
Component-based Programming forHigher-Order Attribute GrammarsJoão SaraivaDepartment of Computer Siene,University of Minho, Braga, Portugaljas�di.uminho.ptAbstrat. This paper presents tehniques for a omponent-based styleof programming in the ontext of higher-oder attribute grammars (HAG).Attribute grammar omponents are �plugged in� into larger attributegrammar systems through higher-order attribute grammars. Higher-orderattributes are used as (intermediate) �gluing� data strutures.This paper also presents two attribute grammar omponents that an bere-used aross di�erent language-based tool spei�ations: a visualizerand animator of programs and a graphial user interfae AG ompo-nent. Both omponents are reused in the de�nition of a simple languageproessor. The tehniques presented in this paper are implemented inLr: a purely funtional, higher-order attribute grammar-based systemthat generates language-based tools.1 IntrodutionReent developments in programming languages are hanging the way we on-strut programs. Programs are now a olletion of generi, reusable, o�-the-shelfprogram omponents that are �plugged in� to form larger and powerful pro-grams. In suh an arhiteture, intermediate gluing data strutures are used toonvey information between di�erent program omponents: a omponent on-struts (produes) an intermediate data struture whih is used (onsumed) byother omponent.In the ontext of the design and implementation of language-based tools,attribute grammars provide powerful properties to improve the produtivity oftheir users, namely, the stati sheduling of omputations. Indeed, an attributegrammar writer is neither onerned with breaking up her/his algorithm intodi�erent traversal funtions, nor is she/he onerned in onveying informationbetween traversal funtions (i.e., how to pass intermediate values omputed inone traversal funtion and used in following ones). A seond important propertyis that irularities are statially deteted. Thus, the existene of yles, and,as a result, the non-termination of the algorithms, is deteted statially. That isto say that for (ordered) attribute grammars the termination of the programsfor all possible inputs is statially guaranteed. A third harateristi is thatattribute grammars are delarative. Furthermore, they are exeutable: e�ientdelarative (and non-delarative) implementations (alled attribute evaluators)



are automatially derived by using well-known AG tehniques. Finally, inre-mental implementations of the spei�ed tools an be automatially generatedfrom an attribute grammar.Despite these advantages, attribute grammars are not of general use asa language-based tool spei�ation formalism. In our opinion, this is due totwo main reasons: �rstly, there is no e�ient, lear and elegant support for aomponent-based style of programming within the attribute grammar formalism.Although an e�ient form of modularity an be ahieved in AGs when eah se-manti domain is enapsulated in a single AG omponent [GG84,LJPR93,KW94℄[CDPR98,SS99b,dMBS00℄, the fat is that there is no e�ient support within theAG formalism for an easy reuse of suh omponents. That is, how an a grammarwriter �plug in� an AG omponent into her/his spei�ation? How are those AGomponents glued together? How is information passed between di�erent AGomponents? How an the separate analysis and ompilation of omponents beahieved? Obviously we wish to provide answers to these questions within theattribute grammar formalism itself. Seondly, there is a lak of good generi,reusable attribute grammar omponents that an be easily �plugged in� into thespei�ations of language-based tools. Components that are themselves writtenin the AG formalism.The purpose of this paper is two-fold: �rstly, to propose a omponent-basedstyle of programming in the (higher-order) attribute grammar formalism. Thismeans that attribute grammar omponents are e�iently and easily �plugged-into� an AG spei�ation via higher-order attributes. In this approah, one AGomponent de�nes a higher-order attribute whih is deorated aording to theattribute equations de�ned by another AG omponent.Seondly, to introdue two generi, reusable and o�-the-shelf AG omponents.These omponents are themselves de�ned in the HAG formalism and providemodern and powerful properties to visualize, animate and interat with language-based tools.This paper is organized as follows: Setion 2 presents higher-order attributegrammars, its notation and provides a simple example that will be used through-out the paper. Setion 3 introdues HAG omponent-based programming andpresents two generi AG omponents: a visualization and animation omponent(Setion 3.1) and graphial user interfae omponent (Setion 3.2). Setion 4disusses related work and Setion 5 ontains the onlusions.2 Higher-Order Attribute GrammarsThe tehniques presented in this paper are based on the higher-order attributegrammar formalism [VSK89℄. Higher-Order Attribute Grammars are an im-portant extension to the attribute grammar formalism. Conventional attributegrammars are augmented with higher-order attributes, the so-alled attributableattributes. Higher-order attributes are attributes whose value is a tree. We mayassoiate, one again, attributes with suh a tree. Attributes of these so-alled



higher-order trees, may be higher-order attributes again. Higher-order attributegrammars have four main harateristis:� First, when a omputation an not be easily expressed in terms of the indu-tive struture of the underlying tree, a better suited struture an be om-puted before. Consider, for example, a language where the abstrat grammardoes not math the onrete one. Consider also that the semanti rules ofsuh a language are easily expressed over the abstrat grammar rather thanover the onrete one. The mapping between both grammars an be spe-i�ed within the higher-order attribute grammar formalism: the attributeequations of the onrete grammar de�ne a higher-order attribute represent-ing the abstrat grammar. As a result, the deoration of a onrete syntaxtree onstruts a higher-order tree: the abstrat syntax tree. The attributeequations of the abstrat grammar de�ne the semantis of the language.� Seond, semanti funtions are redundant. In higher-order attribute gram-mars every omputation an be modelled through attribution rules. Morespei�ally, indutive semanti funtions an be replaed by higher-orderattributes. For example, a typial appliation of higher-order attributes isto model the (reursive) lookup funtion in an environment. Consequently,there is no need to have a di�erent notation (or language) to de�ne se-manti funtions in AGs. Moreover, beause we express indutive funtionsby attributes and attribute equations, the termination of suh funtions isstatially heked by standard AG tehniques (e.g., the irularity test).� The third harateristi is that part of the abstrat tree an be used diretlyas a value within a semanti equation. That is, grammar symbols an bemoved from the syntati domain to the semanti domain.� Finally, as we will desribe in this paper, attribute grammar omponents anbe �glued� via higher-order attributes.These harateristis make higher-order attribute grammars partiularly suit-able to model language-based tools [TC90,Pen94,KS98,Sar99℄.2.1 The Blok LanguageConsider a very simple language that deals with the sope rules of a blok stru-tured language: a de�nition of an identi�er x is visible in the smallest enlosingblok, with the exeption of loal bloks that also ontain a de�nition of x. Inthe latter ase, the de�nition of x in the loal sope hides the de�nition in theglobal one.We shall analyse these sope rules via our favorite (toy) language: the bloklanguage1. One sentene in blok onsists of a blok, and a blok is a (possiblyempty) list of statements. A statement is one of the following three things: adelaration of an identi�er (suh as del a), the use of an identi�er (suh asuse a), or a nested blok. Statements are separated by the puntuation symbol1 The blok language, that we introdued in [SSK97,Sar99℄, has beome a popularexample to study the stati sheduling of �irular� de�nitions [dMPJvW99,Law01℄



�;� and bloks are surrounded by square brakets. A onrete sentene in thislanguage looks as follows:sentene = [ use x ; use y ; del x ;[ del y ; use y ; use w ℄ ;del y ; del x℄This language does not require that delarations of identi�ers our beforetheir �rst use. Note that this is the ase in the �rst two applied ourrenesof x and y: they refer to their (latter) de�nitions on the outermost blok. Notealso that the loal blok de�nes a seond identi�er y. Consequently, the seondapplied ourrene of y (in the loal blok) refers to the inner de�nition and notto the outer de�nition. In a blok, however, an identi�er may be delared one,at the most. So, the seond de�nition of identi�er x in the outermost blok isinvalid. Furthermore, the blok language requires that only de�ned identi�ersmay be used. As a result, the applied ourrene of w in the loal blok is invalid,sine w has no binding ourrene at all.We aim to develop a program that analyses blok programs and omputesa list ontaining the identi�ers whih do not obey to the rules of the language. Inorder to make the problem more interesting, and also to make it easier to detetwhih identi�ers are being inorretly used in a blok program, we require thatthe list of invalid identi�ers follows the sequential struture of the input program.Thus, the semanti meaning of proessing the example sentene is [w,x℄.The blok language does not fore a delare-before-use disipline. Conse-quently, a onventional implementation of the required analysis naturally leadsto a program that traverses eah blok twie: one for proessing the delara-tions of identi�ers and onstruting an environment and a seond time to proessthe uses of identi�ers (using the omputed environment) in order to hek forthe use of non-delared identi�ers. The uniqueness of identi�ers is heked inthe �rst traversal: for eah newly enountered identi�er delaration it is hekedwhether that identi�er has already been delared at the same lexial level. In thisase, the identi�er has to be added to a list reporting the deteted errors. Thestraightforward algorithm to implement the blok proessor looks as follows:1st Traversal 2nd Traversal- Collet the list of loal de�nitions - Use the list of de�nitions as the globalenvironment- Detet dupliate de�nitions - Detet use of non de�ned names(using the olleted de�nitions) - Combine �both� errorsAs a onsequene, semanti errors resulting from dupliated de�nitions areomputed during the �rst traversal, and errors resulting from missing delara-tions, in the seond one. Thus, a �gluing� data struture has to pass expliitlythe deteted errors from the �rst to the seond traversal, in order to omputethe �nal list of errors in the desired order.



2.2 The Attribute Grammar for the Blok LanguageIn this setion we shall desribe the program blok in the traditional attributegrammar paradigm. To de�ne the struture of the blok language, we start byintroduing one ontext-free grammar de�ning the abstrat struture of Blok.Then, we extend this grammar with attributes and the attribution rules.We assoiate an inherited attribute dli of type Env to the non-terminalsymbols Its and It that de�ne a blok. The inherited environment is threadedthrough the blok in order to aumulate the loal de�nitions and in this waysynthesizes the total environment of the blok. To distinguish between the sameidenti�er delared at di�erent levels, we use an attribute lev that distributesthe blok's level. We assoiate a synthesized attribute dlo to the non-terminalsymbols Its and It, whih de�nes the newly omputed environment. The totalenvironment of a blok is passed downwards to its body in the attribute env inorder to detet applied ourrenes of unde�ned identi�ers. Every blok inheritsthe environment of its outer blok. The exeption is the outermost blok: itinherits an empty environment. To synthesize the list of errors we assoiate theattribute errs to Its and It.The stati semantis of the blok language are de�ned in the attributegrammar presented in Fragment 1. We use a standard AG notation: produtionsare labelled for future referenes. Within the attribution rules of a prodution,di�erent ourrenes of the same symbol are denoted by distint subsripts.Inherited (synthesized) attributes are pre�xed with the down (up) arrow # (").Pseudo terminal symbols are syntatially referened in the AG, i.e., they areused diretly as values in the attribution rules. The attribution rules are writtenas Haskell-like expressions. Copy rules are inluded in the AG spei�ation(although there are well-known tehniques to omit opy rules, in this paper, weprefer to expliitly de�ne them). The semanti funtions mBIn (standing for�must be in�) and mNBIn (�must not be in�) de�ne usual lookup operations2.Its < # lev : Int; # dli : Env; # env : Env; " dlo : Env; " errs : Err >Its = NilItsIts:dlo = Its:dliIts:errs = [℄j ConsIts It ItsIt:dli = Its1:dliIts2:env = Its1:envIt:env = Its1:envIts2:dli = It:dloIts1:dlo = Its2:dloIt:lev = Its1:levIts2:lev = Its1:levIts1:errs = It:errs ++ Its2:errs
It < # lev : Int; # dli : Env; # env : Env; " dlo : Env; " errs : Err >It = Use StringIt:dlo = It:dliIt:errs = mBIn (String; It:env)j Del StringIt:dlo = (Pair String It:lev) : It:dliIt:errs = mNBIn (Pair String It:lev; It:dli)j Blok ItsIt:dlo = It:dliIts:dli = It:envIts:lev = It:lev + 1Its:env = Its:dloIt:errs = Its:errsFragment 1: The blok attribute grammar.2 These indutive funtions an be de�ned via higher-order attributes. Indeed, in theblok HAG presented in [Sar99℄, we have suh an example.



It is ommon pratie in attribute grammars to use additional non-terminalsand produtions to de�ne new data types and onstrutor types, respetively.The type Env and the onstrutor funtion Pair are examples of that:Tuple = Pair String IntEnv = ConsEnv Tuple Envj NilEnvErr = ConsErr String Errj NilErrNote that, the type Env is isomorphi with non-terminal Env: the term on-strutor funtions ConsEnv and NilEnv orrespond to the Haskell built-in listonstrutor funtions : and [℄, respetively. Roughly speaking, non-terminalsde�ne tree type onstrutors and produtions de�ne value type onstrutors. Wewill use both notations to de�ne and to onstrut value types.To make the AG more readable, we introdue a root non-terminal so that wean easily write the attribution rules speifying that the initial environment ofthe outermost blok is empty (i.e., the root is ontext-free) and that its lexiallevel is 0.P < " errs : Err >P = Root ItsIts:dli = [℄Its:lev = 0Its:env = Its:dloP:errs = Its:errsThe above fragment inludes a typial equation where a inherited attribute(env) depends on a synthesized attribute (dlo) of the same non-terminal (Its).Although suh dependenies are natural in attribute grammars they may lead toomplex and ounterintuitive solutions in other paradigms (funtional, impera-tive, et), beause they indue additional traversal funtions whih have to beexpliitly �glued� together to onvey information between them.The AG fragments presented so far formally speify the stati semantis ofthe blok language. A higher-order extension to this AG will be presented innext setion, where we introdue our omponent-base programming tehniques.3 Gluing Grammar Components via Higher-OrderAttribute GrammarsIn funtional programming, it is ommon pratie to use intermediate data stru-tures to onvey information between funtions. One funtion onstruts the in-termediate data struture whih is destruted by another one. The intermediatedata struture is the omponent �glue�. We will mimi this approah in the



higher-order attribute grammar setting: an AG omponent de�nes (or, at at-tribute evaluation time, onstruts) a higher-order attribute (i.e., a tree-likedata struture), whih is used (or deorated) by the other AG omponent.This gluing of AG omponents is de�ned in the HAG formalism itself asfollows: onsider, for example, that an AG omponent, say AGreuse, expressessome algorithmA over a grammar rooted X, and suppose that we wish to expressthe same algorithm when de�ning a new grammar, say AGnew . Under the higher-order formalism this is done as follows: �rstly, we de�ne an attributable attribute,say a with type X, in the produtions, say P, of AGnew where we need to expressalgorithm A. Seondly, we extend AGnew with attributes, whose types are thetypes (i.e., non-terminals) de�ned in AGreuse, and attribute equations, wherethe semanti funtions are the onstrutors (i.e.produtions) of AGreuse. Thatis, we de�ne attributes that are tree-value attributes. After that, we instantiatethe higher-order attribute a with the tree-value attribute of type X onstrutedin the ontext of prodution P. Then, we instantiate the inherited attributes ofassoiated type/non-terminal (i.e., X). Finally, and by de�nition of HAGs, thegenerated synthesized attribute ourrenes of a are de�ned by the attributeequations of AGreuse. They are ready to be used in the attribute grammarspei�ation, like any other �rst-order attribute.Notie that by expressing the gluing of AG omponents within the AG for-malism itself, we are able to use all the standard attribute grammar tehniques,e.g., the e�ient sheduling of omputations and the stati detetion of irular-ities. For example, the inherited/synthesized attributes of the AG omponentsan be �onneted� in any order. The HAG writer does not have to be onernedwith the existene of yli dependenies among AG omponents: the AG iru-larity test will detet them for him. Furthermore, we an use attribute grammartehniques to derive e�ient implementations for the resulting HAG. For ex-ample, we an use our deforestation tehniques to eliminate the possibly largeintermediate trees that glue the di�erent omponents [SS99a℄.Most of the powerful attribute grammar tehniques are based on a globalstati analysis of attribute dependenies. Thus, they require that the di�erentAG modules/omponents are �fused� into an equivalent monolithi HAG, be-fore they are analised. In [SS99b℄ we have presented tehniques to ahieve theseparate analysis and ompilation of AG modules than naturally extend to ouromponent-based approah.3.1 An Attribute Grammar Component for Visualization andAnimation of Language-based ToolsIn order to be more preise about our approah, let us onsider the blok lan-guage example again. Beause this simple toy example has a non-trivial shedul-ing of omputations, we would like to �plug into� the AG spei�ation an AGomponent that allows us to visualize and animate the blok proessor.Thus, we introdue a generi omponent for the visualization and animationof AGs. We wish to use this AG as a generi visual and animation AG omponent.We start by de�ning an abstrat grammar that is su�iently generi to de�ne



all possible abstrat tree strutures we may want to visualize and animate. Thegrammar is as follows:TreeViz = CTreeViz TreeId [TreeStmt℄TreeStmt = CStmtNode NodeStmtj CStmtEdge EdgeStmtj CStmtAttr AttrStmtNodeStmt = CNodeStmt NodeId [Attr℄EdgeStmt = CEdgeStmt NodeId [EdgeRHS℄ AttrsEdgeRHS = CRHSExpNode EdgeOp NodeIdAttr = CAttr AttrId AttrValThe non-terminals TreeId, NodeId, EdgeOp, AttrId, AttrVal de�ne sequenesof haraters (strings). In order to make it easier to use this omponent, wede�ne a set of funtions/maros that, using the produtions of this AG om-ponent, de�ne usual ourring node formats in our trees. Next, we present fourfuntions that de�ne the shape of a node as a reord (attrShapeReord), as airle (attrShapeCirle), as the value of a node label (attrLabel), and, �nally, asa node that ontains a value and an arrow to a hild node. These funtions arepresented next.attrShapeReord = CAttr "shape" "reord"attrShapeCirle = CAttr "shape" "irle"attrLabel label = CAttr "label" labelnodeReord1 val father hild =[CStmtNode (CNodeStmt father) [attrShapeReord , attrLabel (val ++ "|<>")℄,CStmtEdge (CEdgeStmt "") [CRHSExpNode "->" hild℄ ℄The label is a string that de�nes the format of the node reord. The non-terminal EdgeOp is a string de�ning the diretion of the arrow.The above grammar de�nes the abstrat struture of abstrat trees only. Tohave a onrete graphial representation of the trees, however, we need to mapsuh abstrat tree representation into a onrete one. Rather than de�ning a on-rete interfae from srath and implementing a tree/graph visualization system(and reinventing the wheel!), we an synthesize a onrete interfae for existinghigh quality graph visualization systems, e.g., the GraphViz system [GN99℄. Weomit here the attributes and attribution rules that we have assoiated to thevisualization grammar sine they are neither relevant to reuse this omponentnor to understand our tehniques.To reuse this omponent, however, we need to know the inherited and syn-thesized attributes of its root non-terminal, i.e., the interfae of the AG ompo-nent. This grammar omponent is ontext-free (it does not have any inheritedattributes) and synthesizes two attributes graphviz and xml, both of type string.These two attributes synthesize a textual representation of trees in the GraphVizinput language. The �rst attribute displays trees in the usual graphi tree rep-resentation, while the seond one uses a Xml tree-like representation (where theprodution names are the element tags).



TreeViz < " graphviz : String; " xml : String >We are now in position to �glue� this omponent to the blok AG. Let usstart by de�ning the attribute and the equations that speify the onstrutionof the GraphViz representation.Its < " viztree : [TreeStmt℄ >Its = NilItsIts:viztree = nodeEmptyCirle treeRef(Its)j ConsIts It ItsIts1:viztree = (nodeReord2 "" treeRef(Its1) treeRef(It) treeRef(Its2))++ It:viztree ++ Its2:viztreeIt < " viztree : [TreeStmt℄ >It = Use StringIt:viztree = nodeReord0 ("Use" ++ String) treeRef(It)j Del StringIt:viztree = nodeReord0 ("Del" ++ String) treeRef(It)j Blok ItsIt:viztree = (nodeReord1 "Blok" treeRef(It) treeRef(Its)) ++ Its:viztreeFragment 2: Construting the Visual Tree.Where the funtion treeRef returns a unique identi�er of its tree-value argu-ment (the tree pointer).Next, we delare a higher-order attribute, i.e., attributable attribute (ata)named visualTree, in the ontext of the single prodution applied to the rootnon-terminal of the blok AG. The type of the higher-order attribute is TreeVizwhih is the type of the root non-terminal of the reused omponent. After that,we have to instantiate the higher-order attribute with the attribute synthesizedin the above fragment. Finally, and beause TreeViz has no inherited attributes,we just have to aess the synthesized attribute of the higher-order attribute, asusual. The HAG fragment looks has follows:P < " String : visualT ree >P = Root Itsata visualT ree : TreeViz -- DelarationvisualT ree = CTreeViz "BlokTree" Its:viztree -- InstantiationP:visualTree = visualT ree:graphviz -- Use of its syn. attrsThis fragment de�nes a higher-order extension to the blok attribute gram-mar presented in the previous setion. To proess suh higher-order attributegrammar, we use the Lr system: an inremental, purely funtional higher-order attribute grammar based system [KS98℄. Thus, we an use Lr to proessthe blok HAG and to produe the desire blok proessor.Figure 1 shows two di�erent snapshots (displayed by GraphViz) of the treethat is obtained as the result of running the blok proessor with the inputexample sentene. As we an see the tree is ollapsed into a minimal Diret



Fig. 1. The DAG representing the blok example sentene at the beginning of theevaluation (left) and after ompleting the �rst traversal to the outermost blok (right).Ayli Graphs (DAG). This happens beause we are using the inrementalmodel of attribute evaluation of Lr3.Besides omputing the graphial representation of the tree, the proessorgenerated by Lr also produes a sequene of node transitions. This is exatlythe sequene of visits the evaluator performs to deorate the tree under onsid-eration. Suh sequene an be loaded in and animated in GraphViz, either insingle step or in ontinuous mode, forwards and bakwards. Furthermore, olorsare used to mark the visited nodes.The snapshot on the left shows the beginning of the evaluation: the root nodeis visited for the �rst time (the shadowed node). The snapshot on the right showsthe end of the �rst traversal to the outermost blok. Note that the nodes of thenested blok were not visited (they are not shadowed). Indeed, the AG shedulerindued (as we expeted) that only after olleting the omplete environmentof the outer blok (performed on its �rst traversal), an the evaluator visit theinner ones. The inner bloks are traversed twie in the seond traversal of theouter blok.3 Lr ahieves inremental evaluation through funtion memoization. Trees are ar-guments of the evaluators' funtions. Thus, to make funtion memoization possible,they have to be e�iently ompared for equality. Minimal DAG's allow for e�ientequality tests between all terms beause a pointer omparison su�es.



3.2 An Attribute Grammar Component for Advaned InterativeInterfaesAs it was previously stated, types an be de�ned within the attribute grammarformalism. So, we may use this approah to introdue a type that de�nes anabstrat representation of the interfae of language-based tools. In other words,we use an abstrat grammar to de�ne an abstrat interfae. The produtionsof suh a grammar represent �standard� graphial user interfae objets, likemenus, buttons, et. Next, we present the so-alled abstrat interfae grammar.Visuals = CVisuals [Toplevel℄Toplevel = Toplevel Frame String StringFrame = Label Stringj ListBox Entrylistj PullDownMenu String MenuListj PushButton Stringj Unparse Ptrj HList [Frame℄j VList [Frame℄The non-terminal Visual de�nes the type of the abstrat interfae of thetool: it is a list of Toplevel objets, that may be displayed in di�erent windows.A Toplevel onstrut displays a frame in a window. It has three arguments: theframe, a name (for future referenes) and the window title. The produtionsapplied to non-terminal Frame de�ne onrete visual objets. For example, pro-dution PushButton represents a push-button, prodution ListBox represents alist box, et.The prodution Unparse represents a visual objet that provides struturedtext editing [RT89℄. It displays a pretty-printed version of its (tree) argumentand allows the user to interat with it. Suh beauti�ed textual representation ofthe abstrat syntax tree is produed aording to the unparse rules spei�ed inthe grammar. It also allows the user to point to the textual representation to editit (via the keyboard), or to transform it using user de�ned transformations. Theprodutions VList and HList de�ne ombinators: they vertially and horizontally(respetively) ombine visual objets into more ompliated ones. These non-terminals and produtions an be diretly used in the attribute grammar tode�ne the interfae of the environments. Thus, the interfae is spei�ed throughattribution, i.e., within the AG formalism.To de�ne a onrete interfae, we need, as we have said above, to de�ne themapping from the abstrat interfae representation into a onrete one. Insteadof de�ning a onrete interfae from srath, we synthesize a onrete inter-fae for a existing GUI toolkit, e.g., the Tl/Tk GUI toolkit [Ous94℄. Indeed,the GUI AG omponent synthesizes Tl/Tk ode de�ning the interfae in theattribute named tk.Next, we present an attribute grammar fragment that glues the blok HAGwith this GUI AG omponent. It de�nes an interative interfae onsisting ofthree visual objets that are vertially ombined, namely: a push-button, theunparsing of the input under onsideration and the unparsing of the list oferrors. The root symbol P synthesizes the Tl/Tk onrete ode in the attributeourrene onreteInterfae.



Fig. 2. The blok environment's interfae generated from the HAG.P < " onreteInterfae : Tk >P = Root Itsata absInterfae : VisualsabsInterfae = let f button = PushButton "Add Statement"editor = Unparse &Perrors = Unparse &P:errsomb = VList [ button , editor , errors ℄g in [ Toplevel omb "edit" "Blok Editor" ℄P:onreteInterfae = absInterfae:tkFragment 3: The blok graphial user interfae.Figure 2 shows the onrete interfae of the blok proessor.The PushButton onstrutor simply displays a push-button. To assign anation to the displayed button we have to de�ne suh an ation. One againwe use the same tehnique, i.e., we de�ne an abstrat grammar to desribethe abstrat events handled by interative interfaes. Basially, we assoiate anabstrat event-handler to eah visual objet.Event = ButtonPress Stringj ListBoxSelet Entrylistj MenuSelet Stringj TextKeyPress CharThe onstrutor ButtonPress is the event-handler assoiated with PushButton.Next, we show a possible ation assoiated with this event-handler.Its = NilItsbind on ButtonPress "Add Statement": Its ! ConsIts (Del "a") NilIts;The bind expression is used to speify how user interations are handled bythe language-based environment. In this ase, it simply de�nes that every timethe push-button "Add Statement" is pressed, the rooted subtree Its is trans-formed into ConsIts Del("a") NilIts. Note that this event-handler onstrutor isde�ned in the ontext of a NilIts prodution. Thus, a new delaration is addedat the end of the program being edited.



Other features of visualization and animation, and of the advaned graphialuser interfae AG omponents are:� The use of abstrat grammars (i.e., intermediate representation languages)makes these omponents highly modular: new onrete visualizations/anima-tions/interfaes an be �plugged into� the AG system, just by de�ning theorresponding mapping funtion.� This approah has another important property: under an inremental at-tribute evaluation sheme, the visualization/animation/interfae is inre-mentally omputed, like any other attribute value [Sar99,SSK00℄.� Beause the Lr system uses an inremental omputational model, we ananimate inremental attribute evaluators. Indeed, in the animations pro-dued by Lr, it is possible to visualize the reuse of a memoized funtionall: the animation simply hanges the olor of a node, without visiting itsdesendents.4 Related WorkThe work presented in this paper is losely related to attribute oupled gram-mars [GG84,LJPR93,CDPR98℄, omposable attribute grammars [FMY92℄ andKastens and Waite work on modularity and reusability of attribute grammars[KW94℄.Attribute oupled grammars onsist of a set of AG omponents eah of whih(oneptually) returns a tree-valued result that is the input for the next om-ponent. Grammars are oupled by de�ning attribute equations that build therequired tree-valued attributes, very muh like the values of higher-order at-tributes are de�ned in our approah (e.g., Fragment 2). In attribute oupledgrammars, however, the �ow of data is stritly linear and unidiretional. In ourapproah the data an �ow freely throughout the omponents, provided that noattribute depends diretly nor indiretly on itself. Under our tehniques suhyli dependenies are statially deteted.In [GG84℄ desriptional omposition is de�ned to eliminate the reation ofthe intermediate trees. That is, from the oupling attribute grammar (modules) agrammar is onstruted that de�nes the same equations, but that eliminates theonstrution of the intermediate trees. The desriptional omposition, however,an result in a non-absolute irular AG. Furthermore, desriptional ompositiondoes not allow the separate analysis and ompilation of grammar omponents.Composable attribute grammars [FMY92℄ use a partiular grammar modulefor gluing AG omponents. Grammar modules on be analised and ompiledseparately. However, the gluing of the omponents is expressed with a speialnotation outside the AG formalism.Kastens and Waite [KW94℄ aim at a di�erent form of modularity. They showthat a ombination of notational onepts an be used to reate reusable attri-bution modules. They also de�ne a set of modules to express ommon operationon programming languages. However, suh modules are not de�ned within the



AG formalism, thus, making the maintenane, updating and understanding ofsuh omponents muh harder.5 ConlusionsThis paper presented tehniques to write attribute grammars under a omponent-based style of programming. Suh tehniques rely entirely on the higher-orderattribute grammar formalism: attribute grammar omponents are glued into alarger AG system through higher-order attributes. Standard attribute grammartehniques are used to detet irularities (e.g., AG irularity test), to e�ientlyshedule the omputations (e.g., AG sheduling algorithms), and, to eliminateredundant intermediate data strutures indued by higher-order attributes (e.g.,AG deforestation tehniques).We also have presented two generi, reusable and o�-the-shelf AG ompo-nents that an easily be �plugged into� any higher-order attribute grammar spe-i�ation. Suh omponents provide powerful properties to visualize, animate andinterat with language-based tools. Thanks to the fat that these omponentsare themselves de�ned in the HAG formalism, we inherit all of its nie proper-ties and beause of that the maintenane, updating and understanding of suhomponents is simpler.These omponents are implemented in the Lr system. However, they anbe reused in any attribute grammar system, provided it proesses higher-orderattribute grammars.Referenes[CDPR98℄ Loi Correnson, Etienne Duris, Didier Parigot, and Gilles Roussel.Generi Programming by Program Composition. In Proeedings of theWorkshop on Generi Programming, pages 1�13, June 1998.[dMBS00℄ Oege de Moor, Kevin Bakhouse, and Doaitse Swierstra. First-Class At-tribute Grammars. In D. Parigot and M. Mernik, editors, Third Workshopon Attribute Grammars and their Appliations, WAGA'99, pages 1�20,Ponte de Lima, Portugal, July 2000. INRIA Roquenourt.[dMPJvW99℄ Oege de Moor, Simon Peyton-Jones, and Eri van Wyk. Aspet-OrientedCompilers. In Proeedings of the First International Symposium on Gen-erative and Component-Based Software Engineering (GCSE '99), LNCS,September 1999.[FMY92℄ Rodney Farrow, Thomas J. Marlowe, and Daniel M. Yellin. ComposableAttribute Grammars: Support for Modularity in Translator Design andImplementation. In 19th ACM Symp. on Priniples of ProgrammingLanguages, pages 223�234, Albuquerque, NM, January 1992. ACM press.[GG84℄ Harald Ganzinger and Robert Giegerih. Attribute Coupled Gram-mars. In ACM SIGPLAN '84 Symposium on Compiler Constrution,volume 19, pages 157�170, Montréal, June 1984.[GN99℄ Emden R. Gransner and Stephen C. North. An open graph visualizationsystem and its appliations to software engineering. Software Pratieand Experiene, 00(S1):1�29, 1999.
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