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a b s t r a c t 

Hybrid-Trefftz finite elements are well suited for modeling the response of materials under highly transient load- 

ing. Their approximation bases are built using functions that satisfy exactly the differential equations governing 

the problem. This option embeds relevant physical information into the approximation basis and removes the 

well-known sensitivity of the conventional finite elements to high solution gradients and short wavelength ex- 

citations. Despite such advantages, no public software using hybrid-Trefftz finite elements to model wave prop- 

agation through solid and porous media exists to date. This paper covers the formulation and implementation 

of hybrid-Trefftz finite elements for single-phase, biphasic and triphasic media, subjected to dynamic loads. The 

formulation is cast in a unified framework, valid for the three types of materials alike, and independent of the na- 

ture (harmonic, periodic or transient) of the applied load. Displacement, traction, elastic and absorbing boundary 

conditions are accommodated. The implementation is made in three novel, open-source and user-friendly com- 

putational modules which are freely distributed online. 
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. Introduction 

Numerical models are essential to understand the behavior of ma-

erials under transient loading. However, in many cases, the high fre-

uency content of transient excitations hinders the solution of dynamic

roblems with conventional (conforming) finite elements. Since conven-

ional elements use simple, problem-independent approximation func-

ions, at least ten (but preferably more) finite elements per wavelength

re needed to correctly model the shape of the travelling waves. This re-

triction may be problematic even for single-phase (solid) materials, but

t is particularly demanding when dealing with biphasic (saturated) and

riphasic (unsaturated) porous materials. For such materials, secondary

ompression waves, of much shorter wavelengths than the primary com-

ression waves, propagate through the fluid [ 9 , 18 ], and the pore-scale

ow is an important source of dissipation. An additional difficulty posed

o conventional finite elements is that, in many applications related with

oil mechanics, the domain is semi-infinite, and special (and problem-

ependent) boundary conditions need to be formulated on its far-field

oundaries to avoid the reflection of the travelling waves back into the
omain of interest. Calibration of the finite element size to the shortest 
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avelength relevant to the response of the medium, combined with the

ecessity of considering large subgrade areas to avoid spurious reflec-

ions from the fictitious boundary at far-field may lead to conventional

nite element models that exceed the calculation capability of the aver-

ge machine. 

Hybrid-Trefftz finite elements can be used instead of conventional fi-

ite elements to mitigate these issues. The key feature of hybrid-Trefftz

lements is that they use physically-meaningful approximation bases,

pecifically tailored for the problem that is being solved. Indeed, Trefftz-

ompliant approximation functions must satisfy exactly the differential

quation governing the problem, meaning that the solution process is re-

uced to combining these functions to satisfy the boundary conditions

n the best possible way. This option removes the restriction of using

t least ten finite elements per wavelength and improves considerably

he robustness of the results to mesh distortion and high solution gradi-

nts [17,20] , supporting the use of large, high order finite elements for

odeling transient problems. 

The concept that stands at the base of the Trefftz methods was

uggested by Trefftz [25] and the first application in the context of

he finite element method was reported by Tong et al. [24] . Jirousek
liment@tecnico.ulisboa.pt (N. Climent), danielabendea@gmail.com (E.D. Ben- 
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Fig. 1. Domain ( V ) with Dirichlet ( Γu ), Neumann ( Γ𝜎), absorbing ( Γa ) and Robin 

( Γr ) boundaries. 
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13] presented four hybrid-Trefftz formulations generally applicable to

olid mechanics problems. Other significant contributions have been

ade after that by other authors, such as Herrera [11] , Piltner [21] ,

in [22] and Freitas et al. [9] , among many others. In more recent

tudies, hybrid-Trefftz elements were developed for plates and shells

15] , including particular solutions for cracking modes [10] , and for

he analysis of the eigenmodes of optical fibers [23] . Finally, Trefftz

ethods have also been combined with other methods, as for example

ith isogeometric analysis [12] for the solution of elastostatic problems.

Despite the advantages they offer over conventional elements,

ybrid-Trefftz finite elements have only recently been included in pub-

ic, user-friendly software. The computational platform FreeHyTE, pre-

ented at length in Moldovan and Cisma ş iu [19] , offers hybrid-Trefftz

nite elements for the solution of a variety of elliptic, parabolic and hy-

erbolic boundary values problems, subjected to a considerable breadth

f boundary conditions, and covering a wide range of physical prob-

ems. FreeHyTE is easy to use, as it features graphical user interfaces for

he definition of the structure, as well as installation, user’s and devel-

per’s manuals, and amenable to extension, as it includes a considerable

readth of standardized computational procedures and data structures

sable with all Trefftz models, meaning that only formulation-specific

oding needs to be performed. All FreeHyTE modules and their manuals

re freely available for download under a GNU-GPL license [7] . 

Three new FreeHyTE modules are presented in this paper. The ele-

ents are designed for the solution of elastodynamic problems defined

n solid (single-phase), saturated (biphasic) and unsaturated (triphasic)

edia. 

The mathematical model used for saturated porous media is based on

he Biot’s theory [3] . For unsaturated porous media, the theory of mix-

ures with interfaces is adopted [26] . Both theories take into account the

ore-scale fluid flow and are able to recover the secondary compression

aves propagating through the fluids. 

A unified formulation of hybrid-Trefftz finite elements valid for har-

onic, periodic and transient problems defined on solid, saturated and

nsaturated media is adopted. The original problem in time and space

s discretized into a series of spectral problems in space after the expan-

ion of the time variation of the involved fields into Daubechies wavelet

eries. For the solution of each spectral problem, the (generalized) dis-

lacement field is approximated in the domain of each finite element.

he approximation basis is constrained to satisfy exactly the differential

quation governing the problem (the Trefftz constraint). On the essen-

ial boundaries of the elements, tractions in the solid phase and pore

ressures are independently approximated using bases subjected only to

ompleteness and linear independence constraints (Chebyshev polyno-

ials are used here). All approximations are constructed hierarchically

nd are not linked to the nodes of the elements. 

Absorbing boundary conditions are formulated to enable the mod-

ling of semi-infinite media. They are used to separate the domain of

nterest from the outer domain and designed to minimize the amount

f energy reflected back into the domain of interest when a travelling

ave hits the boundary. For solid and saturated materials, the absorb-

ng boundary conditions reported in [14] and [9] , respectively, are used.

or unsaturated geomaterials, a novel absorbing boundary condition is

roposed. 

The formulation of the hybrid-Trefftz finite elements for elastody-

amic problems is given in Section 2 , followed by a description of their

mplementation in FreeHyTE in Section 3 . In Section 4 , three numerical

xamples involving solid, saturated and unsaturated materials subjected

o shock loads are presented, and the results validated against results ob-

ained with conventional finite elements and similar results found in the

iterature. Finally, the conclusions are given in Section 5 . 

. Hybrid–Trefftz finite elements for elastodynamics 

Hybrid–Trefftz finite elements feature physically meaningful approx-

mation bases, built using functions that satisfy exactly all domain equa-
156 
ions (but not necessarily the boundary conditions). The weights of these

unctions are the main unknowns of the problem, as opposed to the

odal values of the approximated fields, as typical of the conventional

nite elements. All bases are hierarchical, meaning that the redefinition

f the nodes does not call for the redefinition of the approximation func-

ions. Hybrid–Trefftz elements are less sensitive to issues like gross mesh

istortion, nearly incompressible constituents, large solution gradients

nd very small wavelengths [20] . 

The general expressions of the elastodynamic equations are given in

ection 2.1 , followed by their time discretization in Section 2.2 and their

daptation to solid, saturated and unsaturated materials in Section 2.3 .

he formulation of hybrid-Trefftz elements for each of these cases is

iven in Section 2.4 . 

.1. Governing elastodynamic equations 

The elastodynamic problem is defined on a medium either made of

 single (solid) phase, two phases (solid and wetting fluid), or three

hases (solid, wetting fluid and non-wetting fluid). Regardless of the

umber of phases, the medium is considered (piecewise) homogeneous.

t has a linear-elastic behavior, and displacements and deformations are

onsidered small. Plane strain conditions are assumed for all types of

aterials. For solids, plane stress conditions are also included. Under

hese hypotheses, the elastodynamic equations in a domain V ( Fig. 1 )

re written in the following general form: 

 𝝈( 𝑥, 𝑦, 𝑡 ) = 𝒅 0 ̇𝒖 ( 𝑥, 𝑦, 𝑡 ) + 𝝆0 ̈𝒖 ( 𝑥, 𝑦, 𝑡 ) (1)

 ( 𝑥, 𝑦, 𝑡 ) =  

∗ 𝒖 ( 𝑥, 𝑦, 𝑡 ) (2) 

( 𝑥, 𝑦, 𝑡 ) = 𝒌 𝜺 ( 𝑥, 𝑦, 𝑡 ) (3) 

In the equilibrium Eq (1) , body forces are neglected because their

resence does not change the wave propagation patterns. Vector 𝝈 is

he generalized stress vector, u is the generalized displacement vector,

nd matrices 𝝆0 and d 0 collect the material density and dissipation com-

onents. Eq (2) is the compatibility condition, where 𝜺 is the generalized

train vector, and Eq (3) is the elasticity equation, where k is the mate-

ial stiffness matrix.  and  

∗ are the (adjoint) differential equilibrium

nd compatibility operators, respectively. 

The types of boundaries that can be defined on the domain V ( Fig. 1 )

re: Dirichlet boundaries ( Γu ), where displacements are imposed, Neu-

ann boundaries ( Γ𝜎), where tractions are imposed, absorbing bound-

ries ( Γ ), used to enforce a non-reflection criterion to simulate semi-
a 
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nfinite domains [16] , and Robin (elastic) boundaries ( Γr ), where a trac-

ion to displacement proportionality condition is enforced. The bound-

ry conditions are described as, 

𝒖 ( 𝑥, 𝑦, 𝑡 ) = 𝒖 Γ( 𝑥, 𝑦, 𝑡 ) ( on Γ𝑢 
)

(4) 

𝑵 𝝈( 𝑥, 𝑦, 𝑡 ) = 𝒕 Γ( 𝑥, 𝑦, 𝑡 ) ( on Γ𝜎
)

(5) 

 ( 𝑥, 𝑦, 𝑡 ) + 𝑪 𝒕 ( 𝑥, 𝑦, 𝑡 ) = 0 
(
on Γ𝑎 

)
(6)

𝒖 ( 𝑥, 𝑦, 𝑡 ) + 𝒇 𝒕 ( 𝑥, 𝑦, 𝑡 ) = 0 ( on Γ𝑟 
)

(7) 

here 𝒕 Γ and 𝒖 Γ represent the enforced boundary tractions and displace-

ents, respectively, t are the boundary tractions, and matrix N collects

he components of the outward normal to the Neumann boundary. Ma-

rix f collects the flexibility coefficients in the normal and tangential

irections to the Robin boundary and C is the flexibility matrix of the

bsorbing boundary. 

It is assumed that the displacement field and its derivatives are null

t t = 0. This assumption is true in a majority of practical wave propa-

ation problems and supports important simplifications in the solution

rocess. It is not, however, an intrinsic limitation of the Trefftz elements

nd formulations including non-null initial conditions were reported, for

nstance, in Moldovan et al. [18] . 

.2. Discretization in time 

The weighted residual algorithm suggested by Freitas [8] is applied

o discretize Eqs (1) –(7) in time. All unknown fields are approximated

ndependently over the total time of the analysis, 

 ( 𝑥, 𝑦, 𝑡 ) = 

𝑁 ∑
𝑛 =1 

𝑊 𝑛 ( 𝑡 ) 𝒖 𝑛 ( 𝑥, 𝑦 ) (8)

 ( 𝑥, 𝑦, 𝑡 ) = 

𝑁 ∑
𝑛 =1 

𝑊 𝑛 ( 𝑡 ) 𝜺 𝑛 ( 𝑥, 𝑦 ) (9)

( 𝑥, 𝑦, 𝑡 ) = 

𝑁 ∑
𝑛 =1 

𝑊 𝑛 ( 𝑡 ) 𝝈𝑛 ( 𝑥, 𝑦 ) (10)

 ( 𝑥, 𝑦, 𝑡 ) = 

𝑁 ∑
𝑛 =1 

𝑊 𝑛 ( 𝑡 ) 𝒕 𝑛 ( 𝑥, 𝑦 ) (11)

here W n ( t ) is the n - th term of the time basis and N designates its total

umber of functions. 

Moreover, independent approximations are assumed for the velocity

nd acceleration fields, 

 ( 𝑥, 𝑦, 𝑡 ) = 

𝑁 ∑
𝑛 =1 

𝑊 𝑛 ( 𝑡 ) 𝒗 𝑛 ( 𝑥, 𝑦 ) (12)

 ( 𝑥, 𝑦, 𝑡 ) = 

𝑁 ∑
𝑛 =1 

𝑊 𝑛 ( 𝑡 ) 𝒂 𝑛 ( 𝑥, 𝑦 ) (13)

The velocity and acceleration definitions 𝒖̇ = 𝒗 and 𝒗̇ = 𝒂 are en-

orced weakly using time basis functions W m 

( m = {1, …, N }) for weight-

ng, to yield, 

Δ𝑡 

0 
𝑊 𝑚 ( 𝒗 − 𝒖̇ ) 𝑑𝑡 = 0 (14)

Δ𝑡 
𝑊 𝑚 ( 𝒂 − 𝒗̇ ) 𝑑𝑡 = 0 (15)
0 

157 
here Δt is the total time and 𝑊 𝑚 is the complex conjugate of W m 

.

ntegrating by parts Eq (14) and taking into account that the initial con-

itions are assumed null, the following equation is obtained: 

Δ𝑡 

0 
𝑊 𝑚 𝒗 𝑑𝑡 = ̂𝑊 𝑚 ( Δ𝑡 ) 𝒖 ( Δ𝑡 ) − ∫

Δ𝑡 

0 

̂̇𝑊 𝑚 𝒖 𝑑𝑡 (16)

Substituting approximations (8) and (12) into Eq (16) and taking

nto account that generalized displacements u n and velocities v n are in-

ependent of time, one gets, 

𝑡 

𝑁 ∑
𝑛 =1 

𝐻 𝑚𝑛 𝒗 𝑛 = 

𝑁 ∑
𝑛 =1 

𝐺 𝑚𝑛 𝒖 𝑛 (17)

here 

 𝑚𝑛 = 

1 
Δ𝑡 ∫

Δ𝑡 

0 
𝑊 𝑚 𝑊 𝑛 𝑑𝑡 (18)

 𝑚𝑛 = ̂𝑊 𝑚 ( Δ𝑡 ) 𝑊 𝑛 ( Δ𝑡 ) − ∫
Δ𝑡 

0 

̂̇𝑊 𝑚 𝑊 𝑛 𝑑𝑡 (19)

In order to uncouple Eq (17) , basis W ( t ) is constructed such that

atrices H and G are proportional through a diagonal matrix 𝚿. This

rocess, described in Moldovan [16] , can be applied to any type of time

asis and is thus not a limitation of this time integration procedure.

nder these conditions, Eq (17) uncouples to yield, 

𝑡 𝒗 𝑛 = Ψ𝑛 𝒖 𝑛 (20)

here Ψn is the n-th diagonal term of matrix 𝚿. 

Applying a similar procedure to Eq (15) yields, 

𝑡 𝒂 𝑛 = Ψ𝑛 𝒗 𝑛 (21)

Eqs (1) to (3) are enforced weakly in time, using basis W ( t ) for

eighting. A series of N expressions is obtained for each equation: 

Δ𝑡 

0 
𝑊 𝑚 

( 𝝈 − 𝒅 0 ̇𝒖 − 𝝆0 ̈𝒖 
)
𝑑𝑡 = 0 (22) 

Δ𝑡 

0 
𝑊 𝑚 

(
𝜺 −  

∗ 𝒖 
)
𝑑𝑡 = 0 (23) 

Δ𝑡 

0 
𝑊 𝑚 ( 𝝈 − 𝒌 𝜺 ) 𝑑𝑡 = 0 (24) 

Substituting Eqs (8) , (10) , (20) and (21) into Eq (22) and taking into

ccount that matrices H and G are related through the diagonal matrix

, yield a set of N uncoupled problems of the following type: 

 𝝈𝑛 − 

Ψ2 
𝒏 

Δ𝒕 2 

( 

𝝆0 + 

Δ𝑡 
Ψ𝑛 

𝒅 0 

) 

𝒖 𝑛 = 0 (25)

Eq (25) can be written in the spectral form, 

 𝝈𝑛 + 𝜔 

2 
𝑛 𝝆𝑛 𝒖 𝑛 = 0 (26)

here 𝜔 n is a generalized frequency, defined as, 

 𝑛 = − 𝑖 
Ψ𝑛 

Δ𝑡 
(27) 

here 𝑖 is the imaginary unit, and 

𝑛 = 𝝆0 − 

𝑖 

𝜔 𝑛 

𝒅 0 (28) 

Finally, substituting Eqs (8) to (10) in Eqs (23) and (24) , and apply-

ng the same procedure, one gets, 

 𝑛 =  

∗ 𝒖 𝑛 (29) 

= 𝒌 𝜺 (30) 
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Eqs (26) , (29) and (30) of each spectral problem can be collapsed

nto a single equation in V , the Navier equation, 

 

(
𝒌  

∗ 𝒖 𝑛 ( 𝑥, 𝑦 ) 
)
+ 𝜔 

2 
𝑛 𝝆𝑛 𝒖 𝑛 ( 𝑥, 𝑦 ) = 0 (31)

In FreeHyTE, the time basis W ( t ) is constructed using Daubechies

avelets [6] . Daubechies wavelets are consistent with the transient na-

ure of the simulated phenomena and offer good accuracy even when

arge time steps are adopted for the analysis. Therefore, only one time

tep is used to model the whole duration of the problem. The number of

ime-discretized problems of type (31) is equal to the dimension of the

ime basis W ( t ). 

Similar discretization procedures are applied to boundary conditions

4) to (7) , using approximations (8) , (10) and (11) , to yield, 

𝒖 𝑛 = 𝒖 Γ𝑛 (on Γ𝑢 
)

(32) 

𝑵 𝝈𝑛 = 𝒕 Γ𝑛 (on Γ𝜎
)

(33) 

𝒖 Γ𝑛 + 𝑪 𝒕 Γ𝑛 = 0 (on Γ𝑎 
)

(34) 

𝒖 Γ𝑛 + 𝒇 𝒕 Γ𝑛 = 0 (on Γ𝑟 
)

(35) 

here, 

 Γ𝑛 = 

1 
Δ𝑡 

𝑁 ∑
𝑚 =1 

𝐻̄ 𝑛𝑚 ∫
Δ𝑡 

0 
𝑊 𝑚 𝒖 Γ𝑑𝑡 (36)

 Γ𝑛 = 

1 
Δ𝑡 

𝑁 ∑
𝑚 =1 

𝐻̄ 𝑛𝑚 ∫
Δ𝑡 

0 
𝑊 𝑚 𝒕 Γ𝑑𝑡 (37)

nd 𝐻̄ 𝑛𝑚 designates the generic term of the inverse of matrix H . The

pectral problems defined by Eqs (26) , and (29) to (35) are expressed in

pace variables only. Their solutions can be used to compute the time-

ependent fields using approximations (8) to (10) . 

.3. Elastodynamic models 

Eqs (26) and (29) to (35) define the unified hybrid-Trefftz formu-

ation, valid for solid, and saturated and unsaturated porous materials

like. However, the expressions of the terms present in these equations

epend on the type of material and on the mathematical model, and

re detailed below. To simplify notations, index n designating the n-th

pectral problem is dropped from this point. 

.3.1. Single-phase media 

The model adopted for single-phase media is based on the classi-

al theory of elasticity. In Eqs (26) and (29) to (35) , the stress vector

= { 𝜎xx 𝜎yy 𝜎xy } 
T lists the normal and tangential stresses in the medium

nd the displacement vector u = { u x u y } 
T collects the displacement com-

onents in the Cartesian directions. The generalized mass matrix 𝝆 de-

ends on the material mass density. The stiffness matrix k depends on

he type of plane state (plane stress or plane strain). The exact expres-

ions of those matrices and differential operators D and D 

∗ are given in

ppendix A . 

.3.2. Biphasic media 

The model adopted for biphasic (saturated) porous media is based on

he Biot’s theory [3] . In Biot’s theory, the porous media is represented as

n elastic solid phase fully permeated by a Darcy-compliant fluid phase.

oth phases are assumed compressible. A solid displacement–fluid seep-

ge ( u - w ) variant of Biot’s theory is used to formulate the governing

quations. The micro-scale fluid acceleration is included in the model.

his option ensures that the model is able to capture the secondary com-

ression wave propagating through the fluid motion in the micro-pores.

Eqs (26) and (29) to (35) can be used to describe the behavior

f the biphasic material in accordance with the Biot’s theory. The
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tress vector 𝝈 = { 𝜎xx 𝜎yy 𝜎xy 𝜋} T contains the components of the to-

al stress tensor and the pore fluid pressure ( 𝜋). The displacement vec-

or u = { u x u y w x w y } 
T collects the displacement components in the

olid phase u S = { u x u y } 
T together with the fluid seepage components

 = { w x w y } 
T . The generalized mass matrix 𝝆 depends on the mass den-

ity of the mixture, the mass density of the fluid phase, and the dissipa-

ion. The stiffness matrix k depends on the Lamé and Biot coefficients.

he exact expressions of those matrices and differential operators D and

 

∗ are given in Appendix B . 

Finally, boundary condition (35) relates the normal and tangential

omponents of the displacement and traction fields 

 

 

 

 

𝑢 𝑛 
𝑢 𝑡 
𝑤 𝑛 

⎞ ⎟ ⎟ ⎠ + 

⎛ ⎜ ⎜ ⎝ 
𝑓 𝑛 0 0 
0 𝑓 𝑡 0 
0 0 0 

⎞ ⎟ ⎟ ⎠ 
⎛ ⎜ ⎜ ⎝ 
𝑡 𝑛 
𝑡 𝑡 
𝜋

⎞ ⎟ ⎟ ⎠ = 𝟎 (38)

here f n and f t are the flexibility coefficients of the elastic boundary

n the normal and tangential directions. The last equation in the Robin

oundary conditions (38) states that no seepage occurs, meaning that

he elastic boundary is considered impervious. 

.3.3. Triphasic media 

In triphasic (unsaturated) media, three immiscible phases are con-

idered: the solid phase ( S ), the wetting fluid phase ( W ) and the non-

etting fluid phase ( N ) [4] . The mathematical model adopted for tripha-

ic media is the theory of mixtures with interfaces suggested in Wei and

uraleetharan [26] . This theory includes the effect of the pore pres-

ure gradients (macroscopic fluid flow) and neglects the effect of the

apillary relaxation (microscopic fluid flow). The dynamic compatibil-

ty conditions on the micro-scale interfaces between the three phases

re taken into account. 

Eqs (26) and (29) to (35) also apply here. However, the vectors

nd matrices present in the governing equations have different com-

onents than for the biphasic case. The stress vector lists the compo-

ents of the total stress tensor and the pore pressure in each of the two

uid phases, 𝝈 = { 𝜎xx 𝜎yy 𝜎xy 𝜋
W 𝜋N } T . The displacement vector col-

ects the displacement components in the solid phase and in the fluid

hases, 𝒖 = { 𝑢 𝑆 𝑥 𝑢 
𝑆 
𝑦 𝑢 

𝑊 

𝑥 𝑢 
𝑊 

𝑦 𝑢 𝑁 

𝑥 𝑢 
𝑁 

𝑦 } 
𝑇 . The remaining matrices and coef-

cients present in the governing equations for triphasic media are fully

escribed in Appendix C . 

Boundary condition (35) relates the normal and tangential compo-

ents of the displacement and traction fields on a Robin boundary, 

 

 

 

 

 

 

𝑢 𝑛 
𝑢 𝑡 
𝑤 

𝑊 

𝑛 

𝑤 

𝑁 

𝑛 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
+ 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
𝑓 𝑛 0 0 0 
0 𝑓 𝑡 0 0 
𝑓 𝑛 0 0 0 
𝑓 𝑛 0 0 0 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
𝑡 𝑛 
𝑡 𝑡 
𝜋𝑊 

𝜋𝑁 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
= 𝟎 (39)

here f n and f t are the flexibility coefficients of the elastic boundary in

he normal and tangential directions. Again, it should be noted that the

obin boundary conditions for the fluid phases are designed to enforce

ull boundary seepage in both fluids. 

The absorbing boundary flexibility matrices present in Eq (34) are

escribed for solid, biphasic and triphasic media in Appendix D . 

.4. Hybrid–Trefftz finite element model 

.4.1. Approximations of displacements and tractions 

Eq (31) is solved using the displacement model of the hybrid-Trefftz

nite element formulation. 

Let the domain V presented in Fig. 1 be divided into finite elements

 

e ( Fig. 2 ) and let the interior boundaries ( Γ𝑒 𝑖 ) be defined as the bound-

ries of the element that are not exterior boundaries of the domain. 

The (generalized) displacement field u is approximated in each finite

lement V 

e as, 

 = 𝑼 𝑿 (40) 

here matrix U collects Trefftz-compliant approximation functions,

eaning that the functions included in basis U are bounded to satisfy
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Fig. 2. Finite elements, Neumann, Dirichlet, Robin, absorbing and interior 

boundaries. 
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xactly the Navier Eq (31) . Their explicit expressions for each type of

edium are derived in Section 2.4.3 . 

The tractions in the solid phase and the pore pressures are approxi-

ated independently on the essential boundary Γ𝑒 𝑒 = Γ𝑒 𝑢 𝑈 Γ𝑒 𝑎 𝑈 Γ𝑒 𝑟 𝑈 Γ𝑒 𝑖 
f the element as, 

 = 𝒁 𝒑 (41)

Bases U and Z are independent of each other, constructed strictly

ierarchically, and not linked to the nodes of the elements, and X and

 are the weights of the approximation functions, with no particular

hysical meaning. 

.4.2. Explicit form of the Navier equation 

Single-phase media. The definitions of the mass and stiffness coef-

cients listed in Appendix A are inserted into the Navier Eq (31) , to

ield, 

 

[(
𝑘 12 + 𝑘 33 

)
∇ 

𝑇 𝒖 
]
+ 𝑘 33 ∇ 

2 𝒖 + 𝜔 

2 𝜌𝒖 = 𝟎 (42) 

here k 12 and k 33 are coefficients of the stiffness matrix k , 𝜌 is the (di-

gonal) coefficient of the mass matrix 𝝆, ∇ is the gradient operator and

 

2 is the Laplacian operator. 

Biphasic media. Substituting the definitions given in Appendix B into

he Navier Eq (31) , two coupled differential equations are generated for

iphasic media [16] 

 

[(
𝑘 12 + 𝑘 33 

)
∇ 

𝑇 𝒖 𝑆 + 𝑘 14 ∇ 

𝑇 𝒘 

]
+ 𝑘 33 ∇ 

2 𝒖 𝑆 + 𝜔 

2 (𝜌𝒖 𝑆 + 𝜌𝑤 𝒘 

)
= 𝟎 (43) 

 

[
𝑘 14 ∇ 

𝑇 𝒖 𝑆 + 𝑘 44 ∇ 

𝑇 𝒘 

]
+ 𝜔 

2 (𝜌𝑤 𝒖 𝑆 + 𝜌𝑤 2 𝒘 

)
= 𝟎 (44) 

here k 12 , k 33 , k 14 and k 44 are coefficients of the stiffness matrix k , and

, 𝜌w and 𝜌w 2 are coefficients of the mass matrix 𝝆. 

Triphasic media. For triphasic media, substituting the definitions

iven in Appendix C into the Navier Eq (31) , three coupled differential

quations are obtained [5] , 
159 
∇∇ 

𝑇 
[(
𝑀 SS + 𝑛 𝑆 𝜇𝑆 

)
𝒖 𝑆 + 𝑀 SW 

𝒖 𝑊 + 𝑀 SN 𝒖 
𝑁 

]
+ 𝑛 𝑆 𝜇𝑆 ∇ 

2 𝒖 𝑆 + 𝜔 

2 (𝜌SS 𝒖 
𝑆 + 𝜌SW 

𝒖 𝑊 + 𝜌SN 𝒖 
𝑁 

)
= 𝟎 (45) 

∇ 

𝑻 
[
𝑀 SW 

𝒖 𝑆 + 𝑀 WW 

𝒖 𝑊 + 𝑀 WN 𝒖 
𝑁 

]
+ 𝜔 

2 (𝜌SW 

𝒖 𝑆 + 𝜌WW 

𝒖 𝑊 

)
= 𝟎 (46) 

∇ 

𝑇 
[
𝑀 SN 𝒖 

𝑆 + 𝑀 WN 𝒖 
𝑊 + 𝑀 NN 𝒖 

𝑁 

]
+ 𝜔 

2 (𝜌SN 𝒖 
𝑆 + 𝜌NN 𝒖 

𝑁 

)
= 𝟎 (47) 

.4.3. Trefftz-compliant approximation functions 

The functions to be included in the displacement approximation

ases U for each type of medium must be selected from the solution

pace of the Navier problems derived in the previous section. 

According to the Helmholtz principle, the generalized displacement

elds can be written as the sum of the irrotational and solenoidal com-

onents of some displacement potentials 𝜙, to yield, 

 = ∇ 𝜙𝑆 
𝑃 
+ ∇̃ 𝜙𝑆 

𝑆 ( for single − phase media ) (48)

 

𝑆 = ∇ 𝜙𝑆 
𝑃 
+ ∇̃ 𝜙𝑆 

𝑆 ( for biphasic and triphasic media ) (49)

 = ∇ 𝜙𝑊 

𝑃 
+ ∇̃ 𝜙𝑊 

𝑆 ( for biphasic media ) (50)

 

𝑊 ,𝑁 = ∇ 𝜙𝑊 ,𝑁 

𝑃 
+ ∇̃ 𝜙𝑊 ,𝑁 

𝑆 
( for triphasic media ) (51)

here ∇̃ is the curl operator and superindices { S, W, N } correspond to

he solid phase S , the fluid phase W in biphasic media, and the two fluid

hases W and N in the triphasic media, and subindices { S, P } correspond

o the shear and compression waves, respectively. 

The Helmholtz decomposition (48) to (51) uncouples Navier equa-

ions into an irrotational motion described by potentials 𝜙𝑆,𝑊 ,𝑁 

𝑃 
, and

 shear (solenoidal) motion, described by potentials 𝜙𝑆,𝑊 ,𝑁 

𝑆 
. Therefore,

avier equations are reduced to a set of uncoupled Helmholtz equations,

f type, 

 

2 𝜙𝑆,𝑊 ,𝑁 

𝑆, 𝑃 𝑖 
+ 𝛽2 𝑆, 𝑃 𝑖 

𝜙𝑆,𝑊 ,𝑁 

𝑆, 𝑃 𝑖 
= 0 (52)

Wave numbers 𝛽𝑆, 𝑃 𝑖 (defined below) depend on the spectral fre-

uency 𝜔 and material characteristics, and i = 1 for single-phase media,

 = {1, 2} for biphasic media and i = {1, 2, 3} for triphasic media. This

eans that, in single-phase materials, a single compression wave and a

ingle shear wave are identified for a given frequency value. In biphasic

edia, the potential functions 𝜙𝑆,𝑊 

𝑆, 𝑃 𝑖 
define two compression waves ( P1

nd P2 ) and one shear wave ( S ), and in triphasic media 𝜙𝑆,𝑊 𝑁 

𝑆, 𝑃 𝑖 
define

hree compression waves ( P1, P2 and P3 ) and one shear wave ( S ). 

The solutions of the Helmholtz Eq (52) in two dimensions using a

olar referential ( r , 𝜃), are of type 

𝑆,𝑊 ,𝑁 

𝑆,𝑃 𝑖 
( 𝑟, 𝜃) = 𝐽 𝑘 

(
𝛽𝑆,𝑃 𝑖 𝑟 

)
exp 

(
𝑖 𝑘𝜃

)
(53) 

here J k ( 𝛽r ) is the Bessel function of the first kind and integer order k .

The trademark feature of the Trefftz elements is that the approxima-

ion functions included in basis U are chosen such as to satisfy exactly

he Navier equation governing the problem. They are generated from

he compression and shear potentials using the Helmholtz decomposi-

ion principle: 

 

𝑆 
𝑃 𝑖 

= ∇ 𝜙𝑃 𝑖 (54)

 

𝑆 
𝑆 
= ∇̃ 𝜙𝑆 (55) 

 

𝑊 ,𝑁 

𝑃 𝑖 
= 𝛾𝑊 ,𝑁 

𝑃 𝑖 
∇ 𝜙𝑃 𝑖 (56)

 

𝑊 ,𝑁 

𝑆 
= 𝛾𝑊 ,𝑁 

𝑆 
∇̃ 𝜙𝑆 (57) 
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p

here 𝑼 

𝑆 
𝑃 𝑖 

lists the approximation functions of the displacements of the

olid phase for the compression ( P i ) waves; 𝑼 

𝑆 
𝑆 

are the approximation

unctions of the displacements of the solid phase for the shear ( S ) wave;

 

𝑊 ,𝑁 

𝑃 𝑖 
corresponds to the displacements of the fluids for the compression

 P i ) waves; and 𝑼 

𝑊 ,𝑁 

𝑆 
corresponds to the displacements of the fluids for

he shear wave. 

Single-phase media. In single-phase media, the wave numbers are de-

ned by 

2 
𝑆 = 

𝜌

𝑘 33 
𝜔 

2 (58)

2 
𝑃 = 

𝜌

𝑘 12 + 2 𝑘 33 
𝜔 

2 (59)

Biphasic media. The shear wave multiplier 𝛾𝑊 

𝑆 
for biphasic media is

𝑊 

𝑆 
= − 

𝜌𝑤 
𝜌𝑤 2 

(60)

nd the compression wave multipliers 𝛾𝑊 

𝑃 𝑖 
for biphasic media are the

olutions of the equation 
 

1 − 𝛼
𝜌𝑤 2 
𝜌𝑤 

) (
𝛾𝑊 

𝑃 𝑖 

)2 
+ 

( 

𝜌

𝜌𝑤 
− 𝜒

𝜌𝑤 2 
𝜌𝑤 

) 

𝛾𝑊 

𝑃 𝑖 
+ 

( 

𝛼
𝜌

𝜌𝑤 
− 𝜒

) 

= 0 (61)

here, 

= 𝛼2 + 

𝜆 + 2 𝜇
𝑀 

(62)

The wave numbers for biphasic media are 

2 
𝑆 = 

( 

1 + 𝛾𝑊 

𝑆 

𝜌𝑤 
𝜌

) 

𝜌

𝜇
𝜔 

2 (63)

2 
𝑃 𝑖 

= 

𝜌𝑤 + 𝛾𝑊 

𝑃 𝑖 
𝜌𝑤 2 (

𝛼 + 𝛾𝑊 

𝑃 𝑖 

)
𝑀 

𝜔 

2 (64)

All mechanical parameters used in the definitions above are defined

n Appendix B . 

Trihasic media. For triphasic media, a similar process is used to obtain

he wave multipliers and wave numbers. For the shear wave, they are 

𝑊 

𝑆 
= − 

𝜌𝑆𝑊 

𝜌𝑊 𝑊 

(65)

𝑁 

𝑆 = − 

𝜌𝑆𝑁 

𝜌𝑁𝑁 

(66)

2 
𝑆 = 

𝜌𝑆𝑆 + 𝛾𝑊 

𝑆 
𝜌𝑆𝑊 

+ 𝛾𝑁 

𝑆 
𝜌𝑆𝑁 

𝑛 𝑆 𝜇𝑆 
𝜔 

2 (67)

For the compression waves, the wave multipliers and wave numbers

re the solutions of the eigenproblem 

⎡ ⎢ ⎢ ⎣ − 

𝛽2 
𝑃 𝑖 

𝜔 

2 

⎛ ⎜ ⎜ ⎝ 
𝑀 𝑆𝑆 + 𝑛 𝑆 𝜇𝑆 𝑀 𝑆𝑊 

𝑀 𝑆𝑁 

𝑀 𝑆𝑊 

𝑀 𝑊 𝑊 

𝑀 𝑊 𝑁 

𝑀 𝑆𝑁 

𝑀 𝑊 𝑁 

𝑀 𝑁𝑁 

⎞ ⎟ ⎟ ⎠ + 

⎛ ⎜ ⎜ ⎝ 
𝜌𝑆𝑆 𝜌𝑆𝑊 

𝜌𝑆𝑁 

𝜌𝑆𝑊 

𝜌𝑊 𝑊 

0 
𝜌𝑆𝑁 

0 𝜌𝑁𝑁 

⎞ ⎟ ⎟ ⎠ 
⎤ ⎥ ⎥ ⎦ 

×
⎛ ⎜ ⎜ ⎜ ⎝ 
𝛾𝑆 
𝑃 𝑖 

𝛾𝑊 

𝑃 𝑖 

𝛾𝑁 

𝑃 𝑖 

⎞ ⎟ ⎟ ⎟ ⎠ = 

⎛ ⎜ ⎜ ⎝ 
0 
0 
0 

⎞ ⎟ ⎟ ⎠ (68) 

All mechanical parameters used in definitions (65) to (68) are de-

ned in Appendix C . 

.4.4. Hybrid-Trefftz finite element formulation 

Enforcing weakly Eq (31) in the domain of the element, Eq (32) on its

irichlet (and interior) boundaries, Eq (34) on its absorbing boundaries,

nd Eq (35) on its Robin boundaries, yields, 

𝑼̂ 

𝑇 ( 

(
𝒌  

∗ 𝒖 
)
+ 𝜔 

2 𝝆𝒖 
)
𝑑𝑉 𝑒 = 𝟎 (69)
160 
𝒁̂ 

𝑇 (
𝒖 − 𝒖 Γ

)
𝑑Γ𝑒 𝑢,𝑖 = 𝟎 (70) 

𝒁̂ 

𝑇 (
𝒖 + 𝑪 𝒕 Γ

)
𝑑Γ𝑒 𝑎 = 𝟎 (71) 

𝒁̂ 

𝑇 (
𝒖 + 𝒇 𝒕 Γ

)
𝑑Γ𝑒 𝑟 = 𝟎 (72) 

here 𝑼̂ 

𝑇 
and 𝒁̂ 

𝑇 
are the transposed conjugates of bases U and Z .

inally, integrating by parts Eq (69) and substituting approximations

40) and (41) , the problem is reduced to solving the algebraic system

9 , 16] 

 

 

 

 

 

𝑫 − 𝑩 𝑎 ∕ 𝑟 − 𝑩 

− ̂𝑩 

𝑻 

𝑎 ∕ 𝑟 𝑫 𝑎 ∕ 𝑫 𝑟 𝟎 
− ̂𝑩 

𝑇 𝟎 𝟎 

⎞ ⎟ ⎟ ⎟ ⎠ 
⎛ ⎜ ⎜ ⎝ 
𝑿 

𝒑 𝑎 ∕ 𝑟 
𝒑 

⎞ ⎟ ⎟ ⎠ = 

⎛ ⎜ ⎜ ⎝ 
𝒇 𝑡 
𝟎 

− 𝒒 𝑢 

⎞ ⎟ ⎟ ⎠ (73) 

here, 

 = ∫ 𝑼̂ 

𝑻 
𝑵 𝑺 𝑑 Γ𝑒 (74)

 𝑎 = − ∫ 𝒁 

𝑇 𝑪 𝒁 𝑑Γ𝑒 𝑎 (75)

 𝑟 = − ∫ 𝒁 

𝑻 𝒇 𝒁 𝑑Γ𝑒 𝑟 (76)

 = ∫ 𝑼̂ 

𝑇 
𝒁 𝑑Γ𝑒 𝑢,𝑎,𝑟 (77) 

 𝑡 = ∫ 𝑼̂ 

𝑇 
𝒕 Γ𝑑Γ𝑒 𝜎 (78) 

 𝑢 = ∫ 𝒁̂ 

𝑇 
𝒖 Γ𝑑Γ𝑒 𝑢,𝑖 (79) 

Neumann boundary conditions (33) are explicitly enforced in the

oundary terms that emerge from the integration by parts of Eq. (69) .

ompliance of basis U with the Trefftz condition causes all domain in-

egrals to vanish from the calculation. 

Unlike the governing systems of conventional finite elements, sys-

em (73) is not always kinematically indeterminate. The system is called

inematically indeterminate if the kinematic variables collected in vector

 cannot be determined strictly from the second set of equations. To

nsure that no dependencies occur in the solving system (73), the kine-

atic indeterminacy conditions must be satisfied through an adequate

runcation of approximation bases U and Z in the finite elements and

n their boundaries, respectively. Namely, the system is kinematically

ndeterminate if the total number of approximation functions collected

n the traction bases on the Dirichlet and interior boundaries is inferior

o the total number of approximation functions collected in the domain

ases. Robin and absorbing boundary bases are neutral to the kinematic

ndeterminacy condition. 

. FreeHyTE modules for elastodynamic problems 

In this section, the FreeHyTE modules for the solution of elastody-

amic problems in two dimensions are introduced. They are the Solid

ransient module for problems involving single-phase media, Bipha-

ic Transient module for problems defined on saturated porous media

nd the Triphasic Transient module, for problems involving unsaturated

orous media. 
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Fig. 3. Structure of the FreeHyTE modules. 
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identified with red frames. 
.1. Computational architecture 

The general structure of a FreeHyTE module is described in Fig. 3 .

he user input is the first step and consists of a sequence of graph-

cal user interfaces (GUIs) where the problem and the solution pa-

ameters are defined. These interfaces are presented and explained in

ection 3.2 . After this phase, FreeHyTE performs the time discretization

see Section 2.2 ), reducing the original problem in time and space to a
Fig. 4. Layout 

161 
eries of spectral problems in space and generates the input data for each

f those problems. Each spectral problem is independent of the others,

upporting a simple parallel solution process. 

In the next step, each spectral problem is solved and the resulting

pectral displacement fields are computed according to approximation

40) . The stress and pore pressure fields are computed by enforcing the

ompatibility and elasticity equations on the displacement approxima-

ion, 

=  

(
𝒌  

∗ 𝑼 

)
𝑿 (80)

The integrations required for the computation of the coefficients of

he solving systems (73) are performed numerically using the Gauss-

egendre quadrature rule. While accountable for the super convergence

f the Trefftz finite elements, the physically meaningful approximation

unctions can hinder the numerical stability of the solution procedure,

specially when the wave numbers associated to the compression waves

ropagating through the different phases are multiple orders of magni-

ude different from one another. To mitigate such issues, scaling, pre-

onditioning and special system solvers are employed. They are de-

cribed in more depth in Section 3.3 . 

When all spectral problems have been solved, the solution in time is

alculated as a linear combination of the spectral solutions with the time

asis, according to definitions (8) to (10) . The time basis is constructed

sing Daubechies wavelets, which offer good accuracy even with very

arge time steps. The solutions in time can be plotted and/or saved in

utput files, as shown in Section 3.4 . 

.2. Graphical user interfaces 

The FreeHyTE GUI consists of four main interfaces, complemented

y the Matlab’s pdetool interface for the definition of non-regular do-

ains and meshes. Their presentation is illustrated with the GUIs of the

riphasic Transient module. The GUIs of the other two modules are just

implified versions of those in Triphasic Transient. 

Fig. 4 presents the first GUI. The main data zones of the interface are
of GUI 1. 
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Fig. 5. Matlab’s pdetool interface. 
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At the bottom of the first GUI are the ‘ Load ’ and ‘ Save ’ buttons: with

he ‘ Load ’ button the user can load previously saved problems and with

he ‘ Save ’ button the user can save the data of the current problem in

 

∗ .mat file. When the model is saved, FreeHyTE also stores the output

ata in output files. 

The ‘ Algorithmic definitions ’ zone is where the user must choose be-

ween the two automatic mesh generators built in FreeHyTE. The regu-

ar mesh generator creates meshes of uniform rectangular elements and

hould be used to discretize rectangular domains. The non-regular mesh

enerator creates triangular elements and can be used for any geome-

ry. Additionally, the user must specify the number of Gauss-Legendre

uadrature points and the number of plotting points where the solu-

ion is stored in the output files. Two important algorithmic options

orrespond to checkboxes ‘ Parallel processing ’, which enables and dis-

bles the parallel solution of the time-discretized problems, and ‘ Use

east norm solvers ’, which enables FreeHyTE to use least norm solvers on

ll-conditioned solving systems. Finally, the user can request the solu-

ions to be plotted at a certain number of equally spaced (dyadic) time

teps. 

In ‘ Geometry and meshing ’, the user can define a regular structure

nd mesh. This zone is only editable when a regular mesh is chosen.

n the ‘ Boundary and domain orders ’ zone, the user can set the orders

f approximations in the domain of the elements ( Loops order ) and on

heir essential boundaries ( Edges order ). Loops order corresponds to the

rder of the Bessel functions in Eq (53) and Edges order corresponds to

he order of the Chebyshev polynomials used for the construction of

raction basis Z on the essential boundaries ( Eq (41) ). 
162 
The material parameters required for the execution of the analysis

re set in ‘ Material parameters ’. In the ‘ Time integration ’ zone, the user

pecifies the total time of the analysis and the three calibration param-

ters that control the Daubechies wavelet basis. Daubechies wavelets

re functions with no analytic expression, meaning that their values can

nly be computed in certain, equally spaced points on their support,

alled dyadic points. The total time of the simulation is divided into 2 d 

ime intervals, to which correspond 2 d + 1 dyadic points, where d is set

n the ‘ No of dyadic points ’ field of the interface ( Fig. 4 ). Therefore, each

ime interval is 𝑇 

2 𝑑 +1 , where T is the total time of the simulation. The

avelet family number represents the number of vanishing moments of

he wavelet, and the order ( p ) of the time basis controls the number of

unctions that are included in the basis, which is equal to 2 p . It is noted,

owever, that only 2 p − 1 spectral runs are required to compute the so-

ution, as spectral analyses yield pairs of complex conjugate solutions. 

When the non-regular mesh generator is chosen, Matlab’s pdetool in-

erface is launched in the next step ( Fig. 5 ). In this interface, the domain

an be created by addition or substraction of simple geometrical shapes

nd meshed using triangular finite elements. The maximum leading di-

ension of the elements and the growth rate of the mesh are parameters

efined by the user. 

The second GUI ( Fig. 6 ) is used to define the type of boundary

Dirichlet, Neumann, Robin or absorbing) for each exterior side of the

omain. The structure visualization zone is located on the left side of

UI 2. It consists of a plot of the mesh, with buttons to display the

tructure information (nodes, edges or elements). The ‘ Enlarge ’ button

t the bottom can be used to open a separate interface to easily read

he structural data in case the visualization area in GUI 2 is too small.

he external boundaries of the structure are listed in the central zone of

UI 2 and the boundary types can be assigned in the right side of the

nterface. 

The third GUI is presented in Fig. 7 . The three input areas are used

o define the Dirichlet, Neumann and Robin boundary conditions. Ab-

orbing boundary conditions require no input from the user, as Free-

yTE automatically computes the flexibility coefficients. The definition

f the space variations of the boundary displacement and traction fields

s made by specifying their values in as many equally spaced points

long the boundary as needed to define a polynomial variation. The

ime variation of the fields can be defined by any expression in the time

ariable t that can be evaluated by Matlab. The definition of the Robin

oundary conditions only requires the input of the flexibility coefficients

n the normal and tangential directions. 

Finally, the last step before launching the execution of FreeHyTE is

he verification GUI ( Fig. 8 ). This GUI is meant to allow the user to verify

he definitions of the structure and boundary conditions by selecting the
Fig. 6. Layout of GUI 2. 
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Fig. 7. Layout of GUI 3. 

Fig. 8. Layout of GUI 4. 
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esired visualization in the pop-up menu on the left side. For example,

he visualization interface for the boundary conditions in the normal

irection is shown in Fig. 9 , where Dirichlet sides are plotted in black,

eumann sides are plotted in red and absorbing sides are plotted in

reen. The nodal values of the boundary conditions are listed on each

oundary. 

.3. Processing 

During the execution, the solution of each spectral problem can be

arallelized. In the parallel processing mode, the default option is to

ummon all cores of the machine to perform the calculations. However,

he number of cores can be controlled by editing a field in the code.

arge analyses should be run in parallel as it significantly decreases

he computational time. The parallel processing mode requires Matlab’s

arallel Computing Toolbox. If it is not available, FreeHyTE will run se-
163 
uentially regardless of whether the ‘ Parallel processing ’ option ( Fig. 4 )

s turned on or off. 

In order to improve the numerical stability of the calculations, the

onvergence rates and the condition number of the solving system, scal-

ng procedures are applied to the input parameters, approximation func-

ions and solving system. 

The scaling of the input parameters consists of the scaling of the

riginal material and geometrical quantities. Let a generic quantity x be

caled such that, 

 = 𝑥 𝑆 ⋅ 𝑥̄ (81)

here x S is the scaling factor and 𝑥̄ is the scaled version of x . Primary

caling factors are set for the material moduli ( E S ), densities ( 𝜌S ), lengths

nd coordinates ( L S ) and tractions and stresses ( t S ). They are defined as

he maximum values of the respective quantities taken over all elements

f the mesh. Three secondary scaling factors for the spectral frequency,
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Fig. 9. Visualization of the boundary condi- 

tions in the normal direction in GUI 4. 

Fig. 10. Finite element with area A and the circumference with the same area 

and radius R 0 . 
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isplacements and flexibility coefficients of the elastic boundaries are

erived such as to preserve the form of all governing equations. They

re defined as, respectively, 

 𝑆 = 

√ 

𝐸 𝑆 

𝜌𝑆 ⋅ 𝐿 

2 
𝑆 

(82)

 𝑆 = 

𝑡 𝑆 ⋅ 𝐿 𝑆 

𝐸 𝑆 

(83)

 𝑆 = 

𝐿 𝑆 

𝐸 𝑆 

(84)

The approximation function scaling consists in the scaling of the

hape functions U by dividing them by |𝐽 𝑘 ( 𝛽𝑆, 𝑃 𝑖 𝑅 0 ) |, where 𝑅 0 = 

√ 

𝐴 

𝜋

s the radius of the circumference with the same area ( A ) as the finite

lement ( Fig. 10 ). 

Another technique FreeHyTE uses to improve the numerical stability

s the preconditioning of the solving system. The procedure equilibrates

he values of the diagonal terms of system (73), bringing their modules

lose to unity. Considering a generic linear system Ax = b , where A is

 square, possibly Hermitian, matrix and x and b are vectors, then, the

ystem may be written in the scaled form, 

̄
 ̄𝒙 = 𝒃̄ (85)

here the scaled arrays are defined as, 

̄
 = 𝑺̂ 

𝑇 
𝑨 𝑺 (86)

̄  = 𝑺 

−1 𝒙 (87)

̄
 = 𝑺̂ 

𝑇 
𝒃 (88)
164 
nd S represents a diagonal scaling matrix, whose terms are defined as

he square roots of the diagonal terms of the matrix A . When a null

iagonal term is encountered in matrix A , the respective scaling term

s equal to one, meaning that no scaling is applied to the respective

ines and columns. This scaling procedure preserves the symmetry of

he original system. 

Finally, when the system is ill-conditioned and the ‘ Use least norm

olvers ’ checkbox is enabled ( Fig. 4 ), FreeHyTE uses least norm solvers

or the solution of system (73). Matlab’s least norm solver attempts to

nd the solution that minimizes the error norm of the solving system

sing an iterative procedure. The solution is based on the computa-

ion of the Moore-Penrose pseudoinverse of the matrix. The procedure’s

onvergence threshold and the maximum number of iterations can be

ontrolled by advanced users by modifying a line in the code. The con-

ergence to a strong solution using the iterative least norm solver can

e extremely slow. Refining the mesh and reducing the orders of the

omain and boundary bases is the best way to avoid ill-conditioned sys-

ems. 

.4. Outputs 

The (generalized) displacement and stress fields are stored in output

les when the problem is saved. The solutions are computed in all 2 d + 1

yadic points and stored in separate ∗ . dat files. The values of the fields

re calculated in PP 2 plotting points in each finite element, where PP

s the plotting points number input by the user in the first GUI ( Fig. 4 ).

he output files are formated for direct loading in the post-processing

oftware Tecplot, but can be used with other visualization software as

ell as, for example, Paraview. 

FreeHyTE also can produce plots of the solutions using Matlab’s na-

ive plotting functions. Color map plots of the displacements, seepage,

tresses and pore pressure fields are rendered. The plots are made at ev-

ry NDP dyadic points, where the NDP parameter is controlled by user

y editing the ‘ Solution plot at every… dyadic points ’ box in the first GUI

 Fig. 4 ). If a zero is set in this box this output, no color map plots are pro-

uced. It is noted that Matlab’s native plotting functions can be tediously

low, so the solution plotting in specialized post-processing software is

ecommended. 

. Numerical examples 

Three simulations are performed with the new FreeHyTE modules,

imed at illustrating the potential of hybrid-Trefftz finite elements to

odel highly transient wave propagation through bounded and un-

ounded media. The first simulation, presented in Section 4.1 , is a
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Fig. 11. Physical model of the simulation of a shock wave in a solid medium. 

Table 1 

Mechanical properties of the solid medium. 

Density 𝜌 (kg/m 

3 ) 1000 

Young’s modulus E ( Pa ) 1.00 • 10 4 

Poisson’s coefficient 𝜈 0.1 
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hock wave propagation in a bounded and an unbounded solid me-

ia, under plane strain conditions. To validate the FreeHyTE results,

he bounded problem is solved using the conventional finite element

oftware Abaqus. In Section 4.2 , a simulation of the propagation of a

hock wave through a semi-infinite saturated porous medium is pre-

ented. The results obtained with FreeHyTE are compared with those

eported by Akiyoshi et al. [1] who solved a similar problem. The third

imulation reproduces a similar excitation in an unbounded unsaturated

edium and is discussed in Section 4.3 . 

.1. Shock wave propagation in a solid medium 

The first numerical example involves the propagation of a shock

ave through a bounded and a (semi-) unbounded continua. The re-

ults obtained on the bounded medium are compared with those of the

ommercial finite element platform Abaqus. The results obtained on the

nbounded medium are compared to those obtained with a fixed bound-

ry to assess the presence of spurious reflections from the absorbing

oundary. 

The physical model is presented in Fig. 11 . The medium is con-

ained by frictionless lateral boundaries, under plane strain conditions.

he bottom boundary of the medium is either rigid and frictionless

in the bounded case), or defined as an absorbing boundary (in semi-

nbounded case). The shock vertical load is applied on the L = 1.5 m

oundary at the top of the medium. Its amplitude is null on the sides

f the medium, equal to 1 kPa in its middle and has a linear variation

n space. In time, the applied load is constant in the first 0.05 s of the

otal duration of the analysis T = 1.4 s and null for 0.05 s < t ≤ T . The

aterial properties are described in Table 1 . 

The medium is discretized in space using a regular mesh of 144

ybrid-Trefftz finite elements of size 𝐿 12 . The orders of the domain and

oundary bases are defined as 17 and 8, respectively. The total number

f degrees of freedom (that is, the total dimension of the solving system

73)) is 15,156. The time discretization is performed using a Daubechies

asis with scaling functions of family 4 and order 7. This generates 128

seudo-spectral problems in space of type (31)–(35). Since they come in

airs of complex conjugates, however, only 64 problems actually need

o be solved. 

To validate the results obtained with FreeHyTE, the same problem is

olved using the commercial software Abaqus, using 8-node (quadratic)

onforming finite elements. The mesh consists of 112,500 finite ele-

ents, for a total of 252,472 degrees of freedom. The time discretiza-
165 
ion is performed using the HHT time stepping scheme and time steps

f 0.011 s. 

The time-histories of the vertical displacement at point A ( Fig. 11 )

nd horizontal displacement at point B obtained with Abaqus (solid line)

nd FreeHyTE (dashed line) are presented in Fig. 12 . 

The application of the load causes a sudden increase in the magni-

ude of the vertical displacements in point A. After the load is with-

rawn, the displacements remain with negative values until the wave

ront, reflected from the bottom boundary, returns at the top (just before

s), when the vertical displacement changes sign. In point B, the hori-

ontal displacements are null until the wave front arrives. The intensity

f the lateral displacements in B is roughly one order of magnitude infe-

ior to that of the vertical displacements in point A and the pattern less

egular. Very good agreement is observed between the FreeHyTE and

baqus results at all times. 

The time-histories of the normal stresses in the vertical direction at

oints A and C ( Fig. 11 ) and of the shear stress at point B obtained with

baqus (solid line) and FreeHyTE (dashed line) are presented in Fig. 13 .

tandard stress smoothing/averaging is used in Abaqus. The numerical

rocedure used in FreeHyTE lacks numerical damping [16] , so a basic

IR low-pass filter is used in post-processing. 

The solutions obtained with Abaqus and FreeHyTE are quite sim-

lar in all plots, despite the vast difference in the number of degrees

f freedom of the models. Some spurious vibrations of the solution ex-

st in both solutions at point A ( Fig. 13 (a)) and, in the FreeHyTE so-

ution, in point C ( Fig. 13 (c)). The Abaqus solution predicts a spuri-

us vertical stress oscillation at point A ( Fig. 13 (a)) around the time of

he arrival of the rebound of the shock wave, which is (correctly) not

resent in the FreeHyTE solution. Indeed, since the vertical load applied

o the surface of the medium is null after the first 0.05 s, the vertical

tresses on the free surface of the medium should be exactly zero af-

er that. A detail of the vertical stress field on the upper 0.65m of the

edium in the moment when this happens (0.95 s) is given in Fig. 14 .

t can be seen that a spurious bulb of vertical stress, albeit of low in-

ensity, pollutes the Abaqus solution in the central region of the free

urface. 

For a more general perspective of the solutions, the vertical normal

tress fields obtained with FreeHyTE and Abaqus are plotted at six time

oints in Figs. 15 and 16 , respectively. Again, the quality of the solutions

s very similar at all times. The similarity is preserved for all displace-

ents and stress fields, over the whole duration of the analysis. 

In the case of the unbounded medium, the bottom boundary is de-

ned as absorbing. To illustrate its effect, the time-histories of the ver-

ical normal stress in points A and C ( Fig. 11 ) and of the shear stress at

oint B obtained with the absorbing boundary (solid line) are compared

ith those obtained with a rigid boundary (dashed line) in Fig. 17 . As

xpected, the presence of the absorbing boundary makes no difference

n the vertical normal stress field at the top of the medium ( Fig. 17 (a)),

s it recovers the applied normal forces which are not different for the

wo media. In point B ( Fig. 17 (b)), the two solutions are similar un-

il around 0.75 s, when the rebound of the shock wave arrives in the

ounded medium case. This causes large oscillations of the solution,

hich are not recovered in the unbounded medium case, as the shock

ave is not reflected back into the analysis domain. The effect of the ab-

orbing boundary is also clearly visible in point C ( Fig. 17 (c)). Similar

olutions are obtained until the arrival of the shock wave, around 0.5 s.

s the shock wave is not reflected, its duplication in intensity, typical to

igid boundary rebounds, does not occur, so the stresses peak at much

ower amplitudes. Around 0.75 s, another peak in the unbounded solu-

ion is related to the arrival of a (slower) shear wave, after which the

tress amplitude always remains low. 

Finally, to illustrate the lack of spurious reflections from the absorb-

ng boundary, the vertical normal stress field in the unbounded medium

s plotted at six selected time points in Fig. 18 . No spurious reflection is

isible from the absorbing boundary, either in terms of normal stress or

ny other solution field. 
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Fig. 12. Time-history of displacements in se- 

lected points. 

Fig. 13. Time-history of stresses in selected 

points. 
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.2. Shock wave propagation in a semi-infinite saturated medium 

The second numerical application is a Heaviside pulse perturbation

est on a saturated porous medium. The results are compared with a

imilar simulation reported by Akiyoshi et al. [1] . The physical model

s presented in Fig. 19 . The medium is subjected to a vertical excitation

( 𝑥, 𝑡 ) = 𝑓 ⋅ Π( 𝑡 ) , applied on a 2 L 0 = 8 m strip and acting exclusively on

he solid phase, with 𝑓 = 1 𝑘 Pa and the Heaviside time function Π( t )

efined by 

( 𝑡 ) = 

{ 

1 . 0 𝑓𝑜𝑟 0 . 00 ≤ 𝑡 ≤ 0 . 01 
0 . 0 𝑓𝑜𝑟 𝑡 > 0 . 01 (89)

Boundary conditions are applied on the half-structure presented in

ig. 20 as a result of symmetry. The horizontal boundary at y = 0 is de-
166 
ned as Neumann, and the vertical boundary at x = 0 is Dirichlet. The

emi-infinite domain is cropped at R = 20 m by an absorbing boundary.

he load f ( x, t ) is applied on the first L 0 = 4 m of the Neumann bound-

ry. The tangential stress in the solid phase and the pore pressure are

ull in that region. On the rest of the Neumann boundary, the normal

nd tangential stresses and the pore pressure are null. On the Dirich-

et boundary at x = 0 the normal displacement, the fluid seepage and

he tangential stress are null. The domain is discretized using the mesh

hown in Fig. 20 . The mesh consists of 549 finite elements, with Trefftz

ases of order 7. On the essential boundaries, the Chebyshev basis is

uilt on polynomials of degree 4. The mesh is locally refined in the re-

ion where the shock load is applied, to account for the large gradients

nd highly oscillatory nature of the solution in this region. The model

as a total of 37,015 degrees of freedom (i.e. the total dimension of the
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Fig. 14. Detail of the vertical stress field at 

t = 0.95 s. 

Fig. 15. Vertical stress field recovered by 

Abaqus at selected instants. 

Fig. 16. Vertical stress field recovered by Free- 

HyTE at selected instants. 
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Table 2 

Geomechanical properties of the saturated soil. 

Fluid density 𝜌w (kg/m 

3 ) 1000 

Mixture density 𝜌 (kg/m 

3 ) 2000 

Biot’s modulus M ( Pa ) 3.33 • 10 6 

Young modulus of the solid skeleton E ( Pa ) 3.00 • 10 5 

Biot’s coefficient 𝛼 1.0 

Fluid volume fraction n w 0.3 

Poisson’s coefficient 𝜈 0.2 

Scalar tortuosity a 1.0 

Hydraulic conductivity k (m/s) 9.81 • 10 − 3 
olving system (73)). The geomechanical characteristics of the saturated

oil are given in Table 2 . They were taken from the work of Akiyoshi

t al. [1] , whose results are used here to validate the results obtained

sing FreeHyTE. 

The total simulation time is T = 0.5 s. The time discretization is sim-

lar to that used in Section 4.1 . 

The time-history of the vertical displacement in the solid phase at

oint A = (2, − 2) ( Fig. 20 ) is shown in Fig. 21 and compared with

he corresponding results reported in Akiyoshi et al. [1] . The initial

ilence period of about 0.05 s, taken by the main wavefront to reach
167 



I.D. Moldovan, N. Climent, E.D. Bendea et al. Engineering Analysis with Boundary Elements 124 (2021) 155–173 

Fig. 17. Time-history of stresses in selected 

points. 

Fig. 18. Vertical stress field in the unbounded 

medium at selected instants. 
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a  

F  

A  

a

he depth of point A, is recovered by FreeHyTE and is coherent with

kiyoshi’s predictions. The vertical displacement suddenly increases

hen the shock wave arrives to point A and then stabilizes. This be-

avior, and indeed the displacement values are in good agreement

ith the results reported in Akiyoshi et al. [1] . Some spurious higher

requency oscillations seem to be present in the model of Akiyoshi,

ut are avoided in the FreeHyTE results. It is noted that Akiyoshi re-

ublished these results in another paper [2] , four years after the first
168 
ne, with no spurious oscillations that time. However, the scale of the

ertical displacement plot in the more recent paper rendered the ex-

ct reading of the plotting points impossible, motivating the compar-

son with the results reported in the older paper. Moreover, there is

 different tendency of the vertical displacement after 0.35 s where

reeHyTE predicts a positive displacement increment, not predicted by

kiyoshi’s simulation. Overall, however, the two simulations are in good

greement. 
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Fig. 19. Physical model of the simulation of a shock wave in a biphasic medium. 

Fig. 20. Boundary conditions and mesh. 
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Fig. 21. Vertical displacement time history at point A (2, − 2). 

4

 

u  

s  

c  

a  

a

 

i  

h  

m  

e  

t  

m  

o  

u  

 

o  

n

 

f  

fl  

t  

n  

t  
The vertical stress distribution in the domain is captured at six differ-

nt times and plotted in Fig. 22 . The pore pressures at the same six time

oints are presented in Fig. 23 . Both fields recover correctly the enforced

oundary conditions and are smooth and continuous between adjacent

lements (no stress averaging is used in the plots). It is noted that the

tress continuity between adjacent elements is not explicitly enforced

n the model, making it a good convergence indicator. The absorbing

oundary absorbs the propagated pulse when it reaches the limit of the

omain. No spurious reflection is visually detectable. 
169 
.3. Shock wave propagation in a semi-infinite unsaturated medium 

The third numerical application is a shock wave propagation in an

nsaturated porous medium. The physical model is similar to that pre-

ented in Fig. 19 . The medium is subjected to a vertical Heaviside ex-

itation 𝑓 ( 𝑥, 𝑡 ) = 𝑓 ⋅ Π( 𝑡 ) acting on a 2 L 0 = 16m strip, with 𝑓 = 1 𝑘 Pa
nd the pulse load Π( t ) applied during 0.3 s. The total duration of the

nalysis is T = 10 s. 

The boundary conditions are applied to the half-structure presented

n Fig. 5 and are the same as in Fig. 20 . The load f ( x, t ) in this case,

owever, is applied on a longer support, L 0 = 8 m. The finite element

esh used for the analysis is also shown in Fig. 5 . It consists of 300 finite

lements, with Trefftz bases of order 9. On the essential boundaries,

he traction basis is built on Chebyshev polynomials of degree 3. The

odel has a total of 30,048 degrees of freedom (i.e. the total dimension

f the solving system (73)). The geomechanical characteristics of the

nsaturated soil are taken from reference Cao [5] and listed in Table 3 .

A fourth family Daubechies wavelet basis is used, with a refinement

f 6 generating 2 6 = 64 spectral problems in space (out of which 32

eed to be solved). The number of dyadic points is 2 7 + 1 = 129. 

The vertical stress distribution in the domain is captured at six dif-

erent times and plotted in Fig. 24 . The pore pressures in the wetting

uid at the same time points are presented in Fig. 25 . It can be observed

hat the pressure in the wetting fluid is much lower (two orders of mag-

itude) than the total vertical stress, meaning that most of the stress is

ransmitted through the solid skeleton. The pore pressure in the non-
Fig. 22. Vertical stress field at different in- 

stants. 
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Fig. 23. Pore pressure field at different in- 

stants. 

Fig. 24. Vertical stress field at different in- 

stants. 

Table 3 

Geomechanical properties for the unsaturated soil. 

Bulk modulus of the solid grain K S (Pa) 1.00 • 10 5 

Bulk modulus of the wetting fluid K W (Pa) 1.00 • 10 4 

Bulk modulus of the non-wetting fluid K N (Pa) 10 

First Lamé coefficient 𝜇S (Pa) 1.30 • 10 4 

Second Lamé coefficient 𝜆S (Pa) 9.13 • 10 4 

Elastic constant 𝜆𝑆 
𝑝𝑒 

(Pa) 2.86 • 10 4 

Elastic constant ΘW (Pa) 6.85 • 10 4 

Elastic constant ΘN (Pa) 1.67 • 10 5 

Degree of saturation S r 0.8 

Intrinsic permeability k I ( m 

2 ) 1.55 • 10 − 8 

Density of the solid grain 𝜌S (kg/m 

3 ) 2000 

Density of the wetting fluid 𝜌W (kg/m 

3 ) 1000 

Density of the non-wetting fluid 𝜌N (kg/m 

3 ) 1.1 

Dynamic viscosity of the wetting fluid 𝜈W ( Pa·s) 1.00 • 10 − 3 

Dynamic viscosity of the non-wetting fluid 𝜈N ( Pa·s) 1.80 • 10 − 5 

Relative permeability of the wetting fluid 𝑘 𝑊 
𝑟 

0.431 

Relative permeability of the non-wetting fluid 𝑘 𝑁 
𝑟 

0.011 

Porosity n 0.23 

w  
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c  

t  

n  
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t  
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170 
etting fluid is not represented here because it is too small. Both fields

ecover correctly the enforced boundary conditions and are smooth and

ontinuous between adjacent elements (no stress averaging is used in

he plots). It is noted (as in the previous examples) that the stress conti-

uity between adjacent elements is not explicitly enforced in the model.

he absorbing boundary absorbs the propagated pulse when it reaches

he limit of the domain and no spurious reflection is visually detectable.

. Conclusions 

Hybrid-Trefftz finite elements are efficient to mitigate the modeling

ifficulties faced by conventional finite elements in elastodynamic prob-

ems. They use approximation bases tailored specifically for the problem

hat is being solved, with a high content of built-in physical informa-

ion. This feature accounts for the robustness of the hybrid-Trefftz ele-

ents to gross mesh distortion, large solution gradients and extremely

mall wavelengths. Such issues are typical to highly transient excita-

ions in porous materials, where secondary compression waves travel-
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Fig. 25. Pore pressure field in the wetting fluid 

at different instants. 
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ing through the fluid(s) have wavelengths that are often a few orders

f magnitude shorter than those travelling through the solid skeleton. 

The advantages of the hybrid-Trefftz elements are brought to the fin-

ertips of the scientific community through their implementation in the

reeHyTE environment. The resulting modules, for solid, saturated and

nsaturated media, enjoy an open-source distribution, user-friendly in-

erfaces, and are supported by a wide range of manuals to get new users

nd developers acquainted. The documentation, codes and installation

its can be downloaded from the [7] . 

To the best of the authors’ knowledge, this is the first time hybrid-

refftz elements for dynamic problems defined on solid and porous me-

ia are implemented in a public software. 

The results obtained with the new modules are successfully validated

gainst commercial software that employs conventional finite elements

nd against similar results reported in the literature, where available.

he absorbing boundary conditions are also shown to efficiently miti-

ate the spurious vibrations of the inbound waves. 
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ppendix A. Matrices and coefficients for single-phase media 

For single phase media, matrix 𝝆 is simply a diagonal matrix having

he mass density of the material 𝜌 for its diagonal elements. The operator

 in Eq (26) is 

 = 

( 

𝜕 

𝜕𝑥 
0 𝜕 

𝜕𝑦 

0 𝜕 

𝜕𝑦 

𝜕 

𝜕𝑥 

) 

= 

( 

∗ )𝑻 (90)
171 
nd the stiffness matrix is, 

 = 

⎛ ⎜ ⎜ ⎝ 
𝑘 11 𝑘 12 0 
𝑘 12 𝑘 11 0 
0 0 𝑘 33 

⎞ ⎟ ⎟ ⎠ (91) 

The stiffness coefficients are defined as, 

 11 = 𝑘 12 + 2 𝑘 33 (92)

here 

 12 = 

𝜆 ( 1 − 2 𝜈) 
1 − 𝜈

(93) 

or plane stress problems, 

 12 = 𝜆 (94) 

or plane strain problems, and 

 33 = 𝜇 (95) 

or both problems. In definitions (93) to (95), 𝜆 and 𝜇 are the Lamé’s

onstants and 𝜈 is the Poisson’s coefficient. 

ppendix B. Matrices and coefficients for biphasic media 

For biphasic media, matrices 𝝆0 and d 0 are, 

0 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
𝜌 0 𝜌𝑤 0 
0 𝜌 0 𝜌𝑤 
𝜌𝑤 0 𝜌𝑤 𝑎 

𝑛 𝑤 
0 

0 𝜌𝑤 0 𝜌𝑤 𝑎 

𝑛 𝑤 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
(96) 

 0 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
0 0 0 0 
0 0 0 0 
0 0 𝜉

𝑛 𝑤 2 
0 

0 0 0 𝜉

𝑛 𝑤 2 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
(97) 

nd the generalized mass matrix 𝝆 is expressed as, 

= 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
𝜌 0 𝜌𝑤 0 
0 𝜌 0 𝜌𝑤 
𝜌𝑤 0 𝜌𝑤 2 0 
0 𝜌𝑤 0 𝜌𝑤 2 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
(98) 

here 𝝆 is the mass density of the mixture, 𝜌w is the mass density of the

iquid phase, and 

𝑤 2 = 

𝜌𝑤 𝑎 

𝑛 𝑤 
− 

𝑖 𝜉
𝑤 2 (99) 
𝜔𝑛 
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here 𝜉 is the dissipation, n w is the volume fraction and a is the tortu-

sity correction factor. The operator  in Eq (26) is 

 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝜕 

𝜕𝑥 
0 𝜕 

𝜕𝑦 
0 

0 𝜕 

𝜕𝑦 

𝜕 

𝜕𝑥 
0 

0 0 0 𝜕 

𝜕𝑥 

0 0 0 𝜕 

𝜕𝑦 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
= 

( 

∗ )𝑻 (100)

nd the stiffness matrix is, 

 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
𝑘 11 𝑘 12 0 𝑘 14 
𝑘 12 𝑘 11 0 𝑘 14 
0 0 𝑘 33 0 
𝑘 14 𝑘 14 0 𝑘 44 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
(101)

The stiffness coefficients are defined as, 

 11 = 𝑘 12 + 2 𝑘 33 (102)

 12 = 𝜆 + 𝛼2 𝑀 (103)

 33 = 𝜇 (104)

 14 = 𝛼𝑀 (105)

 44 = 𝑀 (106)

here 𝛼 and M are the Biot’s coefficients [3] . 

ppendix C. Matrices and coefficients for triphasic media 

The expression of the mass 𝝆0 and damping d 0 and matrices present

n equilibrium Eq (1) are 

0 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝑛 𝑆 𝜌𝑆 0 0 0 0 0 
0 𝑛 𝑆 𝜌𝑆 0 0 0 0 
0 0 𝑛 𝑊 𝜌𝑊 0 0 0 
0 0 0 𝑛 𝑊 𝜌𝑊 0 0 
0 0 0 0 𝑛 𝑁 𝜌𝑁 0 
0 0 0 0 0 𝑛 𝑁 𝜌𝑁 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
(107)

 0 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝜇𝑊 + 𝜇𝑁 0 − 𝜇𝑊 0 − 𝜇𝑁 0 
0 𝜇𝑊 + 𝜇𝑁 0 − 𝜇𝑊 0 − 𝜇𝑁 

− 𝜇𝑊 0 𝜇𝑊 0 0 0 
0 − 𝜇𝑊 0 𝜇𝑊 0 0 

− 𝜇𝑁 0 0 0 𝜇𝑁 0 
0 − 𝜇𝑁 0 0 0 𝜇𝑁 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
(108)

here n i , i = { S, W, N }, represent the volume fractions of each phase, 𝜌i 

re the densities of the solid grain, wetting and non-wetting fluids, and

𝑓 = 

(
𝑛 𝑓 

)2 
𝑣 𝑓 

𝑘 𝐼 𝑘 
𝑓 
𝑟 

(109)

here f = { W, N }, v f is the dynamic viscosity of the f-fluid, k I is the

ntrinsic permeability and 𝑘 
𝑓 
𝑟 is the relative permeability of the f-fluid.

he generalized mass matrix 𝝆 is expressed as 

= 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝜌𝑆𝑆 0 𝜌𝑆𝑊 

0 𝜌𝑆𝑁 

0 
0 𝜌𝑆𝑆 0 𝜌𝑆𝑊 

0 𝜌𝑆𝑁 

𝜌𝑆𝑊 

0 𝜌𝑊 𝑊 

0 0 0 
0 𝜌𝑆𝑊 

0 𝜌𝑊 𝑊 

0 0 
𝜌𝑆𝑁 

0 0 0 𝜌𝑁𝑁 

0 
0 𝜌𝑆𝑁 

0 0 0 𝜌𝑁𝑁 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
(110)

here, 

SS = 𝑛 𝑆 𝜌𝑆 − 

𝑖 (
𝜇𝑊 + 𝜇𝑁 

)
(111)
𝜔 

172 
SW 

= 

𝑖 

𝜔 

𝜇𝑊 (112) 

SN = 

𝑖 

𝜔 

𝜇𝑁 (113) 

WW 

= 𝑛 𝑊 𝜌𝑊 − 

𝑖 

𝜔 

𝜇𝑊 (114) 

NN = 𝑛 𝑁 𝜌𝑁 − 

𝑖 

𝜔 

𝜇𝑁 (115)

The operator  is 

 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝜕 

𝜕𝑥 
0 𝜕 

𝜕𝑦 
0 0 

0 𝜕 

𝜕𝑦 

𝜕 

𝜕𝑥 
0 0 

0 0 0 𝜕 

𝜕𝑥 
0 

0 0 0 𝜕 

𝜕𝑦 
0 

0 0 0 0 𝜕 

𝜕𝑥 

0 0 0 0 𝜕 

𝜕𝑦 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
= 

( 

∗ )𝑻 (116)

The stiffness matrix k is, 

 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝑀 𝑆𝑆 + 2 𝑛 𝑆 𝜇𝑆 𝑀 𝑆𝑆 0 𝑀 𝑆𝑊 

𝑀 𝑆𝑁 

𝑀 𝑆𝑆 𝑀 𝑆𝑆 + 2 𝑛 𝑆 𝜇𝑆 0 𝑀 𝑆𝑊 

𝑀 𝑆𝑁 

0 0 𝑛 𝑆 𝜇𝑆 0 0 
𝑀 𝑆𝑊 

𝑀 𝑆𝑊 

0 𝑀 𝑊 𝑊 

𝑀 𝑊 𝑁 

𝑀 𝑆𝑁 

𝑀 𝑆𝑁 

0 𝑀 𝑊 𝑁 

𝑀 𝑁𝑁 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
(117) 

here, 

 𝑆𝑆 = 𝑛 𝑆 
(
𝐾 𝑆 + 𝜆𝑆 − 2 𝜆𝑆 𝑝𝑒 

)
− 

𝑛 𝑆 
(
−2 𝐷 𝑁 

𝐷 𝑊 

+ 𝐷 𝑁 

+ 𝐷 𝑊 

)(
𝐾 𝑆 − 2 𝜆𝑆 𝑝𝑒 

)2 

𝐾 𝑆 

(
1 − 𝐷 𝑁 

𝐷 𝑊 

)
(118) 

 𝑆𝑊 

= − 

(
1 − 𝐷 𝑁 

)
𝐷 𝑊 

𝐾 𝑊 

𝑛 𝑆 
(
𝜆𝑆 𝑝𝑒 − 𝐾 𝑆 

)
𝐾 𝑆 

(
1 − 𝐷 𝑁 

𝐷 𝑊 

) (119)

 𝑆𝑁 

= − 

𝐷 𝑁 

(
1 − 𝐷 𝑊 

)
𝐾 𝑁 

𝑛 𝑆 
(
𝜆𝑆 𝑝𝑒 − 𝐾 𝑆 

)
𝐾 𝑆 

(
1 − 𝐷 𝑁 

𝐷 𝑊 

) (120)

 𝑊 𝑊 

= 𝐾 𝑊 

𝑛 𝑊 − 

𝐷 𝑊 

𝐾 

2 
𝑊 

𝑛 𝑆 

𝐾 𝑆 

(
1 − 𝐷 𝑁 

𝐷 𝑊 

) (121)

 𝑊 𝑁 

= 

𝐷 𝑁 

𝐷 𝑊 

𝐾 𝑁 

𝐾 𝑊 

𝑛 𝑆 

𝐾 𝑆 

(
1 − 𝐷 𝑁 

𝐷 𝑊 

) (122) 

 𝑁𝑁 

= 𝐾 𝑁 

𝑛 𝑁 − 

𝐷 𝑁 

𝐾 

2 
𝑁 

𝑛 𝑆 

𝐾 𝑆 

(
1 − 𝐷 𝑁 

𝐷 𝑊 

) (123)

 𝑊 

= 

𝐾 𝑆 𝑛 
𝑊 

𝐾 𝑆 𝑛 
𝑊 + 𝐾 𝑊 

𝑛 𝑆 + 𝑛 𝑆 
(
𝑛 𝑊 

)2 Θ𝑊 

(124) 

 𝑁 

= 

𝐾 𝑆 𝑛 
𝑁 

𝐾 𝑆 𝑛 
𝑁 + 𝐾 𝑁 

𝑛 𝑆 + 𝑛 𝑆 
(
𝑛 𝑁 

)2 Θ𝑁 

(125) 

nd 𝜇S and 𝜆S are the Lamé’s coefficients. Elastic constants 𝜆𝑆 𝑝𝑒 , Θ
W 

nd ΘN can be determined experimentally following the procedures de-

cribed in Wei and Muraleetharan [26] and K i , i = { S, W, N }, are the

ulk moduli of each phase. 
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ppendix D. Absorbing boundary flexibility matrices 

For single-phase media, the inverse of the absorbing boundary flex-

bility matrix present in Eq (6) is given by Lysmer and Kuhlemeyer

14] as, 

 

−1 = − 𝑖 

( 

𝛽𝑃 
(
𝑘 12 + 2 𝑘 33 

)
0 

0 𝛽𝑆 𝑘 33 

) 

(126)

The inverse of the absorbing boundary flexibility matrix for biphasic

edia is given by Moldovan [16] as, 

 

−1 = 

⎛ ⎜ ⎜ ⎝ 
𝐶 11 0 𝐶 13 
0 𝐶 22 0 
𝐶 31 0 𝐶 33 

⎞ ⎟ ⎟ ⎠ (127)

 11 = 𝐶 

[
𝜒
(
𝛾𝑊 

𝑃 1 𝛽𝑃 2 − 𝛾𝑊 

𝑃 2 𝛽𝑃 1 
)
+ 𝛼𝛾𝑊 

𝑃 1 𝛾
𝑊 

𝑃 2 
(
𝛽𝑃 2 − 𝛽𝑃 1 

)]
(128)

 13 = 𝐶 

[
𝜒
(
𝛽𝑃 1 − 𝛽𝑃 2 

)
+ 𝛼

(
𝛾𝑊 

𝑃 1 𝛽𝑃 1 − 𝛾𝑊 

𝑃 2 𝛽𝑃 2 
)]

(129)

 22 = − 𝑖 𝛽𝑆 𝜇 (130) 

 31 = 𝐶 

[
𝛼
(
𝛾𝑊 

𝑃 1 𝛽𝑃 2 − 𝛾𝑊 

𝑃 2 𝛽𝑃 1 
)
+ 𝛾𝑊 

𝑃 1 𝛾
𝑊 

𝑃 2 
(
𝛽𝑃 2 − 𝛽𝑃 1 

)]
(131)

 33 = 𝐶 

[(
𝛾𝑊 

𝑃 1 𝛽𝑃 1 − 𝛾𝑊 

𝑃 2 𝛽𝑃 2 
)
+ 𝛼

(
𝛽𝑃 1 − 𝛽𝑃 2 

)]
(132)

 = − 𝑖 
𝑀 

𝛾𝑊 

𝑃 1 − 𝛾𝑊 

𝑃 2 

(133) 

= 𝛼2 + 

𝜆 + 2 𝜇
𝑀 

(134)

The absorbing boundary flexibility matrix for triphasic media is 

 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
𝐶 11 0 𝐶 13 𝐶 14 
0 𝐶 22 0 0 
𝐶 31 0 𝐶 33 𝐶 34 
𝐶 41 0 𝐶 43 𝐶 44 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
(135)

here the coefficients are the solutions of the problem 

⎛ ⎜ ⎜ ⎝ 
𝐶 11 𝐶 13 𝐶 14 
𝐶 31 𝐶 33 𝐶 34 
𝐶 41 𝐶 43 𝐶 44 

⎞ ⎟ ⎟ ⎠ = 𝑖 

⎛ ⎜ ⎜ ⎝ 
𝛽−1 
𝑃 1 𝛽−1 

𝑃 2 𝛽−1 
𝑃 3 

𝛾𝑊 

𝑃 1 𝛽
−1 
𝑃 1 𝛾𝑊 

𝑃 2 𝛽
−1 
𝑃 2 𝛾𝑊 

𝑃 3 𝛽
−1 
𝑃 3 

𝛾𝑁 

𝑃 1 𝛽
−1 
𝑃 1 𝛾𝑁 

𝑃 2 𝛽
−1 
𝑃 2 𝛾𝑁 

𝑃 3 𝛽
−1 
𝑃 3 

⎞ ⎟ ⎟ ⎠ 
⋅
⎛ ⎜ ⎜ ⎝ 
𝐶 𝑠 11 𝐶 𝑠 12 𝐶 𝑠 13 
𝐶 𝑠 21 𝐶 𝑠 22 𝐶 𝑠 23 
𝐶 𝑠 31 𝐶 𝑠 32 𝐶 𝑠 33 

⎞ ⎟ ⎟ ⎠ 
−1 (136) 

 𝑠 11 = 𝑀 SS + 2 𝑛 𝑆 𝜇𝑆 + 𝛾𝑊 

𝑃 1 𝑀 SW 

+ 𝛾𝑁 

𝑃 1 𝑀 SN (137) 

 𝑠 12 = 𝑀 SS + 2 𝑛 𝑆 𝜇𝑆 + 𝛾𝑊 

𝑃 2 𝑀 SW 

+ 𝛾𝑁 

𝑃 2 𝑀 SN (138) 

 𝑠 13 = 𝑀 SS + 2 𝑛 𝑆 𝜇𝑆 + 𝛾𝑊 

𝑃 3 𝑀 SW 

+ 𝛾𝑁 

𝑃 3 𝑀 SN (139) 

 𝑠 21 = 𝑀 𝑆𝑊 

+ 𝛾𝑊 

𝑃 1 𝑀 𝑊 𝑊 

+ 𝛾𝑁 

𝑃 1 𝑀 𝑊 𝑁 

(140)

 𝑠 22 = 𝑀 𝑆𝑊 

+ 𝛾𝑊 

𝑃 2 𝑀 𝑊 𝑊 

+ 𝛾𝑁 

𝑃 2 𝑀 𝑊 𝑁 

(141)

 𝑠 23 = 𝑀 𝑆𝑊 

+ 𝛾𝑊 

𝑃 3 𝑀 𝑊 𝑊 

+ 𝛾𝑁 

𝑃 3 𝑀 𝑊 𝑁 

(142)
173 
 𝑠 31 = 𝑀 𝑆𝑁 

+ 𝛾𝑊 

𝑃 1 𝑀 𝑊 𝑁 

+ 𝛾𝑁 

𝑃 1 𝑀 𝑁𝑁 

(143)

 𝑠 32 = 𝑀 𝑆𝑁 

+ 𝛾𝑊 

𝑃 2 𝑀 𝑊 𝑁 

+ 𝛾𝑁 

𝑃 2 𝑀 𝑁𝑁 

(144)

 𝑠 33 = 𝑀 𝑆𝑁 

+ 𝛾𝑊 

𝑃 3 𝑀 𝑊 𝑁 

+ 𝛾𝑁 

𝑃 3 𝑀 𝑁𝑁 

(145)

nd 

 22 = 𝑖 
(
𝛽𝑆 𝑛 

𝑆 𝜇𝑆 
)−1 

(146) 
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