corresponding to initial conditions ϕ ∈ C0. The unique positive equilibrium of

(4.24) is N∗ = K/a. As another illustration of Theorem 4.1, sufficient conditions for its global

attractivity are established here, by arguing along the lines above for the study of the previous

model (4.9).

Theorem 4.5. Assume ∫ ∞
0

ρ(s)
(1 + λ(s))α

ds =∞, (4.25)

and that there is T ≥ τ such that Γ(α1, α2) ≤ 1, where

α1 =
aα

2
sup
t≥T

∫ t

t−τ

ρ(s)
λ(s)α

ds, α2 = sup
t≥T

∫ t

t−τ

ρ(s)
1 + a−1λ(s)

ds,

where λ(t) := min{a, λ(t)}, t ≥ 0. Then N∗ = K/a is globally attractive (in the set of all positive

solutions of (4.24)). In particular, this is the case if in addition to (4.25) we suppose that

aα
(∫ t

t−τ

ρ(s)
λ(s)α

ds

) (∫ t

t−τ

ρ(s)
1 + a−1λ(s)

ds

)
≤ 9

2
, for large t ≥ 0. (4.26)
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Proof. Clearly, in (4.24) one may consider a = 1 by replacing K,λ(t) by K/a, λ(t)/a := σ(t),

respectively. On the other hand, considering separately the cases a ≥ 1 and 0 < a < 1, one sees

that (4.25) holds if and only if ∫ ∞
0

ρ(s)
(1 + a−1λ(s))α

ds =∞.

By replacing λ(t) = min{a, λ(t)} by σ(t) = a−1λ(t) = min{1, σ(t)}, the study is therefore reduced

to the case a = 1.

Let a = 1. After the change of variables x(t) = N(t)
K − 1, (4.24) becomes

ẋ(t) = −ρ(t)(1 + x(t))
[ x(t− τ)
1 + σ(t)(1 + x(t− τ))

]α
, t ≥ 0. (4.27)

This equation has the form (4.4), with F (t, ϕ) = g(t, ϕ(−τ)), t ≥ 0, ϕ ∈ C−1, and g given by

g(t, x) = −ρ(t)
[

x

1 + σ(t)(1 + x)

]α
, t ≥ 0, x ≥ −1. (4.28)

Condition (4.25) implies that F satisfies hypothesis (H2) restricted to C−1. Now, define

r(x) =
−x

1 + 1
2x

, x ≥ −1. (4.29)

For t ≥ 0 and x ≥ 0, and since −1 < r(x)/2 ≤ 0, we get

g(t, x) ≥ ρ(t)
[ −x
1 + σ(t)(1 + x)

]α
≥ ρ(t)

σ(t)α

( −x
2 + x

)α

=
ρ(t)
σ(t)α

[
r(x)
2

]α
≥ ρ(t)

2σ(t)α
r(x) .

For t ≥ 0 and −1 ≤ x < 0, and since 1 + σ(t)(1 + x) ≥ 1 ≥ −x, we obtain

g(t, x) ≤ ρ(t)
[ −x
1 + σ(t)(1 + x)

]α
≤ ρ(t)

−x
1 + σ(t)(1 + x)

≤ ρ(t)
1 + σ(t)

r(x).

Thus, F satisfies (H3) restricted to ϕ ∈ C−1 with r(x) as in (4.29), λ1(t) = ρ(t)
2σ(t)α , λ2(t) = ρ(t)

1+σ(t) .

Remark 4.3. Liu [11] considered (4.24) with K = a = 1, and either 0 < λ(t) ≤ 1 for all t ≥ 0,

or λ(t) ≥ 1 for all t ≥ 0. With the notation above, these cases correspond to λ(t) ≡ λ(t), λ(t) ≡ a,

respectively. Liu proved the global attractivity of N∗ assuming (4.25) and (for K = a = 1)

lim sup
t→∞

∫ t

t−τ

ρ(s)
λ(s)α

ds ≤ 3, lim sup
t→∞

∫ t

t−τ
ρ(s) ds ≤ 3

if supt≥0 λ(t) ≤ 1, inft≥0 λ(t) ≥ 1, respectively. In this latter situation, Theorem 4.5 recovers the

criterion in [11], whereas it improves it in the first case. The general situation, where λ(t) has

22



values smaller and greater than a (not addressed in [11]), was studied in [3] by effecting the change

of variables x(t) = (N(t)/N∗)α − 1, so that (4.24) becomes (4.4) with

F (t, ϕ) = αr(t)
[ 1− (1 + ϕ(−τ))1/α

1 + λ(t)(1 + ϕ(−τ))1/α

]α
, t ≥ 0, ϕ ∈ C−1. (4.30)

In [3], the global attractivity of N∗ was established under (4.25) and

α

∫ t

t−τ
ρ(s) ds ≤ 3/2 for large t.

This result follows easily from our setting, since F defined by (4.30) satisfies (H3) in C−1, with

r(x) = −x and λ1(t) = λ2(t) = ρ(t), t ≥ 0.

Theorem 4.6. Assume (4.25), and suppose that there is T ≥ τ such that Γ(α1, α2) ≤ 1, where

α1 =
1

(σ0)α−1(1 + σ0)
sup
t≥T

∫ t

t−τ
ρ(s) ds, α2 =

1
1 + σ0

sup
t≥T

∫ t

t−τ
ρ(s) ds,

and σ0 := a−1 inft≥0 λ(t). Then N∗ = K/a is globally attractive (in the set of all positive solutions

of (4.24)). In particular, this is the case if in addition to (4.25) we suppose that

∫ t

t−τ
ρ(s) ds ≤ 3

2
(σ0)(α−1)/2(1 + σ0), for large t ≥ 0.

Proof. Arguming as above, in a similar way one proves that

g(t, x) ≥ λ1(t)rb(x), t ≥ 0, x ≥ 0

g(t, x) ≤ λ2(t)rb(x), t ≥ 0,−1 ≤ x ≤ 0,

where

λ1(t) =
ρ(t)

(σ0)α−1(1 + σ0)
, λ2(t) =

ρ(t)
1 + σ0

for t ≥ 0

and

rb(x) =
−x

1 + bx
, where b =

σ0

1 + σ0
.

If σ0 ≤ 1, then b ≤ 1/2 and λ1(t) ≥ λ2(t), hence also α1 ≥ α2; if σ0 ≥ 1, then b ≥ 1/2 and

λ1(t) ≤ λ2(t), thus α1 ≤ α2. In both cases, Theorem 4.1 provides the conclusion.

By using arguments similar to the ones used to prove Theorem 4.4, the above sufficient con-

ditions for the global attractivity of N∗ can still be weakened if either 0 < λ(t) ≤ a for all t ≥ 0,

or λ(t) ≥ a for all t ≥ 0. Clearly, the following result improves the work in [11], in both situations.
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Theorem 4.7. Assume (4.25). In addition, suppose that one of the following conditions holds:

(i) λ(t) ≥ a for all t ≥ 0, and Γ(α1, α2) ≤ 1, where, for some T ≥ τ and σ0 := a−1 inft≥0 λ(t),

α1, α2 are given by

α1 = aα−1 sup
t≥T

∫ t

t−τ

ρ(s)
(1 + a−1λ(s))λ(s)α−1

ds, α2 =
1

1 + σ0
sup
t≥T

∫ t

t−τ
ρ(s) ds; (4.31)

(ii) λ(t) ≤ a for all t ≥ 0, and Γ(α1, α2) ≤ 1, where, for some T ≥ τ and σ0 := a−1 supt≥0 λ(t),

α1, α2 are given by

α1 = aα
σ0

1 + σ0
sup
t≥T

∫ t

t−τ

ρ(s)
λ(s)α

ds, α2 = sup
t≥T

∫ t

t−τ

ρ(s)
1 + a−1λ(s)

ds. (4.32)

Then N∗ = K/a is globally attractive (in the set of all positive solutions of (4.24)). In

particular, for both situations (i) and (ii), this statement holds if (4.25) and α1α2 ≤ 9/4.

Proof. Again we consider Eq. (4.27) obtained after scaling and translation of N∗ to the

origin, and reduce our study to the case a = 1 by considering σ(t) := a−1λ(t) instead of λ(t). Let

F (t, ϕ) = g(t, ϕ(−τ)), t ≥ 0, ϕ ∈ C−1, for g as in (4.28).

Case 1: σ(t) ≥ 1 for all t ≥ 0. We have

g(t, x) =
ρ(t)
σ(t)α

( −x
(1 + σ(t))σ(t)−1 + x

)α
≥ ρ(t)

σ(t)α

( −x
(1 + σ(t))σ(t)−1 + x

)

≥ ρ(t)
(1 + σ(t))σ(t)α−1

−x
1 + σ0

1+σ0
x
, t ≥ 0, x ≥ 0.

For t ≥ 0 and −1 ≤ x ≤ 0, clearly 0 ≤ −x ≤ 1 + σ(t)(1 + x), hence

g(t, x) ≤ ρ(t)
−x

1 + σ(t)(1 + x)
≤ ρ(t)

1 + σ0

−x
1 + σ0

1+σ0
x
, t ≥ 0,−1 ≤ x ≤ 0.

We therefore conclude that F satisfies (H3) restricted to C−1, where

λ1(t) =
ρ(t)

(1 + σ(t))σ(t)α−1
, λ2(t) =

ρ(t)
1 + σ0

, t ≥ 0

and r(x) = − x
1+bx , x ≥ −1, with

b :=
σ0

1 + σ0
≥ 1

2
.

In this situation, λ1(t) ≤ λ2(t), thus α1 ≤ α2 for α1, α2 as in (4.31), and the conclusion follows

from Theorem 4.1.

Case 2: σ(t) ≤ 1 for all t ≥ 0. For t ≥ 0 and x ≥ 0,

g(t, x) =
ρ(t)
σ(t)α

( −x
σ(t)−1 + (1 + x)

)α
≥ ρ(t)

σ(t)α

( −x
(σ0)−1 + (1 + x)

)α

≥ ρ(t)
σ(t)α

−x
(σ0)−1 + (1 + x)

=
ρ(t)
σ(t)α

σ0

1 + σ0

−x
1 + σ0

1+σ0x
.
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Let t ≥ 0 and −1 ≤ x ≤ 0. Since α ≥ 1 and 1 + σ(t)(1 + x) ≥ 1 ≥ −x, we have

g(t, x) ≤ ρ(t)
−x

1 + σ(t)(1 + x)
≤ ρ(t)

1 + σ(t)
−x

1 + σ0

1+σ0x
.

This implies that F satisfies (H3) restricted to C−1, where

λ1(t) =
σ0

1 + σ0

ρ(t)
σ(t)α

, λ2(t) =
ρ(t)

1 + σ(t)
, t ≥ 0

and r(x) = − x
1+bx , x ≥ −1, with

b :=
σ0

1 + σ0
≤ 1

2
.

For α1, α2 as in (4.32), note that α2 ≤ α1. The result follows again by Therorem 4.1.
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