
Converting Web Pages Mockups to HTML Using Machine Learning

Tiago Bouças1, António Esteves2 a

∗Centro ALGORITMI, School of Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
tiagoalvesboucas@gmail.com1, esteves@di.uminho.pt2

Keywords: Deep learning, convolutional neural network, recurrent neural network, YOLO, Web page mockup

Abstract: Converting Web pages mockups to code is a task that developers typically perform. Due to the time required
to accomplish this task, the time available to devote to application logic is reduced. So, the main goal of the
present work was to develop deep learning models to automatically convert mockups of Web graphical inter-
faces into HTML, CSS and Bootstrap code. The trained model must be deployed as a Web application. Two
deep learning models were built, resulting from two different approaches to integrate in the Web application.
The first approach uses a hybrid architecture with a convolutional neuronal network (CNN) and two recurrent
networks (RNNs), following the encoder-decoder architecture commonly adopted in image captioning. The
second approach is focused on the spatial component of the problem being addressed, and includes the YOLO
network and a layout algorithm. Testing with the same dataset, the prediction’s correction achieved with the
first approach was 71.30%, while the second approach reached 88.28%. The first contribution of the present
paper is the development of a rich dataset with Web pages GUI sketches and their captions. There was no
dataset with sufficiently complex GUI sketches before we start this work. A second contribution was applying
YOLO to detect and localize HTML elements, and the development of a layout algorithm that allows us to
convert the YOLO result into code. It is a completely different approach from what is found in the related
work. Finally, we achieved with YOLO-based architecture a prediction’s correction higher than reported in
the literature.

1 Introduction

For many years, machines only replaced the human
being in tasks that involved force. With the use of
mechanized force many jobs were lost, but others
more linked to cognitive ability were gained. Today,
artificial intelligence has reached an impressive devel-
opment, which is mainly due to the recent computa-
tional development. Huge complexity tasks are now
performed faster and more efficiently by machines.
Professions that involve repetitive tasks risk disap-
pearing, while others will be completely remodeled.

This paper presents the development and deploy-
ment of deep learning models to convert graphical
user interface (GUI) sketches, elaborated with the
Balsamiq Mockups application, into HTML, CSS and
bootstrap code. Converting GUI sketches to code is a
task commonly performed by programmers. Due to
the time consumed by this task, it becomes impossi-
ble to devote more time to application logic. On the
other hand, it also becomes a repetitive and tedious
task. The developed models will make it easier and

a https://orcid.org/0000-0003-3694-820X

faster for programmers to work, as they automatically
generate code from an outline of the application inter-
face made with Balsamiq Mockups. After receiving
the code, the user just needs to add JavaScript code,
replace the default text and customize the appearance
of the generated page.

The first contribution of the present work is the
development of a rich dataset with Web pages GUI
sketches and their captions. Due to the lack of
datasets with sufficiently complex GUI sketches, we
decided to construct our own dataset. A second con-
tribution was applying YOLO to detect and localize
HTML elements, and the development of a layout al-
gorithm that allows us to convert the YOLO result into
code. It is a completely different approach from what
is found in the related work.

After presenting the related work in section 2, it
is described the followed methodology. Section 3.1
summarizes the dataset used to train and test the DL
models. The next two sections present two distinct
approaches to address the mockups conversion prob-
lem. The hybrid approach, described in section 3.2,
follows an encoder-decoder architecture. The second
approach is presented in section 3.3 and uses YOLO.



Section 3.4 briefly describes the deployment of the
models through a web application. In section 4 we
present the realized experiments and the achieved re-
sults. This section allows us to understand which one
is the best combination of neural networks in the hy-
brid approach and the best accuracy achieved by the
YOLO approach. Two prediction examples are pre-
sented next. The paper ends with the conclusions and
future work (section 5).

2 Related Work

Image captioning is much more than image recogni-
tion or classification. Captioning has additional chal-
lenges such as recognizing dependencies between ob-
jects that are part of the same image and creating se-
quential text. (Hossain et al., 2018), (Mullachery and
Motwani, 2016), and (Srinivasan et al., 2018) are ex-
amples of works that allow automatic captioning, ap-
plied to photographs taken in everyday life, through
the combination of convolutional and RNNs.

In (Balog et al., 2017), authors have shown that it
is possible to train a deep neuronal network (DNN) to
predict program properties from inputs and outputs.
In (Mou et al., 2015), it is presented a study showing
that it is possible to convert an intention, described
textually, to C code. Through recurrent networks, it
is possible to understand the user’s intent and to gen-
erate part of the code. Their model does not always
generate completely correct code.

Work in (Deng et al., 2017) demonstrates that
DNNs, including CNNs and RNNs (Tan and Wang,
2018), achieve better results when compared to clas-
sical techniques, such as OCR, even in handwritten
data. This project allows us to generate LaTeX code
for an equation given its image. They follow an
attention-based approach to highlight important fea-
tures present in the provided image, something that
human being does very well. Their goal is to avoid
losing relevant information (Xu et al., 2015).

Currently there is a great curiosity about what can
be achieved with automatic code generation. The au-
thor of (Beltramelli, 2017) showed that it is possible
to generate HTML and CSS code from Web pages
GUI sketches. Given a dataset with images and the
associated code, a CNN makes it is possible to ex-
tract the characteristics of the images and an RNN
allows him to obtain the image description. The de-
coder RNN was trained with supervised data, includ-
ing images and the respective code. The output from
the RNN is compiled in order to get functional HTML
code. This work is only focused on the layout and ig-
nores the textual part.

The system developed in (Capece et al., 2016) im-
plements a deep learning (DL) currency recognizer,
based on a client-server architecture. They show that
we can obtain a good CNN accuracy in currency
recognition. However, it requires a relatively large
dataset, since CNNs do not perform well with little
data. Users can photograph a coin and send the image
to the server. The provided image is then classified
with the trained model.

3 Methodology

This section presents the development and deploy-
ment of deep learning models to convert graphical
user interface sketches, elaborated with the Balsamiq
Mockups application, into code.

3.1 Dataset

The lack of datasets with sufficiently complex GUI
sketches led us to create one from scratch. The Web
pages GUI sketches were designed with the aid of
the Balsamiq Mockups tool. The developed dataset
includes the most commonly used Bootstrap com-
ponents, such as images, videos, buttons, navigation
bars, and tables. It consists of 1100 images, 1000 for
training and 100 for testing. Covering only a subset
of the Bootstrap components is due to the amount of
sketches that would be necessary to create in order to
support all the components. The elements contained
within the upper navigation bar are recognized as in-
dependent elements by the DL model. The same does
not happen with the side navigation bar, where the
recognition of internal elements is not performed for
the sake of keeping the dataset smaller.

The inputs for the DL models developed on the
two approaches reported in this paper are different.
So, while in the hybrid approach it was necessary to
caption the images with DSL code, in the YOLO ap-
proach XML annotations were created.

3.2 The Hybrid Approach

The hybrid approach follows a encoder-decoder ar-
chitecture, similar to the common architecture used
in image captioning with DNNs (Vinyals et al.,
2015)(Vinyals et al., 2017). The encoder consists of
two neural networks: a CNN that receives an image as
input and a RNN that receives text as input. The de-
coder neuronal network, which is not necessarily the
same as the encoder, plays the exact opposite role of
the encoder: receives the concatenated feature vector
as input and outputs the closest match based on the



input. Encoder and decoder are trained together and
work to reduce the cost function.

The hybrid approach architecture combines a
CNN with two RNNs to receive an image as input and
to generate the caption for that image. In this case, the
captioning of sketches is done with DSL code, instead
of the usual textual description in a natural language
such as Portuguese or English. Given the complexity
and size of HTML and CSS code, it was necessary to
create a DSL to turn automatic code generation easier.

3.2.1 Domain Specific Language

Domain specific languages (DSL) (Kosar et al., 2015)
are programming languages with limited expressive-
ness, focused on a particular application domain.
Limited expressiveness means that the language only
serves the minimum requirements for the application
domain it was designed. The opposite is a general
purpose language, such as Java, C or Python. The
fact that a programming language is built specifically
to solve problems in a given domain facilitates its in-
terpretation, since it is composed of elements and re-
lations that directly represent the logic of that domain.
Using a DSL in the hybrid approach was essential,
as it would be difficult a model to learn generating
HTML and CSS code correctly, due to its complex-
ity. The DSL simplifies the code generation and facil-
itates the task of the DL model (LeCun et al., 2015).
Listing 1 contains the DSL code for a simple sketch
consisting of an image and two text blocks.

c o n t e n t {
row {

c o l {
image

}
c o l {

p
}

}
row {

p
}

}
Listing 1: An example of DSL code.

3.2.2 Compiler

A compiler translates high level code to lower level
code. For the most popular languages, such as C or
Java, the compiler translates a high level language that
is understood by the user into a lower level language
that the machine can execute. Tools like ANTLR4 let

us create our own programming language. The de-
veloped compiler was used to convert the described
DSL code into HTML and CSS code. The grammar,
created to solve the problem of converting sketches
to HTML, consists of a set of terminal symbols, in-
cluding Bootstrap elements such as images, videos,
links or tables. These symbols cannot be divided into
smaller units, hence the ”terminal” designation. The
top navigation bar consists of a set of elements, such
as buttons, images, or titles. It is divided into smaller
units and is therefore called a non-terminal symbol.
Non-terminal symbols consist of combinations of ter-
minal and non-terminal symbols.

3.2.3 Model architecture

The converter follows a different architecture during
training and inference. In the training phase, the DL
model receives as input a vector that results from con-
catenating the image features with the correspondent
DSL code, while in the inference phase the input vec-
tor contains only the image and the <start> tag. The
DL model follows an encoder-decoder architecture,
inspired by the machine translation and image cap-
tioning literature. During the encoding step, the in-
put, i.e. an image and the associated DSL code, is
transformed into a fixed-length vector. In the decod-
ing step, the encoded vector is interpreted. The de-
coding task is different during training and inference.
During the training phase, the decoder receives as
input the concatenated vector, which is used to learn
the relationship between the image and the associated
DSL code (figure 1).

During the inference phase, the DL model re-
ceives as inputs the image vector and the <start>
tag. The remaining DSL code will be generated by the
model. While the model is generating DSL code for
the image, the output sequence grows until it reaches
an established maximum number of iterations, or until
it generates the <stop> tag that terminates the conver-
sion (figure 2).

Figure 1: Hybrid approach architecture during training.



Figure 2: Hybrid approach architecture during inference.

3.2.4 Metrics

A metric was developed specifically to evaluate the
code generated by the DL model. BLEU score is the
most commonly used metric in machine translation,
but it compares only the generated code with the ex-
pected one, word by word (Papineni et al., 2002). In
our case, this would neglect the most important as-
pect, i.e., the number of elements correctly identified.

The success of the developed metric is measured
by the percentage of elements correctly identified, the
placement of the elements on the correct row and
column (with a smaller weight), and a penalty as-
sociated with the incorrect correspondence between
curly braces. Since the metric focus on these points,
it produces values closer to reality in our automatic
code generation problem. To make the results even
more realistic, different weights are assigned to each
mentioned component. Due to the low probability
of the model generating incorrect curly braces, there
is a weight that reduces the result by 5% when the
curly braces are in wrong place. The binary variable
correctCBraces indicates whether there is a correct
curly braces matching or not (equation 1).

weightCBraces = 0.95+0.05∗ correctCBraces (1)
Equation 2 allows us to evaluate the model output,

based on a given weight that penalizes failures in the
generation of braces, the number of correctly gener-
ated elements, and the correct placement of elements
on the generated Web page.

weightCBraces∗(0.8∗ truePositives
occurrences

+0.1∗ corretRows
occurrences

+0.1∗ correctColumns
occurrences

) (2)

The weightCBraces is computed with equation 1,
occurrences is the number of elements generated
by the model, truePositives is the number of ele-
ments that are generated correctly, corretRows and
correctColumns are the number of elements placed
in the correct row and column, respectively.

3.3 The YOLO Approach

The second approach adopted for converting GUI
sketches to code resulted from the fact that the hy-
brid approach lacked an adequate treatment of the

spatial component of sketches, which made it diffi-
cult to generate correct layouts. The main tool that al-
lowed us to tackle this challenge was YOLO, a DNN
that presents good results in the detection and local-
ization of objects. In this way, we intended to find out
which objects are present in the user-provided image.
It is also important to know the location of the ob-
jects, so that the final layout is as close as possible to
the input sketch. Based on the information obtained
by YOLO, a layout algorithm has been developed to
map the objects detected in the provided image into
HTML and CSS code. The layout algorithm takes
advantage of CSS’s placement and size properties to
place elements on the Web page. This allows us to
place each object in a position very close to the cor-
rect one. The points provided by YOLO allow us to
deduce the width and height of the detected objects
and thus get HTML pages with a visual layout very
close to the input sketch.

3.3.1 YOLO model

YOLO is a deep learning model for real-time ob-
ject detection and localization, that has evolved
through four versions (Redmon et al., 2016) (Red-
mon and Farhadi, 2016) (Redmon and Farhadi, 2018)
(Bochkovskiy et al., 2020). Training accurate ob-
ject detection models requires many GPUs and us-
ing a large batch size. The most updated version
of YOLO avoids these inconvenient requirements by
making an object detector which can be trained on
a single GPU with a smaller batch size. It combines
features such as weighted residual connections, cross-
stage partial connections, cross mini-batch normal-
ization, self-adversarial training and Mish activation,
mosaic data augmentation, DropBlock regularization,
and Complete-IoU loss. YOLO generates a list of ob-
jects and the correspondent bounding boxes.

3.3.2 Layout algorithm

The CSS properties allow us to position elements on
the desired position of a Web page. This makes it
relatively easy to map the objects recognized by the
model into HTML code. For each detected object,
YOLO returns two points that define its bounding
box: (xmin,ymin) and (xmax,ymax). In the absence of
more accurate information, the bounding box is used
to set the location and size of the object to place on
the Web page. The top-left corner of the object’s posi-
tion, can be specified by the CSS top and left prop-
erties, and assumes the ymin and xmin values returned
by YOLO, respectively. In the same way, the CSS
width and height properties allow us to specify the
size of the object on the Web page, and are assigned



xmax−xmin and ymax−ymin values, respectively. These
CSS properties allow us to generate Web pages visu-
ally similar to the input sketches.

The viewport is the area where the browser
draws the Web page content. We implemented a
function to ensure that the size of the Web page el-
ements fit our display. Through simple calculations,
this function turns the generated Web pages respon-
sive. For example, given sketches with a fixed-size of
256×256 pixels, equations 3 to 6 convert the coordi-
nates of the detected objects to a variable size view-
port, which fits the size of our display.

le f t = (xmin ∗100vw)÷256 (3)
top = (ymin ∗100vh)÷256 (4)

width = (width∗100vw)÷256 (5)
height = (height ∗100vh)÷256 (6)

Where vh, or viewport height, is based on the
height of the viewport. A value of 100vh is equal to
100% of the viewport height. vw is the viewport width
and it is based on the width of the viewport.

For each HTML element, a template with HTML
and CSS code was defined. The template has tags to
delimit the places to be replaced by the values gener-
ated by YOLO. As explained before, the CSS prop-
erties that define the position and size of HTML ele-
ments can be replaced by values obtained by YOLO.

3.3.3 Model architecture

Like in the hybrid approach, the developed model
follows a different architecture during training and
inference. During training, YOLO receives a file
with the identification of the images, the objects in-
cluded in each image and their bounding boxes. In
addition to the image identification, the model re-
ceives the following information for each object:
xmin,ymin,xmax,ymax, and the object class. Each image
contains one or more objects (figure 3).

Figure 3: YOLO approach architecture during training.

Figure 4: YOLO approach architecture during inference.

During the inference phase, the model is only
fed with an image for which it must generate HTML
and CSS code. Since the model only predicts the
bounding box and the object’s class, it was nec-
essary to apply a layout algorithm to convert the
YOLO output to code. The layout algorithm re-
ceives the list of bounding boxes generated by YOLO,
which contains the location and the object’s class
(xmin,ymin,xmax,ymax,class), and the file with the
HTML elements templates. The algorithm converts
the information about objects to HTML and CSS
code. We always get a file with functional code. To
simplify the task of handling the end result by users,
the HTML, CSS and Bootstrap codes are placed in a
single HTML file (figure 4).

3.3.4 Metrics

Two metrics were developed for the YOLO approach,
allowing us to evaluate the quality of the generated
HTML code. Quality refers to the match between the
image provided as input and the HTML and CSS page
generated by the model as output. The first metric
measures the accuracy, i.e., the number of elements
correctly detected divided by the number of identified
elements. The second metric measures precision, and
counts the number of elements correctly identified on
each class. Both metrics consider the intersection
between the predicted and the true bounding boxes.
Through the ratio between the interception and the
union of the bounding boxes (IoU), which measures
the percentage of coincidence between these regions,
the error in generating bounding boxes is penalized.
The IoU is also called Jaccard index and Jaccard sim-
ilarity coefficient (Fletcher and Islam, 2018).

The metrics applied in both approaches were
sought to be similar. Thus, a weight of 80% was as-
signed to the number of elements correctly identified
and 20% was applied to the correct localization of ob-
jects. Including the IoU value in the global metric, en-
sures that when we minimize this metric we are mini-
mizing the size and position errors associated with the
identified elements.

Equation 7 calculates the mean IoU over the N
true objects. The algorithm compares each true
bounding box with the predicted one and realizes



which of the predicted regions correspond to the true
region. The comparison is based on the object cat-
egory and the IoU value. Equation 8 measures the
accuracy, through the number of correct predictions,
while equation 9 accounts for the precision of the C
classes of objects, with a weight of 80%, and for the
IoU mean, with a weight of 20%.

IoU =
∑

N
i=1 IoUi

N
(7)

acc = 0.8
TruePositives
occurrences

+0.2 IoU (8)

p= 0.8
∑

C
i=1

TruePositivesi
TruePositivesi+FalsePositivesi

C
+0.2 IoU (9)

3.4 Deep Learning Models Deployment

React is a declarative, efficient, and flexible
JavaScript library for building user interfaces. React
introduced the concept of component-based architec-
ture, where each component manages its own state.
The components can be seen as small independent
parts, which together constitute the user interface.

The developed DL models were deployed as a
Web application. The application interface was di-
vided into 4 components: the header, the frameview
that shows in real-time the code changes done on
the editor, the card describing the steps to be taken
when loading an image in the main page, and the
CodeMirror, an external component used as text ed-
itor. The application consists of only two pages, the
home page and the code editor. The home page con-
sists of the header and 3 card components, which
work as a tutorial on how to use the application.
The editor page contains the text editor, implemented
with a CodeMirror component, and the frameview.
The user can create, edit or remove content from
the text editor and automatically view changes in the
frameview. This feature saves users time, avoiding
having to open the HTML page to view its content.

4 Experiments and Results

This section presents the experiments conducted dur-
ing the development of the mockup’s converter, as
well as their results. Experiments include evaluat-
ing different convolutional neural networks (VGG16,
VGG19, ResNet-50, etc.) on the task of feature ex-
traction, the difference between GRU- and LSTM-
based recurrent networks, assess the impact of RNNs
optimized with CUDA on the training time (via

CuDNN), and the comparison of the results obtained
with both presented approaches. Both approaches
were trained with the same images and tested in the
same scenarios, in order to allow an appropriate com-
parison. The image captions vary between a DSL
description (hybrid approach) and an XML descrip-
tion of the objects plus the respective bounding boxes
(YOLO approach). Although the languages are differ-
ent, the captions are equivalent, as they describe the
same image.

Encoder CNN Enc. RNN Dec. RNN Acc.(%)
InceptResNetV2 cudnngru cudnngru 12.73

InceptionV3 cudnngru cudnngru 32.66
ResNet-50 cudnngru cudnngru 34.75

vgg16 cudnngru cudnnlstm 60.36
vgg16 cudnnlstm cudnnlstm 61.9
vgg16 GRU GRU 66.73
vgg16 cudnngru cudnngru 67.35
vgg19 cudnngru cudnngru 71.30

Table 1: Results from the hybrid approach experiments.

Encoder Encoder Decoder Time Acc.
CNN RNN RNN (min) (%)

inception3 cudnngru cudnngru 239 26.16
vgg16 cudnngru cudnngru 346 60.27

resnet-50 cudnngru cudnngru 373 20.43
vgg16 cudnnlstm cudnnlstm 373 26.21
vgg16 cudnngru cudnnlstm 374 56.15
vgg19 cudnngru cudnngru 423 63.12
vgg19 cudnngru cudnnlstm 429 59.09
vgg16 gru gru 565 63.26

Table 2: Results from hybrid approach after 20 iterations.

4.1 Hybrid approach experiments

The experiments carried out aimed to select the best
combination of neural networks, based on the accu-
racy between the real sketches and those generated by
the model in the test dataset. The best combination
will be compared with the YOLO-based network.

The cudnnlstm and cudnngru are normal RNN
cells, optimized with CUDA, for faster training on
GPUs. CUDA provides an interface that makes it easy
to explore the parallelism available on GPUs. The
CuDNN library provides ML tools with an implemen-
tation of Nvidia’s GPU-optimized linear algebra oper-
ations. According to tables 1 and 2, and for the same
number of epochs, the CUDA version takes consider-
ably less time to train, maintaining a similar accuracy.
It is also verified that the final precision is slightly
higher when using the RNN’s CUDA version.

GRU cells are relatively newer and simpler than
LSTMs. According to the results obtained with the



hybrid experiments (table 1), GRU-based RNNs train
faster and have better results than LSTMs. Table 2
also show that, with the same number of epochs, the
GRU-based RNNs present better results. Although
with more epochs, the CUDA version ends up show-
ing better results. LSTMs have the advantage of being
able to memorize information from longer sequences,
due to their more complex architecture.

After several attempts with different neuronal net-
works, with and without transfer learning, and with
different hyperparameters, 71.30% accuracy was the
best result obtained with the test set. This result was
obtained using transfer learning, model weights from
the Imagenet dataset, fine-tuning, and freezing the
weights of the first layers.

Due to a GPU memory limitation, 8GB on the
Nvidia GTX 1070, some networks could not be
tested without fine-tuning. For example, when using
the 200-layers InceptionResNetV2 (Szegedy et al.,
2016), it was necessary to freeze more than half of
the layers to reduce the required memory. This ended
up limiting the experiments carried out and, conse-
quently, the results. Only the VGG16 and VGG19 net-
works allowed satisfactory results.

4.2 YOLO approach experiments

The YOLO approach aimed to verify whether an ar-
chitecture, known for having a high performance in
the detection and location of objects, would perform
better than our hybrid model. In each iteration of
training and validation, a value for the loss is ob-
tained. The loss quantifies how well the model is
adapting to both training and test sets, and unlike pre-
cision, its value is not a percentage. As the loss func-
tion sums the errors, we must minimize its value. Fig-
ure 5 shows the training and validation loss along 100
epochs. The analysis of the figure reveals that the
curves start to diverge in epoch 78. Table 3 shows
the accuracy at 5 checkpoints during training.

YOLO and the layout algorithm achieved very
good results. The model reaches the best score at
epoch 78. After 254 minutes of training the gener-
ated sketches are 88.28% accurate. According to the
metric presented in equation 9, the best precision is
88.4%. The third version of YOLO architecture was
used. Tests were carried out with different learning
rates and optimizers. This approach achieved an ex-
cellent 88.28% accuracy in the test set. The HTML
code generated by the YOLO approach is much more
similar to the provided input than in the hybrid ap-
proach. YOLO finds the exact location of the bound-
ing region and the layout algorithm places elements
in the correct positions (figures 6 and 7). The same

Figure 5: Training/validation loss in YOLO approach.

Epoch 48 58 68 78 88
Accuracy (%) 60 74 83 88 83

Table 3: Test accuracy of the YOLO approach.

is not true in the first approach, which does not pre-
serve the margins nor the size of the elements. In the
hybrid approach, the elements have size and position
assigned by default in a template file.

(a) input mockup (b) output page
Figure 6: First example of prediction with YOLO approach.

(a) input mockup (b) output page
Figure 7: 2nd example of prediction with YOLO approach.

5 Conclusions
In the hybrid approach, the characteristics of the el-
ements to be inserted in the HTML code are stored
in a file, containing a template for each type of el-
ement commonly found in Web pages. So, the ele-
ments do not vary in size, and their position is defined
only by a line-column pair, which confines the final
appearance of the generated page. The final result is
always different from the input mockup. YOLO han-
dles more appropriately the conversion of mockups to
code. The YOLO network identifies the elements of a
mockup, as well as the respective location. The layout
algorithm maps each object recognized by YOLO into
HTML and CSS code, based on the coordinates of the
bounding box. This algorithm places the elements in



a HTML file, using CSS properties that allow placing
the elements given their coordinates.

The metrics developed for both approaches apply
the same weights: the number of elements generated
correctly is weighted 80% and the remaining 20% are
applied to the dimensions and positioning of the el-
ements. The hybrid approach achieved as best ac-
curacy 71.30%, while the YOLO approach achieved
88.28% of accuracy and 88.4% of precision. The sec-
ond approach generates HTML code that contains ob-
jects with the correct size and position, which natu-
rally results in Web pages much more similar to the
provided mockups. The YOLO approach covered a
wide variety of HTML elements and reached an accu-
racy that outperforms the related approaches.

As future work we propose to implement a layout
algorithm with division by line and column, as oc-
curs in the Bootstrap framework. Since the YOLO
approach provides the coordinates of the bounding re-
gions, the algorithm to be developed must be able to
find the correct margins, in order to position the ele-
ments closer to the coordinate mapping that is being
used, thus making the generated code responsive. To
get around the biggest problem found in this work, the
lack of data, it is proposed to increase the size and di-
versity of the dataset. This measure aims to improve
the object’s detection accuracy, but fundamentally to
improve the accuracy of the coordinates of the bound-
ing box. It is also planned to increase the variety of
supported HTML elements. It is also intended to cre-
ate metrics for the assessment of precision and recall.

Acknowledgment
This work has been supported by FCT - Fundação
para a Ciência e Tecnologia within the R&D Units
Project Scope: UIDB/00319/2020.

REFERENCES

Balog, M., Gaunt, A., Brockschmidt, M., Nowozin,
S., and Tarlow, D. (2017). Deepcoder: Learning
to write programs. ICLR 2017.

Beltramelli, T. (2017). pix2code: Generating code
from a graphical user interface screenshot.

Bochkovskiy, A., Wang, C.-Y., and Liao, H.-Y.
(2020). Yolov4: Optimal speed and accuracy of
object detection.

Capece, N., Erra, U., and Ciliberto, A. (2016). Imple-
mentation of a coin recognition system for mo-
bile devices with deep learning. Conf. Signal-
Image Technology & Internet-Based Systems.

Deng, Y., Kanervisto, A., Ling, J., and Rush,
A. M. (2017). Image-to-markup generation with
coarse-to-fine attention. Int. Conf. on ML.

Fletcher, S. and Islam, M. (2018). Comparing sets
of patterns with the jaccard index. Australasian
Journal of Information Systems, 22.

Hossain, M. Z., Sohel, F., Shiratuddin, M. F., and
Laga, H. (2018). A comprehensive survey of
deep learning for image captioning.

Kosar, T., Bohra, S., and Mernik, M. (2015). Domain-
specific languages: A systematic mapping study.
Information and Software Technology, 71.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep
learning. Technical report.

Mou, L., Men, R., Li, G., Zhang, L., and Jin, Z.
(2015). On end-to-end program generation from
user intention by deep neural networks.

Mullachery, V. and Motwani, V. (2016). Image cap-
tioning. arXiv, abs/1805.09137.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J.
(2002). Bleu: a method for automatic evaluation
of machine translation. pages 311–318.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You only look once: Unified, real-time
object detection. Conf. on Computer Vision and
Pattern Recognition (CVPR), pages 779–788.

Redmon, J. and Farhadi, A. (2016). Yolo9000: Better,
faster, stronger. Conf. on Computer Vision and
Pattern Recognition (CVPR).

Redmon, J. and Farhadi, A. (2018). Yolov3: An incre-
mental improvement. ArXiv, abs/1804.02767.

Srinivasan, L., Sreekanthan, D., and A.L, A. (2018).
Image captioning - a deep learning approach. Int.
Journal of Applied Engineering Research, 13.

Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi,
A. (2016). Inception-v4, inception-resnet and
the impact of residual connections on learning.
AAAI Conference on Artificial Intelligence.

Tan, K. and Wang, D. (2018). A convolutional re-
current neural network for real-time speech en-
hancement.

Vinyals, O., Toshev, A., Bengio, S., and Erhan, D.
(2015). Show and tell: A neural image caption
generator. In IEEE Conf. on Computer Vision
and Pattern Recognition, pages 3156–3164.

Vinyals, O., Toshev, A., Bengio, S., and Erhan,
D. (2017). Show and tell: Lessons learned
from the 2015 MSCOCO image captioning chal-
lenge. IEEE Trans. Pattern Anal. Mach. Intell.,
39(4):652–663.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A.,
Salakhutdinov, R., Zemel, R., and Bengio, Y.
(2015). Show, attend and tell: Neural image cap-
tion generation with visual attention.


