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Hybrid-Trefftz finite elements are well suited for modeling the response of materials under highly transient load-
ing. Their approximation bases are built using functions that satisfy exactly the differential equations governing
the problem. This option embeds relevant physical information into the approximation basis and removes the
well-known sensitivity of the conventional finite elements to high solution gradients and short wavelength ex-
citations. Despite such advantages, no public software using hybrid-Trefftz finite elements to model wave prop-
agation through solid and porous media exists to date. This paper covers the formulation and implementation
of hybrid-Trefftz finite elements for single-phase, biphasic and triphasic media, subjected to dynamic loads. The
formulation is cast in a unified framework, valid for the three types of materials alike, and independent of the na-
ture (harmonic, periodic or transient) of the applied load. Displacement, traction, elastic and absorbing boundary
conditions are accommodated. The implementation is made in three novel, open-source and user-friendly com-
putational modules which are freely distributed online.

1. Introduction

Numerical models are essential to understand the behavior of ma-
terials under transient loading. However, in many cases, the high fre-
quency content of transient excitations hinders the solution of dynamic
problems with conventional (conforming) finite elements. Since conven-
tional elements use simple, problem-independent approximation func-
tions, at least ten (but preferably more) finite elements per wavelength
are needed to correctly model the shape of the travelling waves. This re-
striction may be problematic even for single-phase (solid) materials, but
it is particularly demanding when dealing with biphasic (saturated) and
triphasic (unsaturated) porous materials. For such materials, secondary
compression waves, of much shorter wavelengths than the primary com-
pression waves, propagate through the fluid [9,18], and the pore-scale
flow is an important source of dissipation. An additional difficulty posed
to conventional finite elements is that, in many applications related with
soil mechanics, the domain is semi-infinite, and special (and problem-
dependent) boundary conditions need to be formulated on its far-field
boundaries to avoid the reflection of the travelling waves back into the
domain of interest. Calibration of the finite element size to the shortest
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wavelength relevant to the response of the medium, combined with the
necessity of considering large subgrade areas to avoid spurious reflec-
tions from the fictitious boundary at far-field may lead to conventional
finite element models that exceed the calculation capability of the aver-
age machine.

Hybrid-Trefftz finite elements can be used instead of conventional fi-
nite elements to mitigate these issues. The key feature of hybrid-Trefftz
elements is that they use physically-meaningful approximation bases,
specifically tailored for the problem that is being solved. Indeed, Trefftz-
compliant approximation functions must satisfy exactly the differential
equation governing the problem, meaning that the solution process is re-
duced to combining these functions to satisfy the boundary conditions
in the best possible way. This option removes the restriction of using
at least ten finite elements per wavelength and improves considerably
the robustness of the results to mesh distortion and high solution gradi-
ents [17,20], supporting the use of large, high order finite elements for
modeling transient problems.

The concept that stands at the base of the Trefftz methods was
suggested by Trefftz [25] and the first application in the context of
the finite element method was reported by Tong et al. [24]. Jirousek
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[13] presented four hybrid-Trefftz formulations generally applicable to
solid mechanics problems. Other significant contributions have been
made after that by other authors, such as Herrera [11], Piltner [21],
Qin [22] and Freitas et al. [9], among many others. In more recent
studies, hybrid-Trefftz elements were developed for plates and shells
[15], including particular solutions for cracking modes [10], and for
the analysis of the eigenmodes of optical fibers [23]. Finally, Trefftz
methods have also been combined with other methods, as for example
with isogeometric analysis [12] for the solution of elastostatic problems.

Despite the advantages they offer over conventional elements,
hybrid-Trefftz finite elements have only recently been included in pub-
lic, user-friendly software. The computational platform FreeHyTE, pre-
sented at length in Moldovan and Cismasiu [19], offers hybrid-Trefftz
finite elements for the solution of a variety of elliptic, parabolic and hy-
perbolic boundary values problems, subjected to a considerable breadth
of boundary conditions, and covering a wide range of physical prob-
lems. FreeHyTE is easy to use, as it features graphical user interfaces for
the definition of the structure, as well as installation, user’s and devel-
oper’s manuals, and amenable to extension, as it includes a considerable
breadth of standardized computational procedures and data structures
usable with all Trefftz models, meaning that only formulation-specific
coding needs to be performed. All FreeHyTE modules and their manuals
are freely available for download under a GNU-GPL license [7].

Three new FreeHyTE modules are presented in this paper. The ele-
ments are designed for the solution of elastodynamic problems defined
on solid (single-phase), saturated (biphasic) and unsaturated (triphasic)
media.

The mathematical model used for saturated porous media is based on
the Biot’s theory [3]. For unsaturated porous media, the theory of mix-
tures with interfaces is adopted [26]. Both theories take into account the
pore-scale fluid flow and are able to recover the secondary compression
waves propagating through the fluids.

A unified formulation of hybrid-Trefftz finite elements valid for har-
monic, periodic and transient problems defined on solid, saturated and
unsaturated media is adopted. The original problem in time and space
is discretized into a series of spectral problems in space after the expan-
sion of the time variation of the involved fields into Daubechies wavelet
series. For the solution of each spectral problem, the (generalized) dis-
placement field is approximated in the domain of each finite element.
The approximation basis is constrained to satisfy exactly the differential
equation governing the problem (the Trefftz constraint). On the essen-
tial boundaries of the elements, tractions in the solid phase and pore
pressures are independently approximated using bases subjected only to
completeness and linear independence constraints (Chebyshev polyno-
mials are used here). All approximations are constructed hierarchically
and are not linked to the nodes of the elements.

Absorbing boundary conditions are formulated to enable the mod-
eling of semi-infinite media. They are used to separate the domain of
interest from the outer domain and designed to minimize the amount
of energy reflected back into the domain of interest when a travelling
wave hits the boundary. For solid and saturated materials, the absorb-
ing boundary conditions reported in [14] and [9], respectively, are used.
For unsaturated geomaterials, a novel absorbing boundary condition is
proposed.

The formulation of the hybrid-Trefftz finite elements for elastody-
namic problems is given in Section 2, followed by a description of their
implementation in FreeHyTE in Section 3. In Section 4, three numerical
examples involving solid, saturated and unsaturated materials subjected
to shock loads are presented, and the results validated against results ob-
tained with conventional finite elements and similar results found in the
literature. Finally, the conclusions are given in Section 5.

2. Hybrid-Trefftz finite elements for elastodynamics

Hybrid-Trefftz finite elements feature physically meaningful approx-
imation bases, built using functions that satisfy exactly all domain equa-
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Fig. 1. Domain (V) with Dirichlet (I',), Neumann (I, ), absorbing (I',) and Robin
(I',) boundaries.

tions (but not necessarily the boundary conditions). The weights of these
functions are the main unknowns of the problem, as opposed to the
nodal values of the approximated fields, as typical of the conventional
finite elements. All bases are hierarchical, meaning that the redefinition
of the nodes does not call for the redefinition of the approximation func-
tions. Hybrid-Trefftz elements are less sensitive to issues like gross mesh
distortion, nearly incompressible constituents, large solution gradients
and very small wavelengths [20].

The general expressions of the elastodynamic equations are given in
Section 2.1, followed by their time discretization in Section 2.2 and their
adaptation to solid, saturated and unsaturated materials in Section 2.3.
The formulation of hybrid-Trefftz elements for each of these cases is
given in Section 2.4.

2.1. Governing elastodynamic equations

The elastodynamic problem is defined on a medium either made of
a single (solid) phase, two phases (solid and wetting fluid), or three
phases (solid, wetting fluid and non-wetting fluid). Regardless of the
number of phases, the medium is considered (piecewise) homogeneous.
It has a linear-elastic behavior, and displacements and deformations are
considered small. Plane strain conditions are assumed for all types of
materials. For solids, plane stress conditions are also included. Under
these hypotheses, the elastodynamic equations in a domain V (Fig. 1)
are written in the following general form:

Do(x,y,t) = dou(x,y,t)+ poit(x, y,1) [€))]
e(x,y,1) = Du(x,y,1) @)
o(x, y.1) = ke(x, y,1) (3)

In the equilibrium Eq (1), body forces are neglected because their
presence does not change the wave propagation patterns. Vector ¢ is
the generalized stress vector, u is the generalized displacement vector,
and matrices p, and d;, collect the material density and dissipation com-
ponents. Eq (2) is the compatibility condition, where ¢ is the generalized
strain vector, and Eq (3) is the elasticity equation, where k is the mate-
rial stiffness matrix. D and D* are the (adjoint) differential equilibrium
and compatibility operators, respectively.

The types of boundaries that can be defined on the domain V (Fig. 1)
are: Dirichlet boundaries (I",), where displacements are imposed, Neu-
mann boundaries (I';), where tractions are imposed, absorbing bound-
aries (I'y), used to enforce a non-reflection criterion to simulate semi-
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infinite domains [16], and Robin (elastic) boundaries (I',), where a trac-
tion to displacement proportionality condition is enforced. The bound-
ary conditions are described as,

u(x,y,t) =ur(x,y,t) (on Fu) @
No(x,y.0) =tr(x,y.1) (on Iy) 5)
u(x,y,t)+ C t(x,y,t) =0 (on Fa) 0)
u(x,y,t)+ f t(x,y,1) =0 (on Fr) @)

where t- and uy- represent the enforced boundary tractions and displace-
ments, respectively, t are the boundary tractions, and matrix N collects
the components of the outward normal to the Neumann boundary. Ma-
trix f collects the flexibility coefficients in the normal and tangential
directions to the Robin boundary and C is the flexibility matrix of the
absorbing boundary.

It is assumed that the displacement field and its derivatives are null
at t = 0. This assumption is true in a majority of practical wave propa-
gation problems and supports important simplifications in the solution
process. It is not, however, an intrinsic limitation of the Trefftz elements
and formulations including non-null initial conditions were reported, for
instance, in Moldovan et al. [18].

2.2. Discretization in time
The weighted residual algorithm suggested by Freitas [8] is applied

to discretize Eqs (1)-(7) in time. All unknown fields are approximated
independently over the total time of the analysis,

N
ux, y,0 = ) WO, (x, )

®)
n=1
N
(6,3, 1) = ) W,(0)e, (x, 3) ©)
n=1
N
o) = ), W,(06,(x,5) (10)
n=1
N
10x,.0) = ) WD, (x, ) an

n=1

where W,(¢) is the n-th term of the time basis and N designates its total
number of functions.

Moreover, independent approximations are assumed for the velocity
and acceleration fields,

N
v, y.0 = ) W(w,(x, ) (12)

n=1

N
a(x,y,0 = Y\ W,(Da,(x, )

n=1

13)

The velocity and acceleration definitions & = v and © = a are en-
forced weakly using time basis functions W,,, (m={1, ..., N}) for weight-
ing, to yield,

At

W (v—idt =0 (14)
0
A

W, (a—i)dt =0 (15)

0
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where At is the total time and I7V\m is the complex conjugate of W,,.
Integrating by parts Eq (14) and taking into account that the initial con-
ditions are assumed null, the following equation is obtained:

N

W, udt

At
—

W,vdt = W, (ADu(At) — (16)
0

0

Substituting approximations (8) and (12) into Eq (16) and taking

into account that generalized displacements u,, and velocities v, are in-
dependent of time, one gets,

N N
ALY Hyv, = Y Gl a7
n=1 n=1
where
L
Hyn =5 | W, W, dt (18)
— Ar_
G = W (ADW,(AD) — W, W,dt (19)
0

In order to uncouple Eq (17), basis W(t) is constructed such that
matrices H and G are proportional through a diagonal matrix ¥. This
process, described in Moldovan [16], can be applied to any type of time
basis and is thus not a limitation of this time integration procedure.
Under these conditions, Eq (17) uncouples to yield,

Atv, =Y,u, (20)
where ¥, is the n-th diagonal term of matrix W.

Applying a similar procedure to Eq (15) yields,
Ata,="Y,v, @1

Egs (1) to (3) are enforced weakly in time, using basis W(t) for
weighting. A series of N expressions is obtained for each equation:

At
/ W,,(Do — dyi — pyit)dt = 0 22)
0
At _
/ W (e — D*u)di = 0 23)
0
Ar
W(c —ke)dt =0 4

0

Substituting Eqs (8),(10),(20) and (21) into Eq (22) and taking into
account that matrices H and G are related through the diagonal matrix
Y, yield a set of N uncoupled problems of the following type:

2

At
Do, — —1 + =—d =0 25
o7 AR <p° v, °>u" @)
Eq (25) can be written in the spectral form,
Do, + w2p,u, =0 (26)
where w, is a generalized frequency, defined as,
. \Pn
w, =—1 E (27)
where j is the imaginary unit, and
i
=py— —d, 28
Pn Po o, 0 (28)

Finally, substituting Eqs (8) to (10) in Egs (23) and (24), and apply-
ing the same procedure, one gets,

€, =D"u, (29)

o, = ke, (30)

n
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Egs (26), (29) and (30) of each spectral problem can be collapsed
into a single equation in V, the Navier equation,

D(kD*u,(x,y)) + @* p,u,(x,y) =0 (1)

In FreeHyTE, the time basis W(t) is constructed using Daubechies
wavelets [6]. Daubechies wavelets are consistent with the transient na-
ture of the simulated phenomena and offer good accuracy even when
large time steps are adopted for the analysis. Therefore, only one time
step is used to model the whole duration of the problem. The number of
time-discretized problems of type (31) is equal to the dimension of the
time basis W(t).

Similar discretization procedures are applied to boundary conditions
(4) to (7), using approximations (8), (10) and (11), to yield,

u, = ur. (on ru) (32)
No, = tr, (on ro) 33)
ur, + Ctrn =0 (on l“a) (34)
ur, + ftr =0 (on r,) 35)
where,
1 N Ar
ur, =+ mngm /0 W,updt (36)
1 N ar
tr, =5 Y A,, | Wt @7

0

m

and HA,, designates the generic term of the inverse of matrix H. The
spectral problems defined by Eqs (26), and (29) to (35) are expressed in
space variables only. Their solutions can be used to compute the time-
dependent fields using approximations (8) to (10).

2.3. Elastodynamic models

Egs (26) and (29) to (35) define the unified hybrid-Trefftz formu-
lation, valid for solid, and saturated and unsaturated porous materials
alike. However, the expressions of the terms present in these equations
depend on the type of material and on the mathematical model, and
are detailed below. To simplify notations, index n designating the n-th
spectral problem is dropped from this point.

2.3.1. Single-phase media

The model adopted for single-phase media is based on the classi-
cal theory of elasticity. In Eqs (26) and (29) to (35), the stress vector
o ={0y oy o-xy}T lists the normal and tangential stresses in the medium
and the displacement vector u = {u, uy}T collects the displacement com-
ponents in the Cartesian directions. The generalized mass matrix p de-
pends on the material mass density. The stiffness matrix k depends on
the type of plane state (plane stress or plane strain). The exact expres-
sions of those matrices and differential operators D and D* are given in
Appendix A.

2.3.2. Biphasic media

The model adopted for biphasic (saturated) porous media is based on
the Biot’s theory [3]. In Biot’s theory, the porous media is represented as
an elastic solid phase fully permeated by a Darcy-compliant fluid phase.
Both phases are assumed compressible. A solid displacement—fluid seep-
age (u-w) variant of Biot’s theory is used to formulate the governing
equations. The micro-scale fluid acceleration is included in the model.
This option ensures that the model is able to capture the secondary com-
pression wave propagating through the fluid motion in the micro-pores.

Eqgs (26) and (29) to (35) can be used to describe the behavior
of the biphasic material in accordance with the Biot’s theory. The
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stress vector ¢ = {0, Oyy Oxy #}T contains the components of the to-
tal stress tensor and the pore fluid pressure (z). The displacement vec-
tor u = {u, uy, wy wy}T collects the displacement components in the
solid phase u® = {u, uy}T together with the fluid seepage components
w={w, wy}T. The generalized mass matrix p depends on the mass den-
sity of the mixture, the mass density of the fluid phase, and the dissipa-
tion. The stiffness matrix k depends on the Lamé and Biot coefficients.
The exact expressions of those matrices and differential operators D and
D* are given in Appendix B.

Finally, boundary condition (35) relates the normal and tangential
components of the displacement and traction fields

u, an 0 0)(z,
wl+lo 5 ofil=0 (38)
w 0 0 oN\rx

n

where f, and f, are the flexibility coefficients of the elastic boundary
in the normal and tangential directions. The last equation in the Robin
boundary conditions (38) states that no seepage occurs, meaning that
the elastic boundary is considered impervious.

2.3.3. Triphasic media

In triphasic (unsaturated) media, three immiscible phases are con-
sidered: the solid phase (S), the wetting fluid phase (W) and the non-
wetting fluid phase (N) [4]. The mathematical model adopted for tripha-
sic media is the theory of mixtures with interfaces suggested in Wei and
Muraleetharan [26]. This theory includes the effect of the pore pres-
sure gradients (macroscopic fluid flow) and neglects the effect of the
capillary relaxation (microscopic fluid flow). The dynamic compatibil-
ity conditions on the micro-scale interfaces between the three phases
are taken into account.

Egs (26) and (29) to (35) also apply here. However, the vectors
and matrices present in the governing equations have different com-
ponents than for the biphasic case. The stress vector lists the compo-
nents of the total stress tensor and the pore pressure in each of the two
fluid phases, 6 = {0y, 0y, 0y aW zN}T. The displacement vector col-
lects the displacement components in the solid phase and in the fluid
phases, u = {u$ uf u u;’V uN u;’ }T. The remaining matrices and coef-
ficients present in the governing equations for triphasic media are fully
described in Appendix C.

Boundary condition (35) relates the normal and tangential compo-
nents of the displacement and traction fields on a Robin boundary,

w ) (7, 0o o o)1,

u, o 5 o of«|_

|l 0 0 o7 9
w7, 0 0 off2Y

where f, and f; are the flexibility coefficients of the elastic boundary in
the normal and tangential directions. Again, it should be noted that the
Robin boundary conditions for the fluid phases are designed to enforce
null boundary seepage in both fluids.

The absorbing boundary flexibility matrices present in Eq (34) are
described for solid, biphasic and triphasic media in Appendix D.

2.4. Hybrid-Trefftz finite element model

2.4.1. Approximations of displacements and tractions

Eq (31) is solved using the displacement model of the hybrid-Trefftz
finite element formulation.

Let the domain V presented in Fig. 1 be divided into finite elements
Ve (Fig. 2) and let the interior boundaries ) be defined as the bound-
aries of the element that are not exterior boundaries of the domain.

The (generalized) displacement field u is approximated in each finite

element V¢ as,
u=UX (40)

where matrix U collects Trefftz-compliant approximation functions,
meaning that the functions included in basis U are bounded to satisfy
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Fig. 2. Finite elements, Neumann, Dirichlet, Robin, absorbing and interior
boundaries.

exactly the Navier Eq (31). Their explicit expressions for each type of
medium are derived in Section 2.4.3.

The tractions in the solid phase and the pore pressures are approxi-
mated independently on the essential boundary I't =T¢ U T U T U T¢
of the element as,
t=2Zp 1)

Bases U and Z are independent of each other, constructed strictly
hierarchically, and not linked to the nodes of the elements, and X and

p are the weights of the approximation functions, with no particular
physical meaning.

2.4.2. Explicit form of the Navier equation

Single-phase media. The definitions of the mass and stiffness coef-
ficients listed in Appendix A are inserted into the Navier Eq (31), to
yield,

V[(kia + k33)VTu] + k33 Viu + 0’ pu = 0 (42)

where ky, and k33 are coefficients of the stiffness matrix k, p is the (di-
agonal) coefficient of the mass matrix p, V is the gradient operator and
V2 is the Laplacian operator.

Biphasic media. Substituting the definitions given in Appendix B into
the Navier Eq (31), two coupled differential equations are generated for
biphasic media [16]

V[(kpy + ks3) VT4 + ke Vi w] + k33 VS +0* (pu® +p,w) =0 (43)

V[k VTuS + kg VTw| + 0 (pu + pow) =0 (44)

where k14, k33, k14 and k44 are coefficients of the stiffness matrix k, and
p, py and p,,, are coefficients of the mass matrix p.

Triphasic media. For triphasic media, substituting the definitions
given in Appendix C into the Navier Eq (31), three coupled differential
equations are obtained [5],
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VVT[(Mgs + 1S5S )uS + Mgyu" + Mgyu™|

45

+ 15 uSV2uS + w? (pgsuS + psyu®” + poyuN) =0 “3)

VT [Mgyu’ + Mypyu® + Mypu® | + o0* (pspu’ + pywu') =0 (46)
vvT [MSNuS + MWNuW + MNNuN] +@? (pSNuS + pNNuN) =0 47

2.4.3. Trefftz-compliant approximation functions
The functions to be included in the displacement approximation
bases U for each type of medium must be selected from the solution
space of the Navier problems derived in the previous section.
According to the Helmholtz principle, the generalized displacement
fields can be written as the sum of the irrotational and solenoidal com-
ponents of some displacement potentials ¢, to yield,

u= V¢f, + Vqﬁg (for single — phase media) (48)
us = V¢f, + qug (for biphasic and triphasic media) (49)
w=Ve¢Y + V¢ (for biphasic media) (50)
w" N = v N 494N (for triphasic media) 5D

where V is the curl operator and superindices {S, W, N} correspond to
the solid phase S, the fluid phase W in biphasic media, and the two fluid
phases W and N in the triphasic media, and subindices {S, P} correspond
to the shear and compression waves, respectively.

The Helmbholtz decomposition (48) to (51) uncouples Navier equa-
tions into an irrotational motion described by potentials qb‘;’W’N , and
a shear (solenoidal) motion, described by potentials ¢‘;’W’N . Therefore,
Navier equations are reduced to a set of uncoupled Helmholtz equations,
of type,

2, SW.N 2 S,W.N
Voo N + 53 5 =0

o (52)

Wave numbers fg P (defined below) depend on the spectral fre-
quency o and material characteristics, and i = 1 for single-phase media,
i = {1, 2} for biphasic media and i = {1, 2, 3} for triphasic media. This
means that, in single-phase materials, a single compression wave and a
single shear wave are identified for a given frequency value. In biphasic
media, the potential functions qbi;/ define two compression waves (P1

and P2) and one shear wave (S), and in triphasic media qﬁg:z/N define
three compression waves (P1, P2 and P3) and one shear wavel S).

The solutions of the Helmholtz Eq (52) in two dimensions using a
polar referential (r, 0), are of type
o3 N0 = 7, <ﬂsvpir)exp<i k6') (53)
where J; (1) is the Bessel function of the first kind and integer order k.

The trademark feature of the Trefftz elements is that the approxima-
tion functions included in basis U are chosen such as to satisfy exactly
the Navier equation governing the problem. They are generated from
the compression and shear potentials using the Helmholtz decomposi-
tion principle:

U3 =Vop, (54)
Us=v 55

K ¢S ( )
U;‘:'N = y:_/‘NV¢R (56)
UM =y Ngg (57
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where Uﬁ_ lists the approximation functions of the displacements of the

solid phase for the compression (P;) waves; Ug are the approximation
functions of the displacements of the solid phase for the shear (S) wave;
U;}/’N corresponds to the displacements of the fluids for the compression

(P;) waves; and U;V’N corresponds to the displacements of the fluids for
the shear wave.

Single-phase media. In single-phase media, the wave numbers are de-
fined by

P2

pi="w (58)
S k33
2 14 2
_ 59
kip + 2k33 9

Biphasic media. The shear wave multiplier y?’ for biphasic media is

Puw
Pu2

vy = (60)
and the compression wave multipliers y%’

» for biphasic media are the
solutions of the equation

2
<1—aw>(y;‘_/) +<L— piz)y;[‘/+<ai—1>=0 (61)
Pu i pw P )l P
where,
A+2u
2
24 62
x 7 (62)
The wave numbers for biphasic media are
P = <1+y;V”—”>£w2 ©63)
p/u
w
PwtTVp Pun
g = e e (64)
! (a+ y;'/)M

All mechanical parameters used in the definitions above are defined
in Appendix B.

Trihasic media. For triphasic media, a similar process is used to obtain
the wave multipliers and wave numbers. For the shear wave, they are

Psw
vy =2 (65)
Pww
PSN
vy =——— (66)
PNN
) PssTt v psw 75N .
by = S S @ (67)

For the compression waves, the wave multipliers and wave numbers
are the solutions of the eigenproblem

52 (Mss +nSuS Mgy Mgy Pss  Psw  PsN
i
R Mgy, My Myn |+ |osw  Pww 0
Mgy My, n MyyN PSN 0 PNN
s
Yp 0
x|rp |=|o (68)
rp ] \0
P,

All mechanical parameters used in definitions (65) to (68) are de-
fined in Appendix C.

2.4.4. Hybrid-Trefftz finite element formulation

Enforcing weakly Eq (31) in the domain of the element, Eq (32) on its
Dirichlet (and interior) boundaries, Eq (34) on its absorbing boundaries,
and Eq (35) on its Robin boundaries, yields,

/ U (D(kD*u) + @*pu)dv® = 0 (69)
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/ Z" (u—up)dre, =0 (70)
/ZT(u+Ctr)dl“Z=0 an
/ 2" (ut ftp)dre =0 (72)

where 0" and Z” are the transposed conjugates of bases U and Z.
Finally, integrating by parts Eq (69) and substituting approximations
(40) and (41), the problem is reduced to solving the algebraic system
[9,16]

D -B

T _Ba/r X f,
_Ba%r Da/Dr 0 Pa/r| = 0 (73)
-B 0 oj\p -4,
where,
D=/0" NSare 74)
D,=-/Z"Czdr® (75)
D.=-/Z"fzdre (76)
AT e
B=/U zdr,, 7
~ T
fi=/U tpdl (78)
AT e
q,=/Z urdl, 79

Neumann boundary conditions (33) are explicitly enforced in the
boundary terms that emerge from the integration by parts of Eq. (69).
Compliance of basis U with the Trefftz condition causes all domain in-
tegrals to vanish from the calculation.

Unlike the governing systems of conventional finite elements, sys-
tem (73) is not always kinematically indeterminate. The system is called
kinematically indeterminate if the kinematic variables collected in vector
X cannot be determined strictly from the second set of equations. To
ensure that no dependencies occur in the solving system (73), the kine-
matic indeterminacy conditions must be satisfied through an adequate
truncation of approximation bases U and Z in the finite elements and
on their boundaries, respectively. Namely, the system is kinematically
indeterminate if the total number of approximation functions collected
in the traction bases on the Dirichlet and interior boundaries is inferior
to the total number of approximation functions collected in the domain
bases. Robin and absorbing boundary bases are neutral to the kinematic
indeterminacy condition.

3. FreeHyTE modules for elastodynamic problems

In this section, the FreeHyTE modules for the solution of elastody-
namic problems in two dimensions are introduced. They are the Solid
Transient module for problems involving single-phase media, Bipha-
sic Transient module for problems defined on saturated porous media
and the Triphasic Transient module, for problems involving unsaturated
porous media.
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Fig. 3. Structure of the FreeHyTE modules.

3.1. Computational architecture

The general structure of a FreeHyTE module is described in Fig. 3.
The user input is the first step and consists of a sequence of graph-
ical user interfaces (GUIs) where the problem and the solution pa-
rameters are defined. These interfaces are presented and explained in
Section 3.2. After this phase, FreeHyTE performs the time discretization
(see Section 2.2), reducing the original problem in time and space to a
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series of spectral problems in space and generates the input data for each
of those problems. Each spectral problem is independent of the others,
supporting a simple parallel solution process.

In the next step, each spectral problem is solved and the resulting
spectral displacement fields are computed according to approximation
(40). The stress and pore pressure fields are computed by enforcing the
compatibility and elasticity equations on the displacement approxima-
tion,

6 =D(kD*U)X (80)

The integrations required for the computation of the coefficients of
the solving systems (73) are performed numerically using the Gauss-
Legendre quadrature rule. While accountable for the super convergence
of the Trefftz finite elements, the physically meaningful approximation
functions can hinder the numerical stability of the solution procedure,
especially when the wave numbers associated to the compression waves
propagating through the different phases are multiple orders of magni-
tude different from one another. To mitigate such issues, scaling, pre-
conditioning and special system solvers are employed. They are de-
scribed in more depth in Section 3.3.

When all spectral problems have been solved, the solution in time is
calculated as a linear combination of the spectral solutions with the time
basis, according to definitions (8) to (10). The time basis is constructed
using Daubechies wavelets, which offer good accuracy even with very
large time steps. The solutions in time can be plotted and/or saved in
output files, as shown in Section 3.4.

3.2. Graphical user interfaces

The FreeHyTE GUI consists of four main interfaces, complemented
by the Matlab’s pdetool interface for the definition of non-regular do-
mains and meshes. Their presentation is illustrated with the GUIs of the
Triphasic Transient module. The GUIs of the other two modules are just
simplified versions of those in Triphasic Transient.

Fig. 4 presents the first GUI. The main data zones of the interface are
identified with red frames.

4 Structure definition

[

Structure definition (except boundary conditions)

-

The program solves plane poroelastostatic problems using hybrid-Treffiz dsplacement finite
clements

The following hypetheses are assumed

- the structure is assumed Inear-elastic.

- the strang and asplacaments are assumed smalt

- body (mass) loads cannot be defined (future versions may improve this)

Piease define here the problem parameters, the domain and the mesh, the (uniform) p-refinement
and the number of Gauss points for the numerical integration

Hints:

- if you wish to define different p-refinements for different elements and essential boundaries,
you can do 5o manually in Input_Proc. m

- mouss hovar on the texis naar the input fiekds 1o get halp (unless the text is self explanatory)
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Structure dimension in x
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Number of Gauss 20 Porosty 0
Residual

Solution plot at every. 0 dyadic points saturaton
A-entry

Blotting points 10 saturaton 0.95

ﬂ(er\al parameters

08

S0000

L

Viscosty of Densty of soid Bulk modulus of

wetting fluid 0.001 phase 2000 non.wetting 10
Viscosty of Density of Saturated shear
non-wetting 1.8¢-05 wetting fuid 1000 modulus 13000
Pore size . Density of Second Lame's .
distributio 1.5 non-wett coefficient §1300
ntrinsic = Buk modulus of
permeabiity 1.5%-08 sold phase 100000
Buk modulus of
Bot's 078 wetting fid 10000

Please select the fie to save/load ‘

(Clear i you don't wish fo save the resubs on disk) S ‘

Load

THE MODEL V/ILL NOT BE SAVED! Please press Save if you wish to save the model

Reset Next

Fig. 4. Layout of GUI 1.
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Fig. 5. Matlab’s pdetool interface.

At the bottom of the first GUI are the ‘Load’ and ‘Save’ buttons: with
the ‘Load’ button the user can load previously saved problems and with
the ‘Save’ button the user can save the data of the current problem in
a *.mat file. When the model is saved, FreeHyTE also stores the output
data in output files.

The ‘Algorithmic definitions’ zone is where the user must choose be-
tween the two automatic mesh generators built in FreeHyTE. The regu-
lar mesh generator creates meshes of uniform rectangular elements and
should be used to discretize rectangular domains. The non-regular mesh
generator creates triangular elements and can be used for any geome-
try. Additionally, the user must specify the number of Gauss-Legendre
quadrature points and the number of plotting points where the solu-
tion is stored in the output files. Two important algorithmic options
correspond to checkboxes ‘Parallel processing’, which enables and dis-
ables the parallel solution of the time-discretized problems, and ‘Use
least norm solvers’, which enables FreeHyTE to use least norm solvers on
ill-conditioned solving systems. Finally, the user can request the solu-
tions to be plotted at a certain number of equally spaced (dyadic) time
steps.

In ‘Geometry and meshing’, the user can define a regular structure
and mesh. This zone is only editable when a regular mesh is chosen.
In the ‘Boundary and domain orders’ zone, the user can set the orders
of approximations in the domain of the elements (Loops order) and on
their essential boundaries (Edges order). Loops order corresponds to the
order of the Bessel functions in Eq (53) and Edges order corresponds to
the order of the Chebyshev polynomials used for the construction of
traction basis Z on the essential boundaries (Eq (41)).
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The material parameters required for the execution of the analysis
are set in ‘Material parameters’. In the ‘Time integration’ zone, the user
specifies the total time of the analysis and the three calibration param-
eters that control the Daubechies wavelet basis. Daubechies wavelets
are functions with no analytic expression, meaning that their values can
only be computed in certain, equally spaced points on their support,
called dyadic points. The total time of the simulation is divided into 24
time intervals, to which correspond 24 + 1 dyadic points, where d is set
in the ‘No of dyadic points’ field of the interface (Fig. 4). Therefore, each
time interval is 2d_T+1’ where T is the total time of the simulation. The
wavelet family number represents the number of vanishing moments of
the wavelet, and the order (p) of the time basis controls the number of
functions that are included in the basis, which is equal to 2P. It is noted,
however, that only 2P ~ 1 spectral runs are required to compute the so-
lution, as spectral analyses yield pairs of complex conjugate solutions.

When the non-regular mesh generator is chosen, Matlab’s pdetool in-
terface is launched in the next step (Fig. 5). In this interface, the domain
can be created by addition or substraction of simple geometrical shapes
and meshed using triangular finite elements. The maximum leading di-
mension of the elements and the growth rate of the mesh are parameters
defined by the user.

The second GUI (Fig. 6) is used to define the type of boundary
(Dirichlet, Neumann, Robin or absorbing) for each exterior side of the
domain. The structure visualization zone is located on the left side of
GUI 2. It consists of a plot of the mesh, with buttons to display the
structure information (nodes, edges or elements). The ‘Enlarge’ button
at the bottom can be used to open a separate interface to easily read
the structural data in case the visualization area in GUI 2 is too small.
The external boundaries of the structure are listed in the central zone of
GUI 2 and the boundary types can be assigned in the right side of the
interface.

The third GUI is presented in Fig. 7. The three input areas are used
to define the Dirichlet, Neumann and Robin boundary conditions. Ab-
sorbing boundary conditions require no input from the user, as Free-
HyTE automatically computes the flexibility coefficients. The definition
of the space variations of the boundary displacement and traction fields
is made by specifying their values in as many equally spaced points
along the boundary as needed to define a polynomial variation. The
time variation of the fields can be defined by any expression in the time
variable t that can be evaluated by Matlab. The definition of the Robin
boundary conditions only requires the input of the flexibility coefficients
in the normal and tangential directions.

Finally, the last step before launching the execution of FreeHyTE is
the verification GUI (Fig. 8). This GUI is meant to allow the user to verify
the definitions of the structure and boundary conditions by selecting the

« Boundary types

Boundary types

( External boundaries \

Please note that boundaris wh canstraned displacements in 8
single direction must be defined as Dirchlet boundaries.

[ST&ES  Fig. 6. Layout of GUI 2.

/ Define the type of external boundary A

Oirichiet -

Assin type

Allboundaries are predefned as Diichlet
Please specity Ihe lieumann boundaries.

Boundary ID |Boundary Type

4 Neumann

7 Neumann
10 Newmann

Enlarge mage Previous.
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Fig. 8. Layout of GUI 4.

rawa

desired visualization in the pop-up menu on the left side. For example,
the visualization interface for the boundary conditions in the normal
direction is shown in Fig. 9, where Dirichlet sides are plotted in black,
Neumann sides are plotted in red and absorbing sides are plotted in
green. The nodal values of the boundary conditions are listed on each
boundary.

3.3. Processing

During the execution, the solution of each spectral problem can be
parallelized. In the parallel processing mode, the default option is to
summon all cores of the machine to perform the calculations. However,
the number of cores can be controlled by editing a field in the code.
Large analyses should be run in parallel as it significantly decreases
the computational time. The parallel processing mode requires Matlab’s
Parallel Computing Toolbox. If it is not available, FreeHyTE will run se-

oo
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quentially regardless of whether the ‘Parallel processing’ option (Fig. 4)
is turned on or off.

In order to improve the numerical stability of the calculations, the
convergence rates and the condition number of the solving system, scal-
ing procedures are applied to the input parameters, approximation func-
tions and solving system.

The scaling of the input parameters consists of the scaling of the
original material and geometrical quantities. Let a generic quantity x be
scaled such that,

X=Xxg'X (81)
where xg is the scaling factor and x is the scaled version of x. Primary
scaling factors are set for the material moduli (Es), densities (pg), lengths
and coordinates (Lg) and tractions and stresses (tg). They are defined as
the maximum values of the respective quantities taken over all elements

of the mesh. Three secondary scaling factors for the spectral frequency,
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Fig. 10. Finite element with area A and the circumference with the same area
and radius R,.

displacements and flexibility coefficients of the elastic boundaries are
derived such as to preserve the form of all governing equations. They
are defined as, respectively,

E

wg = = (82)
Ps'LS

g Lg

ug = E (83)
LS

=== 84
fs s (84)

The approximation function scaling consists in the scaling of the
A

shape functions U by dividing them by |J;(fs p Ry)l, where R, =
is the radius of the circumference with the same area (A) as the finite
element (Fig. 10).

Another technique FreeHyTE uses to improve the numerical stability
is the preconditioning of the solving system. The procedure equilibrates
the values of the diagonal terms of system (73), bringing their modules
close to unity. Considering a generic linear system Ax = b, where A is
a square, possibly Hermitian, matrix and x and b are vectors, then, the
system may be written in the scaled form,

Ax=b (85)
where the scaled arrays are defined as,

A=38"as (86)
x=S"!x (87
b=5"b (88)
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Fig. 9. Visualization of the boundary condi-
tions in the normal direction in GUI 4.

and S represents a diagonal scaling matrix, whose terms are defined as
the square roots of the diagonal terms of the matrix A. When a null
diagonal term is encountered in matrix A, the respective scaling term
is equal to one, meaning that no scaling is applied to the respective
lines and columns. This scaling procedure preserves the symmetry of
the original system.

Finally, when the system is ill-conditioned and the ‘Use least norm
solvers’ checkbox is enabled (Fig. 4), FreeHyTE uses least norm solvers
for the solution of system (73). Matlab’s least norm solver attempts to
find the solution that minimizes the error norm of the solving system
using an iterative procedure. The solution is based on the computa-
tion of the Moore-Penrose pseudoinverse of the matrix. The procedure’s
convergence threshold and the maximum number of iterations can be
controlled by advanced users by modifying a line in the code. The con-
vergence to a strong solution using the iterative least norm solver can
be extremely slow. Refining the mesh and reducing the orders of the
domain and boundary bases is the best way to avoid ill-conditioned sys-
tems.

3.4. Outputs

The (generalized) displacement and stress fields are stored in output
files when the problem is saved. The solutions are computed in all 24+1
dyadic points and stored in separate *.dat files. The values of the fields
are calculated in PP? plotting points in each finite element, where PP
is the plotting points number input by the user in the first GUI (Fig. 4).
The output files are formated for direct loading in the post-processing
software Tecplot, but can be used with other visualization software as
well as, for example, Paraview.

FreeHyTE also can produce plots of the solutions using Matlab’s na-
tive plotting functions. Color map plots of the displacements, seepage,
stresses and pore pressure fields are rendered. The plots are made at ev-
ery NDP dyadic points, where the NDP parameter is controlled by user
by editing the ‘Solution plot at every... dyadic points’ box in the first GUI
(Fig. 4). If a zero is set in this box this output, no color map plots are pro-
duced. It is noted that Matlab’s native plotting functions can be tediously
slow, so the solution plotting in specialized post-processing software is
recommended.

4. Numerical examples

Three simulations are performed with the new FreeHyTE modules,
aimed at illustrating the potential of hybrid-Trefftz finite elements to
model highly transient wave propagation through bounded and un-
bounded media. The first simulation, presented in Section 4.1, is a
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Fig. 11. Physical model of the simulation of a shock wave in a solid medium.

Table 1

Mechanical properties of the solid medium.
Density p (kg/m?3) 1000
Young’s modulus E (Pa) 1.00 - 104
Poisson’s coefficient v 0.1

shock wave propagation in a bounded and an unbounded solid me-
dia, under plane strain conditions. To validate the FreeHyTE results,
the bounded problem is solved using the conventional finite element
software Abaqus. In Section 4.2, a simulation of the propagation of a
shock wave through a semi-infinite saturated porous medium is pre-
sented. The results obtained with FreeHyTE are compared with those
reported by Akiyoshi et al. [1] who solved a similar problem. The third
simulation reproduces a similar excitation in an unbounded unsaturated
medium and is discussed in Section 4.3.

4.1. Shock wave propagation in a solid medium

The first numerical example involves the propagation of a shock
wave through a bounded and a (semi-) unbounded continua. The re-
sults obtained on the bounded medium are compared with those of the
commercial finite element platform Abaqus. The results obtained on the
unbounded medium are compared to those obtained with a fixed bound-
ary to assess the presence of spurious reflections from the absorbing
boundary.

The physical model is presented in Fig. 11. The medium is con-
tained by frictionless lateral boundaries, under plane strain conditions.
The bottom boundary of the medium is either rigid and frictionless
(in the bounded case), or defined as an absorbing boundary (in semi-
unbounded case). The shock vertical load is applied on the L = 1.5m
boundary at the top of the medium. Its amplitude is null on the sides
of the medium, equal to 1 kPa in its middle and has a linear variation
in space. In time, the applied load is constant in the first 0.05s of the
total duration of the analysis T = 1.4s and null for 0.05s < t < T. The
material properties are described in Table 1.

The medium is discretized in space using a regular mesh of 144
hybrid-Trefftz finite elements of size % The orders of the domain and
boundary bases are defined as 17 and 8, respectively. The total number
of degrees of freedom (that is, the total dimension of the solving system
(73)) is 15,156. The time discretization is performed using a Daubechies
basis with scaling functions of family 4 and order 7. This generates 128
pseudo-spectral problems in space of type (31)-(35). Since they come in
pairs of complex conjugates, however, only 64 problems actually need
to be solved.

To validate the results obtained with FreeHyTE, the same problem is
solved using the commercial software Abaqus, using 8-node (quadratic)
conforming finite elements. The mesh consists of 112,500 finite ele-
ments, for a total of 252,472 degrees of freedom. The time discretiza-
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tion is performed using the HHT time stepping scheme and time steps
of 0.011 s.

The time-histories of the vertical displacement at point A (Fig. 11)
and horizontal displacement at point B obtained with Abaqus (solid line)
and FreeHyTE (dashed line) are presented in Fig. 12.

The application of the load causes a sudden increase in the magni-
tude of the vertical displacements in point A. After the load is with-
drawn, the displacements remain with negative values until the wave
front, reflected from the bottom boundary, returns at the top (just before
1s), when the vertical displacement changes sign. In point B, the hori-
zontal displacements are null until the wave front arrives. The intensity
of the lateral displacements in B is roughly one order of magnitude infe-
rior to that of the vertical displacements in point A and the pattern less
regular. Very good agreement is observed between the FreeHyTE and
Abaqus results at all times.

The time-histories of the normal stresses in the vertical direction at
points A and C (Fig. 11) and of the shear stress at point B obtained with
Abaqus (solid line) and FreeHyTE (dashed line) are presented in Fig. 13.
Standard stress smoothing/averaging is used in Abaqus. The numerical
procedure used in FreeHyTE lacks numerical damping [16], so a basic
FIR low-pass filter is used in post-processing.

The solutions obtained with Abaqus and FreeHyTE are quite sim-
ilar in all plots, despite the vast difference in the number of degrees
of freedom of the models. Some spurious vibrations of the solution ex-
ist in both solutions at point A (Fig. 13(a)) and, in the FreeHyTE so-
lution, in point C (Fig. 13(c)). The Abaqus solution predicts a spuri-
ous vertical stress oscillation at point A (Fig. 13(a)) around the time of
the arrival of the rebound of the shock wave, which is (correctly) not
present in the FreeHyTE solution. Indeed, since the vertical load applied
to the surface of the medium is null after the first 0.05s, the vertical
stresses on the free surface of the medium should be exactly zero af-
ter that. A detail of the vertical stress field on the upper 0.65m of the
medium in the moment when this happens (0.955s) is given in Fig. 14.
It can be seen that a spurious bulb of vertical stress, albeit of low in-
tensity, pollutes the Abaqus solution in the central region of the free
surface.

For a more general perspective of the solutions, the vertical normal
stress fields obtained with FreeHyTE and Abaqus are plotted at six time
points in Figs. 15 and 16, respectively. Again, the quality of the solutions
is very similar at all times. The similarity is preserved for all displace-
ments and stress fields, over the whole duration of the analysis.

In the case of the unbounded medium, the bottom boundary is de-
fined as absorbing. To illustrate its effect, the time-histories of the ver-
tical normal stress in points A and C (Fig. 11) and of the shear stress at
point B obtained with the absorbing boundary (solid line) are compared
with those obtained with a rigid boundary (dashed line) in Fig. 17. As
expected, the presence of the absorbing boundary makes no difference
in the vertical normal stress field at the top of the medium (Fig. 17(a)),
as it recovers the applied normal forces which are not different for the
two media. In point B (Fig. 17(b)), the two solutions are similar un-
til around 0.75 s, when the rebound of the shock wave arrives in the
bounded medium case. This causes large oscillations of the solution,
which are not recovered in the unbounded medium case, as the shock
wave is not reflected back into the analysis domain. The effect of the ab-
sorbing boundary is also clearly visible in point C (Fig. 17(c)). Similar
solutions are obtained until the arrival of the shock wave, around 0.5 s.
As the shock wave is not reflected, its duplication in intensity, typical to
rigid boundary rebounds, does not occur, so the stresses peak at much
lower amplitudes. Around 0.75 s, another peak in the unbounded solu-
tion is related to the arrival of a (slower) shear wave, after which the
stress amplitude always remains low.

Finally, to illustrate the lack of spurious reflections from the absorb-
ing boundary, the vertical normal stress field in the unbounded medium
is plotted at six selected time points in Fig. 18. No spurious reflection is
visible from the absorbing boundary, either in terms of normal stress or
any other solution field.
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4.2. Shock wave propagation in a semi-infinite saturated medium

The second numerical application is a Heaviside pulse perturbation
test on a saturated porous medium. The results are compared with a
similar simulation reported by Akiyoshi et al. [1]. The physical model
is presented in Fig. 19. The medium is subjected to a vertical excitation
f(x,t) = f -TI(t), applied on a 2L, = 8 m strip and acting exclusively on
the solid phase, with 7 =1 kPa and the Heaviside time function I1(¢)
defined by

() = {

Boundary conditions are applied on the half-structure presented in
Fig. 20 as a result of symmetry. The horizontal boundary at y = 0 is de-

1.0 for 0.00 <t <0.01

0.0 fort>0.01 @9
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fined as Neumann, and the vertical boundary at x = 0 is Dirichlet. The
semi-infinite domain is cropped at R = 20 m by an absorbing boundary.
The load f(x, t) is applied on the first Ly = 4m of the Neumann bound-
ary. The tangential stress in the solid phase and the pore pressure are
null in that region. On the rest of the Neumann boundary, the normal
and tangential stresses and the pore pressure are null. On the Dirich-
let boundary at x = 0 the normal displacement, the fluid seepage and
the tangential stress are null. The domain is discretized using the mesh
shown in Fig. 20. The mesh consists of 549 finite elements, with Trefftz
bases of order 7. On the essential boundaries, the Chebyshev basis is
built on polynomials of degree 4. The mesh is locally refined in the re-
gion where the shock load is applied, to account for the large gradients
and highly oscillatory nature of the solution in this region. The model
has a total of 37,015 degrees of freedom (i.e. the total dimension of the
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bl

Fig. 14. Detail of the vertical stress field at
t=0.95s.

I = .
© Vertical stress (kPa) =

(a) Abaqus solution (b) FreeHyTE solution

1.00 Fig. 15. Vertical stress field recovered by
Abaqus at selected instants.

o
o
8
Vertical stress (kPa)

(a)0.01s (b) 0.055 s (¢)0.1s

1.00

(d)0.25s ()05s ®1.0s

1.00 Fig. 16. Vertical stress field recovered by Free-
HyTE at selected instants.

=3
o
3
Vertical stress (kPa)

. r 3 ° .
5 8
Vertical stress (kPa)

(a) 0.01 s (b) 0.055 s

1.00

o
o
8
Vertical stress (kPa)

-1.00

(d)0.25s ()05s ®H1.0s

solving system (73)). The geomechanical characteristics of the saturated Table 2
soil are given in Table 2. They were taken from the work of Akiyoshi Geomechanical properties of the saturated soil.
et al. [1], whose results are used here to validate the results obtained

! Fluid density p,, (kg/m?3) 1000
using FreeHyTE. Mixture density p (kg/m?3) 2000
The total simulation time is T = 0.5s. The time discretization is sim- Biot’s modulus M (Pa) 3.33 - 10°
ilar to that used in Section 4.1. Young modulus of the solid skeleton E (Pa) 3.00 - 10°
. . . . . . Biot’s coefficient « 1.0
The time-history of the vertical displacement in the solid phase at Fluid volume fraction 03
point A = (2,-2) (Fig. 20) is shown in Fig. 21 and compared with Poisson's coefficient v 0:2
the corresponding results reported in Akiyoshi et al. [1]. The initial Scalar tortuosity a 1.0
silence period of about 0.05s, taken by the main wavefront to reach Hydraulic conductivity k (m/s) 9.81 1073
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Fig. 17. Time-history of stresses in selected
points.
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l
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1.00 Fig. 18. Vertical stress field in the unbounded
medium at selected instants.
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(d)0.30s (e)0.48s (1) 0.55s

the depth of point A, is recovered by FreeHyTE and is coherent with
Akiyoshi’s predictions. The vertical displacement suddenly increases
when the shock wave arrives to point A and then stabilizes. This be-
havior, and indeed the displacement values are in good agreement
with the results reported in Akiyoshi et al. [1]. Some spurious higher
frequency oscillations seem to be present in the model of Akiyoshi,
but are avoided in the FreeHyTE results. It is noted that Akiyoshi re-
published these results in another paper [2], four years after the first
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one, with no spurious oscillations that time. However, the scale of the
vertical displacement plot in the more recent paper rendered the ex-
act reading of the plotting points impossible, motivating the compar-
ison with the results reported in the older paper. Moreover, there is
a different tendency of the vertical displacement after 0.35s where
FreeHyTE predicts a positive displacement increment, not predicted by
Akiyoshi’s simulation. Overall, however, the two simulations are in good
agreement.
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Fig. 19. Physical model of the simulation of a shock wave in a biphasic medium.
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-
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Fig. 20. Boundary conditions and mesh.

The vertical stress distribution in the domain is captured at six differ-
ent times and plotted in Fig. 22. The pore pressures at the same six time
points are presented in Fig. 23. Both fields recover correctly the enforced
boundary conditions and are smooth and continuous between adjacent
elements (no stress averaging is used in the plots). It is noted that the
stress continuity between adjacent elements is not explicitly enforced
in the model, making it a good convergence indicator. The absorbing
boundary absorbs the propagated pulse when it reaches the limit of the
domain. No spurious reflection is visually detectable.

(a) 0.01s (b)0.10s

(d)0.29s (e)0.38 s

5.0e+02
400
I -400
5.0e+02
5.0e+02
400
[ -400
-5.0e+02

(f)0.48 s
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0 - ——— Akiyoshi, 1994
| — — FreeHyTE

005

vertical displacement (mm)

o 01 02 03 04 05
time (s)

Fig. 21. Vertical displacement time history at point A (2,-2).

4.3. Shock wave propagation in a semi-infinite unsaturated medium

The third numerical application is a shock wave propagation in an
unsaturated porous medium. The physical model is similar to that pre-
sented in Fig. 19. The medium is subjected to a vertical Heaviside ex-
citation f(x,7) = f -Il(+) acting on a 2L, = 16m strip, with f =1 kPa
and the pulse load I1(t) applied during 0.3s. The total duration of the
analysis is T = 10s.

The boundary conditions are applied to the half-structure presented
in Fig. 5 and are the same as in Fig. 20. The load f(x, t) in this case,
however, is applied on a longer support, Ly = 8 m. The finite element
mesh used for the analysis is also shown in Fig. 5. It consists of 300 finite
elements, with Trefftz bases of order 9. On the essential boundaries,
the traction basis is built on Chebyshev polynomials of degree 3. The
model has a total of 30,048 degrees of freedom (i.e. the total dimension
of the solving system (73)). The geomechanical characteristics of the
unsaturated soil are taken from reference Cao [5] and listed in Table 3.

A fourth family Daubechies wavelet basis is used, with a refinement
of 6 generating 26 = 64 spectral problems in space (out of which 32
need to be solved). The number of dyadic points is 27 + 1 = 129.

The vertical stress distribution in the domain is captured at six dif-
ferent times and plotted in Fig. 24. The pore pressures in the wetting
fluid at the same time points are presented in Fig. 25. It can be observed
that the pressure in the wetting fluid is much lower (two orders of mag-
nitude) than the total vertical stress, meaning that most of the stress is
transmitted through the solid skeleton. The pore pressure in the non-

Fig. 22. Vertical stress field at different in-
stants.

vertical stress (Pa)

() 0.20 s

vertical stress (Pa)
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() 0.01's (6)0.10's

(d)0.29s (€)0.38 s

@) 02s (b)1.8s

(d)49s

()6.4s

Table 3
Geomechanical properties for the unsaturated soil.
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500102 Fig. 23. Pore pressure field at different in-
[aoﬂ stants.

200

—o

pore pressure (Pa)

-200

-400
-5.0e+02

()0.20s

1
°
pore pressure (Pa)

-400
-5.0e+02

(f)0.48 s

Fig. 24. Vertical stress field at different in-
stants.

vertical stress (Pa)

(c)33s

vertical stress (Pa)

H8.0s

Bulk modulus of the solid grain K (Pa)

Bulk modulus of the wetting fluid Ky, (Pa)

Bulk modulus of the non-wetting fluid Ky (Pa)
First Lamé coefficient x° (Pa)

Second Lamé coefficient 45 (Pa)

Elastic constant 45, (Pa)

Elastic constant " (Pa)

Elastic constant @M (Pa)

Degree of saturation S,

Intrinsic permeability k; (m?)

Density of the solid grain pg (kg/m?)

Density of the wetting fluid py, (kg/m?3)

Density of the non-wetting fluid py (kg/m3)
Dynamic viscosity of the wetting fluid vV (Pa-s)
Dynamic viscosity of the non-wetting fluid vV (Pa-s)
Relative permeability of the wetting fluid £/
Relative permeability of the non-wetting fluid k¥
Porosity n

1.00 - 10°
1.00 - 104

1.30 - 104
9.13 - 10*
2.86 + 10*
6.85 + 10%
1.67 - 10°

1.55 - 108
2000
1000

1.00 - 103
1.80 - 10-°
0.431
0.011

0.23
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wetting fluid is not represented here because it is too small. Both fields
recover correctly the enforced boundary conditions and are smooth and
continuous between adjacent elements (no stress averaging is used in
the plots). It is noted (as in the previous examples) that the stress conti-
nuity between adjacent elements is not explicitly enforced in the model.
The absorbing boundary absorbs the propagated pulse when it reaches
the limit of the domain and no spurious reflection is visually detectable.

5. Conclusions

Hybrid-Trefftz finite elements are efficient to mitigate the modeling
difficulties faced by conventional finite elements in elastodynamic prob-
lems. They use approximation bases tailored specifically for the problem
that is being solved, with a high content of built-in physical informa-
tion. This feature accounts for the robustness of the hybrid-Trefftz ele-
ments to gross mesh distortion, large solution gradients and extremely
small wavelengths. Such issues are typical to highly transient excita-
tions in porous materials, where secondary compression waves travel-
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(@) 0.2s (b)1.8s

(d)49s ()6.4s

ling through the fluid(s) have wavelengths that are often a few orders
of magnitude shorter than those travelling through the solid skeleton.

The advantages of the hybrid-Trefftz elements are brought to the fin-
gertips of the scientific community through their implementation in the
FreeHyTE environment. The resulting modules, for solid, saturated and
unsaturated media, enjoy an open-source distribution, user-friendly in-
terfaces, and are supported by a wide range of manuals to get new users
and developers acquainted. The documentation, codes and installation
kits can be downloaded from the [7].

To the best of the authors’ knowledge, this is the first time hybrid-
Trefftz elements for dynamic problems defined on solid and porous me-
dia are implemented in a public software.

The results obtained with the new modules are successfully validated
against commercial software that employs conventional finite elements
and against similar results reported in the literature, where available.
The absorbing boundary conditions are also shown to efficiently miti-
gate the spurious vibrations of the inbound waves.
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Appendix A. Matrices and coefficients for single-phase media

For single phase media, matrix p is simply a diagonal matrix having
the mass density of the material p for its diagonal elements. The operator
D in Eq (26) is

9
D= ox
0

0
9 (90)
9y
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[l.Dei»Ol
5

Fig. 25. Pore pressure field in the wetting fluid
at different instants.

1
o
pore pressure (Pa)

(¢)33s

1
o
pore pressure (Pa)

() 8.0s

and the stiffness matrix is,

kyy o ki 0
k=1ky ky 0 oD

0 0 ki

The stiffness coefficients are defined as,

ki = kia +2k33 (92)
where

2 (1 =2v)
ki) =

12 = 93)

for plane stress problems,
kyp=4 (94)
for plane strain problems, and
kyy = p (95)

for both problems. In definitions (93) to (95), 4 and y are the Lamé’s
constants and v is the Poisson’s coefficient.

Appendix B. Matrices and coefficients for biphasic media

For biphasic media, matrices p, and d, are,

P 0 py, 0
0 p 0 Pw
Po = P 0 % 0 (96)
0 p, 0 22
0 0 0 0
d 0 0 0 0
=lo 0o £ o oD
o0 0 £
and the generalized mass matrix p is expressed as,
p 0 p, O
0 p 0 Pw
= 98)
’ Pw 0 Puw2 0
0 Pw 0 Pun

where p is the mass density of the mixture, p,, is the mass density of the
liquid phase, and
te

wnw?

Pua
=% = 99)

w2
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where ¢ is the dissipation, n" is the volume fraction and a is the tortu-
osity correction factor. The operator D in Eq (26) is

0 0
p=|° ;_y w Vs ()" (100)
o o o <
%
0 0 0 e
and the stiffness matrix is,
kyy o ki 0 kg
k k 0 k
k=% 11 14 101
0 0 kg O (101)
kiy ki 0 kg
The stiffness coefficients are defined as,
kyp = kyy + 2ks3 (102)
kiy = A+a*M (103)
k33 = n (104)
ki =aM (105)
kyy=M (106)

where « and M are the Biot’s coefficients [3].
Appendix C. Matrices and coefficients for triphasic media

The expression of the mass p, and damping d, and matrices present
in equilibrium Eq (1) are

nSpS 0 0 0 0 0
0 nS pS 0 0 0 0
0 0 n" W 0 0 0
Po=1 g 0 0 " oW 0 0 (107)
0 0 0 0 nNpN 0
0 0 0 0 0 nN pN
u" + N 0 - 0 -V 0
0 T 0 —u" 0 —uN
w w
—u 0 " 0 0 0
= 1
o 0 - 0 rud 0 0 (108)
—uN 0 0 0 ul 0
0 —ulN 0 0 0 uN

where ni, i = {S, W, N}, represent the volume fractions of each phase, p
are the densities of the solid grain, wetting and non-wetting fluids, and

()"

Kokl

u = (109)

where f = {W, N}, V/ is the dynamic viscosity of the f-fluid, k; is the
intrinsic permeability and k{ is the relative permeability of the f-fluid.
The generalized mass matrix p is expressed as

Pss 0 Psw 0 PSN 0
0 Pss 0 Psw 0 PSN
p= Psw 0 Pww 0 0 0 (110)
0 Psw 0 Pww 0 0
PSN 0 0 0 PNN 0
0 PSN 0 0 0 pyN
where,

Pss="SPS—é(MW+HN) (111)
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i
- 112
Psw = H (112)

pon = —u (113)
w

pww =n" o - iﬂW (114)

o =npV = SN (115)

The operator D is

9 F
e 0 gy 0 0
o 2 £ 0 o0
y ox 9
0 0 0 — 0 T
D= 0. = (D* 116
0 0 0 % 0 ( ) (116)
o 0o o o 2
0 0 0 0 l%(
The stiffness matrix k is,
Mgg +2n%uS Mgs 0 Mgy Mgy
Mg Mgg +2n5 S 0 Mgy Mgy
k= 0 0 nS us 0 0 (117)
Mgy, Mgy, 0 My Myy
Mgy Mgy 0 Myy Myn
where,

2
nS(=2Dy Dy + Dy + DW)(KS - Ui)

Mgy :nS(KS+AS—2/IS)—
pe Kg(1- DyDy,)

(118)

(1- DN)DWKWnS</1;fe - KS)

Mgy = — (119)
W Ks(1 - DyDy)
Dy (1 —DW)KNnS(AIfe—KS) .
Moy = — (120)
SN Ks(1-DyDy)
Dy K2 nS
My = Kyn — — 2 W (121)
Ks(1 - DyDy)
DyDy KyKynS
My y = N WINZwI (122)
Kg(1—DyDy)
DyK%nS
Myy =Kyn¥ - — XN (123)
Ks(1-DyDy)
K
Dy, = S - (124)
Kgn™ + Ky nS +nS(nW) @W
KonN
Dy = s (125)

KgnN + KynS + nS(nN)2®N

and 45 and A% are the Lamé’s coefficients. Elastic constants /Ilfe, v

and OV can be determined experimentally following the procedures de-
scribed in Wei and Muraleetharan [26] and K;, i = {S, W, N}, are the
bulk moduli of each phase.
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Appendix D. Absorbing boundary flexibility matrices

For single-phase media, the inverse of the absorbing boundary flex-
ibility matrix present in Eq (6) is given by Lysmer and Kuhlemeyer
[14] as,

Ccl =i <ﬁp(k12+2k33) 0 )
0 Bskss

The inverse of the absorbing boundary flexibility matrix for biphasic
media is given by Moldovan [16] as,

(126)

Cyp 0 Cp
cl'=l0 ¢, o0 (127)
Cs 0 Gy
Ciy =Clx(rPiBrr—vBe1) +ar vy (Bpa — Be1)] (128)
Ci3=Clx(Bp1 — Bp2) + “(Y}Va‘;ﬂpl - Y;le;ﬂm)] (129)
Co=—ifsu (130)
Cyy =Cla(y}iBpr —vBe1) + Yoo (Bpa — Be1)] (131
Cy3 = C[(Y;V]ﬂm - }’%ﬂpz) + a(ﬁPl - ﬂPz)] (132)
M
C=—i —2 (133)
Y1 Tp
y=a*+ % (134)

The absorbing boundary flexibility matrix for triphasic media is

Cl] 0 C13 C14
0 C 0 0
C= 2 (135)
Gy 0 G Cy
Cy 0 Cp Cy
where the coefficients are the solutions of the problem
-1 -1 -1
Chi Cz Cy uliPl_l Vlﬂ/PZ—l uﬁ/m_]
G Gy Cyl=i "p1Ppy J/%ﬂp% 7,],V3ﬂp%
Ca Cs Cau pi1Ppi ypzlzzfz 7p3Pp (136)
Cn Cun Cus
Cs21 Cs22 Cs23
Cia1 G Cas
Cyit = Mgs +2n° 1 + 7} Mgy + 7, Mgy (137)
Cyip = Mgs +2n° 45 + v}, Mgy + 7, Mgy (138)
Co3 = Mgs +2n5uS +y V. Mgy + v, Mgy (139)
_ w N
Co1=Mgy +7p,Myw +7vp My N (140)
Cop=Mgy +7Y My + 7YX M (141)
522 SW P2 WW P2 WN
_ w N
Coz=Mgy +7pMyw +17ps My n (142)
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Ca1= Mgy +v) My y +7h My y (143)
Cyn = Mgy +y) My y +7h,Myy (144)
_ w N
Ci3=Mgy+7psMyn +vpsMyn (145)
and
-1
Cypy =i (Bs nSuS) (146)
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