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Abstract

Stock and Watson (1998 and 1999) developed a factor-model approach which allows

for big data sets to be systematically reduced to a few explanatory factors. In this

paper two other methods are proposed. The first one, Partial Least Squares is im-

ported from the Chemometrics literature. The second one, which is based on the

Combination of Forecasts literature is a modification of Stock and Watson’s method.

We will call this method Principal Components Combination. These methods are
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compared in an empirical application to inflation. We conclude that the method with

the best overall performance is the Principal Components Combination.

1 Introduction

With enormous amounts of new information on several economic indicators arriving

in continuous time, applied Macroeconomists have the problem of dealing with huge

data sets and with hundreds of explanatory variables that can be useful for forecasting

purposes. Usually we have at most a few hundred observations, making the use of so

many variables impossible. Even with financial data, where much longer time series

may easily be found, it is of dubious interest to consider hundreds of regressors. On

the other hand, it is inefficient not to use all available information. More information

should be helpful, not a problem.

One popular method to deal with this problem of excessive explanatory variables is

the Principal Components Regression (PCR), which was applied by Sargent and Sims

(1977) and Geweke (1977). More recently, this method has been successfully applied

to US Macroeconomic data (Stock and Watson (1998, 1999, and 2002)), Bernanke

and Boivin (2003). Marcellino, Stock and Watson (2003) applied this method to

European data, but in their paper the Principal Components Regression could not

consistently improve upon a simple Auto Regression model.

This literature is growing, and some nice asymptotic results have already been
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derived – see Stock and Watson (1998), Forni, Hallin, Lippi, and Reichlin (2000)

and Bai and Ng (2002). Still, some criticisms to this approach remain:

1. the results are very sensitive to the scale measurement of the variables,

2. the principal components are constructed without taking into consideration any

relationship between the regressors and the dependent variable, and

3. the results are usually very hard to interpret.

If the only objective is to produce forecasts the third criticism is not a serious

problem. Since in this paper we are focusing on forecasting we will discuss the first

two criticisms.

One method, which tries to overcome the second problem is the Partial Least

Squares (PLS). This method, specially known in the Chemometrics literature, was

proposed by Wold (1975). PLS became popular during the 80’s and, a decade

later, several papers appeared in the Statistics literature analyzing the properties

of this method. Although popular among chemometricians, this method has never

become popular among econometricians and economists. One recent application of

this method to economic data can be found in Gibson and Pritsker (2000).

A different branch of literature is the Combination of Forecasts proposed by Bates

and Granger (1969) – see also Granger (1989) and Deutsch, Granger and Terävirsta

(1994). This literature deals with the problem of having multiple forecasts for the
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same variable. These authors, and others, argue that combining the different forecasts

in a suitable manner leads to better predictions than the individual ones. Bates and

Granger (1969) argued that a simple way to combine the different forecasts is to

run a simple regression (OLS) to find the best combination. Note that if one has a

big number of forecasts then simple OLS will not be appropriate. Chan, Stock and

Watson (1999) make the argument that a suitable way to combine a big number of

different forecasts is by PCR.

As an alternative to the Principal Components Regression and to the Partial

Least Squares approach, we will combine the PCR with the Forecast Combination

approach. To be more precise, we will use each explanatory variable to obtain a

forecast for the dependent variable, and then combine the several forecasts using the

PCR method. The proposed method has two advantages: it is scale invariant, thereby

dealing with the first criticism, and it takes into consideration the explanatory power

of the independent variables on the dependent variable.

The rest of the paper is organized as follows: section 2 sets up the basic model, and

describes and relates two well-known estimation methods: PCR and PLS. In section

3 another method is proposed and described: Principal Components Combination

(PCC). In section 4 the different methods are applied to inflation forecasting and

compared. Section 5 concludes.
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2 The Model

Let the basic data be given by X = (x1, ..., xN) (a matrix of T observations of N

independent variables) and y (a vector with T observations of the dependent variable).

To facilitate interpretation assume that all the variables are already given in deviations

from their means.

Consider a factor model of the form:⎧⎪⎪⎪⎨⎪⎪⎪⎩
xn
(T×1)

= λn,1
(1×1)

F1
(T×1)

+ · · ·+ λn,K
(1×1)

FK
(T×1)

+ en
T×1

n = 1, ..., N

y
(T×1)

= β1
(1×1)

F1
(T×1)

+ · · ·+ βK
(1×1)

FK
(T×1)

+ ε
T×1

or, stacking the vectors together:⎧⎪⎪⎪⎨⎪⎪⎪⎩
X

(T×N)
= F

(T×K)
λ

(K×N)
+ e

T×N

y
(T×1)

= F
(T×K)

β
(K×1)

+ ε
T×1

(1)

The crucial assumption of this model is that y depends on X by only a few

unobserved factors F and not in any other way. A factor model of this type is

useful when the number of predictor variables is large (possibly even larger than T

) making more common forecasting techniques unattractive or not feasible. Since

F may contain lagged values of the underlying factors, this model is also called a

dynamic factor model.

A natural way to estimate the parameters of the second equation of the system 1

is to replace the unobservable factors by estimated factors, and then estimate β by

Ordinary Least Squares (OLS).
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In the next subsections of the paper we consider two different methods to estimate

the unobserved factors:

– Principal Components Regression (PCR), and

– Partial Least Squares (PLS).

The first one is becoming increasingly popular among econometricians, while the

latter one is most popular in the Chemometrics literature. After that we will pro-

pose a modification of the PCR based on the Forecast Combination literature. This

modification follows the spirit of PLS (by taking into consideration the effect of each

predictor on the dependent variable) but essentially uses the analytical tools of PCR,

with the advantage of being scale invariant.

2.1 Principal Components Regression

If the model described above is correct, then a possible procedure is to use the principal

components of X as an estimate of the factors, and then use these to estimate de

second equation of 1.

As Stone and Brooks (1990) showed, the idea of this method is to find the linear

combinations of theX variables, such that a vector of weights, p1, maximizes p0X 0Xp,

then p2 is chosen to maximize p0X 0Xp such that p0p1 = 0, with the vectors of weights

being normalized to have unit distance. Thus p1 is the normalized eigenvector of X 0X

associated with the highest eigenvalue, p2 is the normalized eigenvector associated
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with the second highest eigenvalue, and so on.

By choosing the components associated with the highest eigenvalues one obtains

the linear combinations of X that are orthogonal to each other and simultaneously

have the highest variance. Intuitively, by choosing linear combinations with the high-

est variance possible, one is, in some sense, maximizing the information contained in

those linear combinations. The number of estimated factors to include is a problem

to which we will return later, when carrying out the empirical application.

Stock and Watson (1998), Forni et al. (2000) and Bai and Ng (2002) provide

consistency results for this method. The asymptotic theory of this method has not

only T → ∞ but also N → ∞. E.g. Bai and Ng assume that E kFtk4 < ∞

and 1
T

PT
t=1 F

0
tFt → ΣF as T → ∞, with ΣF being some positive definite matrix.

They also assume that each factor has a nontrivial contribution to the variance of

X:
°°°λ0λN −D

°°° → 0 as N → ∞, with D being some positive definite matrix, and

kλnk 6 λ̄ < ∞. They also impose some conditions on the error terms of the X

variables, allowing for heteroskedasticity in both time and cross section dimensions

and some dependence between factors and the errors. Bai and Ng – and also Stock

and Watson (1998) with a different set of assumptions – show that, asymptotically,

the estimated factors and the true factors span the same space.
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2.2 Partial Least Squares

In the previous section only the information contained in the X−data was used to

estimate the factors. Obviously not all the information is used, as the relationship to

the dependent variable is not considered.

PLS first appeared in the form of an algorithm (which is described bellow). Stone

and Brooks (1990) showed that with PLS a vector of weights p1 is chosen to maximize

p0X 0yy0Xp. p2 is chosen to maximize p0X 0yy0Xp such that p0(X 0X)p1 = 0. So one

is finding the linear combination of the X variables which maximizes the squared

sample covariance. Although PLS deals with the second criticism to PCR, it fails to

address the first, as it is scale dependent as well. The usual procedure is to normalize

all the variables to have unit variance. By doing this, maximizing the squared sample

covariance amounts to maximizing the squared sample correlation.

There are at least two algorithms (one proposed by Wold and another proposed

by Martens (1985)). Helland (1988) proved the equivalence between both and also

provided a third method, which is computationally more convenient. Next we will

describe the algorithmWold proposed and, after that, the alternative basis Helland

proposed. For a description of both algorithms and the proof of their equivalence and

also the equivalence of the alternative basis the reader is referred to Helland (1988).

For some consistency results of PLS the reader can consult Naik and Tsai (2000)1.

1Assuming that the explanatory variables are i.i.d.,these authors prove consistency of the PLS
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2.2.1 The original PLS algorithm

Define E0 = X and f0 = y. Define Ea and fa recursively as:

Ea = Ea−1 − F̂aλ̂
0
a

fa = fa−1 − F̂aβ̂a

(2)

where F̂ stands for the factor estimate.

We will need to determine F̂a, λ̂a and β̂a to fit into these equations. As with the

Principal Components approach, each estimated factor F̂a will be a linear combination

of the X variables. E.g. for a = 1 we want:

F̂1
T×1

=
NX
n=1

xn
T×1

pn1
1×1

= X
T×N

p1
N×1

(3)

Since we want to use the information contained in y to estimate the factors the

weights will be chosen as:

p1 = X 0y (4)

With this method, explanatory variables with a higher covariance with Y will receive

a higher weight.

In general we have:

F̂a = Ea−1pa (5)

pa = E0
a−1fa−1 (6)

for T →∞. Extension to stationary variables is immediate.
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We still need to determine λ̂a and β̂a. To have the best fit in equations 2 we use

the regression coefficients. For a = 1 we have y = F̂1β̂1 + f1 and X = F̂1λ̂
0
1 + E1, so

the regression coefficients are given by β̂1 =
³
F̂ 0
1F̂1
´−1

y01F̂1, and λ̂
0
1 =

³
F̂ 0
1F̂1
´−1

F̂ 0
1X.

In general we have:

λ̂a =
³
F̂ 0
aF̂a

´−1
E0
a−1F̂a (7)

β̂a =
³
F̂ 0
aF̂a

´−1
f 0a−1F̂a (8)

Note that since the F̂a’s are orthogonal to each other (again see Helland (1988)),

instead of formulas 7 and 8 we can use:

λ̂a =
³
F̂ 0
aF̂a

´−1
X 0F̂a

β̂a =
³
F̂ 0
aF̂a

´−1
y0F̂a

With this method, the first factor to be estimated is F̂1 = (X)
T×N

(X 0y)
N×1

. So instead

of finding the linear combination of the X variables that maximizes the variance,

one is using the covariance between each predictor and the dependent variable as the

weight of that variable. Then the second factor will be estimated using the covariance

between
³
X − F̂1λ̂

0
1

´
and

³
y − F̂1q

0
1

´
, and so on.

2.2.2 An alternative basis

The next proposition allows us to use a computationally more convenient

method.
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Proposition 1 Let SA be the space spanned by p1, . . . pA. As long as pA is nonzero, an

alternative basis for SA is given by the vectors (X 0y), (X 0X) (X 0y), . . . , (X 0X)A−1 (X 0y).

Proof. See Helland (1988) or Stone and Brooks (1990).

2.3 Prediction, spectral representation and relation between PLS and

PCR

For a moment consider a population version of the model described in system 1, so

that there is no noise.

Consider the spectral decomposition of S = X 0X =
PK

k=1 ϕkpkp
0
k, where pk is the

eigenvector associated with the strictly positive eigenvalue ϕk (X
0X has rank K).

Note that, using the principal components regression, the predicted value for y is

ŷ = F (F 0F )−1 F 0y

=
KX
k=1

Xpk (p
0
kX

0Xpk)
−1

p0k (X
0y)

For prediction purposes all the non-relevant eigenvectors of X 0X can be deleted.

Also note that if an eigenvalue has multiple eigenvectors associated with it, the cor-

responding terms can be substituted by only one term by rotating in eigenspaceswith

equal eigenvalue, such that we get only one eigenvector. E.g. suppose that λ1 = λ2,

then we can replace p1 and p2 by p∗1 =

Ã
p1p01+p2p

0
2³

(p01s)
2
+(p02s)

2
´ 1
2

!
(X 0y). Note that p∗01 p1 = 1,

and that p1p02 (X
0y) + p2p

0
2 (X

0y) = p∗1p
∗0
1 (X

0y).
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Definition 2 The relevant eigenvectors of X 0X to predict y are the ones associated

with different eigenvalues which satisfy p0k(X
0y) 6= 0. The corresponding factors Fk =

Xpk are the relevant factors in X for prediction of y. Let A be the total number of

relevant eigenvectors.

Proposition 3 The population PLS space has dimension A and when this minimal

number of terms is used, the population PLS regression vector and the population

PCR regression vector are equivalent.

Proof. See Helland 1990.

This proposition tells us that the PLS and PCR regression vectors are equivalent

when the appropriate basis is chosen. Some stopping rule must be defined when

applying the algorithm and hence the previous results will only be approximate: with

real and noisy data it is highly unlikely that we find exact repeated values for the

eigenvalues or that p0k(X
0y) = 0 (the sample relevant components will be very close

to min (N,T − 1)).

Maybe the biggest advantage of PLS over PCR is that the possible nonsense of

giving a large weight to an irrelevant explanatory variable is avoided. E.g. suppose

that the variable Xg is completely uncorrelated with y (cov (Xi, y) ≈ 0). Using the

PCR algorithm there is nothing to prevent this variable from receiving a large weight,

while with the PLS approach this variable receives approximately zero weight.
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3 Combination of Forecasts and Principal Components

Bates and Granger (1969) – see also Granger (1989) and Deutsch, Granger, and

Terävirsta. (1994) – suggest that when there are several forecasts for the same vari-

able one sensible thing to do is to combine these several forecasts. Several combination

methods have already been by proposed (again the reader is invited to check the ref-

erences already mentioned). Chan, Stock and Watson (1999) argue that a suitable

way to combine the different forecasts is by modeling them as an approximate factor

model.

If one has N explanatory variables, then, using univariate regressions it is possible

to produce N forecasts that can be combined using the PCR approach. We will call

this procedure Principal Components Combination (PCC).

Let us see in detail how to implement the PCC method:

1. project y onto the space spanned by each of the N explanatory variables: zn =

xn (x
0
nxn)

−1 x0ny, for n = 1, 2, ..., N ,

2. create a new matrix of explanatory variables: Z = (z1, ..., zN),

3. find the eigenvectors ui of Z 0Z associated with positive eigenvalues. Let u1 be the

eigenvector associated with the highest eigenvalue, u2 with the second highest,

and so on,
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4. use as new regressors the variables ZuA associated with the A highest eigenval-

ues.

By choosing the principal components one is choosing a linear combination of the

explanatory variables (Z in this case) that maximizes the variance. In this case the

variance of each individual predictor has a natural interpretation: it is the explained

variance of y by the corresponding original explanatory variable. One is no longer

finding the principal components without taking into consideration the information

contained in y. The weight that each variable receives is not independent of the

relationship between the regressors and the dependent variable. Variables with higher

explanatory power are also the variables with the highest variance, and hence they

will tend to receive a higher weight. On the other extreme, if some variable xn has no

explanatory power over y, then the estimated y’s will be constant (since all variables

are in deviations from the mean, zn will be a column of zeros), and this variable will

receive zero weight when constructing the principal components.

If we choose A components the estimated value for y is

ŷ = Z (u1, ..., uA)
£
(Z (u1, ..., uA))

0 Z (u1, ..., uA)
¤−1

(Z (u1, ..., uA))
0 y

The final forecasts will be independent of the scale of the original variables X,

because the matrix Z will not be changed with the scale of the original variables.

Proposition 4 Let K be the number of eigenvectors (pk) of X 0X associated with
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nonzero eigenvalues and assume that cov (y, xn) 6= 0, n = 1, ..., N . Then (Zu1, ..., ZuK)

and (Xp1, ...,XpK) span the same space.

Proof. Note that an = (x0nxn)
−1X 0

ny is a scalar different from zero as long as

cov (y, xn) 6= 0. So zn = anxn and hence X and Z span the same space and the

number of eigenvectors associated with nonzero eigenvalues of X 0X and Z 0Z are the

same (i.e. K). Since (Xp1, ...,XpK) span the same space as X, and (Zu1, ..., ZuK)

span the same space as Z, we must have that (Xp1, ...,XpK) and (Zu1, ..., ZuK) span

the same space.

This proposition tells us that when considering the population version of the model

PLS and PCC are equivalent, as long as all the components associated with strictly

positive eigenvalues are used. In a sample regression this result will have some noise

because the number of positive eigenvalues will be min (N, T − 1), and obviously it is

unfeasible to use so many components. In small samples, one would expect that when

only a few components are considered then the components estimated by PCC will

produce better forecasts (we will be able to confirm this later) but asymptotically,

with N and T approaching infinity, the results should converge.

4 Empirical Application

In this section of the paper we will apply the previous methods to forecast inflation

using monthly data.The data was taken from the DRI-Mcgraw Hill Basic Economics
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database spanning a time horizon from October 1968 to March 2003. This amounts

to 413 observations of 140 variables.

All these variables are economic indicators measuring different aspects of the econ-

omy activity, such as real output and income, employment, sales, consumption, hous-

ing starts inventories, stock prices, exchange rates, interest rates, monetary aggre-

gates, wages and, obviously, inflation.

Most variables were logarithmized (namely all the strictly positive variables that

were not in the form of rates or ratios). We individually tested (using the ADF and

Phillips Perron tests) each series to check if it was stationary or not. In the cases in

which the series were not stationary we took first differences.

We will produce h month ahead inflation forecasts using different specifications.

We will estimate the model using T observations and use the estimated model to

produce an out of sample inflation forecast and compare this forecast with the realized

inflation rate. This will be done recursively for the complete sample Then the Mean

Square Prediction Error (MSE) and the Mean Absolute Prediction Error (MAE) of

the out of sample forecasts are computed and used to compare the accuracy of the

different methods proposed. E.g., if we consider a sample size of 100 observations,

we use the first 100 observations to predict the inflation of period 101. Then we will

reestimate the model using observations 2-101 to produce a forecast of the inflation

in period 102, and so on
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As in Stock and Watson (1999) we will consider two different measures of infla-

tion. One of them is the Consumer Price Index (with the mnemonic PUNEW) –

a Laspeyres index – and the other is the Personal Consumer Expenditure deflator

(with the mnemonic GMDC) – a chain weighting.

In the more general form, the equation to be estimated is:

πht+h = α+ β (L)xt + γ (L)πt + eht+h (9)

The dependent variable is πht+h is given by π
h
t+h =

µhQh
i=1 (1 + πt+i)

i 1
h − 1

¶
. This

specification can be thought of as predicting inflation over the next h months.

The regressor(s) xt is (are) some explanatory variable(s) available at time t. β (L)

is a polynomial vector in the lag operator L, and γ (L) is a polynomial in the lag

operator L.

We will consider several competing methods for the choice of xt:

• the Phillips curve: xt is just the unemployment rate between all workers of 16

years or older of period t,

• the pure AR model: xt is omitted,

• three other models: xt is recursively chosen in each regression according to the

methods described below.

The last three competing methods mentioned above are:
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1. Principal Components Regression,

2. Principal Components Combination,

3. Partial Least Squares.

In the first case we compute the principal components, using the procedure de-

scribed in section 3, and choose the one associated with the highest eigenvalue. Then

to determine if we should include the component associated with the second highest

eigenvalue we use a modified version of the Bayes Information Criterion (BIC), pro-

posed by Bai and Ng (2002)2. If the inclusion of the second component is rejected the

process stops, if not then the same criterion is used again to evaluate the score associ-

ated with the third eigenvalue, and so on. A maximum of 10 components is allowed.

With the PCC the procedure is the same as with the PCR method. The only differ-

ence is that instead of considering the original variables, these are pre-transformed

(as described in section 3).

For example, if the original variable is a vector xi, we will work with zi =

Xi(X
0
iXi)

−10y (where y is the dependent variable, the h-period ahead inflation rate).

Finally to estimate the components using the PLS method we use the alternative basis

described in proposition 2. The first component to be included is X(X 0y). Then one

2Bai and Ng showed that the standard BIC can only consistently estimate the correct number of

factors if the factors are known. If one has to estimate the factors then the BIC may not consistently

estimate the correct number of factors. The same criterion was used by Marcellino et al. (2003).
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checks if X [(X 0X)X 0y] should be included. If the inclusion is rejected the process

stops, if not we check if X
£
(X 0X)2X 0y

¤
should also be included, and so on and so

forth. Again a maximum of 10 components is allowed.

Two more things should be mentioned. First since the PLS and PCR are scale

sensitive we followed the suggestion in the literature and, in each regression, we

normalized all the variables to have unit variance. Although not reported, we also

considered the case with no normalization. The performance of these two methods is

severely worse without the normalization. we should also note that since we have 140

explanatory variables and when constructing the X matrix we include two more lags

of each explanatory variable, the matrix of explanatory variables has 420 columns.

To choose the order of the polynomials of β (L) and γ (L) we use the typical BIC.

4.1 Results

In tables 1 to 5 we can informally check the performance of the various methods.

On the top part of each table we have the relative (to PCR) mean square forecast

errors and in the lower part the relative mean absolute forecast error. we considered

several sample sizes, so that one can evaluate the performance on small and on bigger

samples. Naturally the bigger is the sample size the lesser is the number of feasible

estimations.

By a simple counting procedure it is apparent that the PCC method is the method
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giving the most accurate forecasts: in 76 times, out of 120, the PCC had the smallest

out of sample relative forecast errors. PLS also performed reasonably well being able

to produce the smallest mean forecast errors 32 times, followed by the PCR (8 times)

and the AR model (4 times).

Taking the PCR model as the benchmark, we conclude that PCC was able to beat

PCR 101 times (out of 120), while PLS produced more accurate forecasts than PCR

(according to the two different criteria) 70 times. Comparing the PCC method with

PLS we can see the PCC produces more accurate forecasts 84 times (out of 120).

To compare the performance of these methods in a more formal way we consider

two tests. One is a sign test (see Diebold and Mariano (1995) for details), the other is

the Diebold and Mariano Statistic (again see Diebold and Mariano (1995) for details)

to test if the MSE and MAE of two different methods are statistically significantly

different (the null being that the forecast performances are similar) – negative values

of the test statistics mean that PCC performed better according to the criterion of

the test. In tables 6 to 10 we have the results of the tests comparing PCR with PCC

(bellow the value of each statistic we have the one sided p−value).

Of all the tests applied to each series of forecasts, only once it was concluded that

the PCR had a significantly better performance (considering 10% significance level)

than PCC — namely when predicting the 6 months inflation, using the GMDC price

index, and the MAE criterion to evaluate the performance.
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On the other hand we can see that PCC performs significantly better than PCR

several times and according to the several tests. For example, when predicting the

two years inflation, the PCC performance is always significantly better than PCR, ac-

cording to the three different statistics (except when we have the sample size of 300).

For shorter horizons, like one month or three month inflation forecasts although PCC

systematically performs better, only sporadically the better performance is statisti-

cally significant. Looking at intermediate horizon forecasts (6 and 12 months), we

conclude that about half of the times the difference between the performance of the

two methods is statistically significant.

In tables 11 to 15, we can see the results of the same tests comparing PCC with

PLS – as before, negative values for the test statistics mean that PCC performed

better. PCC was significantly more accurate (considering a significance level of 10%)

81 times while PLS was significantly more precise 19 times. Given these results, it is

fair to consider PCC as being the method with the overall best performance.

5 Conclusions

Stock and Watson (1999) considered several forecasting models to predict inflation

in the US. Of the several models they considered, PCR was the one with the best

performance. In this paper we took this model as a benchmark and proposed two

other methods, which can be applied in similar situations. The main results of Stock
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andWatson was reproduced in this paper: PCR leads to significant improvements

over the typical AR model, or over the traditional Phillips curve.

To overcome some of the criticisms to the PCR method, two other methods were

proposed:

• the Partial Least Squares, which is very well-known in the Chemometrics liter-

ature, and its relation with PCR has already been widely studied, and

• the Principal Components Combination, which tries to overcome the shortcom-

ings of the PCRmethod by combining this method with the literature on combi-

nations of forecasts. This method is scale invariant with respect to the original

explanatory variables, and takes into consideration the explanatory power of

each of the explanatory variables when choosing the weights to give to each

variable.

PLS seems to produce better forecasts than the PCR method for longer hori-

zons (one or two years inflation forecasts), but these results are not confirmed when

considering smaller horizons.

PCC performs systematically better than PCR, and, more formally, using some

tests, we concluded that performs significantly better several times. Comparing PLS

with PCC, we can see that PCC performs better again.
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